

33

 Figure 4.2. A detailed package level diagram for ARS

The Resolver class is responsible for providing the main functionalities of the

ARS. The Resolver class in the CoreMPI.Core package (Application Layer) implements

the Service interface in the Vitruvian.Services package.

The CoreMPI.DataLayer package (Persistent Layer) contains all the auto-

generated classes from the Vitruvian DBObjects. This package contains all lists of data

chunk classes mentioned in Section 3.4.2 of Chapter 3. These classes are generalized by

the DataChunkList class. Similarly, all of data chunks are generalized by the DataChunk

34

class. Every DataChunk object is associated with a Metadata object. The Metadata class

contains vital information required to calculate the Overall Quality Factor.

The DataField class contains all the information about a specific field in a

DataChunk class. The Dependency class is used by the ARS to determine the

dependencies of an object of the DataField class. These classes are mainly used for the

purpose of merging records.

4.4 Object Interactions

Interaction is a kind of action that occurs as two or more objects have an effect

upon one another. In UML, the interaction between different objects can be explained

using the sequence diagram that shows how objects communicate with each other in

different scenarios in terms of a sequence of messages. It also indicates the life spans of

objects relative to those messages [17]. In the ARS, the interaction between different

object is explained using the sequence diagrams.

 As mentioned in Chapter 1, the ARS creates a GOLDEN data chunk by merging

the two best records. This merging depends on the number of data chunks and their data

quality. It also depends on the missing fields and their dependencies in a data chunk.

Based on these factors, the interaction between different objects is illustrated by five key

scenarios:

4.4.1 The DataChunkList object does not contain any DataChunk objects

As illustrated in Figure 4.3, the Resolver object r gets all the list of data chunks

(dckList object) from object p of the Person class. For every object dckList of the

DataChunk class, the resolver invokes the SortListByQuality method of the dckList

35

object, which returns an empty list. Since the list is empty, there are no records to resolve,

and so the object r skips all the steps and move to the next dckList object.

Figure 4.3. Sequence diagram for empty DataChunkList

4.4.2 The DataChunkList contains only one DataChunk object

As illustrated in Figure 4.4, the Resolver object r gets the complete list of data

chunks (dckList object) from object p of the Person class. For every object dckList, object

r invokes the SortListByQuality method. If there is only one DataChunk object (dck), this

method returns the dcklist object as it is. The Resolver object r directly declares the dck

as the GOLDEN DataChunk object.

36

Figure 4.4 Sequence diagram for one DataChunk in DataChunkList.

4.4.3 Calculation of Overall Quality Factor

In this scenario (Figure 4.5), first, the Resolver object r calls the

SortListByQuality method of the DataChunkList object dckList. The SortListByQuality

method calls getOverallQuality method for all the DataChunk objects (dck) in dckList

object. Each dck object collects information from the Metadata object m to compute the

Overall Quality Factor. The SortListByQuality method then calls the Compare method to

compare the data chunks based on their Overall Quality Factor and sort the list in

ascending order of Overall Quality Factor. Finally, the SortListByQuality method returns

the sorted list to r.

37

Figure 4.5 Sequence Diagram for Calculation of Overall Quality Factor

4.4.4 No merging when DataChunkList contains two or more DataChunk objects

This scenario is illustrated in Figure 4.6. This scenario can be possible in two

cases:

• When the best DataChunk object do not have any empty fields.

• When the best DataChunk object has some empty fields missing but their

dependent fields are available.

The initial steps of this scenario are same as in Section 4.4.3. Once, the Resolver

object r gets a sorted list it looks for missing fields in the best data chunk (last element in

sorted list). Since, in this scenario the best record contains all the fields, or if any of the

Dependency object d of an empty DataField object emptyField is non-empty, then there is

no merging between the records. The GOLDEN record will be a replica of the best

record.

38

Figure 4.6. Sequence diagram for no merging

4.4.5 Merging of records when DataChunkList has two or more DataChunk objects

In this scenario (Figure 4.7), the initial steps are similar to Scenarios 4.4.3 and

4.4.4, but the best record contains some empty data fields. In that case, the Resolver

object r first looks for the missing DataField objects emptyField, and for each

emptyField, object r looks for its Dependency objects d for the best data chunk. If all the

d objects for an emptyField object are also empty, then object r calls the

getNextBestDataChunk method that returns the next best data chunk. Then, r looks for all

the empty fields (of best data chunk) in the next best data chunk. If next best data chunk

contains any extra information, then it merges the best and next best data chunk and

creates the GOLDEN DataChunk object.

39

Figure 4.7 Sequence diagram for merging between two or more records

4.5 Overall Quality Factor

To create the most accurate and reliable data, it is important to measure the

quality of data. For this purpose, the ARS uses the data quality dimensions mentioned in

Section 2.2.3 and devises a formula to calculate the overall quality of a data chunk. The

formula is as follows:

In this formula, Accuracy and Verification are considered more important and are

kept separate from the other factors. The weights Believability_Weight and

Overall_Quality = ((Accuracy + Verification) / 2) * ((Believability_Weight *
 Believability + Total_Completeness + Timeliness_Weight *
Timeliness)/ 3)

40

Timeliness_Weight control the impact of the Believability and the Timeliness attributes,

respectively, in the Overall Quality. These values can be set by the user and can vary for

different data chunks. The data quality parameters in the formula are as follows.

4.5.1 Believability

In the phMPI system’s database, a precedence level is recorded for the entire data

source with respect to a data chunk. For example, if a data source S keeps track of births,

the birth event data from that source will be more believable than any other source. Using

the precedence values, the believability factor is calculated within the range of 0 to 1. The

precedence values range from 1 to n (n is the total number of data sources), where 1 is

given to the data source with highest precedence and n to the data source with lowest

precedence for a particular data chunk. It is calculated by the formula:

4.5.2 Accuracy

 The accuracy of a data chunk comes directly from the data sources. The Metadata

table contains an accuracyRating column, which stores a rating as a decimal value

between 0 and 1. A value of 1 means the data is believed to be completely accurate and a

0 means that the data source has no confidence in the accuracy of the value. Values in

between 0 and 1 represent some intermediate level of confidence in the value’s accuracy.

4.5.3 Total_Completeness

Total_Completeness of a data chunk depends on the number of data fields

available in it and the Metadata object associated with it. Total_Completeness ranges

Believability = 1 /Precedence

41

from 0 to 1, where 0 means all the fields are empty and 1 means all the fields are non-

empty. It is calculated by a simple formula:

Where, Completeness = Number of non-empty fields / Total number of fields

4.5.4 Verification

Verification is calculated using verified dates of data chunks. Verification ranges

from 0 to 1. It is calculated using the following formula:

 Sd: Subject Date (verifiedOnDate of current data chunk)

 Od: Oldest known Date (oldest verifiedOnDate for the same person,

 same data chunk type)

 Rd: Most recent known Date – newest verifiedOnDate for the same

 person, same data chunk type

4.5.5 Timeliness

To calculate the timeliness of a data chunk, different dataAgingType functions are

created. These functions are executed based on the dataAgingType value (available in

Metadata object).

All Timeliness Functions take the following parameters:

 Sd: Subject Date (lastUpdateTimestamp of current data chunk)

 Cd: Current Date (System’s current date)

Total_Completeness = Completeness (DataChunk) *

DataChunk_Completeness_Weight + Completeness(Metadata) *

Metadata_Completeness_Weight

Verification = (Sd –Od) / (Rd-Od)

42

 Od: Oldest known Date (oldest lastUpdateTimestamp for the same person,

 same data chunk type)

 Rd: Most recent known Date – newest lastUpdateTimestamp for the same

 person, same data chunk type

 Ed: Expiration Date - if available, a date on which the data expires

Table 4.1 illustrates the different formulas for calculating Timeliness. These

formulas are used depending on the dataAgingType Values (available in the Metadata

object).

Table 4.1. Timeliness Functions

Function Name Value Formula

Constant function 0/null f(Sd, Cd, Od, Rd, Ed, Er) = 1

Linear-based on oldest
and cents dates

1
f(Sd, Cd, Od, Rd, Ed, Er) = (Sd - Od) / (Rd -
Od)

Linear-based on oldest
and current date

2
f(Sd, Cd, Od, Rd, Ed, Er) = (Sd - Od) / (Cd -
Od)

Step function based on
expiration date

3
f(Sd, Cd, Od, Rd, Ed, Er) = if (Ed!=null &&
Sd<=Ed) then 1 else 0

Linear decay after
expiration

4
f(Sd, Cd, Od, Rd, Ed, Er) = if (Ed!=null &&
Sd<=Ed) then 1 else 1 - Min(1,(Cd-Sd) * Er)

Inverse square decay
after expiration

5
f(Sd, Cd, Od, Rd, Ed, Er) = if (Ed!=null &&
Sd<=Ed) then 1 else 1 - Min(1,(Cd-Sd) *
Er^1/2)

Gradual decay around
expiration date (Cubed
function)

6
f(Sd, Cd, Od, Rd, Ed, Er) = if (Ed!=null &&
Sd<=Ed) then 1 else 1 - Min(1,(Cd-Sd) * Er^3)

4.6 Inter-field Dependencies

As explained in Section 2.6, Inter-field Dependencies are similar to the functional

dependencies of a relational database management system. They act as a constraint and

define the way in which a data field functionally determines another data field [5]. In the

ARS, aggregate data dependencies are defined as a group of data fields. For example,

43

birth hour and birth minute are related to each other and should be grouped together. So,

if the best record has birth hour, but doesn't have birth minute, it shouldn't merge the birth

minute field.

In all the tables, the id field is the primary key so it cannot be changed. Similarly,

mpiid and metaid fields are foreign keys from Person table and Metadata table

respectively, so they are also unchangeable fields. Different colors are used show

unchangeable, independent and dependent fields. Figure 4.8 illustrates the color schemes

for inter-field dependency. The inter-field dependencies for all the data chunks are

explained below.

4.6.1 Inter-field dependency in the Address Class

The inter-field dependencies in the Address class are shown in Figure 4.9. The

DataField object addressype defines the type of address (Home, Office, etc.). Since we

are computing the GOLDEN data chunk for each type of address, this object is also

irreplaceable. The DataField objects streetline1, streetline2, city, stateorprovince,

country, postalcode, donotreleaseflag, casscertified, longitude, and latitude are dependent

on each other. It is possible that the best available address is significantly different from

other records. Merging the best record with other records will create false records with

lower data integrity.

Single unchangeable field

Single Independent field

Set of dependent fields

Figure 4.8. Color schemes for inter-field dependency

44

AdoptionEvent Class

Id

Mpiid

Metaid

adoptiontype, adoptiondate, motherrelinguished

Figure 4.10 Inter-field dependencies in the AdoptionEvent class

4.6.2 Inter-field dependency in the AdoptionEvent Class

Figure 4.10 shows the inter-field dependencies in the AdoptionEvent Class. In

this class we have kept adoptiontype, adoptiondate, and motherrelinguished DataField

objects together, which are dependent on each other.

4.6.3 Inter-field dependency in the BirthEvent Class

Figure 4.11 shows the inter-field dependencies in the BirthEvent Class. In this

class, the DataField facilityid is a reference to the Facility class. Since it’s not related to

any other field in the class, we have kept it independent. The DataField objects birthyear,

birthmonth, and birthday fields are all kept together as they represent birthdate. Similarly,

Address class

Id

Mpiid

Metaid

Addresstype

streetline1, streeline2, city, state, country, postalcode,
donotreleaseflag, casscertified, deliverytext, longitude, latitude.

startdate, enddate

Figure 4.9. Inter-field Dependencies in the Address class

45

birthhour and birthminute represent time of birth, so they are kept together.

The DataField objects city, county, stateorprovince, and country represents

birthplace, so they are kept together. The DataField objects multiple birth and birthorder

are interrelated, since birthorder is important only if there is a multiple birth. The

birthweightgrams and birthweightounces fields represent birthweight in different units, so

they are dependent.

4.6.4 Inter-field dependency in the DeathEvent Class

Figure 4.12 shows the inter-field dependencies in the DeathEvent Class. The

dependencies are pretty similar to BirthEvent class. The DataField object facilityid is a

reference of Facility class and is independent. The DataField objects deathyear,

deathmonth and deathday are all kept together. The DataField objects city, county,

stateorprovince and, country all together provide information about the death place of

that person, so they are kept together.

BirthEvent Class

Id
Mpiid
Metaid

Facilityid
birthyear, birthmonth, birthday

birthhour, birthminute
city, county, state, country
multiplebirth, birthorder

birthweightounces, birthweightgrams

Figure 4.11. Inter-field dependencies in the BirthEvent class

46

4.6.5 Inter-field dependency in the Email Class

In the Email class (Figure 4.133) the DataField object addresstype defines the

type of address (Home, Office, etc.). Since we are computing the GOLDEN data chunk

for each type of address, this field is also irreplaceable. The DataField object email has

been kept completely independent, since there is no other DataField object that is

functionally dependent on it. Start date and end date are dependent on each other, so we

have created dependency for them.

4.6.6 Inter-field dependency in the Gender Class

 In the Gender class, Figure 4.14, there are no dependencies. The DataField object

gender is independent.

Email Class

id

mpiid

metaid

emailtype

email

startdate, enddate

Figure 4.13. Inter-field dependencies in the Email class

DeathEvent Class

Id

Mpiid

Metaid

Facilityid

deathyear, deathmonth, deathday

city, county, stateorprovince, country

Figure 4.12. Inter-field dependencies in the DeathEvent class

47

4.6.7 Inter-field dependency in the MaritalEvent Class

In the MaritalEvent class (Figure 4.15), the DataField object maritalstatus has

been kept completely independent, since no other DataField object is functionally

dependent on it. Start date and end date are dependent on each other, so we have created

dependency for them.

4.6.8 Inter-field dependency in the Note Class

In the Note class (Figure 4.16), the DataField objects note, createdon (date), and

createdby are related to each other, so there is a dependency between them.

Note Class

id

mpiid

metaid

note, createdon, createdby

Figure 4.16. Inter-field dependencies in the Note class

MaritalEvent Class

id

mpiid

metaid

maritalstatus

startdate, enddate

Figure 4.15 Inter-field dependencies in the MaritalEvent class

GenderInfo class

id

mpiid

metaid

Gender

Figure 4.14. Inter-field dependencies in the Gender class

48

4.6.9 Inter-field dependency in the PersonIdentifier Class

In the PersonIdentifier class (Figure 4.17), the DataField object idtype is a

subtype field. Since we are creating GOLDEN records for subtypes also, it cannot be

changed. The DataField object idvalue has been kept completely independent, since there

is no other DataField object that is functionally dependent on it.

4.6.10 Inter-field dependency in the PersonName Class

The PersonName class (Figure 4.18), is most interesting class of all. In this class,

the DataField object nametype is a subtype field (Legal, General, or Alias name type).

GOLDEN records are created for subtypes also so this field cannot be changed. Since

there is a very little chance that a person has two completely distinct names of the same

subtype, an interesting decision to keep rest of the DataField objects independent. This

makes the merging of PersonName object quite flexible.

PersonName class

id

mpiid

metaid

nametype

firstname

middlename

lastname

salutation

suffix

maidenname

Figure 4.18. Inter-field dependencies in the PersonName class

PersonIdentifier Class

id

mpiid

metaid

idtype

Idvalue

Figure 4.17. Inter-field dependencies in the PersonIdentifier class

49

4.6.11 Inter-field dependency in the PersonRace Class

In the PersonRace class, Figure 4.19, there are no dependencies. The DataField

object racecode is independent.

4.6.12 Inter-field dependency in the PersonRelation Class

 In the PersonRelation class (Figure 4.20) the DataField objects relatedmpiid and

rolecode are related to each other, so they are kept together. Start date and end date are

depends on each other, so we have created dependency for them.

4.6.13 Inter-field dependency in the Phone Class

In the Phone class (Figure 4.21) the DataField object phonetype is a subtype field.

Since, we are creating GOLDEN records for subtypes also, this field cannot be changed.

The DataField object phone has been kept completely independent, since there is no other

PersonRelation Class

Id

Mpiid

Metaid

relatedmpiid, rolecode

startdate, enddate

Figure 4.20. Inter-field dependencies in the PersonRelation class

PersonRace class

Id

Mpiid

Metaid

racecode

Figure 4.19. Inter-field dependencies in the PersonRace class

50

DataField object that is functionally dependent on it. Start date and end date are depends

on each other, so we have created dependency for them.

The design decisions taken in this chapter were implemented in by writing the

programming code in C# language. The next chapter documents the implementation of

the ARS.

Phone class

id

mpiid

metaid

phonetype

phone

startdate, enddate

Figure 4.21. Inter-field dependencies in the Phone class

51

CHAPTER 5

 IMPLEMENTATION DETAILS

The ARS System is implemented in C# language on .NET Framework 4.0, and

the database is managed by Microsoft SQL Server 2008. Vitruvian DBObjects is used as

an Object-relational mapping (ORM) tool. Other implementation details are explained in

Section 5.2. Important methods are described in Section 5.3.

5.1 Introduction to Vitruvian DBObjects

One of the problems encountered when mapping an object-oriented language,

such as Java or C++, to a declarative language, like SQL, is impedance mismatch.

Impedance mismatch is caused by the fact that one object in the application can contain

data from multiple tables and multiple rows within a table [25].

There are several techniques for overcoming impedance mismatch. Typically, the

developer writes classes for each of the tables or for each of the required objects. Doing

so involves writing hundreds, possibly thousands of lines of code. This process is error-

prone and, therefore, it requires writing a lot of test cases, and then there is an added

problem of maintaining the classes and their test cases.

Using object-relational mapping (ORM) is a more streamlined approach to

overcoming impedance mismatch. ORM is a programming technique for converting data

between incompatible type systems in relational databases and object-oriented

programming languages. This creates, in effect, a virtual object database that can be used

from within the programming language [12].

We used Vitruvian DBObjects for an ORM. The use of DBObjects minimizes,

and in some cases eliminates, the need to access the database directly. The database is

52

represented and maintained by DBObjects. Data transfers to and from the user interface

are handled by DBObjects. The DBObjects also take care of reading and updating the

database. Important features of DBObjects include the following:

1. Automatically generate classes for tables and views in the database.

2. Avoid or minimize writing SQL for create, read, update, and delete (CRUD)

 operations.

3. Navigate between related objects.

4. Lazy loading of objects.

5. Specify filters and sort order for loading DBObject lists from the database.

Vitruvian provides a wizard for generating DBObject classes and the DBList

classes for tables and/or views. Properties are generated in the classes for each of the

columns in the corresponding tables/views. The relationships between the tables are

captured as properties in either or both the related classes. One-to-one relationships are

represented as DBObjects while the one-to-many relationships are represented as

DBLists. The wizard allows us to choose the relationships to be represented in the

generated classes. The user can customize the names of classes, their properties, and

relationships.

Vitruvian provides the following methods for using the DBObjects:

1. Load(): Load the data into the DBObject or DBList. Data can be filtered before

 loading.

2. Reload(): Load the new set of data from database.

3. Save(): Save the DBObject to the database.

53

4. Delete(): Delete the DBObject from the database.

5. ResetValues(): Reset the values (i.e., all properties) of a DBObject.

6. RelationalSave(): Save the DBObject and the children tables of the current

 DBObjects.

7. RelationalDelete(): Delete the DBObject and the children tables of the current

 DBObjects.

5.2 Implementation Details and Challenges

In ARS, the Resolver class is the entry point and is responsible for

communicating with all the objects in the ARS. All the methods in the ARS are generic

methods. By using the generic methods we ensure that even if the data chunks are added

or removed in future, the ARS doesn’t require major changes in the code.

For the purpose of merging the data chunks, it is not possible to directly copy a

certain data field from one data chunk to another, since we wrote generic methods. So

reflection is used to solve this problem. Reflection is the ability of a computer program to

examine (see type introspection) and modify the structure and behavior (specifically the

values, meta-data, properties and functions) of an object at runtime [22]. Using reflection

it is easier to find a specific field with its name and change its value for a specific object.

The template-method pattern was followed for implementation of all the data

chunk and data chunk list classes. A template method defines the program skeleton of

an algorithm. One or more of the algorithm steps can be overridden by subclasses to

allow differing behaviors while ensuring that the overarching algorithm is still followed

[23].

54

Another issue was to define the settings information including the weights for the

Overall Quality Factor and the inter-field dependencies. Hard coding the values was an

option but it is not considered a good software engineering practice, so a separate XML

configuration file was created to save the settings since XML files are fast and efficient to

read and easy to edit. A sample example of the XML file is as follows:

<object type="DataLayer.Data-chunk, DataLayer, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">

<property name="ReliabilityWeight" value="0.7" />

<property name="CompletenessWeight" value="0.8" />

<property name="TimelinessWeight" value="0.9" />

<property name="MetaCompletenessWeight" value="0.5" />

<field name="Dependencies" type="System.Collections.Generic.Dictionary`2[[System.String, mscorlib,

Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],

[System.Collections.Generic.Dictionary`2[[System.String, mscorlib, Version=4.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089], <entry>

<entry-key encoding="W3C" value="DataLayer%2EAddress" />

<entry-value type="System.Collections.Generic.Dictionary`2[[System.String, mscorlib, Version=4.0.0.0,

Culture=neutral,

PublicKeyToken=b77a5c561934e089],[System.Collections.Generic.List`1[[DataLayer.DataField+Dependenc

y, DataLayer, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null]], mscorlib, Version=4.0.0.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089]], mscorlib, Version=4.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089">

<entry>

<entry-key encoding="W3C" value="streetline1" />

<entry-value id="0">

<item>

<property name="FieldName" encoding="W3C" value="streetline1" />

</item>

<item>

<property name="FieldName" encoding="W3C" value="streetline2" />

</item>

<item>

<property name="FieldName" encoding="W3C" value="city" />

</item>

<item>

<property name="FieldName" encoding="W3C" value="stateorprovince" />

</item>

<item>

<property name="FieldName" encoding="W3C" value="country" />

</item>

<item>

<property name="FieldName" encoding="W3C" value="postalcode" />

</item>

<item>

<property name="FieldName" encoding="W3C" value="donotreleaseflag" />

</item>

<item>

55

<property name="FieldName" encoding="W3C" value="casscertified" />

</item>

<item>

<property name="FieldName" encoding="W3C" value="deliverytext" />

</item>

<item>

<property name="FieldName" encoding="W3C" value="longitude" />

</item>

<item>

<property name="FieldName" encoding="W3C" value="latitude" />

</item>

</entry-value>

</entry>

<entry>

<entry-key encoding="W3C" value="streetline2" />

<entry-value ref="0" />

</entry>

<entry>

<entry-key encoding="W3C" value="city" />

<entry-value ref="0" />

</entry>

<entry>

<entry-key encoding="W3C" value="stateorprovince" />

<entry-value ref="0" />

</entry>

<entry>

<entry-key encoding="W3C" value="country" />

<entry-value ref="0" />

</entry>

<entry>

<entry-key encoding="W3C" value="postalcode" />

<entry-value ref="0" />

</entry>

<entry>

<entry-key encoding="W3C" value="donotreleaseflag" />

<entry-value ref="0" />

</entry>

<entry>

</entry>

</entry-value>

</entry>

</field>

</object>

56

CHAPTER 6

SOFTWARE TESTING

6.1 Introduction

Software testing is a critical element of software quality assurance and represents

the ultimate review of specification, design, and code generation. Software testing also

provides an objective, independent view of the software to allow the system users to

appreciate and understand the risks of software implementation [17]. Software testing is

also stated as the process of validating and verifying that a software

program/application/product:

• Meets the business and technical requirements that guides its design and

development.

• Works as expected.

Software testing is involved in every stage of software development life cycle.

Unit testing of all the modules is done at the lowest level, followed by integrating the

modules and performing Integration testing. Code reviews can be done at all levels to

keep the code consistent at those levels. Finally, System testing is performed to affirm the

end-to-end quality of the entire system.

The ARS is tested by following the bottom-up approach. Unit testing (Section

6.2) was performed over all the modules of the code. Section 6.3 explains the importance

of code reviews in testing and maintaining the code. Finally, Section 6.4 explains the

successful integration of the ARS into phMPI system and the testing techniques used to

perform integration testing on the ARS.

57

6.2 Unit Testing

Unit testing focuses a verification effort on the smallest unit of software the

software component or module [7]. Using the component-level design description as a

guide, important control paths are tested to uncover errors within the boundary of every

module. Different test cases were designed for different data types. These test cases

usually involves testing of implemented methods with various types of inputs that user

can provide. Most common input values are:

• For integers and floats: Positive, Negative, Zero.

• For Objects: Null and Not Null.

• For string: Null, empty, incorrect and correct.

• For List: Null, Not Null, empty, not empty.

6.3 Code Reviews

Code reviews help a developer to communicate his or her ideas and provides a

feedback for coding style to the developer. Since the ARS is a part of the phMPI project,

the coding style should be consistent to be integrated in to the phMPI system. To ensure

this, the developer and manager reviewed code iteratively, and required changes were

completed by the developer. These changes improved the overall quality of code and the

efficiency of the system.

6.4 System Integration Testing

Integration testing verifies the system when it is integrated with other system.

Different modules in the ARS were integrated and tested to work as an independent

service. To achieve this, an automated testing environment was created using Vitruvian

58

Testing. This program reloads the test data and calls the ARS. Then the results are tested

against known results to verify them.

6.5 System Testing

After integration testing, the ARS was integrated into the phMPI system and the

whole system was tested thoroughly. During the system testing of the phMPI system,

there were some conflicts between the ARS and other services in the phMPI system.

Those conflicts were successfully removed and the whole system was again tested. The

results of the test were satisfactory and the system testing was a success.

59

CHAPTER 7

SUMMARY

The ARS is a prototype general-purpose resolver that computes the best version of

truth, based on a quality factor computed from the data’s

• believability, as defined source data-source precedence rules for each data

type);

• completeness, determined by the ratio of non-empty fields over total fields;

• accuracy, as rated by the data source;

• timeliness, determined by data and time when the data was last updated

• verification, as recorded by the data source

It solves the problems caused by duplicate, inconsistent, and incomplete data by

creating GOLDEN records – one for each different type of data chunk. It maintains data-

integrity by adhering to inter-field dependencies that requires certain pieces of data to be

in the GOLDEN records either together or not at all.

Although the ARS is specific to phMPI project, it can be adapted for any person-

centric information system. The design of the ARS allows making changes in one module

without affecting other modules. Generic programming and the design patterns allows the

code to be reused, high cohesion, and low coupling among the classes.

The current version of the ARS is a prototype that can be improved in number of

ways. For example, the current formula for computing the Overall Quality Factor was

developed only from insight to the phMPI data. Ideally, this formula should be based on

empirical studies that compare data qualities across a number of person-centric

information systems. Also, the prototype computes timeliness based solely on a last-

60

updated date. The means for computing timeliness could vary by data-chunk type and

data source. For example, birth-event information from Vital Statistics may not be ever

changed after its initial creation, yet it could and should be consider to the most reliable

data about a person birth event.

61

REFERENCES

[1] Clyde, S.W. The Unique Records Portfolio. Public Health Information Institute,

2006.

[2] Raza, Ali. TEST DATA EXTRACTION AND COMPARISON WITH TEST

DATA GENERATION.

[3] Mónica Bobrowski, Martina Marré, Daniel Yankelevich, A Software Engineering

View of Data Quality.

[4] Requirements Definition of Public Health MPI (phMPI) project.

[5] Leo L. Pipino, Yang W. Lee, and Richard Y. Wang. Data Quality Assessment.

[6] Leitheiser, R.L. Data quality in health care data warehouse environments. In

Proceedings of the 34th Hawaii International Conference on System Sciences,

IEEE, 2001.

[7] Connecting For Health. Flying Blind. Dr. JT Finnell of Indianapolis, Indiana.

http://www.markle.org/sites/default/files/flying_blind_0704.pdf

[8] UML 2 Toolkit, By Hans-Eriksson, Magnus Penker, Brian Lyons, David Fado.

[9] Wikipedia, Template method pattern.

[10] Software testing, wikipedia.

[11] System architecture, www.wikipedia.org/wiki/Systems_architecture

[12] Obect-relational mapping, Wikipedia, http://en.wikipedia.org/wiki/Object-

relational_mapping.

[13] D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-oriented Systems

Analysis: A Model-Driven Approach. Prentice Hall, Englewood Cliffs, New

Jersey, 1992.

62

[14] Wikipedia. Use case. http://en.wikipedia.org/wiki/Use_case. (Accessed June

2012.)

[15] Laplante, P.A. What Every Engineer Should Know about Software Engineering.

Taylor & Francis, 2007.

[16] Bass, L., Clements, P., and Kazman, R. Software Architecture in Practice, 2nd ed.

Addison-Wesley Professional, 2003.

[17] Wikipedia. Sequence Diagrams.

http://en.wikipedia.org/wiki/Interaction_diagram#Interaction_diagrams

[18] Eckerson, W., Wayne. DATA QUALITY AND THE BOTTOM LINE. TDWI,

2002.

[19] Package Diagrams, Visual Paradigm http://www.visual-

paradigm.com/product/vpuml/tutorials/packagediagram.jsp

[20] Strong M.Diane, Lee W. Yang, Wang Y. Richard, Data quality in context.

Communications of ACM, 1997

[21] Non Functional Requirements, Wikipedia, http://en.wikipedia.org/wiki/Non-

functional_requirement

[22] Class Diagram, Wikipedia, http://en.wikipedia.org/wiki/Class_diagram

[23] Reflection (computer_programming), Wikipedia,

http://en.wikipedia.org/wiki/Reflection_(computer_programming)

[24] Fowler, Martin, “Patterns of Enterprise Application Architecture”.

[25] Garmany, J., Walker, J., and Clark, T. Logical Database Design Principles, 1st

ed. Auerbach Publications, 2005.

[26] Software Design, http://en.wikipedia.org/wiki/Software_design.

63

[27] Peter Rob, Carlos Coronel, Database Systems: Design, Implementation, and

Management.

[28] Wang, Richard Y; Strong, Diane M, What data quality means to data consumers

