2011

Climate Influences the Demography of Three Dominant Sagebrush Steppe Plants

Harmony Dalgleish
Utah State University

David Koons
Utah State University

Melvin Hooten
Utah State University

Corey Moffet

Peter B. Adler
Utah State University

Follow this and additional works at: http://digitalcommons.usu.edu/wild_facpub

Part of the Ecology and Evolutionary Biology Commons

Recommended Citation

PREPRINT

This preprint is a PDF of a manuscript that has been accepted for publication in an ESA journal. It is the final version that was uploaded and approved by the author(s). While the paper has been through the usual rigorous peer review process of ESA journals, it has not been copy-edited, nor have the graphics and tables been modified for final publication. Also note that the paper may refer to online Appendices and/or Supplements that are not yet available. We have posted this preliminary version of the manuscript online in the interest of making the scientific findings available for distribution and citation as quickly as possible following acceptance. However, readers should be aware that the final, published version will look different from this version and may also have some differences in content.

The doi for this manuscript and the correct format for citing the paper are given at the top of the online (html) abstract.

Once the final published version of this paper is posted online, it will replace the preliminary version at the specified doi.
Climate influences the demography of three dominant sagebrush steppe plants

Harmony J. Dalgleish¹, David N. Koons¹, Mevin B. Hooten³, Corey A. Moffet², and Peter B. Adler¹

¹Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main Hill, Logan, UT, USA 84322
²USDA-ARS, US Sheep Experiment Station, 19 Office Loop, Dubois, ID, USA 83423
³Department of Mathematics and Statistics, Utah State University, 3900 Old Main Hill, Logan, UT, USA 84322

KEY WORDS Artemisia tripartita, climate change, demography, Hesperostipa comata, integral projection models, population dynamics, Pseudoroegneria spicata

ABSTRACT

Climate change could alter the population growth of dominant species, leading to profound effects on community structure and ecosystem dynamics. Understanding the links between historical variation in climate and population vital rates (survival, growth, recruitment) is one way to predict the impact of future climate change. Using a unique, long-term dataset from eastern Idaho, we parameterized Integral Projection Models for Pseudoroegneria spicata, Hesperostipa comata, and Artemisia tripartita to identify the demographic rates and climate variables most important for population growth. We described survival, growth and recruitment as a function of genet size using mixed effect regression models that incorporated climate variables. Elasticites for the survival+growth portion of the kernel were larger than the recruitment portion for all three species with survival+growth accounting for 87%-95% of the total elasticity. The genet sizes with the highest elasticity values in each species were very close to the genet size threshold where
survival approached 100%. We found strong effects of climate on the population growth rate of two of our three species. In *H. comata*, a 1% decrease in previous year’s precipitation would lead to a 0.6% decrease in population growth. In *A. tripartita*, a 1% increase in summer temperature would result in a 1.3% increase in population growth. In both *H. comata* and *A. tripartita*, climate influenced population growth by affecting genet growth more than survival or recruitment. Late winter snow was the most important climate variable for *P. spicata*, but its effect on population growth was smaller than the climate effects we found in *H. comata* or *A. tripartita*. For all three species, demographic responses lagged climate by at least one year. Our analysis indicates that understanding climate effects on genet growth may be crucial for anticipating future changes in the structure and function of sagebrush steppe vegetation.

INTRODUCTION

Forecasting the ecological effects of climate change on plant species is an urgent challenge for ecosystem conservation and management. Impacts of climate change on plant species include altered flowering phenologies (Miller-Rushing et al. 2008), shifts in geographic ranges (Colwell et al. 2008), rapid evolution (Franks and Weis 2008) and demographic effects such as increased mortality (van Mantgem and Stephenson 2007) and altered seed size and quality (Hovenden et al. 2008). Altered population growth of dominants could have profound effects on community structure and ecosystem function.

Population models can be powerful tools for predicting species response to climate change (Pacala and Hurtt 1993, Coulson et al. 2001, Mysterud et al. 2001, Botkin et al. 2007, Adler and HilleRisLambers 2008, Forcada et al. 2008). Understanding how populations have responded to historical climatic variation should aid in predicting
population responses to future climate change. The first step is to identify the
demographic rates (e.g., survival, growth or recruitment) with the greatest impact on
population dynamics. For long-lived, dominant species, climate effects on survival and
growth will likely have a larger impact on population dynamics than recruitment (Franco
and Silvertown 2004). The second step is to quantify the influence of climate variables on
critical demographic rates. The resulting models could be used to project population
growth under a variety of climate scenarios (e.g., Adler and HilleRisLambers 2008).

A long-term dataset collected from a sagebrush steppe plant community in the
early 20th century offers a unique opportunity to examine the link between climate and
demography for several plant species. Range ecologists at the US Sheep Experiment
Station (USSES) in Idaho annually mapped the size and location of all plants in 1-m²
permanent plots from the 1920s to the 1950s. Using digitized versions of these maps, we
can track the fates of individual plants and parameterize population models. Historical
climate records from the same location allow us to examine the relationship between
climate variables and recruitment, growth, survival, and overall population growth.
Because the maps include size (cover) measurements, the data are an ideal application of
integral projection models (IPMs) in which growth, survival and fecundity are continuous

Global circulation models (Christensen et al. 2007) predict substantial
temperature increases at the USSES which could alter plant populations through effects
on physiology and soil moisture, a key limiting resource at this semiarid site. Historical
climate data do not show significant increases in mean annual temperature at the USSES,
but, on average, winter temperatures have increased significantly over the last century.
(Appendix A). While model predictions for precipitation are uncertain, two historical trends in precipitation are potentially important for plant populations. First, annual precipitation has increased (Appendix A), which could offset decreases in soil moisture caused by future warming. Second, annual snowfall has decreased (Appendix A), indicating that more winter precipitation is falling as rain. Historically, snow comprised 80% of December-March precipitation. A shift from a snow- to rain-dominated winter precipitation regime would alter the timing of soil moisture pulses, potentially hurting species dependent on snowmelt, and increase frost damage (e.g., Inouye 2000).

We use stochastic IPMs to model the population dynamics of two of the most abundant forage grasses in the community, *Pseudoroegneria spicata* (bluebunch wheatgrass) and *Hesperostipa comata* (needle-and-thread grass), as well as the dominant shrub, *Artemisia tripartita* (three-tipped sagebrush). For each species, we parameterize vital rate functions that include climate as predictors of demographic rates. We then use elasticity analysis to determine both the key vital rates (survival, growth, recruitment) and the effects of climate on population growth for these three dominant species.

METHODS

Site and data set descriptions

The USSES is 9.6 km north of Dubois, Idaho (44.2°N, 112.1°W). During the years of this study (1926 – 1956), annual precipitation averaged 270 ± 64 mm. Average temperatures during the study period were -8°C (Jan) and 21°C (July). The vegetation is dominated by the drought tolerant native shrub, *A. tripartita*, which flowers in late summer, and the native, C₃, caespitose perennial bunchgrasses *P. spicata* and *H. comata*, which flower May – June with seed dispersal mainly in July – August.
In 1923, researchers established four permanent 1m² quadrats at the USSES. By the early 1930s, 22 quadrats had been added for a total of 26 permanent quadrats. Eighteen quadrats were distributed among four ungrazed exclosures, and eight were distributed in two paddocks grazed at medium intensity spring through fall. All quadrats were located on similar topography and soils. Distances between quadrats within each group (paddock or exclosure) are in the 10's to 100's of meters, while distances between groups are roughly 1-3 km. Using a pantograph (Hill 1920), researchers mapped the basal cover of grasses and the canopy cover of shrubs within each quadrat. For this study, we used demographic data from 19 year-to-year mapped transitions between 1931-1952.

Cover of *H. comata* and *A. tripartita* increased over the study period, while cover of *P. spicata* showed a slight decline (Appendix B).

Extracting demographic data from mapped quadrats

We classified genets in the mapped quadrats based on their spatial locations (Lauenroth and Adler 2008). A genet in year $t+1$ that overlaps in area with a conspecific genet present in year t inherits the identity of the established genet. A genet in year $t+1$ that is more than 5 cm from any conspecific genet present in year t is classified as a recruit. We included plants present in the first year by visually comparing the first and second year’s maps from each quadrat and assigning each polygon or cluster of polygons a unique genet number. A group of polygons that comprise a genet (*i.e.*, have the same genet number) may fragment and/or coalesce over the study period. The caespitose growth form of our study grasses gave us confidence in these subjective decisions.

Stochastic Integral Projection Model
The integral projection model describes how a continuously size-structured population changes through discrete time (Easterling et al. 2000). The population is represented by a probability density function, \(n(x,t) \), which can be considered the proportion of individuals of size \(x \) at time \(t \). The stochastic integral projection model for the proportion of individuals of size \(y \) at time \(t+1 \) is given by

\[
n(y,t+1) = \int_{\Omega} \left[p(y,x,\theta_t) + f(y,x,\theta_t) \right] n(x,t) \, dx = \int_{\Omega} k(y,x,\theta_t) n(x,t) \, dx , \tag{1}
\]

where the kernel, \(k(y,x,\theta_t) \), describes all possible transitions from size \(x \) to size \(y \), including recruitment, and the vital rates are a function of genet size \((x) \) and vector of time varying climate variables \((\theta_t) \). The integral is evaluated over all possible sizes, \(\Omega \), set to the interval \((0.9 \times \min(\text{observation}),1.1 \times \max(\text{observation}))\).

The kernel contains two vital rate functions, a survival-growth function, \(p(y,x,\theta_t) \), and a fecundity function, \(f(y,x,\theta_t) \). The survival-growth function is

\[
p(y,x,\theta_t) = s(x,\theta_t) g(y,x,\theta_t) , \tag{2}
\]

where \(s(x,\theta_t) \) and \(g(y,x,\theta_t) \) specify the size- and climate-dependent probabilities of survival and growth, respectively. The fecundity function is

\[
f(y,x,\theta_t) = (\mu_f(\theta_t) \cdot x)(f_a(y,x)) , \tag{3}
\]

where \(\mu_f(\theta_t) \) is the mean number of recruits produced per cm\(^2\) of genet as a function of climate, \(\theta_t \), \(x \) is the size of the genet, and \(f_a(y,x) \) is a probability distribution of recruits of size \(y \), for genets of size \(x \).

Statistical modeling of vital rate functions

We modeled survival and growth as functions of genet size and used random year effects and fixed effects of climate to incorporate temporal variability.
Survival probability was modeled as a logistic regression

$$\text{Logit}(s(x, \theta_i)) = \beta_{0,t} + \beta_{s,t} x + \beta_Q + \beta_{c,1} \theta_{1,t} + ... + \beta_{c,i,t} + \epsilon_t,$$ \hspace{1cm} (4)

where x is the log of genet basal area (for the grasses) or canopy area (for the shrub),

$\beta_{0,t}$ is a random year intercept parameter, β_Q is a random effect of quadrat group location, Q, $\beta_{s,t}$ a random year slope parameter for size, θ_i is a vector of climate variables for i number of variables, $\beta_{c,i}$ is a fixed slope parameter for the i^{th} effect of climate, and ϵ_t is the error term.

Mean growth in genet basal (or canopy) area from one year to the next can be described as a linear function:

$$\mu_g(x, \theta_t) = \beta_{0,t} + \beta_{s,t} x + \beta_Q + \beta_{c,1} \theta_{1,t} + ... + \beta_{c,i,t} + \epsilon_{x,t},$$ \hspace{1cm} (5)

where $\mu_g(x, \theta_t)$ is predicted genet size at time $t+1$, and $\beta_{0,t}$, β_Q, $\beta_{s,t}$, $\beta_{c,i}$ and θ_t are as described above. The error term, $\epsilon_{x,t}$, is a standard normal deviate with a mean of 0 and a variance of $\sigma_{x,t}^2$. The variance term, which describes how variable growth is for each size of genet, was also dependent on size. We modeled the variance $\sigma_{x,t}^2$ as

$$\sigma_{x,t}^2 = a \exp(c \cdot \mu_g(x, \theta_t)),$$ \hspace{1cm} (6)

where $\mu_g(x, \theta_t)$ is the log of genet basal (or canopy) area predicted from equation (5), and a and c are constants. We parameterized the growth function using the normal probability density function

$$g(x, y, \theta_t) = \frac{1}{\sqrt{2\pi} \sigma_{x,t}^2} \exp \left(-\frac{(y - \mu_g(x, \theta_t))^2}{2\sigma_{x,t}^2} \right).$$ \hspace{1cm} (7)
with \(\mu_g(x, \theta_t) \) given by equation (5) and \(\sigma^2_{x,t} \) given by equation (6).

In contrast to survival and growth, which we modeled at the individual level, we modeled recruitment at the quadrat level because we could not determine which recruits were produced by which potential parent genets. Recruitment refers to new genets only; clonal expansion of the grasses is modeled in the growth function. We assumed that the number of individuals, \(y \), recruiting at time \(t+1 \) in quadrat \(q \) follows a negative binomial distribution (the observations appeared overdispersed relative to a Poisson model):

\[
y_{q,t+1} \sim \text{NegBin}(\lambda_{q,t+1}, \phi),
\]

where \(\lambda \) is the mean intensity and \(\phi \) is the size parameter. In turn, \(\lambda \) depends on the composition of the quadrat in the previous year:

\[
\lambda_{q,t+1} = C'_{q,t} e^{(\beta_{0,t} + \beta_Q t + \beta_{s,t} + ... + \beta_{ci} \theta_{i,t})}.
\]

\(C'_{q,t} \) is the "effective cover" (in 100 cm\(^2\)) of the focal species in quadrat \(q \) at time \(t \), and \(\beta_{0,t}, \beta_Q, \beta_{s,t}, \beta_{ci} \) and \(\theta_{i,t} \) are as described above. The value of the exponent term gives \(\mu_f(\theta_t) \) of equation (3). By estimating each species' effective cover in a quadrat, we recognized that plants outside the mapped quadrat may contribute recruits to the focal quadrat, and vice versa. We estimated effective cover as a mixture of the observed cover, \(C \), in the focal quadrat, \(q \), and the mean cover across the group, \(Q \), in which the quadrat was located:

\[
C'_{q,t} = p C_{q,t} + (1 - p) \bar{C}_{Q,t}.
\]
where p is the mixing fraction between 0 and 1. Our model assumes that recruitment increases linearly with genet area and that the size distribution of recruits is not influenced by maternal genet area (Weiner et al. 1997).

We combined the vital rate functions to create the kernel (equation 1) and projected the model using a “kernel selection” approach. We parameterized a kernel for each of the 19 years in our study and then projected the population forward in time from an arbitrary initial stage distribution. At each time step we randomly selected a kernel representing one of the 19 observed years along with the observed climate variables from the same year. By using the observed climate data for each year, rather than simulating it from observed distributions, we automatically incorporated covariance among climate variables. Our simulations assume that kernels and climate variables at time $t+1$ are independent of time t, consistent with the absence of autocorrelation in the climate record. We evaluated the IPM at each time step using the midpoint rule approximation and matrix multiplication, using a range of mesh sizes to ensure accuracy of our estimates of population dynamics (Ellner and Rees 2006).

Incorporating climate in vital rate functions

The full list of climate predictors we examined included annual precipitation (a July-June water year), previous year’s annual precipitation, seasonal precipitation, monthly precipitation, annual snowfall, seasonal snowfall, monthly snowfall, average yearly temperature, average seasonal temperature, and average monthly temperature. We found that February plus March snowfall was a superior predictor to February or March snowfall alone, so we also included February plus March snowfall in our analyses. All climate variables were measured at the USSES except for February and March snowfall
in 1951, which was measured at a station in nearby Dubois, ID. The correlation between
the long-term snow records at the two stations was high ($\rho = 0.89$).

Our first step in selecting climate variables to include in the vital rate functions was
to create a short list of the potentially important climate variables for each vital rate
within each species. We began by parameterizing the vital rate functions using only
random effects of year. Next, we examined the correlations between the random year
effects and the full list of climate variables. Any climate variable that was correlated with
a vital rate parameter with $P < 0.1$ was included on the short list of climate variables. In
addition, we added the temperature or precipitation variable measured at the same time as
short-listed variables, even if the correlation did not meet our P-value threshold.

After building the short list of climate variables, we conducted model selection
for the survival and growth functions in a fixed effects framework. We fit a series of
candidate models that incorporated fixed quadrat group effects and all combinations of
the short-listed climate variables as main effects for each vital rate. We did not include
explanatory variables that were highly correlated within the same model; for example,
winter precipitation and February plus March snow were not included in the same model
because they were highly correlated. We considered interactions only between
temperature and precipitation variables from the same time period (i.e., spring
precipitation * spring temperature). We used Bayes Information Criterion (BIC) to
compare our candidate models (Schwarz 1978). Finally, we re-fit the model with the
smallest BIC value as a mixed effects model with year and quadrat group as random
effects and the selected climate variables as fixed effects. We used lm and glm functions
for the fixed effects models, lmer and glmer functions for the mixed models, and nls for
the variance of the growth function in R 2.7 (R Development Core Team 2005). We calculated a measure of the proportional reduction in deviance when climate parameters were included in the model as

\[D = 1 - \left(\frac{\text{dev}_1}{\text{dev}_2} \right), \]

where \(\text{dev}_1 \) is the deviance of the fixed-effects model that included genet area, group parameters, and climate parameters and \(\text{dev}_2 \) is the deviance of the fixed-effects model that included only genet area and group parameters (Zheng 2000). Thus, D is a measure of the amount of deviance explained by the climate parameters.

We fit the parameters of the recruitment model using a hierarchical Bayesian approach implemented in WinBUGS 1.4 (Lunn et al. 2000). We used diffuse priors (relative to the posterior), ran the Markov Chain Monte Carlo simulation for 10,000 iterations after a 10,000 iteration burn in period, and checked for convergence of two parameter chains using Brooks and Gelman's (1998) potential scale reduction factor (all values of \(\hat{\rho} \) were <1.1). We fit a final, mixed effects model for each species that included all the climate variables that were significantly correlated with the random year effects on recruitment. We did not conduct additional model selection because of the complexities of model selection when using a hierarchical Bayesian approach and because the initial models included only one or two climate variables for each species.

Elasticity analysis of vital rate functions and climate parameters

We calculated the stochastic population growth rate, \(\lambda_s \), as

\[\lambda_s = \exp \left(\frac{1}{T} \sum_{i=0}^{T-1} r_i \right), \]

where
\[r_t = \log \left(\frac{\|n_{t+1}\|}{\|n_t\|} \right), \]

(13)

and \(T = 50,000 \). Elasticities measure the effect of proportional changes in the kernel on \(\lambda_s \) (Easterling et al. 2000, Ellner and Rees 2006). We calculated the stochastic elasticity to survival+growth and recruitment separately following the methods of Rees and Ellner (2009). We calculated the elasticity of climate variables by perturbing the mean of one climate variable and calculating the proportional change in \(\lambda_s \) (e.g., see Koons et al. (2007)). For example, to perturb winter precipitation, we added 0.1\% of the mean winter precipitation to the winter precipitation observed in each year. This altered the mean of the parameter, but not the variance (Tuljapurkar et al. 2003).

RESULTS

Statistical models for survival

For all species, survival increased with genet size. Survival of genets greater than 7 cm\(^2\) approached 100\% for both grass species (Appendix C). Shrubs greater than 20 cm\(^2\) had high survival (> 80\%), with survival approaching 100\% beyond 400 cm\(^2\) (Appendix C).

For all three species, lagged effects of climate seemed to have the greatest effect on survival. For the bunchgrasses, climate in the winter previous to the initial genet measurement influenced survival. For example, for survival of a genet from June 1931 to June 1932, higher snowfall and warmer temperatures in the winter of 1931 increased survival in both bunchgrasses (Table 1). For *A. tripartita*, previous year’s precipitation influenced survival (Table 1). Analysis of deviance indicated that all models were a good fit for the data (Appendix D, Table 1). The proportional reduction in deviance when climate variables were added to the models ranged from 0.05 to 0.11 (Table 1).
The average slope of the growth function was similar in all three species and was below 1, indicating that retrogression (reversion to smaller size) was common as size increased (Table 1). The variance of growth decreased with size in all three species (Appendix D, Table 2).

In contrast to the lagged effects on survival, the majority of climate variables that emerged as potentially important for growth occurred between the two measurement points of each year-to-year transition (Table 1). While we identified several climate variables as potentially important for growth in all three species, the final models for each species were unique (Table 1). For *P. spicata*, a drier summer and cooler fall between measurement points increased growth. In *H. comata*, previous year’s precipitation positively affected growth while spring precipitation and temperature between measurements negatively affected growth. The final shrub model included positive effects of summer climate prior to the first genet measurement and winter precipitation between measurements (Table 1). Values of R^2 for all fixed-effects growth regressions ranged from 0.75 to 0.83 (Appendix D, Table 1). The proportional reduction in deviance when climate variables were added to the models ranged from 0.04 to 0.10 (Table 1).

Per capita recruitment was lowest in *A. tripartita* and highest in *H. comata* (Appendix D). Precipitation in April increased recruitment in all species with higher February + March snowfall increasing recruitment in *A. tripartita*.

Population structure and growth
All three species had similar shapes to their kernels with non-zero values along the diagonal and in the top right quadrant (Figure 1A-C). The diagonal ridge of the kernel represents survival and stasis, the off-diagonal values represent survival plus growth (below) or retrogression (above), and the values at the top indicate recruitment.

The stable stage distributions for the grasses contained the largest proportion of the individuals as small genets, with medium-sized genets comprising the largest proportion in *A. tripartita* (Figure 1D-F). The reproductive value vector for all three species was increasing (Figure 1G-I). The λ_s for *P. spicata* was 1.03, for *H. comata* it was 1.20, and for *A. tripartita* it was 1.02.

Elasticity of vital rates

Perturbations of survival and growth have larger prospective effects on λ_s than perturbations of recruitment for all three species. For *P. spicata*, the survival+growth kernel accounted for 94% of the elasticity. In this species, elasticities were the highest for survival and growth of genets sized 20 cm2 (Figure 2). In *H. comata*, the survival+growth kernel accounted for 87% of the elasticity. Genets near 7 cm2 had the highest elasticity values in *H. comata*. In *A. tripartita*, the survival+growth kernel accounted for 95% of the elasticity. Genets near size 150 cm2 had the highest elasticities. The genet sizes with the highest elasticity values in each species were very close to the genet size threshold where survival approached 100%.

To compare the elasticities associated with transitions to larger versus smaller sizes and recruitment, we summed the elasticities to each of these components within a size (Figure 3). The elasticities for transitions to larger sizes include the growth+survival elasticities while the elasticities for transitions to smaller sizes include the
retrogression+survival elasticities. In *P. spicata*, transitions to larger sizes were more important than transitions to smaller sizes for small plants, while transitions to smaller size became more important in genets greater than 100 cm² (Figure 3A). The patterns for *H. comata* were similar to those for *P. spicata* with transitions to smaller size becoming more important near 90 cm² (Figure 3B). However, recruitment became the most important vital rate in plants larger than 150 cm². In *A. tripartita*, transitions to smaller size became more important around 500 cm² (Figure 3C).

Elasticity of climate variables

All of the climate variables with the largest elasticities operated on population dynamics though the survival or growth functions. For *P. spicata*, the climate variable with the largest elasticity was February + March snowfall, indicating that increases in snowfall would increase λ_s (Figure 4A). In *H. comata*, previous year’s precipitation had the largest elasticity, with increases in precipitation increasing λ_s (Figure 4B). In *A. tripartita*, mean summer temperatures had the largest elasticity with increases in summer temperatures increasing λ_s (Figure 4C). Increases in five climate variables would decrease λ_s: winter and fall temperatures and summer precipitation in *P. spicata* and spring precipitation and temperature in *H. comata*.

DISCUSSION

Population structure

Our models showed that survival and growth are the important demographic transitions affecting population growth for all three of our study species, which is consistent with other studies of long-lived plants (Silvertown et al. 1993, Franco and Silvertown 2004). The genet sizes with the highest elasticity values in each species were very close to the
genet size threshold where survival approached 100%. For example, in *H. comata*, the highest elasticities occurred at the survival+growth transitions of genets approximately 7 cm2, meaning that changes in the survival+growth of genets at this size would have a large impact on λ. Seven cm2 is the size at which genet survival approaches 100%. We see the same pattern of elasticity peaking where survival reaches 100% in both *P. spicata* and *A. tripartita*.

Retrogression is an important demographic process in clonal plants, such as *P. spicata* and *H. comata* (Silvertown et al. 1993, Vega and Montana 2004). Vega and Montana (2004) showed that the importance of retrogression, stasis, and growth in a clonal perennial grass varies from year to year, with drier years having higher elasticities to retrogression. Though we were not able to completely separate the elasticities to growth, retrogression and survival, our data show that once plants reached a size threshold, transitions to smaller size became the most important demographic process.

The high survival probabilities for medium- and large-sized bunchgrass genets indicate that transitions to smaller size occur before mortality in many large individuals.

In semi-arid systems, the cover of clonal forage grasses can be highly variable from year to year (Craddock and Forsling 1938, Lauenroth and Sala 1992, Oesterheld et al. 2001). Because the importance of growth, survival, and recruitment vary with genet size, the size distribution of the populations may help to inform management strategies. For example, grazing can alter the size structure of bunchgrass populations (Pfeiffer and Hartnett 1995), potentially creating feedbacks between the size distribution of genets, the population growth rates and the availability of forage. Understanding the interactions...
among grazing, size-structure, and climate will be important for forecasting as well as managing for the effects of climate change.

Climate effects on demography and population growth

Though the proportional reductions in deviance were not large when climate variables were added to the vital rate models, the elasticity analysis revealed strong effects of climate on λ_s of two of our three species. For example, a 1% decrease in previous year’s precipitation would result in a 0.6% decrease in λ_s of *H. comata*. A 1% increase in summer temperatures would result in a 1.3% increase in λ_s for *A. tripartita*. Despite being the most abundant grass species in the historical dataset, the climate effects we found for *P. spicata* were among the smallest we measured. For example, a 1% increase in February plus March snowfall would result in only a 0.06% increase in λ_s.

The climate variables with the largest elasticities (previous year’s precipitation and summer temperature) affected λ_s by altering individual genet growth. Dahlgren and Ehrlen (2009) also found environmental effects on growth to have the largest influence on the demography of a perennial herb in a similar elasticity analysis of an IPM. However, the elasticities we report for climate effects are an order of magnitude larger than those reported for soil phosphorus by Dahlgren and Ehrlen (2009). Our elasticity analyses of the vital rates and the climate variables consistently illustrate that understanding genet growth responses to climate will be crucial for anticipating the effect of climate change on sagebrush steppe plant populations.

While the elasticities for the climate variables influencing survival were lower than those influencing growth, we found that the same climate variables influenced survival in both *P. spicata* and *H. comata*: winter temperature and February plus March
snow. Though snow is highly correlated to winter precipitation, survival models that included the amount of snow in February and March were superior to those that considered total winter precipitation or total winter snowfall. Warmer temperatures in the future will increase the importance of winter rain relative to snow (Knowles et al. 2006). Previous studies have shown that decreases in snowpack and duration can affect plants through two mechanisms (Bell and Bliss 1979, Dunne et al. 2003, Wahren et al. 2005, Wipf et al. 2006, Inouye 2008). First, the loss of insulating snowpack may lower soil temperatures, increasing the potential for plant damage and death due to frost (Inouye 2000, Bannister et al. 2005). Second, altered snowfall may change the timing of soil water availability, affecting plant growth and seedling establishment (Blumenthal et al. 2008). Our results emphasize that the timing and type of precipitation may impact the survival of these bunchgrasses.

Though the largest climate elasticities were different for each species (February + March snow in P. spicata, previous year’s precipitation in H. comata, and summer temperatures in A. tripartita) the demographic response consistently lagged behind the observed climate variation. For example, snowfall in February and March of 1935 influenced survival in P. spicata from June 1935 through to June 1936, a one-year lag in snow effects on survival. We observed a similar lag in the effects of annual precipitation on growth for H. comata and summer temperatures on growth in A. tripartita. One potential explanation for the lagged response in survival may involve the bud bank (Dalgleish and Hartnett 2006, Dalgleish et al. 2008). Decreased snow cover may deplete the bud bank due to frost damage to the buds themselves, or because more buds are required to replace frost damaged tillers at the start of the season. Such losses of
meristems may decrease the chance of genet survival into the next year. The lagged response we observed in survival and growth could also reflect resource availability: the lack of soil water though decreased snowmelt pulse, decreased annual precipitation or increased summer temperatures could all reduce a plant’s stored resources, and decrease its chance of survival or potential for growth. Distinguishing between these possible mechanisms will require experimental and physiological approaches.

Conclusions

Our work illustrates the potential importance of links between climate variability, the size structure of sagebrush steppe plant populations, and their population dynamics. Future work should focus on understanding the interactions between grazing management (which can affect population size structure), and projected changes in climate variables, which may affect populations though changes in genet growth.

Our analysis emphasizes the potential impact of precipitation amount, timing and type, along with temperature, on plant demography. February and March snow, annual precipitation amount, and summer temperature emerged as important climate variables for sagebrush steppe dominants. Experimental manipulations will be needed to test our hypotheses about the importance of climate variables to demography. Fully evaluating the influence of climate variability on the population dynamics of these species will require several years of observations due to the lagged effects of climate on vital rates.

ACKNOWLEDGEMENTS

We thank Stephen Ellner and Mark Rees for advice on the analysis and comments on earlier drafts. We thank two anonymous reviewers and the associate editor whose comments greatly improved this manuscript. This research was funded by the Rocky
Literature cited

Table 1. Functions and mean parameter values for the survival and mean growth functions. The final model for each vital rate included intercept, slope and quadrat random effects \((\beta_0 + \beta_s x + \beta_Q)\) plus the fixed effects of climate variables. For simplicity, only the final climate variables are listed in the final model, though the mean parameter estimates and their variances (in parentheses) are given for all the parameters in the final model. Note that by construction, the mean quadrat random effect is 0 in all models. \(D\) is a measure of the proportional reduction in deviance when climate parameters were included in the fixed-effects model as compared to a model with only group and genet area effects (see Methods for more details). Climate abbreviations: \(T = \) mean temperature, \(ppt = \) precipitation, \(snow = \) snow, \(FM = \) February + March, \(sum = \) summer, \(spr = \) spring, \(win = \) winter. Numbers following the candidate climate variables refer to the year in which they are measured relative to the vital rate. For example, for survival or growth measured from June 1931 to June 1932, a (1) refers to measurement before June 1931, (2) refers to measurement after June 1931, and (-1) refers to measurement in 1930. For parameter estimates for all of the vital rate functions we used in the IPM and goodness of fit measures, see Appendix D Tables 1 and 2.

<table>
<thead>
<tr>
<th>Species</th>
<th>Vital rate</th>
<th>Candidate climate variables</th>
<th>Final model</th>
<th>Mean (variance) parameter estimates, sample size (n),</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proportional Reduction in Deviance (D)

$P.$ spicata

Survival
- Winter precipitation
- Mean winter temperature
- Feb + Mar snow
- Feb + Mar temperature
- Feb + Mar precipitation

Logit\($s(x, \theta_{T_{win}^{1,t}}, \theta_{snow}^{1,t})\) = $\beta_{T_{win}^{1,t}}\theta_{T_{win}^{1,t}} + $\beta_{snow}^{1,t}\theta_{snow}^{1,t} + $\beta_{0,t} + $\beta_{s,t}$

- $\beta_{0,t} = 1.18 (0.43)$
- $\beta_{s,t} = 1.79 (0.13)$
- $\beta_{snow}^{1,t} = 0.01 (0.02)$
- $\beta_{T_{win}^{1,t}} = 0.22 (0.07)$
- $\beta_{T_{win}^{1,t}} * \theta_{snow}^{1,t} = -0.005 (0.003)$
- $n = 6,913$
- $D = 0.11$

Growth
- Summer precipitation
- Fall precipitation

$\mu(x, \theta_{T_{fall}^{2,t}}, \theta_{ppt^{sum}^{2,t}}) = $\beta_{T_{fall}^{2,t}}\theta_{T_{fall}^{2,t}} + $\beta_{ppt^{sum}^{2,t}}\theta_{ppt^{sum}^{2,t}} + $\beta_{0,t} + $\beta_{s,t}$

- $\beta_{0,t} = 0.30 (0.13)$
- $\beta_{s,t} = 0.89 (0.02)$

where β_0 and β_s are coefficients, θ represents the parameters, and t indicates time.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean Fall temperature</td>
<td>$\beta_{T_{fall}} = -0.10 (0.04)$, $n = 4,500$, $D = 0.04$</td>
</tr>
<tr>
<td>mean summer temperature (2)</td>
<td>$\beta_{T_{sum}} = -0.001 (0.001)$</td>
</tr>
<tr>
<td>Survival winter precipitation</td>
<td>$\beta_{0,t} = 1.64 (0.33)$, $\beta_{s,t} = 1.52 (0.12)$, $\beta_{snow_{FM1}} = 0.02 (0.009)$, $\beta_{T_{win1}} = 0.24 (0.05)$, $\beta_{T_{win1} \times snow_{FM1}} = -0.003 (0.001)$</td>
</tr>
<tr>
<td>H. comata</td>
<td></td>
</tr>
<tr>
<td>Feb + Mar snow (1)</td>
<td>$n = 3,706$, $D = 0.07$</td>
</tr>
<tr>
<td>Feb + Mar temperature (1)</td>
<td></td>
</tr>
<tr>
<td>Feb + Mar precipitation (1)</td>
<td></td>
</tr>
</tbody>
</table>
Growth summer precipitation

\[
\mu_g(x,t; \theta_{ppt-1,t}, \theta_{T_{spr2},t} \theta_{ppt_{spr2},t}) = \beta_{ppt-1} \theta_{ppt-1,t} + \beta_{T_{spr2}} \theta_{T_{spr2},t} + \beta_{ppt_{spr2}} \theta_{ppt_{spr2},t} + \beta_0 g = 5.78 (3.03), \beta_s = 0.87
\]

(2)

\[
\beta_{T_{spr2}} \theta_{T_{spr2,t}} \theta_{ppt_{spr2},t} + \varepsilon_{x,t} \beta_{ppt_{spr2}} = -0.58 (0.29), \beta_{ppt} = 0.004 (0.0008),
\]

spring precipitation (1 & 2)

mean summer temperature (2)

mean spring temperature (1 & 2)

previous year's precipitation(-1)

\[
\beta_{T_{spr2}} \theta_{T_{spr2},t} \theta_{ppt_{spr2},t} + \varepsilon_{x,t} \beta_{ppt_{spr2}} = -0.07(0.04), \\
\beta_{T_{spr2}} \theta_{T_{spr2},t} \theta_{ppt_{spr2},t} + \varepsilon_{x,t} \beta_{ppt_{spr2}} = 0.006 (0.003)
\]

\[n = 2,552\]

\[D = 0.10\]

Survival previous year’s precipitation(-1)

\[A.\ tripartita\]

\[
\text{Logit}(s(x, \theta_{ppt-1,t}) = \beta_{ppt} \theta_{ppt-1,t} + \beta_{ppt} \times x + \varepsilon, \beta_0 s = -1.97 (1.04), \beta_s = 1.77 (0.29), \beta_{ppt} = 0.005 (0.004), \beta_{ppt} x = -0.004 (0.001)
\]
Growth summer precipitation

\[
\mu_g(x, \theta_{ppt_{sum}}, \theta_{T_{sum}}, \theta_{ppt_{win}}) = \beta_{ppt_{win}} \theta_{ppt_{win}} + \beta_{T_{sum}} \theta_{T_{sum}} + \beta_{ppt_{sum}} \theta_{ppt_{sum}} + \beta_{0,t} = -10.91 (2.68),
\]

\[
\beta_{ppt_{win}} = 0.008 (0.002),
\]

\[
\beta_{T_{sum}} = 0.59 (0.14),
\]

\[
\beta_{ppt_{sum}} = 0.10 (0.03),
\]

\[
\beta_{T_{sum}, ppt_{sum}} = -0.006 (0.001)
\]

Growth winter precipitation

\[
\mu_g(x, \theta_{ppt_{win}}, \theta_{T_{win}}) = \beta_{ppt_{win}} \theta_{ppt_{win}} + \beta_{T_{win}} \theta_{T_{win}} + \beta_{0,t} = 0.87 (0.06),
\]

\[
\beta_{ppt_{win}} = 0.018 (0.002),
\]

\[
\beta_{T_{win}} = 0.09 (0.002),
\]

\[
\beta_{ppt_{win}, T_{win}} = 0.006 (0.001)
\]

\[n = 1,732\]

\[D = 0.05\]

\[n = 1,024\]

\[D = 0.08\]
Figure 1. Average kernel, stable stage distribution, and reproductive value vector for all three species. Top row (panels A-C) are the kernels parameterized with mean parameter values for *Pseudoroegneria spicata*, *Hesperostipa comata*, and *Artemisia tripartita*, respectively. Middle row (panels D-F) are stable stage distributions for *P. spicata*, *H. comata*, and *A. tripartita*, respectively. Bottom row (panels G-I) are reproductive value vectors for *P. spicata*, *H. comata*, and *A. tripartita*, respectively.

Figure 2. Elasticity kernels for all three species. Panels A and B are the survival+growth elasticities and the recruitment elasticities, respectively, for *Pseudoroegneria spicata*. Panels C and D are the survival+growth elasticities and the recruitment elasticities, respectively, for *Hesperostipa comata*. Panels E and F are the survival+growth elasticities and the recruitment elasticities, respectively, for *Artemisia tripartita*.

Figure 3. Elasticities for the transitions to larger and smaller sizes and recruitment in relation to genet size.

Figure 4. Elasticities to climate variables within the vital rate functions for *Pseudoroegneria spicata* (A), *Hesperostipa comata* (B), and *Artemisia tripartita* (C). Small bars for Apr ppt in all three species and for snow in *A. tripartita* are elasticities of recruitment.
A Pseudoroegneria spicata

B Hesperostipa comata

C Artemisia tripartita

D Stable stage distribution

E Reproductive value vector

F Stable stage distribution

G Reproductive value vector

H Reproductive value vector

I Reproductive value vector
Pseudoroegneria spicata
Survival + Growth Elasticities

Size (t + 1)

Recruitment Elasticities

Size (t + 1)

Recruitment = 6%

Hesperostipa comata
Survival + Growth Elasticities

Size (t + 1)

Recruitment Elasticities

Size (t + 1)

Recruitment = 13%

Artemisia tripartita
Survival + Growth Elasticities

Size (t + 1)

Recruitment Elasticities

Size (t + 1)

Recruitment = 5%
A. *Pseudoroegneria spicata*
B. *Hesperostipa comata*
C. *Artemisia tripartita*

Graphs

- **Elasticity vs. Genet size**
 - **A**
 - **B**
 - **C**

- **Curves**:
 - **growth**
 - **retrogression**
 - **recruitment**

- **Axes**:
 - Y-axis: Elasticity
 - X-axis: Genet size