

27

equivalent to a second occurrence of c.t , after which the process is again ready to engage in

another input event. The parallel composition P |[{|c|}]|Q requires P and Q to synchronize

on all events in {|c|}, allowing Q to first send a value t to P through c, and then to receive

that value back again.

Example 3.1.5.1. If we define the set BITS = {0, 1}, then the process

channel left , right : BITS

CopyBits = (left .0→ right .0→ CopyBits)

2 (left .1→ right .1→ CopyBits)

can receive members of the set BITS along the left channel, and will output each received

“bit” along the right channel (see fig. 3.6).

The CopyBits process can be written more compactly by using the symbols ? and ! to

denote input and output respectively:

CopyBits = left?x : BITS → right !x → CopyBits

�

left.1

left.0

right.1

right.0

Fig. 3.6: Transition system for the CopyBits process.

28

Example 3.1.5.2. We define a process SendBits, which sends an alternating string of 0

and 1 bits, and place it in parallel with CopyBits:

SendBits = left !0→ left !1→ SendBitsMoreBits = SendBits |[{|left |}]| CopyBits

where the notation {|left |} represents the set of all compound events that start with left , i.e.

{|left |} = {left .0, left .1}. Since SendBits and CopyBits synchronize on any events involving

channel left , the result is that CopyBits effectively “receives” bit values over this channel

from SendBits (and then promptly outputs those bit values on channel right). Figure 3.7

shows the transition system created by the parallel composition. �

Figure 3.8 shows the process structure of the MoreBits process. As the diagram indi-

cates, using channel events for communication does not prevent other processes from also

synchronizing on events involving those channels. If additional synchronization is not de-

sirable it can be prevented using the hiding operator, which will be introduced in sec. 3.1.7.

3.1.6 Sequential Composition

The sequential composition operator is used in conjunction with the SKIP process

to combine two processes such that the composite behavior is that of the first process

followed by that of the second process. The process P ; Q behaves as process P until P

internally reaches a SKIP , after which the process behaves as Q . The generalized sequential

composition operator allows a list of processes to be executed in sequence. The process

P = ; p : Ps • p behaves in turn as each of the processes p in the list Ps.

left.0 right.0

right.1 left.1

Fig. 3.7: Transition system for the MoreBits process.

29

MoreBits

rightCopyBitsSendBits 0101010...

left

Fig. 3.8: Communicating through channels.

Example 3.1.6.1. The process

Mission = Launch ; Operations ; Disposal

exhibits the behavior of the processes Launch, Operations, and Disposal , in that order. The

transition from one process to the next occurs when a process internally reaches a SKIP ,

and successfully terminates. If a process does not terminate, its successor is never activated.

Thus if Operations never terminates, then the behavior of Disposal will never occur. �

3.1.7 Hiding

It is sometimes useful to be able to abstract away events which are not directly relevant

to an analysis, such as concealing “internal” communications in a parallel composition. This

type of abstraction can be performed using the hiding operator. As an example, recall the

Morebits process from the discussion of channels. Using the hiding operator we can write

MoreBits2 = MoreBits \ {|left |}

This conceals all events involving the left channel, thereby making the observable be-

havior of MoreBits2 simply an alternating string of right .0 and right .1 events. Figure 3.9

illustrates the resulting composite process.

The use of hiding requires some care, since it may change a previously deterministic

process into one that is nondeterministic, as example 3.1.7.1 demonstrates. Hiding also has

the potential to the introduce divergence, as described in example 3.1.7.2.

30

MoreBits2

rightCopyBitsleftSendBits 0101010...

Fig. 3.9: Hidden channel communications.

Example 3.1.7.1. If we rewrite the Transceiver process from the discussion of alternative

composition as

Transceiver2 = (Transmitter 2 Receiver) \ {transmit , receive}

then the environment can no longer exercise control over which behavior Transceiver2 will

exhibit, that of Transmitter or of Receiver . �

Example 3.1.7.2. If all events in the recursive Days process are hidden

Days = (sunrise → sunset → Days) \ {sunrise, sunset}

then we are left with a process which never produces an externally observable event, but

also never terminates. Note that the special termination event X can never be hidden. �

A process such as the one above is referred to as a divergent process. Divergence is

represented by the primitive process Div , which does nothing but diverge.

3.1.8 Scoping

The scoping construct let s = expression within P causes the symbol s to take on the

value of expression, but only within the scope of P . This permits the symbol s to be used

to simultaneously denote different expressions in different contexts. The scoping construct

also provides a convenient way to group several related processes.

31

Example 3.1.8.1. The CommSystem process of example 3.1.3.1 can be rewritten such that

the Transmitter and Receiver processes are only defined within the scope of CommSystem.

CommSystem =

let

Transmitter = transmit → tx ended → Transmitter

Receiver = receive → rx ended → Receiver

within

Transmitter ||| Receiver

�

3.2 CSP Theory

In addition to being a well-defined language for precisely describing concurrent systems,

CSP is also a theory of concurrency, and as such provides a rich set of theoretical tools for

understanding and manipulating systems described using CSP expressions.

The theoretical foundations of CSP can, and have been, expressed in three different

forms: denotational models, algebraic laws, and operational semantics. Each of these ways

of expressing the “meaning” of a CSP process is mutually consistent with the others, and

each is useful in different ways. All three of the theoretical approaches will be introduced

in the discussion that follows.

3.2.1 Denotational Models

Although CSP is a process algebra, much of the theoretical work in CSP has tradi-

tionally been carried out using various denotational models. A denotational model is a

mathematical construct that can be used to provide an abstract view of processes. This

abstract view permits more general reasoning about classes of processes, and allows us to

make precise statements about what it means for two processes to be “equivalent.” The

mapping from algebraic notation to denotational model is carried out through a collection of

32

translation rules known as a denotational semantics. In CSP, the denotational models have

typically been based on sets and sequences of events. The three major CSP denotational

models are the traces model, the stable failures model, and the failures/divergences model.

Traces

The traces model is the most basic of the denotational models. A trace is simply a

sequence of events. The simplest way to describe the observed behavior of a process is as a

set of traces which record all of the possible sequences of interactions between the process

and its environment. Traces are essentially another name for the strings used in automata

theory [100], and a trace set is equivalent to the language of an automaton.

Example 3.2.1.1.

traces(STOP) = {〈〉}

traces(a → b → STOP) = {〈〉, 〈a〉, 〈a, b〉}

since STOP never engages in any events, while the process (a → b → STOP) can be

observed to have done nothing, to have engaged in event a, or to have engaged in event a

and then event b. �

Traces are defined as sequences drawn from the set Σ∗X, where

• Σ is the set of all possible events (or “universal alphabet”) for the system under

consideration.

• Σ∗ is the set of all finite sequences (including the empty sequence) that can be formed

from elements of Σ.

• Σ∗X = Σ∗ ∪ {s a 〈X〉 | s ∈ Σ∗}, i.e. the termination event X is always the last event

in a trace.

33

Definition 1 (see Roscoe [3]). A process in the traces model is defined as a subset

traces(P) ⊆ Σ∗X satisfying the following conditions:

T1. 〈〉 ∈ traces(P) (3.1)

T2. s1
a s2 ∈ traces(P) =⇒ s1 ∈ traces(P) (3.2)

That is, traces(P) always contains at least the empty trace (〈〉), and traces(P) is prefix

closed (i.e. if a trace is a member of traces(P) then the shorter traces representing earlier

observations of P must also be in traces(P)). �

The traces of a composite process can be determined from the traces of its compo-

nent processes using the rules of the denotational semantics. For example, the rule for

composition using the external choice operator is

traces(P 2 Q) = traces(P) ∪ traces(Q)

where P and Q are arbitrary processes. The complete denotational semantics for the traces

model (see Roscoe’s text [3]) provides rules for all of the CSP operators, and thus permits

any process description to be mapped to a set of traces. If traces(P) = traces(Q) then the

two processes P and Q are said to be trace equivalent.

The traces model is a good way of describing the behavior that a process may engage

in. For some purposes, such as ensuring that certain events can never occur, this model is

sufficient. However, the traces model is not able to describe the behaviors that a process

must engage in. As a result, some types of processes cannot be differentiated from each

other in the traces model.

Example 3.2.1.2.

traces((a → STOP) 2 (b → STOP)) = {〈〉, 〈a〉, 〈b〉}

traces((a → STOP) u (b → STOP)) = {〈〉, 〈a〉, 〈b〉}

34

The traces of the two processes are the same, since both processes may engage in

events a or b. However, the external choice process must engage in an a or b event if the

environment attempts to communicate such an event. The nondeterministic choice makes

no such guarantee. �

If we wish to be able to make a distinction between the two processes above, we need

to add more information to the traces model. This is the rationale for the introduction of

the stable failures model.

Stable Failures

The stable failures model extends the traces model with the idea of refusal sets. A

refusal is a set of events X ⊆ ΣX (where ΣX = Σ ∪ {X}) which a process may choose

to refuse to engage in. The idea of using “refusals” instead of “acceptances” (i.e. those

events a process is prepared to engage in) can be a little counter-intuitive at first. However,

refusal sets have historically been the standard way of describing process behavior in CSP.

Refusal sets are apparently preferred over acceptance sets because refusals permit a simpler

approach at the theoretical level [1], although some authors have used acceptance-based

semantics to their advantage [101].

A failure is a pair (s,X), consisting of a trace s, and a refusal X which identifies

the events in which a process may refuse to engage once it has executed the trace s.

The observed behavior of a process in the stable failures model is described by the pair

(traces(P), failures(P)). Assuming Σ = {a, b}, then for the processes from example 3.2.1.2:

failures((a → STOP) 2 (b → STOP)) = {(〈〉, ∅), (〈a〉, {a, b}), (〈b〉, {a, b})}

failures((a → STOP) u (b → STOP)) = {(〈〉, {a}), (〈〉, {b}),

(〈a〉, {a, b}), (〈b〉, {a, b})}

The failures of the two processes are clearly different, since the external choice cannot

initially refuse a or b, while the nondeterministic choice can initially refuse a or b, but not

both. Thus, while these two processes are trace equivalent, they are not failures equivalent.

35

Definition 2 (see Roscoe [3]). A process in the stable failures model is a pair

(traces(P), failures(P)),

where traces(P) follows definition 1, and failures(P) ⊆ Σ∗X × P ΣX.

The pair (traces(P), failures(P)) must satisfy the conditions:

T1. 〈〉 ∈ traces(P), (3.3)

T2. s1
a s2 ∈ traces(P) =⇒ s1 ∈ traces(P) (3.4)

SF1. (s,X) ∈ failures(P) =⇒ s ∈ traces(P) (3.5)

SF2. (s,X) ∈ failures(P) ∧ Y ⊆ X =⇒ (s,Y) ∈ failures(P) (3.6)

SF3. (s,X) ∈ failures(P) ∧ ∀ a ∈ Y • s a 〈a〉 /∈ traces(P)

=⇒ (s,X ∪Y) ∈ failures(P) (3.7)

SF4. s a 〈X〉 ∈ traces(P) =⇒ (s,Σ) ∈ failures(P) (3.8)

SF5. s a 〈X〉 ∈ traces(P) =⇒ (s a 〈X〉,X) ∈ failures(P) (3.9)

�

The conditions on the (traces(P), failures(P)) pair essentially state that:

• The traces portion of the pair must be a valid trace by the conditions of the trace

model (conditions T1 and T2).

• The trace associated with any failure must appear in the trace set (condition SF1).

• A process can refuse any subset of a given refusal set (condition SF2).

• The failures set for a given state must include any events that the process can never

perform when in that state (condition SF3).

• A process able to terminate can refuse to do anything else (condition SF4).

• The behavior of all processes after termination looks the same (condition SF5).

36

As with the traces model, the denotational semantics associated with the failures model

provides rules for determining the failure set of a composite process from the failure sets of

its components. Simple examples of these rules, which would be sufficient to develop some

of the failure sets presented above, include

failures(STOP) = {(〈〉,X) | X ⊆ (Σ ∪X)}

failures(a → P) = {(〈〉,X) | a /∈ X } ∪ {(〈a〉a s,X) | (s,X) ∈ failures(P)}

failures(P u Q) = failures(P) ∪ failures(Q)

The full denotational semantics for the stable failures model can be found in Roscoe [3].

Failures/Divergences

The final model that we will discuss is the failures/divergences model. This model

essentially extends the failures model to handle the concept of divergence. Recall that

divergence was previously mentioned in sec. 3.1.7, where it was informally described as being

the behavior of a process which stops producing externally observable events, and does not

terminate. In the example discussed in sec. 3.1.7, divergence was created by hiding all of

the observable events of the example process. In terms of the theory of CSP, the hiding

operation translates an observable event into the unobservable internal event τ . A divergent

process is then formally defined as a process which, while it can exhibit observable behavior,

can also produce an unbroken infinite string of τ events. So hiding all of the observable

events in an infinite process will necessarily result in a process which is divergent. Describing

divergence provides one more means of differentiating between two different processes that

would otherwise be indistinguishable.

Definition 3 (see Roscoe [3]). A process in the failures/divergences model is a pair

(failures⊥(P), divergences(P))

37

where divergences(P) is defined as the set of all traces that can lead to divergent behav-

ior (i.e. an unbroken infinite string of τ events) on the part of P , and failures⊥(P) =

failures(P) ∪ {(s,X) | s ∈ divergences(P)}. Thus, failures⊥(P) ⊆ Σ∗X × P ΣX and

divergences(P) ⊆ Σ∗X. The pair (failures⊥(P), divergences(P)) must satisfy the conditions:

F1. 〈〉 ∈ {s | (s,X) ∈ failures⊥(P)} (3.10)

F2. s1
a s2 ∈ {s | (s,X) ∈ failures⊥(P)} =⇒ s1 ∈ {s | (s,X) ∈ failures⊥(P)} (3.11)

F3. (s,X) ∈ failures⊥(P) ∧ Y ⊆ X =⇒ (s,Y) ∈ failures⊥(P) (3.12)

F4. (s,X) ∈ failures⊥(P) ∧ ∀ a ∈ Y • s a 〈a〉 /∈ {s | (s,X) ∈ failures⊥(P)}

=⇒ (s,X ∪Y) ∈ failures⊥(P) (3.13)

F5. s a 〈X〉 ∈ {s | (s,X) ∈ failures⊥(P)} =⇒ (s,Σ) ∈ failures⊥(P) (3.14)

D1. s1 ∈ divergences(P) ∩ Σ∗ ∧ s2 ∈ Σ∗X =⇒ s1
a s2 ∈ divergences(P) (3.15)

D2. s ∈ divergences(P) =⇒ (s,X) ∈ failures⊥(P) (3.16)

D3. s a 〈X〉 ∈ divergences(P) =⇒ s ∈ divergences(P) (3.17)

�

Conditions F1 through F5 impose essentially the same constraints as the corresponding

conditions in the stable failures model, although here expressed in terms of the implicit

traces contained in failures⊥(P). Condition D1 states that we will not bother to distinguish

the behavior of processes once they have diverged. Condition D2 ensures correspondence

between divergences(P) and failures⊥(P). Condition D3 ensures that we ignore the behavior

of all processes after successful termination.

It is interesting to note that the failures/divergences model does not explicitly in-

clude traces(P) in its process description, but instead includes the traces implicitly in

failures⊥(P). This was not possible in the stable failures model, because failures(P) does

not include any traces which result in divergence.

The complete denotational semantics for the failures/divergences model can be found in

Roscoe’s text [3], and, much like the denotational semantics for the other models, provides

38

a set of rules for determining the failures and divergences of a composite process from the

failures and divergences of its components.

3.2.2 Algebraic Laws

Since CSP is a process algebra, it naturally includes a set of algebraic laws. The

algebraic laws of CSP provide a way to reconfigure and simplify process descriptions through

direct manipulation of the symbols of the process description. The laws themselves are

intimately tied to the denotational models discussed in the previous section: an algebraic

equivalence between two processes implies that the processes are also equivalent in terms of a

given denotational model. Since each of the denotational models captures slightly different

process equivalences it is sometimes necessary to specify the type of equivalence (traces,

failures, or failures/divergences) for which a particular algebraic law is valid. However, the

majority of the algebraic laws generalize across all of the denotational models, and thus

provide a powerful tool for process manipulation. Some of the key algebraic laws of CSP

are presented below. In presenting these laws we will follow the naming scheme used by

Roscoe [3], in which each law is labeled to indicate both the operator(s) to which it applies,

and the property it represents.

There are certain fundamental algebraic laws that are shared by all process algebras [4].

The CSP versions of these laws [3] appear below.

• Commutativity (symmetry), associativity, and idempotency of choice composition

P 2 Q = Q 2 P 〈 2-sym〉

P u Q = Q u P 〈 u-sym〉

P 2 (Q 2 R) = (P 2 Q) 2 R 〈 2-assoc〉

P u (Q u R) = (P u Q) u R 〈 u-assoc〉

P 2 P = P 〈 2-idem〉

P u P = P 〈 u-idem〉

39

• Associativity and distributivity of sequential composition

(P ; Q) ; R = P ; (Q ; R) 〈 ; -assoc〉

(P u Q) ; R = (P ; R) u (Q ; R) 〈 ; -dist-l〉

P ; (Q u R) = (P ; Q) u (P ; R) 〈 ; -dist-r〉

• Commutativity and associativity of parallel composition

P |[X]|Q = Q |[X]| P 〈 |[X]|-sym〉

P ||| Q = Q ||| P 〈 |||-sym〉

(P |[X]|Q) |[X]| R = P |[X]| (Q |[X]| R) 〈 |[X]|-assoc〉

(P ||| Q) ||| R = P ||| (Q ||| R) 〈 |||-assoc〉

As a result of the pathological case in which one of the processes in a 2 composition

is SKIP , external choice is not distributive over ; . Since the environment can not exercise

control over the X event, (SKIP 2 Q) ; R = R u (R 2 (Q ; R)) [1].

In addition to the preceding fundamental process algebraic laws, CSP possesses a va-

riety of other laws involving the distributivity of its operators, including [3]:

P 2 (Q u R) = (P 2 Q) u (P 2 R) 〈 2-dist〉

P u (Q 2 R) = (P u Q) 2 (P u R) 〈 u-2-dist〉

a → (P u Q) = (a → P) u (a → Q) 〈prefix-dist〉

P |[X]| (Q u R) = (P |[X]|Q) u (P |[X]| R) 〈 |[X]|-dist〉

P ||| (Q u R) = (P ||| Q) u (P ||| R) 〈 |||-dist〉

Another important class of laws is the so-called “step laws,” which define how a process

evolves in response to a single event. These laws are essentially operational in nature, in

that they define transitions of a process state to another state, and are closely related to

40

the operational semantics described in the next section. Step laws for each CSP operator

can be found in Roscoe [3]. An example of a step law is the external-choice step law:

(2 x : A • P) 2 (2 x : B • Q) = 2 x : A ∪ B •


P u Q x ∈ A ∩ B

P x /∈ B

Q x /∈ A

〈 2-step〉

Example 3.2.2.1. Consider the process

Sys = ((P 2 P) |[X]| ((b → (Q u R)) 2 (a → Q)))

u (P |[X]| ((a → R) 2 (b → (R u Q))))

Through successive application of several of the algebraic laws defined above we can

rearrange the complicated Sys process description into something far less complex:

Sys = (P |[X]| ((b → (Q u R)) 2 (a → Q)))

u (P |[X]| ((a → R) 2 (b → (R u Q)))) by 〈 2-idem〉

= (P |[X]| ((b → (Q u R)) 2 (a → Q)))

u (P |[X]| ((a → R) 2 (b → (Q u R)))) by 〈 u-sym〉

= (P |[X]| ((b → (Q u R)) 2 (a → Q)))

u (P |[X]| ((b → (Q u R)) 2 (a → R))) by 〈 2-sym〉

= P |[X]| (((b → (Q u R)) 2 (a → Q))

u ((b → (Q u R)) 2 (a → R))) by 〈 |[X]|-dist〉

= P |[X]| ((b → (Q u R)) 2 ((a → Q) u (a → R))) by 〈 2-dist〉

= P |[X]| ((b → (Q u R)) 2 (a → (Q u R))) by 〈 prefix-dist〉

= P |[X]| (2 x : {a, b} • (Q u R)) by 〈 2-step〉

�

41

The process description which results from the application of the algebraic laws is

behaviorally equivalent to the original process, but is clearly much easier to read and un-

derstand. More importantly, if the original process description represented a system design

created by composing several existing modules, then the simplified process description shows

how to achieve the same behavior with a significantly less complex design. The ability to

simplify process descriptions in this way has obvious practical benefits in terms of the cost

and reliability of implementing desired behaviors.

3.2.3 Operational Semantics

An operational semantics is a way to describe the “meaning” of a program or process in

terms of transitions from one process state to another one. In the context of CSP, transitions

are equivalent to events, and process states represent the events that a process is ready to

accept or refuse once it has completed a given transition. The operational semantics for

CSP provides a set of rules (so-called “firing rules”) which define how the state of a process,

or a composition of processes, will evolve in response to an event.

The rules of the CSP operational semantics provide a convenient way to rigorously map

a process description to a labeled transition system (LTS). This is useful for two reasons:

firstly, an LTS can easily be converted into a visual representation of the system (such as

the illustrative transition systems that we presented in sec. 3.1), which can sometimes aid

understanding of system behavior; secondly, an LTS provides a complete representation

of the “state space” of a process, which can then be exhaustively explored in order to

verify that some desired set of properties holds in every possible state. The industrial CSP

verification tool FDR makes use of LTS state exploration in its verification checks.

The operational semantics for CSP are traditionally expressed in the form of inference

rules. A simple example of these inference rules is the following rule set, which provides the

operational semantics for the external choice operator:

42

P a→ P ′ [a 6= τ]

P 2 Q a→ P ′

Q 2 P a→ P ′

P τ→ P ′

P 2 Q τ→ P ′ 2 Q

Q 2 P τ→ Q 2 P ′

These rules essentially state that if a process P can undergo a transition a (i.e. engage

in the event a) to a state P ′ then such a transition resolves the external choice, and that

internal transitions (τ) do not resolve the external choice.

A similar set of rules exist for the interface parallel operator (and can be generalized

to apply to both interleaving and alphabetized parallel):

P a→ P ′

Q a→ Q ′ [a ∈X]

P |[X]|Q a→ P ′ |[X]|Q ′

P b→ P ′ [b ∈ (Σ ∪ {τ}) \X]

P |[X]|Q b→ P ′ |[X]|Q

Q |[X]| P b→ Q |[X]| P ′

In this case, the inference rules state that any event which is in the synchronization set

X will cause both P and Q to change state, while events outside of X (including τ events)

cause only a single process to change state.

A full set of inference rules for all of the CSP operators can be found in both Roscoe’s [3]

and Schneider’s [99] texts. However, even the two simple inference rules we have so far are

sufficient to examine a small example of converting a process description into an LTS.

Example 3.2.3.1. Consider the system

P = (a → P) 2 (b → c → P)

Q = b → c → (Q 2 (d → Q))

P |[{b, c}]|Q

From the external choice inference rules we see that P will initially either engage in a

and then return to its initial state, or engage in b and enter a state in which the only event

it can perform is c. From the parallel inference rules we see that Q can initially only engage

43

in b, and therefore must synchronize with P to make any progress. Thus, we obtain

(P |[{b, c}]|Q) a→ (P |[{b, c}]|Q)

(P |[{b, c}]|Q) b→ ((c → P) |[{b, c}]| (c → (Q 2 (d → Q))))

Once P and Q synchronize on b the only possible event that can occur next in both

processes is c. The occurrence of c will return P to its initial state (i.e. able to engage in

a or b), and cause Q to reach a state in which it has an external choice between its initial

state (i.e. ready to engage in b) or engaging in d and then returning to its initial state.

((c → P) |[{b, c}]| (c → (Q 2 (d → Q)))) c→ (P |[{b, c}]| (Q 2 (d → Q)))

(P |[{b, c}]| (Q 2 (d → Q))) d→ (P |[{b, c}]|Q)

Assembling each of these system states, and the possible transitions in each state, into

an LTS, we obtain the transition system depicted in fig. 3.10. �

3.3 Specification and Verification with CSP

CSP is more than just a mathematical notation for describing and manipulating con-

current systems. It is also a useful tool for specifying the properties that the behavior of

a system should exhibit, and for verifying that a design actually meets its specification.

There are two standard approaches to specifying and verifying behavior in CSP. One ap-

proach involves specification of predicates on a denotational model, followed by verification

a

b

c

d

b

a

Fig. 3.10: Transition system for P || Q .

44

of predicate satisfaction through logical deduction. The other approach expresses both

specification and implementation as processes, and provides verification by checking for a

relationship between the two processes known as refinement. Researchers working on other

process algebras are developing a third approach [102, 103], based on algebraic verification

of process properties, but this approach is still in its infancy, and has not yet seen much

application in the CSP community.

3.3.1 Predicate Satisfaction

The predicate satisfaction approach to process specification was introduced in Hoare’s

original text on CSP. Specifications are expressed as predicates on the traces or failures of

a process. The predicates are written as sat clauses such as P sat Spec(s,X), where

P sat Spec(s,X)⇐⇒ ∀(s,X) ∈ failures(P) • Spec(s,X)

Example 3.3.1.1. The sat clause

CopyBits sat (s ⇓ right ≤ s ⇓ left)

states that in any trace s of the CopyBits process the sequence of values produced on

channel right is always a prefix of the sequence of values it has received on channel left . �

Hoare’s text provides a number of deductive rules that permit a proof of predicate

satisfaction for a composite process to be built up from the sat clauses of the component

processes. The sat-based approach specification and verification has two advantages: it

allows for a natural expression of desired behavioral properties, and it avoids explication

of the state space, making large or infinite state systems tractable. The drawback is that

verification must be performed by manual proof (perhaps aided by a proof assistant such

as Isabelle/HOL or PVS), although Martin [65] has recently introduced a tool capable of

performing automatic sat checking for a limited subset of specifications.

45

3.3.2 Process Refinement

The refinement approach to specification and verification considers both specification

and implementation as processes. An implementation process is considered acceptable with

respect to a specification if it exhibits some subset of the behavior of the specification,

in which case it is said to “refine” the specification. Refinement must be evaluated with

respect to one of the denotational models described in sec. 3.2.1.

Definition 4 (see Roscoe [3]). Refinement in the traces, stable failures, and failures/diverg-

ences models is defined as:

Spec vT Impl ⇐⇒ traces(Impl) ⊆ traces(Spec)

Spec vF Impl ⇐⇒ (traces(Impl) ⊆ traces(Spec)

∧ failures(Impl) ⊆ failures(Spec))

Spec vFD Impl ⇐⇒ (failures⊥(Impl) ⊆ failures⊥(Spec)

∧ divergences(Impl) ⊆ divergences(Spec))

�

Example 3.3.2.1. Since traces(Transmitter) ⊆ traces(Transmitter u Receiver), we can

state that

Transmitter u Receiver vT Transmitter

�

The refinement relation is a partial order on the space of processes, and possesses

several useful properties that permit systems to be designed and verified in a stepwise,

compositional manner, including:

• Transitivity – P v Q ∧ Q v R =⇒ P v R.

• Monotonicity – P v Q =⇒ C [P] v C [Q], where C [·] is any process algebraic

expression with a free process identifier.

46

We are now in a position to understand the name of the FDR tool: FDR stands for Fail-

ures/Divergences Refinement. FDR is a tool that uses exhaustive state-space exploration of

process descriptions to automatically test for traces, failures, or failures/divergences refine-

ment of a specification by an implementation. The use of the transitivity and monotonicity

properties of refinement, along with various behavior-preserving state-space compression

techniques, allows FDR to be used to verify systems too complex to check by manual

means. Although automated theorem-proving tools have been applied to CSP process ver-

ification, refinement checking with FDR appears to be the most commonly used method

for specification and verification of processes in the CSP community, particularly in indus-

trial applications. As a result, we will favor process-based specifications throughout the

remainder of this dissertation.

47

Chapter 4

Specifying Spacecraft System Behavior

“ ‘When I use a word,’ said Humpty Dumpty in rather a

scornful tone, ‘it means just what I choose it to mean -

neither more nor less.’ ”

– Lewis Carroll

The existing practice in most spacecraft design projects is to define the system-level

behavior of a spacecraft in terms of loosely defined concepts such as “functions,” and “mode

transitions,” and informal diagrams such as State Transition Diagrams and Functional Flow

Block Diagrams. In this chapter we develop a CSP interpretation for some of the most com-

mon spacecraft behavior specification concepts. These CSP-based definitions demonstrate

that process algebraic expressions can be used to describe spacecraft behavior, and helps

to elucidate the relationships between different specification constructs. The resulting con-

ceptual framework allows spacecraft behavior specification to be approached in a more

structured and systematic way.

The chapter is structured as follows. Since the notion of “required functions” is a key

part of most discussions of spacecraft requirements, we begin by establishing a precise defi-

nition of the term required function. Based on this definition, we draw a distinction between

required functions and required behaviors. We then provide formal descriptions for several

different classes of required behaviors that are commonly used in informal descriptions of

spacecraft behavior. We also show how these formal descriptions can be combined using

standard CSP algebraic operators to form system behavior specifications. Finally, we con-

sider how a composite specification can be checked to ensure that the behavior it specifies

matches the specifier’s intentions. We use the behavior of a notional scientific spacecraft as

a running example.

48

4.1 Required Functions

The requirements for a spacecraft are usually specified in terms of the functions that the

spacecraft is required to perform [20, 21, 104]. However, there is no uniform understanding

of what constitutes a required function, and, in many cases, the “functional requirements”

for a spacecraft include things that might more properly be considered specifications of

behavior. In this section, we establish a formal definition of the term required function, and

use this definition to draw a distinction between required functions and required behavior.

4.1.1 Defining Function

Most systems engineering standards define the term function using some variation of

the phrase “an action the system must perform” [105]. The design research community uses

a similar but more precise formulation, defining a function as “a relationship between inputs

and outputs” [106]. Not surprisingly, this definition is related to the mathematical definition

of a function as a map from elements of one set to elements of another set. Moreover, a

requirement that a spacecraft perform a certain function can be viewed as a requirement

that some set of inputs be mapped to some set of outputs. Viewing functions in this way

allows a more formal definition of what we mean by the term function.

Definition 5 (Required Function). A required function is a total, many-to-one binary

relation from a set of inputs X to a set of outputs Y :

f : X → Y

�

Of course, required spacecraft functions are rarely expressed in the form of an in-

put/output mapping. Instead, the mapping associated with a particular required function

is left implicit in the statement of the requirement. However, by expressing required func-

tions in terms of input/output mappings we can achieve a much more precise definition of

what function is actually required.

49

Example 4.1.1.1. A spacecraft is required to change its attitude (or orientation) in re-

sponse to commands from ground-based operators. More formally, we describe this function

as the mapping

fAtt : AttitudeCommand → Attitude

where AttitudeCommand is a set of attitude commands, and Attitude is a set of space-

craft attitudes. This mapping establishes a requirement on the spacecraft by specifying

the commands to which the spacecraft should respond, and identifying the corresponding

attitude states that the spacecraft must produce in response to each command.

A simple attitude commanding requirement might be specified in terms of the function

fAtt = {(detumble, sun pointing),

(science attitude, earth limb scan),

(safe attitude, sun pointing)}

where

AttitudeCommand = {detumble, science attitude, safe attitude}

Attitude = {uncontrolled , sun pointing , earth limb scan}

The values of Attitude are names representing qualitatively different ranges of attitude

angles and rates. �

More complex specifications might include attitude commands parameterized by the

desired attitude, or values of Attitude expressed in terms of other reference objects (e.g. the

position of the sun). A formal description of such complex specifications may be more easily

represented in terms of a rule for relating inputs and outputs, rather than as an enumeration

of all of the elements of the relation. Fortunately, the machine-readable CSPM incorporates

a functional programming language with facilities for manipulating sets, sequences, and

50

tuples. This language can be used to formally represent both simple relational definitions,

and more complex rule-based function definitions.

4.1.2 Function vs. Behavior

Required functions, as we have defined them, can precisely specify one aspect of what

a spacecraft is required to do. However, that aspect does not include behavior. Functions

describe what should happen, but leave open the question of the order in which those

things should happen. We might assume that applying a function to two different input

values “in sequence” will result in the corresponding output values appearing in the same

sequence. But there is nothing in the semantics of functions that specifies the sequencing of

outputs, or even defines the meaning of applying a function “in sequence.” The difficulties

created by this lack of sequencing semantics are compounded when considering systems

that involve multiple functions. For example, in some spacecraft applications it may be

necessary to specify that the results of performing one function, such as the acquisition of a

stable attitude, must happen before other spacecraft functions can occur. Requirements of

this kind can be critical to defining the correct operation of a spacecraft. But they cannot

be defined in terms of functions alone.

One approach to resolving the problem of specifying the sequencing of inputs and

outputs is to express requirements in terms of mappings between sequences of inputs and

sequences of outputs [107], rather than mappings from individual inputs to individual out-

puts. However, this approach can become cumbersome as the number of inputs and out-

puts increases. More importantly, it can obscure the individual input/output relationships

captured by function specifications, and make it much more difficult to compose separate

specifications.

An alternative approach to resolving the sequence specification problem is to draw a

distinction between required input/output relationships that are independent of sequence

(functions), and required sequences of inputs and outputs (behaviors). This approach re-

sembles the traditional technique of arranging spacecraft functions in “functional flow block

diagrams” [19–21] that specify the ordering of function executions. Taking this approach

51

allows mathematical representations which are better suited than functions to describing

behavior, such as CSP process expressions, to be applied to the problem of specifying

the sequencing relationships between different inputs and outputs. Furthermore, the in-

put/output sequencing for a function can then be specified by associating a behavior with

that function.

4.1.3 Lifting Function to Behavior

One way to associate a function specification with a behavior specification is to en-

capsulate the function inside a CSP process description, effectively lifting the function into

the behavior domain. A simple lifted-function behavior might consist of a straightforward

alternation of input and output values. This behavior can be generically defined as a pa-

rameterized process.

Definition 6 (LiftF). Given a required function

f : X → Y

the corresponding lifted function is a process

LiftF (in, out , f) = in?x → out !f (x)→ LiftF (in, out , f)

where in must be a channel of type X , and out must be a channel of type Y . �

Example 4.1.3.1. The function specification fAtt (example 4.1.1.1) can be lifted to a

process by defining input and output channels of the appropriate type,

channel cmdAtt : AttitudeCommand

channel attitude : Attitude

and instantiating the LiftF process with the function specification,

AttitudeCommanding = LiftF (cmdAtt , attitude, fAtt)

52

The resulting AttitudeCommanding process can initially engage in any event in the set

{cmdAtt .detumble, cmdAtt .science attitude, cmdAtt .safe attitude}

It then generates a corresponding attitude event, and awaits a new command. �

Lifting a function specification to a process has two important effects. First, a lifted

function explicitly defines the sequence in which function inputs and outputs must occur,

which means that the lifted function is less ambiguous than its corresponding function

specification. Second, a lifted function can be composed with other processes using standard

CSP operators, allowing lifted functions to be combined descriptions of other aspects of

spacecraft behavior in well-defined ways.

Multiple Inputs and Outputs

Some spacecraft functions require more than one input, or generate more than one

output. Expressing such functions in terms of input/output mappings is a straightforward

matter of defining the relevant input or output set as a Cartesian product of several input

or output components. In the behavior domain, however, things become more complicated.

Example 4.1.3.2. A science measurement function that combines instrument measure-

ments and the current attitude state into a data item can be specified as

fSci : Measurement ×Attitude → ScienceData

Lifting this function definition into the behavior domain, we obtain

channel inSci : Measurement ×Attitude

channel downlink data : ScienceData

Science = LiftF (inSci , downlink data, fSci)

�

53

The input channel of lifted function Science in example 4.1.3.2 has a type which is a

Cartesian product of two input components. These two input components originate from

different places: one is supplied by the scientific instrument, the other is read from the

attitude state. An interface process is required to obtain the two input components from

their separate sources, and combine them into an input tuple for the science function.

The need to define an interface process for the multi-input Science function exposes a

new behavior specification issue related to functions. For any multi-input or multi-output

lifted function, it is necessary to define the order in which the multiple inputs or outputs

should be received or sent.

Definition 7 (MI Behavior). An MI (Multi-Input) behavior is an interface process that

specifies the acceptable ordering of inputs for a lifted multi-input function. An MI behavior

aggregates multiple component input values into a tuple. An MI behavior P with input

channels in1, . . . , inn and output channel tuple has the following properties:

1. Tuple depends on most recent inputs

s a 〈tuple.(a1, . . . , an)〉 ∈ traces(P) =⇒ ∀ i : {1, . . . ,n} • last(s ⇓ ini) = ai .

2. One complete input round per tuple

s ∈ traces(P) =⇒ ∀ i : {1, . . . ,n} • ((s ↓ {|ini |})− 1) ≤ (s ↓ {|tuple|}) ≤ (s ↓ {|ini |}).

3. Liveness

(s,X) ∈ failures(P) =⇒ X 6=
⋃n

i=1 {|ini |} ∪ {|tuple|}.

Definition 8 (MO Behavior). An MO (Multi-Output) behavior is an interface process that

specifies the acceptable ordering of outputs for a lifted multi-output function. An MO

behavior receives a tuple, and decomposes the tuple into component output values which

are communicated to other processes in the appropriate order. An MO behavior P with

input channel tuple and output channels out1, . . . , outn has the following properties:

1. Outputs depend on most recent tuple

s a 〈outi .x 〉 ∈ traces(P) =⇒ ∃(a1, . . . , an) • last(s ⇓ tuple) = (a1, . . . , an) ∧ ai = x .

54

2. One complete output round per tuple

s ∈ traces(P) =⇒ ∀ i : {1, . . . ,n}•((s ↓ {|tuple|})−1) ≤ (s ↓ {|outi |}) ≤ (s ↓ {|tuple|}).

3. Liveness

(s,X) ∈ failures(P) =⇒ X 6=
⋃n

i=1 {|outi |} ∪ {|tuple|}.

The MI and MO behavior definitions leave the door open for arbitrarily complex input

and output sequencing. However, in practice MI and MO behaviors will most likely be

either purely sequential or purely parallel.

Example 4.1.3.3. A purely sequential two-input behavior requires that a value is obtained

from channel in1 before anything is read from channel in2.

SeqIn2(in1, in2, tuple) = in1?x → in2?y → tuple!(x , y)→ SeqIn2(in1, in2, tuple)

�

Since the SeqIn2 process defined above is ready to receive new inputs as soon as it

has sent an output tuple, the composite process that results from combining SeqIn2 with

a LiftF process will be able to accept new inputs before it has output a value. In order

to retain the strict input/output alternation semantics of the LiftF process it is convenient

to define a MI/MO LiftF process which includes synchronization events that enforce the

desired input/output alternation when composed with compatible MI and MO processes.

These synchronization events can be hidden when not needed.

Definition 9 (MIMO LiftF).

MIMOLiftF (in, out , reqin, ackout , f) =

reqin → in?x → out !f (x)→ ackout → MIMOLiftF (in, out , reqin, ackout , f)

where reqin is requests a new input round from an MI behavior, and ackout signals the

completion of an output round from an MO behavior. �

55

Example 4.1.3.4. A purely parallel two-output behavior allows values to be output on

channels out1 and out2 in an arbitrary order. It includes an acknowledgment channel that

indicates to a MIMOLiftF process when an output round is complete.

ParOut2(tuple, out1, out2, ackout) =

let

Out1 = tuple?(x , y)→ out1!x → ackout → Out1

Out2 = tuple?(x , y)→ out2!y → ackout → Out2

within

Out1 |[{|tuple, ackout |}]|Out2

�

Example 4.1.3.5. Continuing with the science measurement example, we assume that

making a science measurement always precedes reading the attitude state. Given this

assumption, the interface process can be expressed as a sequential MI behavior

channel instrument : Measurement

channel sense attitude : Attitude

channel sci req , sci ack

IFSci = SeqIn2(sci req , instrument , sense attitude, inSci)

Combining this process with a MIMO lifted function produces the full behavior asso-

ciated with the spacecraft science measurement function (fig. 4.1):

Science ′ = IFSci

|[{|inSci , sci req |}]|

MIMOLiftF (inSci , downlink data, sci req , sci ack , fSci) \ {sci ack}

�

56

fSciIFSci
downlink_data

inSci

sense_attitude

instrument
Science'

sci_req

Fig. 4.1: Structure of the composite Science ′ process.

4.2 Components of Spacecraft Behavior

Spacecraft requirements often include “functions” that do not fit the definition of re-

quired functions established in the previous section. In many cases, these required “func-

tions” are actually behaviors. Based on a survey of spacecraft system requirements docu-

ments and design descriptions produced by various organizations [22–24,108–113], we have

identified several classes of behavior commonly used in informal descriptions of spacecraft

system-level behavior. In this section, we develop CSP interpretations of each of these

classes of behavior. The resulting CSP processes allow spacecraft behaviors to be speci-

fied with greater precision and less ambiguity than the usual informal descriptions. Along

with the lifted functions discussed in the previous section, the various processes defined in

this section can be regarded as primitive components of spacecraft behavior, and used as

building-blocks for the development of composite spacecraft behavior specifications.

4.2.1 Event Sequences

Perhaps the most straightforward type of spacecraft behavior specification is the linear

sequence of events, an example of which is the excerpt from the MGS Block Dictionary [114]

which appears in fig. 4.2. A generic event sequence specification is readily described in CSP

using generalized sequential composition.

Definition 10 (Event Sequence). An event sequence is a parameterized process

EventSeq(S) = ; e : S • e → SKIP

57

The first event in the separation detect script is to select the high rate mode for
the IMU . . . The second event is to arm the thrusters . . . Residual rates after the
separation and yo-yo despin are then damped by commanding the spacecraft into
the Despin/Deploy mode.

Fig. 4.2: Example of an event sequence.

where S is a trace (list of events) S = 〈e1, . . . , en〉. The behavior of this process is to execute

each event in the trace S , in the order in which it appears in the trace sequence. �

Example 4.2.1.1. Following separation from a launch vehicle, a simple scientific spacecraft

is required to execute a sequence of deployments in preparation for carrying out its mission.

This requirement is described by the event sequence

channel deploy : {antenna1, antenna2, solar array}

Deployments = EventSeq(〈deploy .solar array , deploy .antenna1, deploy .antenna2〉)

The behavior defined by this specification is equivalent to

Deployments = deploy .solar array → deploy .antenna1 → deploy .antenna2 → SKIP

�

4.2.2 State Transition Systems

Spacecraft requirements and design documentation often contain informal state dia-

grams similar to the example shown in fig. 4.3, and descriptions of transitions in spacecraft or

subsystem states such as the example, excerpted from the WIRE System Requirements [24],

which appears in fig. 4.4. Specifications of this kind are instances of state transition systems.

58

launch safe nom.separation cmdMode.nom

cmdMode.safe

fault

Fig. 4.3: Mode transition diagram for a simple spacecraft.

ACS.REQ.ACQ.4 ANALOG ACQUISITION MODE TRANSITIONS
Only a ground command shall be capable of transitioning the ACS out of ana-
log acquisition mode. Analog acquisition mode shall only be entered by a ground
command, 8085 failure when in ACS safehold, or a power reset of the ACE box.

Fig. 4.4: Requirement involving state transitions.

Definition 11 (State Transition System). A state transition system is a parameterized

process

StateTransitions(s0, transition,TransitionDefs) =

let

Transitions(m) = {(event , s ′) | (s, event , s ′) ∈ TransitionDefs}

State(s) =

2(event , s ′) : Transitions(s) • event → transition.s ′ → State(s ′)

within

transition.s0 → State(s0)

where

• s0 is the state in which the transition system starts.

• transition is an auxiliary channel used to signal state transitions as events of the form

transition.s, where s is the state that results when the transition is complete.

• TransitionDefs ⊆ State × Event × State is a set of 3-tuples, each of which defines a

transition in terms of a current state, triggering event, and corresponding new state.

59

• Transitions(s) is the set of event/new-state pairs for state s.

• State(s) is a process that defines the transition behavior for state s.

To ensure that the transition system is free of deadlock, it is required that

∀(state, event , state ′) ∈ TransitionDefs • Transitions(state ′) 6= ∅. �

Example 4.2.2.1. The state diagram in fig. 4.3 defines a behavior in which transitions

between different spacecraft modes are caused by the launch vehicle separation event, mode

transition commands, and the occurrence of faults. This mode transition behavior can be

expressed as a state transition system. For brevity, we assume that the transition trigger

events can only occur in certain modes, and do not include responses to unexpected trigger

occurrences in the transition behavior. The resulting spacecraft mode transition system,

SCModes , is

channel transMode : {launch, safe,nominal}

channel cmdMode : {safe,nominal}

SCModes =

let

TransitionDefs = {(launch, separation, safe),

(safe, cmdMode .nominal ,nominal),

(nominal , cmdMode .safe, safe),

(nominal , fault , safe)}

within

StateTransitions(launch, transMode ,TransitionDefs)

�

More complex kinds of transition system processes can be developed by modifying or

expanding the definition given above. Alternatively, more complex behaviors can be added

to a state transition system of the form defined above by composing the transition-system

process with other processes. For example, outputs can be associated with the transition

60

system by composing it with one or more lifted functions that map state transitions to

output values. Functions that take a single transition event as an input produce Moore-

style outputs, while functions that take a pair of transitions or a transition/input pair result

in Mealy-style outputs [39].

Example 4.2.2.2. Lifting the function

fReportMode : Mode → DownlinkMsg

and placing it in parallel with the SCModes process,

channel downlink : DownlinkMsg

SC ′Modes = SCModes |[{|transMode |}]| LiftF (transMode , downlink , fReportMode)

produces a specification SC ′Modes that calls for a message to be downlinked to the ground

whenever a mode transition occurs. �

4.2.3 Event-Triggered Behaviors

Some spacecraft designs require an event to occur before a behavior is activated. An

example of such a requirement is the excerpt from the MGS Spacecraft Requirements [23]

shown in fig. 4.5, in which a sequence of commands is triggered by the occurrence of an

eclipse event. Event-driven triggers of this sort are straightforwardly expressed in terms

of CSP’s prefixing operator. The more general case, in which several different events may

trigger a given behavior, can be specified using generalized indexed choice.

Definition 12 (Event-Triggered Behavior). An event-triggered behavior is a parameterized

process

EventTrigger(Triggers,P) = 2 t : Triggers • t → P

where Triggers is a set of triggering events, and P is a behavior to be triggered. �

61

Requirement 3.4.4.1.1 Upon eclipse entry the spacecraft shall initiate execution
of a stored command sequence designed for eclipse ingress, and upon eclipse egress
shall initiate execution of an independent stored command sequence designed for
eclipse egress.

Fig. 4.5: Example of a triggered behavior requirement.

Example 4.2.3.1. The Deployments event sequence defined in example 4.2.1.1 should be

initiated by spacecraft separation from the launch vehicle, signified by the separation event.

SeparationBehavior = EventTrigger({separation},Deployments) �

Example 4.2.3.2. Let IngressSeq and EgressSeq be the two command sequences mentioned

in fig. 4.5. Then the requirement described in fig. 4.5 can be expressed as

EclipseSeqs = EventTrigger({eclipse ingress}, IngressSeq);

EventTrigger({eclipse egress},EgressSeq));

EclipseSeqs

where the recursive sequential composition of the EclipseSeqs process indicates that the

eclipse sequence behavior repeats for every eclipse. �

4.2.4 Defining Other Types of Behavior

Although the different processes defined above represent the classes of behavior most

commonly used in spacecraft requirements and design documentation, they are not the

only types of behavior we might wish to specify. In fact, the ability to define arbitrary

behaviors is one of the advantages of using a process algebraic approach to specification.

Fortunately, since all of the behavior components described so far have been interpreted

as CSP processes, they are fully compatible with any behaviors we might choose to define

using arbitrary CSP processes, and can also be modified using standard CSP operators to

produce new behaviors. This provides a great deal of flexibility in developing specifications.

62

In general, any CSP operator or construct can be used to specify a spacecraft behavior.

However, it is necessary to impose two restrictions:

1. Each individual behavior description must be free of deadlock.

2. Each individual behavior description must be free of divergence.

The reason for the first restriction is that we wish to use deadlock to represent an error

in the interactions between different specification components. Thus, deadlock should not

be a deliberate part of a specification component. A specification component in a divergent

state is no longer providing any information about observable events, and is therefore useless

for defining observable spacecraft behavior.

In formal terms, the restrictions on the occurrence of deadlock and divergence amount

to a requirement that a behavior description P satisfy DF X vFD P , where

DF X = (u e : Σ • e → DF X) u SKIP

In practice, the restrictions with regard to deadlock and divergence mean that

1. No sequential behavior description can contain the STOP process.

2. Any behavior description constructed from parallel processes must be proved free of

deadlock and divergence (for example, through a refinement check using FDR).

Example 4.2.4.1. Conjunction of events Suppose that we wish to specify that a spacecraft

with two propellant tanks will signal its ground station once both tanks are empty. There

are a number of different ways to construct this specification. One way to specify the desired

behavior is the following process:

SignalTanksEmpty = (sense emptytank a → signal empty → SKIP)

|[{signal empty}]|

(sense emptytank b → signal empty → SKIP)

63

This process will engage in the signal empty event once both sense empty events have

occurred, following which it will terminate. The SignalTanksEmpty process is simple enough

that it can be determined to be deadlock-free by inspection, although it is good practice to

confirm this determination using FDR. �

Example 4.2.4.2. Resettable LiftF The behavior defined by the LiftF process specifies that

once a function is invoked it blocks until it can output a value. This may not always be a

desirable behavior for a function. Suppose that we wish to define a class of lifted functions

that can be reset before they have output their current value. This can be achieved using

CSP’s interrupt operator:

ResettableLiftF (in, out , f ,Reset) =

LiftF (in, out , f) 4 (2 r : Reset • r → ResettableLiftF (in, out , f ,Reset))

The ResettableLiftF process behaves just like the corresponding LiftF , except that

whenever an event in the set Reset occurs any pending output is forgotten, and the lifted

function is instead ready to accept a new input. �

4.3 Specifying Composite Spacecraft Behavior

In many spacecraft design projects the specification of spacecraft behavior consists of

nothing more than a few fragmentary descriptions of desired behavior. While the behavior

components defined in previous sections can be used to write such fragmentary behavior

specifications, the formal nature of the behavior components also make it possible to define

the relationships and interactions between different behavior fragments.

The most straightforward relationship between two behavior components consists of

parallel composition, and synchronization on common events. We have already seen several

examples of this type of relationship in previous sections, such as the composition of a state

transition system and a lifted function in example 4.2.2.2. In this section we consider two

other, more indirect types of relationships between behaviors: interactions via shared re-

sources, and constraints on the relative order of events belonging to different behaviors. We

64

also examine how the three different types of behavior relationships can be used together to

create a composite specification defining the overall system-level behavior of the spacecraft.

4.3.1 Shared States

In many cases, the outputs generated by a particular spacecraft behavior component

are influenced by some component of the current state of the spacecraft. That component

of the spacecraft state may, in turn, be influenced by other behavior components. The

dependencies between behaviors that are induced by a shared state component can thus

have important implications for the overall behavior of a spacecraft. As a result, defining

the state components which are shared between behaviors is a crucial part of developing a

system-level spacecraft behavior specification.

Example 4.3.1.1. Examples 4.1.3.1 and 4.1.3.5 introduced an attitude commanding func-

tion, and a science data collection function. As part of its data collection behavior the

science function senses the current attitude state. The value of the attitude state in turn

depends on the attitude commanding function, which sets the spacecraft attitude in response

to received commands. The attitude state is thus shared between these two behaviors. �

Shared state components act as a form of memory. They record the cumulative activity

of some behavior components, and make that record available to other behavior components.

The record of cumulative activity may take various forms, depending on the relationship

that exists between the behaviors that share a state. We represent shared state components

as state-bearing processes. These shared state processes are ultimately composed in parallel

with the behavior components that they influence, and by which they are influenced, thereby

allowing the behavior components in question to indirectly interact.

Assignable States

Perhaps the simplest type of shared state is one which simply stores the most recent

state value passed to it.

Definition 13 (Assignable State). An assignable state is a process parameterized by a

state value val , and three channels, set , get , and trans. The process gives its environment

65

an external choice between assigning a new value of the parameter val through the channel

set , or reading the current val through the channel get . Transitions in the state value are

signaled through the trans channel.

AssignableState(set , get , trans, val) =

get !val → AssignableState(set , get , trans, val)

2

set?val ′ → if val ′ 6= val

then trans!val ′ → AssignableState(set , get , trans, val ′)

else AssignableState(set , get , trans, val)

�

The definition of AssignableState does not constrain the state values between which

transitions are allowed to occur. That is, an assignable state does not impose any dynamics

on the state values it holds. We assume that constraints on state transitions are a result of

limitations in the capabilities of the behaviors that control the state, and are therefore cap-

tured as part of the behavior definition. The transition events generated by the assignable

state process allow behavior components that depend on the state to be notified of a new

value without having to continually read values from the state.

Example 4.3.1.2. The shared spacecraft attitude state of example 4.3.1.1 can be repre-

sented as an assignable state component

channel attitude, sense attitude, attitude transition : Attitude

AttitudeState =

AssignableState(attitude, sense attitude, attitude transition, uncontrolled)

AttitudeState initially has the value uncontrolled . The attitude commanding function

may assign new values to the attitude state through the attitude channel, resulting in a

transition event being generated on the attitude transition channel. The science function

may read the current value of the attitude state through sense attitude. �

66

Quantitative Resources

Some types of behavior interact through shared use of a quantitative resource. While

the value of an assignable state depends only on the last assignment to the state, the

value of a quantitative resource depends on the order in which it has been operated upon.

For example, the feasibility of executing a particular orbital maneuver may depend on

the quantity of spacecraft ∆v that remains after previous maneuvers. Many quantitative

resources can be modeled directly in terms of integer quantities, and those that are real-

valued can often be scaled to fit an integer model. Integer-valued quantitative resources are

better suited than real-valued quantities to analysis with presently available CSP tools.

Definition 14 (Integer Quantitative Resource). An integer-valued quantitative resource is

a parameterized process

QuantResource(delta, get , trans,min,max , init) =

let

Range = {min . .max}

Quantity(val) =

val > max & qr exception.resource overflow → STOP

2

val < min & qr exception.resource underflow → STOP

2

val ∈ Range & get !val → Quantity(val)

2

val ∈ Range & delta?d → let val ′ = val + d within

if val ′ 6= val ∧ val ′ ∈ Range

then trans!val ′ → Quantity(val ′)

else Quantity(val ′)

within

Quantity(init)

67

where

• init is the initial value of the quantity.

• max and min are the upper and lower bounds of the quantity.

• delta is a channel through which the value may be increased or decreased.

• get is a channel through which the current value may be read.

• trans is a channel through which changes in the value are signaled.

• Range is the set of all values in the interval defined by max and min.

• Quantity(val) is a process that defines the behavior of the resource for value val .

• qr exception is a channel used to signal that the quantity is at a forbidden value.

The values of max , min, and init must be scaled such that the smallest possible increase

or decrease in the quantity is 1. �

Example 4.3.1.3. Consider a spacecraft with 30m/s of total ∆v , consumable in increments

of not less than 0.5m/s. We can represent the quantity of ∆v as the quantitative resource

min = 0

max = 60

channel dv change : {−max . .max}

channel dv sense, dv trans : {min . .max}

Available∆v = QuantResource(dv change, dv sense, dv trans,min,max , 60)

where the 30m/s value for total ∆v has been scaled to 60 (i.e. 30m/s
0.5m/s) in order to make

the smallest change in ∆v equal to 1. Behaviors that involve an orbital maneuver may

decrease the available ∆v by an amount x by synchronizing on the event dv change!(−x).

Similarly, behaviors that involve reporting on the currently available ∆v can determine this

value through the dv sense channel. In the case of ∆v , synchronization on dv change with

positive values, which increases the amount of available ∆v , is unlikely to be used unless

on-orbit refueling scenarios are being considered. �

68

Buffers

Buffers provide a way to accumulate sequences of outputs produced by one or more

behavior components for later input to other components. Use of a buffer as a shared state

is appropriate when the behavior components that depend on the shared state are affected

by both the individual values of events that alter the state, and the order in which those

events occur.

Example 4.3.1.4. Consider a spacecraft command uplink function, and several behavior

components that depend on the commands output by the uplink function. Assume that

the uplink function is required to receive new inputs without waiting for any activities

triggered by its outputs to be completed. Since the value of the command uplink outputs,

and the order in which they are output, determines the response of the dependent behavior

components, a buffer is an appropriate choice for defining the relationship between the

uplink function and the dependent behavior components. �

One of the simplest types of buffer is the bounded blocking buffer [3]. A bounded

blocking buffer accepts only a limited number of values, after which it refuses further inputs

until an output has occurred. A bounded blocking buffer also refuses to output when the

buffer is empty.

Definition 15 (Bounded Blocking Buffer). A bounded blocking buffer is a parameterized

process

BoundedBlockingBuffer(in, out ,N) =

let

Buff (s) = (#s < N & in?x → Buff (s a 〈x 〉))

2

(#s > 0 & out !head s → Buff (tail s))

within

Buff (〈〉)

where in and out are input and output channels, respectively, and N is the bound or

capacity of the buffer. �

69

Example 4.3.1.5. The command buffer of example 4.3.1.4 might be modeled as a bounded

blocking buffer capable of holding, for example, up to 20 commands:

channel uplinked cmd , cmd : Command

CommandBuffer = BoundedBlockingBuffer(uplinked cmd , cmd , 20)

�

Bounded blocking buffers are by no means the only type of buffer process. For some

specifications, an alternative buffering behavior may provide a better description of the

desired relationship between behavior components. Other possibilities for buffering behavior

include:

• Providing for output of a subsequence of the buffered sequence, instead of a single

buffered item.

• Allowing output, perhaps of the empty sequence or a special “empty” symbol, when

the buffer is empty.

• Allowing new inputs to overwrite existing values when the buffer is full. There are

several possible overwriting strategies.

Unfortunately, we do not have sufficient space here to develop process definitions for all of

the possible buffering behaviors, but they are straightforward.

Other Types of Shared State

Selecting a particular type of shared state to define a relationship between different be-

havior components is a key step in defining an overall spacecraft behavior. While the simple

types of state-bearing processes we have described in this section are probably sufficient for

many specifications, they will not be appropriate in all cases. Fortunately, there are many

other kinds of state-bearing processes which might be used to describe a particular desired

relationship between behavior components. Any of these state-bearing processes which is

both deadlock-free and divergence-free can be used to represent a shared state of some kind.

70

4.3.2 Constraints

Constraints are a general way to specify sequencing relationships between different

behavior components. They represent an abstract specification of sequencing, rather than

a concrete description of how the required sequence is actually produced.

Example 4.3.2.1. Example 4.1.3.5 introduced the Science ′ behavior specification, which

associates a scientific measurement with an attitude state value. We assume that it is desir-

able that attitude maneuvers do not interfere with the taking of a measurement. Although

such a limitation on attitude maneuvers might be implemented in several different ways

(e.g. centralized control of both maneuvers and measurements, or message-passing between

independent science and attitude control subsystems) it can be simply and directly specified

as a constraint on the occurrence of attitude state change events. �

We represent constraints as processes which are placed in parallel with the behavior

components that they constrain. The behavior components are required to synchronize on

every event they share with a constraint process, which forces them to perform only those

sequences of actions permitted by the constraints. We also permit constraints to include

events which are not associated with any behavior component, since that allows greater

flexibility in defining the relationships between constraints.

Definition 16 (Constraint). A constraint is a deadlock-free, divergence-free process which

consists of events from the alphabets of one or more behavior components, shared states,

or other constraint processes, and defines the acceptable sequencing of these events. �

Example 4.3.2.2. The generic Between and Outside constraint processes allow events in

the set E to occur only in the interval between the occurrence of some enabling event,

en ∈ Enable, and the next occurrence of a disabling event dis ∈ Disable. The difference

between the two constraints is that Between assumes that events in E are initially disabled,

while Outside assumes that they are initially enabled (see fig. 4.6). It is further assumed

that the enabling and disabling event sets are disjoint, i.e. Enable ∩Disable = ∅.

71

Events in E enabled

Events in E enabled Events in E enabled

Between

Outside

Disable event Enable event

Enable event Disable event

Fig. 4.6: Between and Outside constraints.

The Between and Outside constraint processes can be defined in terms of each other [3]:

Between(Enable,Disable,E) =

(2 en : Enable • en → Outside(Disable,Enable,E))

2

(2 dis : Disable • dis → Between(Enable,Disable,E))

Outside(Disable,Enable,E) =

(2 e : E • e → Outside(Disable,Enable,E))

2

(2 en : Enable • en → Outside(Disable,Enable,E))

2

(2 dis : Disable • dis → Between(Enable,Disable,E))

�

Example 4.3.2.3. The attitude maneuvering constraint informally described in example

4.3.2.1 can be formally captured using an Outside constraint process:

SciAttConstr = Outside({|instrument |}, {|downlink data|}, {|attitude|})

This specification disables attitude state change events between any instrument event

and the next downlink data event. �

72

Mode Constraints

A system that has multiple possible behaviors may not always be ready to engage

in all of those behaviors. We say that such systems exhibit different modes of behavior.

Figure 4.7 provides an example of an informal definition of the behavior of a spacecraft in

different modes.

A state transition system, such as the one described in example 4.2.2.1, can be used to

define the mode transition behavior, in terms of the events that trigger mode transitions.

However, a mode transition behavior by itself does not define which other behaviors may

be exhibited in different modes. We specify the relationship between the mode transition

behavior and the behaviors that are enabled and disabled in different modes using a mode

constraint process, which provides a formal equivalent of the kind of informal mode de-

scriptions exemplified by the excerpt from the EO-1 Spacecraft-to-Ground ICD [115] which

appears in fig. 4.7. A complete specification of the modes of behavior for a spacecraft system

consists of both a mode transition behavior, and a collection of mode constraints.

Definition 17 (Mode Constraint). A mode constraint is a constraint process

ModeConstraint(InitEv , transition,Enabled ,Disabled) =

let

En = {transition.m | m ∈ Enabled}

Dis = {transition.m | m ∈ Disabled}

within

Between(En,Dis, InitEv)

where

• InitEv is the set of initial events for some behavior component.

• transition is a channel used to signal mode transitions.

• Enabled is the set of modes in which behavior initiated by events in InitEv is enabled.

73

3.6 EO-1 MODES OF OPERATION
This section describes the spacecraft communications configuration in various mis-
sion modes. . .
3.6.1 LAUNCH COMMUNICATIONS CONFIGURATION
. . . EO-1 will begin transmitting 2-kbps S-band telemetry data to TDRSS 30 sec-
onds after fairing separation.
3.6.2 NORMAL OPERATIONS MODE COMMUNICATIONS
For normal operations, the EO-1 spacecraft will not transmit telemetry routinely.
Telemetry downlinks will be planned, coordinated with ground stations, and initi-
ated by real-time or stored command. . .
3.6.3 BACKUP SCIENCE MODE
In case of communication problems with the X-band science downlink, a backup
S-band science communications mode is implemented. . .
3.6.4 SAFE MODE COMMUNICATIONS
TBD

Fig. 4.7: EO-1 spacecraft behavior in different modes.

• Disabled is the set of modes in which behavior initiated by events in InitEv is not

enabled.

• Enable ∩Disable = ∅.

Example 4.3.2.4. A simple scientific spacecraft has three modes of behavior: an initial

launch mode (no functions), a safe mode (attitude control, but no science), and a nominal

mode (attitude control and science). The mode transition behavior for the spacecraft is

defined by the SC ′Modes transition system described in example 4.2.2.1. The corresponding

mode constraints are:

AttitudeModes = ModeConstraint({|cmdAtt |}, transMode , {safe,nominal}, {launch})

Science ′Modes = ModeConstraint({|instrument |}, transMode , {nominal}, {launch, safe}),

where transMode is the channel used to signal mode transitions.

Collectively, the mode transition behavior SC ′Modes , along with the mode constraints

Science ′Modes , and AttitudeModes , specify that:

74

• The spacecraft is initially in the launch mode.

• While in the launch mode the spacecraft does not perform any function.

• Upon launch-vehicle separation the spacecraft transitions to safe mode.

• While in safe mode the attitude can be commanded, but no science can be performed.

The spacecraft transitions to nominal mode upon command.

• While in nominal mode the spacecraft can respond to attitude commands and take

instrument measurements. The spacecraft transitions to safe mode upon command.

• The occurrence of fault events during nominal mode causes the spacecraft to revert

to safe mode.

Functional Flow Block Diagrams as Constraints

Functional Flow Block Diagrams (FFBDs) are a traditional tool of spacecraft systems

engineering [20, 21, 104]. Classical FFBDs focus purely on function sequencing [116]. As a

result, they can, within the context of the framework developed in this chapter, be viewed

as constraints on the sequencing of lifted functions.

Although it is possible to directly construct a constraint process to represent a given

FFBD, such a construction is likely to be difficult for any non-trivial diagram. Fortunately,

the basic graphical elements of FFBDs (fig. 4.8) are readily described in terms of CSP

processes, which makes it possible to construct a constraint-process representation of an

FFBD in a compositional manner. However, the exact meaning attached to the different

FFBD elements varies somewhat from author to author. Here we present one possible

interpretation of the semantics of FFBDs, defined as a mapping from each FFBD element

to a corresponding CSP process.

Definition 18 (FFBD Process). An FFBD process is an FFBDblock process, or a composi-

tion of FFBDblock processes formed using the FFBDseq , FFBDand , FFBDor , FFBDchoice,

and FFBDiteration compositions. �

75

Function 1 Function 1

Function 2

choice

AND AND

Function 1 Function 2

Function 1

Function 2

OR OR
Function 1

Function 2
Go

NoGo

choiceFunction 2Function 1

Not Done

Function Block

Sequence

Choice

Iteration

Concurrency

Selection

Fig. 4.8: Graphical elements of FFBD notation.

The fundamental primitive from which FFBDs are constructed is the function block,

which is simply a box labeled with a function name. We assume that function blocks denote

a single execution of the function represented by their label.

Definition 19 (FFBD Block). An FFBD block is a terminating process parameterized by

the input and output channels of the function represented by the block.

FFBDblock(in, out) = 2 i : {|in|} • i → (2 o : {|out |} • o → SKIP) �

An FFBDblock constraint process simply permits a single input/output cycle of a lifted

function. It does not constrain the values that the function can input or output. In the

case of a MIMO lifted function (see sec. 4.1.3), we use the reqin and ackout channels to

define the FFBD block associated with the function, since those channels provide a single

point of control over the MIMOLiftF inputs and outputs.

76

Example 4.3.2.5. The function block Function1, with input in1 and output out1, corre-

sponds to the process

Function1 = FFBDblock(in1, out1) �

The FFBD sequencing notation translates directly to sequential composition in CSP.

Definition 20 (FFBD Sequence). An FFBD sequence is a process parameterized by two

FFBD processes to be executed in sequence.

FFBDseq(FFBD1,FFBD2) = FFBD1; FFBD2 �

The FFBD concurrent composition notation indicates that each of the branches em-

anating from the “AND” bubble are executed concurrently, with the entire concurrent

composition terminating when all of the branches have terminated. The AND relationship

thus maps well to the CSP interleaving operator.

Definition 21 (FFBD Concurrent Composition). An FFBD concurrent composition is a

process parameterized by a set of FFBD processes to be executed concurrently.

FFBDand(FFBDset) = |||FFBD : FFBDset • FFBD �

The FFBD selection notation indicates that each of the branches emanating from the

“OR” bubble is a valid alternative behavior. The method of selecting an alternative is

often left unspecified. We assume that the choice is resolved by the occurrence of an initial

event from one of the OR branches, which allows the OR relationship to be represented as

a generalized external choice.

Definition 22 (FFBD Selection). An FFBD selection is a process parameterized by a set

of FFBD processes, one of which may be selected for execution.

FFBDor(FFBDset) = 2 FFBD : FFBDset • FFBD �

The FFBD choice notation specifies which of two branches may be taken, based on the

outcome of some test. We assume that the test is performed on the value of some shared

77

state, and that some subset of the shared-state values corresponds to a decision to take one

branch, while the complementary set of values results in the other branch being taken.

Definition 23 (FFBD Choice). An FFBD choice is a process parameterized by the output

channel of a shared state process, a set of values corresponding to the Go branch, and two

FFBD processes.

FFBDchoice(test state,GoSet ,GoFFBD ,NoGoFFBD) =

test state?val →if val ∈ GoSet then GoFFBD else NoGoFFBD

�

FFBD iteration allows a portion of an FFBD to be repeated until some condition is

met. It is readily defined in terms of the FFBDseq and FFBDchoice processes.

Definition 24 (FFBD Iteration). An FFBD iteration is a process parameterized by the

output channel of a shared state process, a set of values corresponding to the termination

of the iteration, and an FFBD process to be repeatedly executed.

FFBDiteration(test state,GoSet ,FFBD) =

let

Loop = FFBDseq(FFBD ,FFBDchoice(test state,GoSet ,SKIP ,Loop))

within

Loop

�

Example 4.3.2.6. Figure 4.9 depicts a simple FFBD. Using the FFBD processes defined

above, this simple FFBD can be translated directly to CSP.

For the purposes of this example, we assume that the FFBD functions operate on the

dummy channels in1 . . . in5 and out1 . . . out5. We further assume that the state tested by the

FFBD choice construct is also represented by a dummy channel, test state. The resulting

CSP process description is:

78

choiceFunction 1

false

true

Function 2

Function 3AND AND

Function 4

Function 5

OR OR

Fig. 4.9: Simple example of an FFBD.

channel in, out : {1 . . 5}

channel test state : {0, 1}

Function(n) = FFBDblock(in.n, out .n)

SimpleFFBD = FFBDiteration(test state, {1},

FFBDseq(Function(1),

FFBDand({Function(2),

Function(3),

FFBDor({Function(4),

Function(5)})})))

�

Temporal Constraints

The framework developed in this chapter is primarily concerned with event ordering

However, constraint processes can also be used to specify the timing of events. These

specifications require the introduction of a timeline, defined in terms of temporal events.

Definition 25 (Temporal Event). A temporal event is an auxiliary specification event

representing an instant of time that has some significance for the spacecraft behavior. �

79

Definition 26 (Timeline). A timeline is a parameterized process

Timeline(T) = ; t : T • t → SKIP

where T is a list of temporal events, T = 〈t1, . . . , tn〉. �

Example 4.3.2.7. The timeline for the example timing requirement shown in fig. 4.10,

excerpted from the WIRE System Requirements [24], might be defined as

SepTimeline = Timeline(〈sep plus 10sec, sep plus 12sec, sep plus 40min〉)

where sep plus 10sec, sep plus 12sec, and sep plus 40min are temporal events. �

A timeline process establishes a sequence of temporal events. The timing of system

events is specified in terms of constraint relationships between system events and temporal

events. A complete timing specification is produced by synchronizing the timeline process

and all of the temporal constraints on the temporal events. Defining a timeline consisting of

a single, infinitely repeating temporal event (e.g. tock) results in the standard CSP model

of discrete time described in Roscoe [3].

Temporal constraints define intervals of a timeline over which certain system events

are permitted to occur. Since CSP events are always assumed to be interleaved, i.e. no two

events can occur simultaneously, specifying that a particular system event must occur at a

CDH.REQ.GEN.20 SOFTWARE SEPARATION TIMER
The spacecraft processor shall provide a separation timer which initiates the fol-
lowing events at the designated times after separation:

Time After Separation Event
10 sec ACE box on
12 sec Solar Array Deploy
40 min Secondary hydrogen vent open
40 min Primary hydrogen vent open

Fig. 4.10: Example of an event timing requirement.

80

given time requires the creation of two temporal events that bound the time interval within

which the system event must occur.

Example 4.3.2.8. A specification that a set of events may occur in the interval between

two times is easily constructed using the Between process:

MayBetweenTimes(Events, time1, time2) = Between({time1}, {time2},Events)

�

Example 4.3.2.9. A specification that a set of events may occur before some time can be

constructed using the Outside constraint. A dual constraint, which permits events to occur

only after some time, can be constructed using the Between process.

MayBeforeTime(Events, time) = Outside({time}, ∅,Events)

MayAfterTime(Events, time) = Between({time}, ∅,Events)

In both cases, the empty set is used to signify that the temporal constraints do not

define a time at which the constrained events may later be re-enabled (in the case of

MayBeforeTime) or disabled (in the case of MayAfterTime). �

Any type of constraint process may be used as a temporal constraint, although the

construction of temporal constraints can require some care to ensure that the specified

behavior matches the desired behavior. A good discussion of these issues in the context of

the standard CSP discrete-time model can be found in Chapter 14 of [3].

Example 4.3.2.10. One way to specify that a system event must occur before some time

is to require that the temporal event corresponding to the time in question cannot occur

before the system event:

MustBeforeTime(event , time) = event → time → SKIP

81

This specification will not allow the timeline to proceed until event has occurred. How-

ever, it also allows only a single occurrence of event , which may or may not be the intent

of the specifier. �

Example 4.3.2.11. Returning to the timeline defined in example 4.3.2.7, the temporal

constraint on the “ACE box on” event might be specified as

ACEOnTime = MayAfterTime({ace box on}, sep plus 10sec)

|[{ace box on}]|

MustBeforeTime(ace box on, sep plus 12sec)

where for simplicity we have assumed that the requirement is simply that the ACE box

event must occur before the next event in the timeline.

The ACEOnTime specification states that the ace box on event can only occur after

time sep plus 10sec, and must occur before time sep plus 12sec. The parallel composition

of the two temporal constraints forces both constraints to synchronize on the ace box on

event, ensuring that both constraints are applied simultaneously. �

4.3.3 Composite Behavior Specifications

A system-level spacecraft behavior specification is an integrated description of the ob-

servable behavior of a spacecraft. One way to construct a spacecraft behavior specification

is as a composition of various fragmentary behavior descriptions, each of which provide a

different view of the overall spacecraft behavior. The behavior descriptions may be individ-

ual behavior components, such as those described in sections 4.1 and 4.2, or may themselves

be composite behavior specifications, such as a composition of lifted functions with an asso-

ciated FFBD constraint. Direct interactions between different behavior descriptions, such

as dataflow between functions, can be expressed using CSP’s parallel composition operators.

Constraints and shared states provide a way to define indirect interactions between differ-

ent fragments of behavior. A composite specification is constructed by combining behavior

descriptions, constraints, and shared states in parallel.

82

The compositional approach to specification construction described here is similar to

the constraint-oriented style of specification [117]. Behavior components can be viewed as

“local constraints,” while shared states and constraint processes can be viewed as “end-to-

end constraints.” However, unlike the constraint-oriented style, our compositional style also

permits the introduction of specification events which are not part of the concrete observable

system behavior, but are useful for developing specifications (e.g. temporal events).

In the interests of specification clarity, we first aggregate all of the specification elements

of a particular type, and then combine these aggregate processes into a complete specifi-

cation. Behavior components may directly interact via synchronization on certain shared

events (e.g. state transition signals from shared state processes), but otherwise operate

completely independently. As a result, the behavior components are aggregated through

interface parallel composition, with each interface set defining the direct interactions.

Definition 27 (Aggregate Spacecraft Behaviors).

SpacecraftBehaviors = (BehaviorComp1 |[IF1]| BehaviorComp2) |[IF2]|

· · ·

|[IF(n−1)]| BehaviorCompn

where each BehaviorCompi is a behavior component, and each set IFi specifies any direct

interactions between the first i behavior components and component i + 1. �

In most cases, separate behavior components will be independent of one another, with

the result that IFi = ∅ and the interface parallel composition reduces to interleaving.

Shared state processes are all assumed to be completely independent of each other, and

are therefore aggregated using the interleaved parallel operator.

Definition 28 (Aggregate Shared States).

SharedStates = ||| i : {1 . . p} • Statei

where each Statei is a shared state process. �

83

In contrast to shared states, constraint processes are not independent, since differ-

ent constraint processes may simultaneously impose restrictions on the same event. We

therefore use the generalized alphabetized parallel operator to define a multi-process syn-

chronization that conjoins multiple constraints by requiring every constraint that has a

given event in its alphabet to synchronize on that event.

Definition 29 (Constraint Network).

ConstraintNet = ‖ i : {1 . . q} • α(Constrainti) ◦ Constrainti ,

where each Constrainti is a constraint process with alphabet α(Constrainti). �

A complete composite specification combines the behaviors, shared states, and con-

straints through an interface parallel composition which allows the spacecraft behaviors to

operate on the shared state, and the constraints to limit the spacecraft behaviors.

Definition 30 (System Behavior Specification). A spacecraft system behavior specification

is a composite process

SysSpec =

(SpacecraftBehaviors |[IFStates]| SharedStates) |[IFConstraints]| ConstraintNet

where

• IFStates = α(SpacecraftBehaviors)∩α(SharedStates) is the interface between the space-

craft behaviors and the shared state processes.

• IFConstraints =
⋃q

i=1 α(Constrainti) is the interface between the constraints, and the

behaviors and states.

The system behavior specification composition is defined such that the behavior com-

ponents do not have to participate in every shared state event, which permits the aggregate

spacecraft behavior process to ignore shared state events, such as transition signals, if they

84

are not relevant to the behavior. In contrast, the behaviors are required to synchronize on

every event in the alphabet of the constraint network.

Example 4.3.3.1. We can combine the behavior components defined in earlier examples

to produce a composite behavior specification for a scientific spacecraft. In this simple

example, the behavior consists of just two lifted functions, a single state transition system,

and a single event sequence.

SpacecraftBehaviors =

((AttitudeCommanding ||| Science ′) ||| SC ′Modes) |[{separation}]| SeparationBehavior

There is only a single shared state, representing the possible interaction between the

attitude function and the science function.

SharedStates = AttitudeState

The three constraints are the mode constraints for the attitude and science functions,

and the constraint on interactions between the two functions.

ConstraintNet = ‖ k : {1 . . 3} • αk ◦ Constrk

where

• Constr1 = SciAttConstr with α1 = {|instrument , downlink data, attitude|}.

• Constr2 = AttitudeModes with α2 = {|cmdAtt , transMode |}.

• Constr3 = Science ′Modes with α3 = {|instrument , transMode |}.

85

The composite specification is:

SCSpec = (SpacecraftBehaviors

|[{|attitude, sense attitude|}]|

SharedStates)

|[{|instrument , downlink data, attitude, cmdAtt , transMode |}]|

ConstraintNet

�

Example 4.3.3.2. Assume that it is decided that the occurrence of fault events should

result in a report of the fault to ground station, and a transition to a sun-pointing attitude.

One way to specify this fault response is to define a new behavior

FaultResponse =

EventTrigger({fault},

EventSeq(〈downlink .fault occurred , attitude.sun pointing〉)); FaultResponse

This behavior is easily added to the composite specification by creating a new aggre-

gation of spacecraft behaviors that extends the existing SpacecraftBehavior process with

the new FaultResponse process. In making this extension it is necessary to synchronize

FaultResponse on the fault event, since the spacecraft mode transition definition also de-

pends on that event. The resulting aggregate behavior is

SpacecraftBehaviors ′ = SpacecraftBehaviors |[{fault}]| FaultResponse

The new SpacecraftBehaviors ′ process can be substituted for SpacecraftBehaviors in

the definition of SCSpec to create a new composite specification. �

86

4.3.4 Checking Composite Behavior

Composite spacecraft behavior specifications are CSP processes, and are readily trans-

lated into CSPM , the machine-readable dialect of CSP. To ease the transition to CSPM , we

have created a library of CSPM process descriptions based on the definitions in this chapter.

These process descriptions can be used to build machine-readable composite specifications.

The CSPM spacecraft behavior library is listed in appendix A. Machine-readable spacecraft

behavior specifications can be analyzed using several different commercially available tools.

In this section we consider some of the basic checks that can be performed on a specification.

We defer discussion of other, more involved verification activities to the next chapter.

Exploring Possible Behaviors

Tools such as the ProBE process behavior explorer [49] can be used to step through

the possible executions of a behavior specification, examining the events that are possible

at each step. Stepping through execution traces in this way allows specifiers to quickly gain

an understanding of the emergent behavior defined by the specification. The capability to

explore and understand individual spacecraft behavior components, as well as the inter-

actions between different behavior components, is not available using traditional, informal

specification techniques. CSP-based specifications thus provide spacecraft designers with an

opportunity to detect undesirable behaviors at the time of specification, instead of waiting

until problems manifest themselves during system integration.

Example 4.3.4.1. A translation into CSPM of the composite specification defined in ex-

ample 4.3.3.1, performed using the spacecraft behavior library, appears in appendix B.

Stepping through the CSPM version of the composite specification using ProBE, we can

observe the following trace:

trans_Mode.launch

downlink.modestatus.launch

separation

deploy.solar_array

87

deploy.antenna.1

deploy.antenna.2

trans_Mode.safe

downlink.modestatus.safe

...

This trace shows that the specification, as written, permits a downlink to occur prior

to separation from the launch vehicle. This is unlikely to be a desirable behavior from the

perspective of a launch vehicle provider. To remove this behavior from the specification, we

might add an additional constraint

NoDownlinkBeforeSep = Between({separation}, ∅, {|downlink |})

This constraint disables events on the downlink channel until after the separation event

has occurred. �

Checking Specification Consistency

Beyond simple exploration of possible execution traces, it is also possible to perform

automatic checks to ensure that a composite specification is consistent. Intuitively, a con-

sistent composite specification is one in which the processes that make up the specification

do not contradict each other. Consistency checks thus provide a basic tool for ensuring that

every possible execution of a composite specification “makes sense.”

We define a consistent composite specification as a specification that is always able to

make some kind of progress. In other words, a consistent specification is free from global

contradictions: it can never reach a state in which none of the processes that make up the

specification can agree on how to proceed. This definition of consistency corresponds to

freedom from deadlock.

Definition 31 (Consistent Composite Specification). A consistent composite specification

is a composite specification that is free of deadlock. �

88

Automated consistency checking can be accomplished as a test for deadlock using a

tool such as FDR.

Example 4.3.4.2. Although FDR provides a built-in deadlock test, this test does not

account for successful termination. Since successful termination is permitted within our

framework, deadlock testing of composite specifications should generally be performed as a

refinement check using the DF X process. To check the CSPM composite specification that

appears in appendix B for consistency, we add a definition of DFtick, and an associated

refinement assertion, to the CSP script:

DFtick = (|~| e:Events @ e -> DFtick) |~| SKIP

assert DFtick [FD= SCspec

FDR confirms that SCspec failures/divergence refines DFtick, which indicates that

SCspec is a consistent specification. �

Example 4.3.4.3. Assume that we add a constraint that prevents downlinking while the

spacecraft is in the uncontrolled attitude. This constraint might, for example, reflect some

physical limitation of the proposed antenna system which prevents it from guaranteeing

communications in all possible attitudes. The corresponding constraint process is

NoDLWhileTumbling = Between({attitude transition.sun pointing ,

attitude transition.earth limb scan},

{attitude transition.uncontrolled}, {|downlink |})

With this constraint in place, performing a consistency check using FDR indicates that

the specification is inconsistent. An investigation of the results generated by FDR indicates

that the inconsistency results from the fact that the new constraint requires the achievement

of a controlled attitude before a downlink can occur, while the rest of the specification

requires a downlink of mode status information to occur before the spacecraft can enter

a mode in which it can be commanded to detumble. There are several possible solutions

to this problem, including removing the constraint, altering the requirement to downlink

mode information, and adding a behavior to autonomously detumble the spacecraft after

89

separation from the launch vehicle. Which of these solutions is the correct one will depend

on the mission of the spacecraft. �

Further examples of using FDR to check and correct system-level spacecraft behavior

specifications built within the framework described in this chapter can be found in the

conference paper “A Model-Based Design Tool for Systems-Level Spacecraft Design” [80].

The complete CSPM for the examples discussed in that paper can be found in appendix C.

4.4 Summary

Strictly functional specifications define what a spacecraft is intended to do, but do not

provide clear information on the order in which those things should be done. However, in

many cases the sequencing of spacecraft inputs, outputs, and state changes is crucial to

correct mission operations. This essential sequencing information is defined in a behavior

specification. By using a formal approach to expressing behavior specifications we can

precisely and unambiguously describe the desired system-level spacecraft behavior.

The conceptual framework developed in this chapter allows system-level behavior spec-

ifications to be developed in a modular and systematic manner. The different elements of

the framework codify common spacecraft behavior terms, concepts, and specification pat-

terns. Because this unified framework is defined in terms of CSP it can be readily extended

with new CSP expressions that describe behavior not easily captured using the various

behavioral elements defined in this chapter. Specifications developed within the framework

provide an integrated description of spacecraft systems-level behavior not previously avail-

able to spacecraft designers. Furthermore, these integrated specifications can be analyzed

using existing CSP tools, helping spacecraft designers to understand the composite behavior

they have specified. A prototype tool for translating graphical mode transition diagrams

and FFBDs into the constructs defined within this framework has been developed by Dr.

Brandon Eames and Jared Crace [80].

90

Chapter 5

Modeling Spacecraft Subsystem Interactions

“It is necessary to study not only parts and processes in

isolation, but also to solve the decisive problems found in

organization and order unifying them...”

– Ludwig von Bertalanffy

The behavior of a spacecraft system emerges from the interactions between the subsys-

tems that make up the spacecraft. Spacecraft designers must define the spacecraft subsys-

tems, and the ways in which those subsystems interact, such that the required system-level

behavior is generated. However, the tools presently used to accomplish this task are fairly

limited. System block diagrams, such as the example in fig. 5.1, are often used to illustrate

how a spacecraft system is composed from its subsystems, but do not define the behavior of

the subsystem blocks, and cannot be used to infer the behavior of the system. Subsystem

specifications may contain partial descriptions of subsystem behavior, such as those found

in the ACE Spacecraft Design Specification [22], the MGS Spacecraft Requirements [23], and

the WIRE System Requirements [24], but those descriptions are typically informal, and not

suitable for deriving a rigorous understanding of the behavior that results when different

subsystems interact. Existing approaches to mathematical modeling of subsystem interac-

tions focus on building dynamic models of resource consumption [27,28], and do not address

subsystem behavior in response to commands, events, and qualitative changes in subsystem

state. In this chapter, we show how the behavior of different spacecraft subsystems can

be formally modeled using CSP, and how these subsystem models can be composed into a

spacecraft system model suitable for exploring the event-driven behavior of the system. We

begin with an example which illustrates the motivation for developing this new approach

to modeling spacecraft subsystems and systems.

91

Spacecraft
Processor

Downlink Uplink

ADCS

Propulsion

PowerPayload

Battery

Solar
Array

Power
Electronics

ADC
Electronics

Magnet-
ometer

Sun
Sensors

Reaction
Wheels

Torque
Rods

Instr. 2

Instr. 1

Power
BusCommand/Data

Bus

Separation
Signal

Fig. 5.1: Example of a spacecraft system block diagram.

5.1 A Motivating Example

Consider a spacecraft attitude control subsystem which is assumed to have the following

simple behavior:

• When the attitude control subsystem is not powered, the spacecraft attitude is un-

controlled.

• When power is supplied to the attitude control subsystem, the attitude control system

is able to make spacecraft attitude changes in response to received commands.

• When power is supplied to the attitude control system, every attitude command results

in the commanded attitude being achieved.

• Switching off the supply of power to the attitude control subsystem causes the attitude

to again become uncontrolled.

92

The behavior described above seems fairly straightforward, bordering on “common

sense.” The description itself provides a much more explicit definition of the assumed atti-

tude control subsystem behavior than would usually be found in a spacecraft requirements

or specification document. It may not immediately be clear why we should bother with

describing such a simple behavior in this kind of detail, let alone go to the trouble of con-

structing a process model to represent the behavior. However, a little reflection on the

description given above reveals that it contains some ambiguities which have the poten-

tial to produce problems during spacecraft integration and test, or worse yet, during the

mission.

As an example of the ambiguity of the assumed attitude control behavior, we note that

it is not clear whether or not the attitude control subsystem will cause the spacecraft to

adopt a controlled attitude as soon as it is provided with power, or what the controlled

attitude might be. The description above could be interpreted as saying that upon being

powered the attitude controller leaves the spacecraft uncontrolled, until it receives an at-

titude command. Alternatively, it could be argued that a transition to some (undefined)

controlled attitude is implicit in the behavior description.

Either of the alternative behaviors for which we have just argued might be acceptable,

or even required, depending on the mission. The problem is that the behavior description,

as it stands, does not tell us which behavior should be assumed. A command subsystem

designed under the assumption that the attitude controller automatically enforces a con-

trolled attitude could inadvertently induce a catastrophic spacecraft state if interfaced with

an attitude controller designed under the assumption that it should not bring the attitude

under control until it has been told what attitude it needs to maintain. The sooner we can

uncover such fundamental incompatibilities in assumed behavior, the easier (and cheaper)

it is likely to be to modify the design of the subsystems concerned.

In the next few sections we explore how CSP process models can be used to provide

less ambiguous descriptions of assumed subsystem behavior. As part of this exploration, in

sec. 5.4.2 we revisit the attitude controller example discussed here, and illustrate how it can

93

be recast into a process model. In later sections we look at how subsystem process models

can be used to examine the system-level implications of an assumed subsystem behavior,

and catch incompatible assumptions early in the spacecraft design process.

5.2 Approach

The essence of our approach is to develop a CSP model of a spacecraft system that

is structurally similar to a system block diagram (fig. 5.2). That is, we model subsystem

blocks as processes that describe the abstract behavior of the subsystem, and model the

lines that specify interfaces between subsystems as CSP channels. We represent specific

interactions between subsystems as events associated with a specific channel. The parallel

composition of subsystem models synchronizing on common channels produces a spacecraft

system model, the behavior of which is a result of the interactions between the subsystems.

A complete description of the subsystem interactions also requires auxiliary channels to

capture dependencies between subsystems that are not usually shown in block diagrams, as

well as subsystem responses to environmental changes and faults.

The process model of a subsystem defines the events in which the subsystem is able to

participate in each subsystem state, and the response the subsystem has to a given event. In

contrast to resource-oriented spacecraft models [27,28], we construct our subsystem models

under the assumption that the continuous dynamics and closed-loop controllers embodied

by the subsystem operate correctly. We instead focus on the exchanges of commands,

telemetry, and other information between subsystems, and the response of each subsystem

to changes in the state of other subsystems and of the environment. Although we model

some aspects of resource consumption, our resource models are abstract in nature, and

are used to define how the subsystems respond to qualitative changes in resource levels.

Abstracting from the internal details of the subsystems allows systems engineers to focus

on determining whether or not, under the assumption that the internal dynamics and control

of each subsystem has been correctly designed, the interactions between subsystems lead to

the desired spacecraft system behavior. The resulting system models are complementary to,

rather than a replacement for, models produced using more traditional modeling approaches.

94

Subsys1

Subsys2

Subsys4

Subsys3

IF1

IF4

IF2

IF3

(a) Generic system block diagram.

System =

Subsys1
|[IF1]|

Subsys2


|[IF2 ∪ IF3]|Subsys3
|[IF4]|

Subsys4


(b) Corresponding CSP process model.

Fig. 5.2: Illustration of structural similarity between a block diagram and a process model.

5.3 Subsystem Events

Since our approach involves modeling a subsystem as a CSP process built from se-

quences of events, it is worthwhile to examine the kinds of events which might be contained

in a subsystem process model before embarking on the construction of such a model. We

consider three broad categories of events, each representing a different aspect of subsys-

tem behavior. These categories of events are: explicit interface events, implicit interface

events, and specification events. For each category we provide example-driven guidelines

for constructing the channels and associated types used to define the events found in that

category. We follow the type declaration conventions used by CSPM [48]. The guidelines

are summarized in a table at the end of this section.

5.3.1 Explicit Interfaces

Explicit interfaces are the interfaces which are typically defined in spacecraft specifi-

cation documents, and which appear in system block diagrams as lines connecting different

subsystem boxes. A good example of a specification for the explicit interfaces of a subsys-

tem, adapted from the ACE Spacecraft Design Specification [22], appears in fig. 5.3.

Definition 32 (Explicit Interface). An explicit interface is a deliberately constructed in-

formation or power interface between subsystems, or between a subsystem and the environ-

ment. �

95

Power Subsystem Signal Source or Destination Type
Main Bus Power to fused loads Power
Pyro Power to solar array pyros Power
Data Commands from C&DH Command
Remote Relay Commands from C&DH Command
LVS Main Bus Threshold to C&DH Discrete Signal
LVS Battery Threshold #1 to C&DH Discrete Signal
LVS Battery Threshold #2 to C&DH Discrete Signal
Analog Voltage Telemetry to C&DH Telemetry Stream

Fig. 5.3: Power subsystem interfaces for the ACE spacecraft.

In CSP, we represent an explicit interface as a channel. We adopt a convention of

naming each channel for the kind of explicit interface it represents, extended where necessary

with other identifying information to form a unique name. For example, a bus carrying

commands might be named cmdbus, while a pair of unregulated 28-Volt power buses might

be given the names unreg 28V powerbus A and unreg 28V powerbus B . This convention

approximates existing practices for labeling interfaces in specifications and block diagrams.

In addition to a name, each interface channel has a type which defines the set of events

associated with the interface. In practice, the type of each interface in a spacecraft model

is necessarily mission-specific, and explicating these types can be considered part of the

specification process. However, while the details vary across missions, the types associated

with a particular kind of interface tend to have similar structures. We consider five kinds

of interfaces commonly found in spacecraft block diagrams and specification documents:

discrete signals, command interfaces, telemetry interfaces, data buses, and power buses.

Discrete Signals

Discrete signals are dedicated interfaces used to sense or manipulate discrete state in-

formation, as exemplified by the excerpts from the ACE Spacecraft Design Specification [22]

shown in fig. 5.4. The type associated with a discrete signal is correspondingly simple. A

collection of atomic symbols representing the possible discrete values will usually suffice.

96

6.3.1.1 Low Voltage Sense (LVS)
The power subsystem shall detect one or more of the low voltage conditions below
and provide three separate low voltage sense signals to the C&DH component:

• Main Bus LVS indicating a bus voltage <26V.

• Battery LVS threshold #1 indicating a battery bus voltage of <19.8V.

• Battery LVS threshold #2 indicating a battery bus voltage of <18.9V.

Fig. 5.4: Examples of discrete signals on the ACE spacecraft.

Example 5.3.1.1. The type for a discrete signal controlling a switch might be defined as

a pair of atomic symbols representing the two possible switch states:

datatype OnOff = on | off

channel switch discrete : OnOff

�

Example 5.3.1.2. The low voltage sense discrete signals mentioned in fig. 5.4 might be

represented as:

datatype LVS = main bus lvs | battery lvs 1 | battery lvs 2

channel lvs signal : LVS

�

Commands

Command interfaces carry discrete messages that request a change in state or behavior.

The quantity and complexity of these messages varies depending on the complexity of the

subsystems involved. Figure 5.5 shows an example of a definition of a command interface,

excerpted from the ACE Spacecraft Design Specification [22].

97

6.2.10 Power Switching Component and Ordnance Component
. . . C&DH subsystem shall control the power switching or ordnance component to:

• Based on uplink relay commands:

– Turn off any instrument or non-critical spacecraft component.

– Turn on any instrument or non-critical spacecraft component.

– Select thrusters.

– Arm thrusters.

– Remove instrument covers.

– Deploy magnetometer boom.

Fig. 5.5: ACE power subsystem commands.

In some situations, the type associated with a command interface may be as simple

as that for a discrete signal interface. However, in most cases it is convenient to define

more complex, compound types to represent parameterized commands, instead of explicitly

listing each individual command in the type declaration. This has the added advantage of

allowing related commands to be grouped, making them easier to identify.

Example 5.3.1.3. The type EPScmd represents the commands that can be sent to a

simple spacecraft electrical power system (EPS). The EPS responds to two different kinds

of commands: commands to activate pyrotechnic deployment devices, denoted by the tag

pyro, and commands to switch subsystems on or off, denoted by the tag sw . The type is

datatype EPSCmd = sw .Subsystem.OnOff | pyro.{antenna.1, antenna.2}

where Subsystem is a set of subsystem names, and OnOff is the set {on, off }.

The type declaration defines switch commands as compound values consisting of the

tag sw , followed by two symbols drawn from the sets Subsystem and OnOff , and represent-

ing command parameters. Thus, for example, the value sw .adcs.on represents a command

intended to power on the attitude determination and control subsystem. Pyrotechnic com-

mands are similarly parameterized by the deployment they are intended to trigger.

98

A command interface to the EPS can be defined as a channel of the EPSCmd type:

channel eps cmd : EPSCmd

The events associated with this channel, such as eps cmd .pyro.antenna.1 and eps cmd .sw .

adcs.on, indicate the occurrence of different EPS commands. �

Telemetry

Telemetry interfaces carry data that provides information on the state of a subsys-

tem. The telemetry data may be discrete messages that are sent when triggered by specific

changes in subsystem state, or it may be a stream of information that is continually trans-

mitted while the telemetry interface is active. Figure 5.6, excerpted from the WIRE System

Requirements [24], provides an example of the sort of information carried in a telemetry

interface.

Simple telemetry data messages can be represented as atomic symbols. More complex

data messages might require compound values, but still fit easily within the event-based

style of interactions upon which CSP focuses. However, mapping telemetry streams onto a

type requires more careful consideration of how the streams will actually be modeled.

In the sections that follow we avoid modeling the individual data items in a telemetry

stream directly, but instead model the stream as a state-bearing process that is an abstrac-

tion of the underlying stream of data. The state of the stream at any given time is a symbol

representing a defined range of underlying concrete telemetry values, and transitions in the

stream state represent qualitative changes in the concrete telemetry values (fig. 5.7). Since

telemetry streams may not always be actively streaming data, the set of possible telemetry

stream states should also include an “inactive” value.

Example 5.3.1.4. The set of states for a stream of attitude telemetry can be defined as

the union of the Attitude type (defined in the previous chapter), which consists of symbolic

names representing different concrete attitude angles and rates, and the inactive state.

nametype AttitudeTlm = Attitude ∪ {inactive} �

99

CDH.REQ.GEN.25 SOLAR ARRAY DEPLOYMENT TELEMETRY
The following telemetry from the solar array deployment mechanisms shall be avail-
able in the lowest-rate telemetry stream:

• Latch power status (actuators powered or not powered) for all latches

• Latch status (released or not released) for all latches

• Array fully deployed (yes or no) for both panels

• Angle of array rotation (analog signal)

Fig. 5.6: Telemetry for the WIRE array deployment mechanism.

Fig. 5.7: Abstract states Attitude 1 and Attitude 2 represent qualitatively different attitudes.

The interface to a telemetry stream state consists of the same kind of set, get, and

state transition events as the AssignableState process defined in the previous chapter. For

convenience, we define a datatype that captures this interface.

Definition 33 (State Interface Datatype).

datatype StateIF = setval | getval | trans

�

In practice, only the process model for the subsystem producing the telemetry stream

will use the setval portion of the StateIF interface, since the producing subsystem is the

only entity that should reasonably be able to alter the telemetry stream. Process models for

100

subsystems that receive the telemetry stream use the getval and trans parts of the interface

to find the current state of the stream, or to detect transitions in the stream state.

The type representing a telemetry stream consists of compound values built from the

state interface datatype and a type containing values for stream states. When the telemetry

stream is defined as part of a larger type involving other telemetry data, the type should

also include a tag identifying the stream.

Example 5.3.1.5. The type ADCSTlm represents telemetry that may be sent from an atti-

tude determination and control system. The type includes values for two discrete messages,

one of which is used to signal receipt of an attitude command, and the other to signal vio-

lation of an attitude constraint. Also included within the type is a set of compound values

representing a stream of attitude data, prefixed with the identifying tag att tlm stream.

datatype ADCSTlm = att violation

| att cmd ack

| att tlm stream.StateIF .AttitudeTlm

The adcs tlm channel models a telemetry interface to the ADCS:

channel adcs tlm : ADCSTlm

The event adcs tlm.att violation represents transmission of a message from the ADCS

indicating an attitude constraint violation of some kind.

The event adcs tlm.att tlm stream.trans.earth limb scan indicates that spacecraft at-

titude reported by the stream of attitude telemetry data from the ADCS has made a qual-

itative transition to the earth limb scan attitude. �

Data Buses

A data bus aggregates multiple subsystem-to-subsystem interfaces into a single shared

interface. Although it is feasible to model a data bus as a number of separate channels,

each representing an individual subsystem-to-subsystem interface provided by the bus, that

101

approach is less than ideal if we wish to preserve as much as possible of the structure of a

block diagram within the corresponding process model. Instead, we model a data bus as a

single channel which has a structured type that captures the individual subsystem interfaces

within the bus.

In the case of command interfaces aggregated onto a bus, it is important to identify

the intended recipient of each command. We therefore define the tags that delineate the

structure of a command bus type such that they include recipient information.

Example 5.3.1.6. The SubsysCmd type represents an aggregation of several different com-

mand interfaces onto a single bus. The tags adcs cmd , eps cmd , pl cmd , and dl cmd

identify the different command recipients.

datatype SubsysCmd = adcs cmd .AttitudeCommand

| eps cmd .EPSCmd

| pl cmd .PayloadCmd

| dl cmd .DownlinkMsg

The recipient tags are prefixed onto already-defined types representing the available com-

mands for different subsystems. For example, the eps cmd tag, which identifies commands

intended for the EPS, is prefixed to the EPSCmd type defined in example 5.3.1.3. �

Note that in the preceding discussion we have assumed that the source of a command

is not relevant to the execution of the command. In situations where this is not a valid

assumption, it may be necessary to add a source tag to each type of command, in addition

to the recipient tags. Alternatively, the command source could be included as a command

parameter within a compound type representing a parameterized command.

In contrast to command interfaces, it is typically the source of telemetry data, rather

than the recipient, that is important. Thus, the tags that we use to structure a telemetry

bus type identify the source of the telemetry rather than the recipient.

102

Example 5.3.1.7. The SubsysTlm type represents an aggregation of several different

telemetry interfaces onto a single bus. The tags adcs tlm and pl tlm identify the different

telemetry sources.

datatype SubsysTlm = adcs tlm.ADCSTlm

| pl tlm.PayloadTlm

�

In general, a spacecraft data bus will carry both commands and telemetry between the

subsystems it connects.

Example 5.3.1.8. The systembus channel represents a spacecraft data bus (fig. 5.8). The

SysBus type combines both the previously defined command and telemetry bus types into

a single type that defines the set of messages associated with the systembus channel.

nametype SysBus = SubsysCmd ∪ SubsysTlm

channel systembus : SysBus

Within this framework, the event systembus.eps cmd .sw .adcs.on represents a com-

mand, delivered via the systembus channel, to switch on power to the attitude determination

and control subsystem. Similarly, a qualitative transition to the earth limb scan attitude

is indicated by the event systembus.adcs tlm.att tlm stream.trans.earth limb scan. �

ADCS

Payload

DownlinkSpacecraft
Processor

EPS

systembus

Fig. 5.8: Connectivity of the systembus channel.

103

Power

Power interfaces, as the name suggests, carry electrical power into a subsystem. As with

telemetry streams, mapping power interfaces onto CSP events requires some consideration

of how the interface is to be modeled. In modeling how subsystems can interact through a

power interface we are interested in two things:

1. External influences on a given subsystem, i.e. whether or not power is being supplied

to the subsystem through the power interface.

2. The impact of a given subsystem on other subsystems, i.e. how much power a sub-

system is consuming though the power interface.

The first of the two kinds of power interaction can be represented using a compound

value consisting of a subsystem identifier, and a symbol indicating whether the identified

subsystem is being provided with power (on) or not (off). Events built using these values

indicate that an external subsystem has elected to provide power to (or alternatively to

withdraw power from) the identified subsystem.

The second kind of interaction is most easily modeled in terms of changes in the level of

power being consumed by a particular subsystem. It thus lends itself to representation using

a compound value composed of a subsystem identifier, and a numerical value indicating

the quantity of change in consumed power for the identified subsystem. In section 5.4.4

we describe how to build a process model of a power source which responds to events

representing changes in subsystem power consumption.

Example 5.3.1.9. The type Power represents the possible interactions on a power inter-

face. Values prefixed with the symbol load switch indicate whether or not a subsystem

is being supplied power. Values prefixed with the symbol load delta indicate changes in

power consumed by a subsystem. In this example the allowable magnitudes of a change in

subsystem power consumption are restricted to a finite range of integer values, which helps

prevent the state-space of models built using this type from growing too large.

104

datatype Power = load switch.Subsystem.OnOff

| load delta.Subsystem.{−20 . . 20}

The channel power has the type Power :

channel power : Power

Examples of events involving this channel include: power .load switch.cdh.on, which

indicates that power is now being suppled to the command and data-handling system, and

power .load delta.cdh.5, which indicates that the amount of power being consumed by the

command and data-handling system has increased by 5 units. The significance of these

two kinds of power events will become clearer in later sections, when we examine how to

construct abstract process models of a spacecraft electrical power system. �

5.3.2 Implicit Interfaces

Implicit interfaces represent subsystem behavior dependencies that are implicit in the

design of the spacecraft. They are typically not explicitly shown on system block diagrams.

A simple example of an implicit interface is the dependency of the output of a solar-array-

based spacecraft electrical power system on the attitude of the spacecraft, which is influenced

by the attitude determination and control system (fig. 5.9, excerpted from the WIRE System

Requirements [24]). The output of the electrical power system is similarly dependent on the

eclipse state of the spacecraft, which is influenced by the spacecraft orbit and environment.

ACS.REQ.ACQ.2 SAFEHOLD SUN POINTING ACCURACY
After sun acquisition, all safehold modes shall maintain the spacecraft y-axis within
30 degrees of the sunline. Rationale: This angle is required to maintain positive
power margin.

Fig. 5.9: Example of an implicit interface on the WIRE spacecraft.

105

Definition 34 (Implicit Interface). An implicit interface is a point of interaction which

results when the behavior of a subsystem depends upon a physical state that is under the

control of another subsystem, or of the environment. �

We adopt a convention of naming the channel representing an implicit interface for

the physical state with which the interface is associated. For example, an implicit interface

resulting from a dependency on spacecraft attitude might be represented by a channel

named attitude (fig. 5.10).

Because implicit interfaces do not carry structured information, the types associated

with such interfaces can be relatively simple. The underlying physical state that produces

the implicit interface can be abstracted into a collection of atomic symbols that represent

qualitatively different concrete state values.

Example 5.3.2.1. The attitude of a spacecraft might be represented by the datatype

datatype Attitude = uncontrolled | earth limb scan | sun pointing

which in this case consists of the same set of abstract attitude states used in the examples

of the previous chapter. In constructing a channel to represent the implicit interface that

results from the spacecraft attitude state, we make use of the state interface type introduced

in definition 33 to represent the usual operations on states:

channel attitude : StateIF .Attitude �

ADCS EPS
power

attitude

Fig. 5.10: Explicit power interface, and implicit attitude interface.

106

5.3.3 Specification Events

Specification events are abstractions that provide a way to express and manipulate

certain aspects of subsystem behavior that are important for defining or verifying the in-

teractions between subsystems, but that don’t directly appear in any subsystem interface.

For example, we may wish to specify that some internal error shouldn’t ever occur within a

subsystem, without having to model the internal details of how that error might arise. Or,

as in the excerpt from the WIRE System Requirements [24] shown in fig. 5.11, we may wish

to define how the observable behavior of a subsystem changes in the event of an internal

hardware failure, again without having to provide details of the exact failure mechanism.

Definition 35 (Specification Event). A specification event is an abstract representation of

some aspect of the behavior of a subsystem that is not directly observable at the subsystem

interface. �

It is difficult to provide specific guidelines for the definition of specification events,

since the kind of events that we might wish to represent are likely to vary depending on

the mission under consideration, and the properties of the spacecraft design that we want

to verify. To the extent that it makes sense to establish guidelines, those guidelines are

broadly applicable to the development of any kind of CSP process model. For example, it

is generally good practice to collect related specification events into a common datatype

associated with a single channel, simply because this practice makes it easier to manage

the related events when composing individual processes to form large models. Similarly, it

ACS.REQ.FDH.2 SUN / EARTH CONSTRAINT CHECKING

The Failure Detection and Handling System [of the Attitude Control Sub-
system] shall be able to autonomously detect a violation of the Sun Avoidance
Constraint or the Earth Avoidance Constraint while operating in any of the SCS
controlled modes. Upon detection of a sustained violation, the FDH system shall
autonomously transfer control to the next lower operating mode.

Fig. 5.11: Example of abstract specification events.

107

is helpful to define the symbols within the datatype that represents a set of specification

events using descriptive names, since this practice makes the resulting specifications more

easily comprehensible.

Example 5.3.3.1. The ADCSFaultEvent type and its associated adcs fault channel pro-

vide an abstract representation of four different classes of internal faults that might occur

within an attitude determination and control subsystem. These abstract events represent

the output of some kind of fault detection and classification mechanism within the ADCS.

datatype ADCSFaultEvent = hardware anomaly

| hardware failure

| good star check failure

| sun earth constraint violation

channel adcs fault : ADCSFaultEvent

�

5.3.4 Summary

Table 5.1 provides a summary of the guidelines for modeling spacecraft interfaces that

we have described in this section.

Table 5.1: Summary of guidelines for channel and type construction.
Domain concept CSP concept
Explicit Interface → Channel named for interface

Discrete signals → Atomic symbols
Simple commands → Atomic symbols
Parameterized commands → Compound values
Telemetry streams → Data states & inactive state
Databuses → Source or recipient tagged messages
Power interfaces → Switch and delta events

Implicit Interface → Channel named for physical state
→ Abstract states

Specification Event → Common datatype for related events

108

5.4 Subsystem Behavior

A subsystem behavior model describes how a spacecraft subsystem reacts to commands

and other inputs, under which conditions it generates particular types of outputs, how its

power consumption varies over different operating modes, and how it responds to internal

faults. The way in which a spacecraft system is divided into its constituent subsystems is

fairly well established [19,29,30], and although the specific behavior required of a particular

subsystem is dependent on the mission the spacecraft is designed to perform, the role of

each subsystem is broadly consistent across different missions. As a result, for each kind of

subsystem we can identify a general approach for modeling the subsystem behavior, thereby

providing a starting point for the development of mission-specific subsystem models.

We begin by providing definitions for several generic behaviors which are found in more

than one subsystem, and that can be easily abstracted into reusable process descriptions.

We then use the attitude determination and control subsystem as the focus of a series of

examples which introduce modeling approaches for several different aspects of subsystem

behavior, many of which apply to other subsystems as well. We next consider the com-

mand and data-handling subsystem and electrical power subsystem. These two subsystems

play a key role in defining system behavior, since they typically touch all of the other sub-

systems, and both require somewhat different approaches to modeling than the attitude

determination and control subsystem. Lastly, we look at the other spacecraft subsystems,

although in less detail than the attitude, command, and power subsystems, since the mod-

eling approaches for the remaining subsystems are essentially the same as those introduced

in considering the first three subsystems.

5.4.1 Generic Behavior Models

Two kinds of behavior which seem to crop up regularly when trying to model space-

craft subsystems are streams of telemetry data that report on some state controlled by a

subsystem, and changes in subsystem power consumption that are dependent on the mode

in which the subsystem is operating. Since we need to implement these behaviors over and

over again, it is convenient to capture them as reusable process models.

109

As mentioned in section 5.3.1, our approach to modeling streams of telemetry data is

based on abstracting the telemetry stream into a state representing the underlying concrete

telemetry values. Modeling telemetry streams in this way avoids the intractably large state-

spaces that could result from mapping each individual message in the stream to an event,

while also focusing attention on that aspect of the streaming telemetry which actually

impacts the behavior of the subsystems reading data from the stream.

The generic telemetry stream process is constructed under the assumption that the

data in the stream represents some kind of subsystem state information. Transitions in

the subsystem state produce corresponding transitions in the telemetry data state. The

telemetry stream itself may be either inactive, in which case telemetry data is unavailable,

or active, in which case telemetry data is available to consumers of the stream. Signals on

a control channel allow the stream to be switched to and from its inactive state.

Definition 36 (State Telemetry Stream). A state telemetry stream is a process

StateTelemetryStream(mode, state get , state trans, set , get , trans, f) =

let

Inactive = state trans?x → Inactive

2

mode.off → Inactive

2

mode.on → Setup

Setup = state trans?x → set !f (x)→ Active

2

state get?x → set !f (x)→ Active

2

mode.off → set .inactive → Inactive

2

mode.on → Setup

110

Active = state trans?x → set !f (x)→ Active

2

mode.off → set .inactive → Inactive

2

mode.on → Active

StreamData = AssignableState(set , get , trans, inactive)

within

(Inactive |[{set}]| StreamData) \ {set}

where

• mode is a control channel carrying values on and off .

• state get and state trans are channels which provide the interface between the teleme-

try stream and the subsystem state the stream represents.

• set , get , and trans are channels which provide an interface to the current state of the

telemetry stream data.

• f is a function which translates subsystem states into telemetry data states (typically

the identity function).

• inactive is a symbol denoting an inactive telemetry stream.

• StreamData is an assignable state process representing the current value of the teleme-

try stream data.

• Inactive is a process representing the inactive state of the telemetry stream, in which

changes in the underlying subsystem state are discarded.

• Setup is a process representing the transition from an inactive telemetry stream to an

active stream, in which the value of the telemetry data state is changed to represent

the underlying subsystem state.

111

• Active is a process representing an active telemetry stream, in which transitions in

the underlying subsystem state produce changes in the telemetry data state.

The telemetry stream is initially inactive, and has a data state inactive. Whenever the

telemetry stream is switched back to the inactive state the stream data state is reset to

inactive. �

The generic subsystem mode power process translates transitions in the operating mode

of a subsystem into transitions in the quantity of power consumed by the subsystem. The

power delta events produced by the mode power process are intended to be consumed by

an electrical power system process model of the sort described later in this section.

Definition 37 (Subsystem Mode Power). A subsystem mode power behavior is a parame-

terized process

SubsysModePower(initmode,modetrans, power delta, fModePower) =

let

fPowerDelta(m,m ′) = fModePower (m ′)− fModePower (m)

PMode(m) =

modetrans.begin?m ′ → if m 6= m ′

then power delta!fPowerDelta(m,m ′)

→ modetrans.end .m ′ → PMode(m ′)

else modetrans.end .m → PMode(m)

within

PMode(initmode)

where

• initmode is the mode in which the subsystem is initially assumed to be operating.

• modetrans is a channel through which the beginning and end of subsystem mode

transitions is signaled.

112

• power delta is a channel through which quantitative changes in subsystem power

consumption are signaled.

• fModePower is a function from subsystem mode names to power consumption values.

• fPowerDelta is an auxiliary function which computes the difference in power consump-

tion between two subsystem modes.

• PMode is a process which receives modetrans events, and produces power delta events

if a change in the subsystem operating mode has occurred.

Both of these generic behaviors are included in the library of CSP constructs which

appears in appendix A. We present examples of the use of both of these generic behaviors

later in this section. Example 5.4.2.2 introduces the use of State Telemetry Streams, and

example 5.4.2.4 introduces the use of Subsystem Mode Power processes.

It’s worth noting that these two generic behaviors should not be considered the only

generic behaviors, although they are the only ones that we have identified so far. Other

common kinds of behavior may come to light as we gain more experience with modeling

spacecraft subsystems.

5.4.2 Attitude Determination and Control

The attitude determination and control subsystem (ADCS) is responsible for orienting

the spacecraft, and for changing the spacecraft orientation (or attitude) in response to

commands. The ADCS may also provide information on the spacecraft attitude and rates

of change in attitude to other subsystems.

At any given time, the spacecraft has a nominal attitude which it should ideally main-

tain. For example, the nominal attitude of a geostationary communications satellite through

most of its mission is an earth-pointing attitude. Similarly, the nominal attitude of a sci-

entific spacecraft is the attitude which keeps its instruments pointed at scientific targets of

interest, an attitude which may vary depending upon which targets the spacecraft has been

commanded to study.

113

Internally, a typical ADCS uses some kind of feedback-based control to manipulate

various actuators which provide the torques necessary to change or maintain the attitude.

The type of sensors, actuators, control laws, and attitude determination algorithms that are

selected for the ADCS depend on the kind of attitudes the spacecraft is expected to attain,

and the accuracy with which it is required to maintain a particular attitude [8]. However, in

constructing a model of spacecraft subsystem interactions we’re not really concerned with

the details of exactly how the ADCS achieves any required changes in spacecraft attitude

state, but rather what changes in attitude state take place, and what actions on the part

of other subsystems trigger those changes.

A Simple Model

A simple model of the attitude control portion of an ADCS can be constructed by

defining a process in which commands are mapped to attitude state changes when the con-

troller is active, and the attitude state is left uncontrolled when the controller is not active.

The underlying assumption of this model is that the design of the attitude controller is suf-

ficient to meet all of the spacecraft attitude requirements, i.e. the controller can adequately

cancel any disturbance torque that might be encountered during the spacecraft mission, can

achieve any attitude it might be commanded into, and meets all performance requirements.

As the excerpt from the MGS Spacecraft Requirements [23] shown in fig. 5.12 illustrates,

exactly this assumption can be found in existing spacecraft requirements documents.

Example 5.4.2.1. Consider a simple ADCS for a science spacecraft. The development of

a process model for this subsystem begins with the creation of datatypes which define the

5.4 ATTITUDE AND ARTICULATION CONTROL SUBSYSTEM
The spacecraft bus shall have sufficient control authority to automatically main-
tain attitude orientation and stability of the spacecraft during all phases of the
mission . . . The AACS shall also be capable of pointing the body mounted science
instruments at arbitrary targets in the celestial frame.

Fig. 5.12: Assumed behavior of the MGS attitude control system.

114

interface of the subsystems. As part of the mission design process, we have presumably

defined a small set of qualitatively different attitude states which the spacecraft may attain

at different points during its mission. These states form the basis for the Attitude datatype:

datatype Attitude = uncontrolled

| rate nulled

| sun safe

| earth pointing

| science target .{1 . . 5}

We assume that it should not be possible to command the spacecraft into an uncontrolled

attitude, and define a set of commands which allow all other attitudes to be commanded.

For the purposes of this example, we assume that the only commands the ADCS responds

to are attitude commands.

nametype CommandableAttitude = Attitude \ {uncontrolled}

datatype AttitudeCmd = set attitude.CommandableAttitude

datatype ADCScmd = attcmd .AttitudeCmd

The interface of the ADCS model (fig. 5.13) consists of explicit interface channels

for commands and power, and an implicit interface channel which carries attitude state

information:

channel cmd : ADCScmd

channel power : Power

channel attitude : StateIF .Attitude

where the Power datatype is as defined in the example which appears in section 5.3.1, and

we assume that the set Subsystem includes a symbol adcs.

115

SimpleADCS1

power
attitudeController Attitude

State
cmd

Fig. 5.13: The simple ADCS model of example 5.4.2.1.

The assumed behavior of the simple ADCS is similar to that described in the motivating

example from section 5.1:

• The ADCS is initially unpowered.

• When the ADCS is not powered, the spacecraft attitude is uncontrolled , and com-

mands have no effect.

• When power is supplied to the ADCS, the subsystem transitions into a mode in which

it is able to make spacecraft attitude changes in response to received commands, every

attitude command results in the commanded attitude being achieved.

• Removing power from the ADCS causes the attitude to again become uncontrolled ,

and the ADCS to ignore commands.

The SimpleADCS1 process model captures this behavior:

SimpleADCS1 =

let

Controller(off) =

cmd .attcmd .set attitude?a → Controller(off)

2

power .load switch.adcs.on → Controller(on)

116

Controller(on) =

cmd .attcmd .set attitude?a → attitude.setval !a → Controller(on)

2

power .load switch.adcs.off → attitude.setval !uncontrolled → Controller(off)

AttitudeState(init) =

AssignableState(attitude.setval , attitude.getval , attitude.trans, init)

within

(Controller(off)

|[{|attitude.setval |}]|

AttitudeState(uncontrolled)) \ {|attitude.setval |}

The SimpleADCS1 process encapsulates both the attitude state, and the controller

which effects changes to that state. Events with an attitude.setval prefix are hidden, which

prevents processes other than the controller from changing the attitude state. Hiding the

setval events in this way effectively encodes the assumption that ADCS can maintain com-

plete control of the attitude state, regardless of the actions of other subsystems. We leave

the other attitude state events available, since other subsystems should be able to sense the

attitude state (although it is more likely that other subsystems will obtain their attitude

data via the ADCS instead of directly sensing it themselves). �

Although attitude determination is a necessary prerequisite to attitude control, the

SimpleADCS1 model completely encapsulates that aspect of the function of the ADCS, since

attitude information is not propagated outside the black-box of the attitude controller. Some

missions, though, require that the ADCS provide attitude information to other subsystems,

for example to enable scientific measurements to be tagged with the attitude in which they

were collected. The communication of attitude data to other subsystems can be orchestrated

in several different ways, each of which has different implications for the subsystems to which

the ADCS interfaces. For example, we might design the ADCS to produce discrete attitude

data messages in response to requests from other subsystems (we examine an example of

this style of data production in section 5.4.6). Alternatively, instead of requiring proactive

117

requests from other subsystems, the ADCS may be designed to transmit a continuous stream

of attitude state data.

Example 5.4.2.2. The SimpleADCS1 process can be extended to provide attitude data to

other subsystems by adding to it a generic StateTelemetryStream behavior (definition 36),

which models the production of a continuous stream of attitude data.

Following the guidelines laid out in section 5.3.1, we establish a telemetry datatype

consisting of the union of the Attitude datatype and the inactive state, and a telemetry

channel which provides access to telemetry values via a State Interface:

datatype AttitudeTlm = Attitude ∪ {inactive}

channel tlm : StateIF .AttitudeTlm

The new ADCS process model, which we call SimpleADCS2, is formed by composing

SimpleADCS1 with a StateTelemetryStream process. The SimpleADCS2 model (fig. 5.14) in-

cludes the implicit attitude interface and explicit cmd and power interfaces of the SimpleADCS1

model, and adds an explicit telemetry interface, tlm. In constructing SimpleADCS2, we as-

sume that the state telemetry stream is always actively streaming data whenever the ADCS

is powered, and therefore use power .load switch.adcs events to activate and deactivate the

stream. We further assume that the telemetry stream directly reports on the attitude state,

and therefore use the identity function, fID(x) = x , as the telemetry stream processing

function.

SimpleADCS2 =

(SimpleADCS1

|[{|power .load switch.adcs, attitude.getval , attitude.trans|}]|

StateTelemetryStream(power .load switch.adcs, attitude.getval ,

attitude.trans, tlm.setval , tlm.getval ,

tlm.trans, fID)

) \ {|tlm.setval |}

118

SimpleADCS2

power
attitudeController Attitude

State
cmd

State
Telemetry
Stream

tlm

Fig. 5.14: The ADCS model of example 5.4.2.2.

Synchronizing on tlm.getval permits other subsystem processes to obtain the current

state of the attitude telemetry stream, which will be either an attitude state value, or the

inactive state. The continuous nature of the stream is reflected in the fact that other

processes can synchronize on tlm.getval at any time, without first having to send a request

or otherwise trigger the delivery of attitude data. Events in {|tlm.trans|} indicate changes

in the state of the stream, and can be used to trigger corresponding changes in the behavior

of any subsystem which is a consumer of the telemetry data. Events in {|tlm.setval |} are

hidden, to prevent other processes from modifying the telemetry stream state. �

More Complex Behavior

The SimpleADCS1 and SimpleADCS2 models possess fairly straightforward behavior,

and provide a good starting point for specifying an ADCS. In some cases, such simple

models may be sufficient to capture all of the relevant ADCS behavior. However, many

spacecraft designs incorporate an ADCS with more complex, mode-based behavior, includ-

ing limitations on when certain attitude transitions can be made, diverse mode transition

triggers, variations in acceptable inputs and outputs across different modes, and changes in

subsystem power consumption depending on which sensors and actuators are assumed be

operating in different modes. Figure 5.15, adapted from a diagram in the EO-1 Preliminary

Technology and Science Validation Report [118], shows an example of the ADCS modes,

and the possible transitions between them, for the EO-1 spacecraft.

119

Bdot Sun Acq

Earth Acq

Mission
Idle

Maneuver Hold

Science
Imaging Delta-V

Autonomous

Command

Autonomous

AutoCommand
Command

Command

Command
Cmd

Cmd

Command

Auto

Fig. 5.15: EO-1 spacecraft ADCS modes and transitions.

The SimpleADCS1 process models an ADCS which effectively has two modes: powered,

and unpowered (represented by the symbols on and off). Transitions between the two modes

are triggered by power .load switch.adcs events. An ADCS model having a more complex

mode-based behavior is built in the same style as SimpleADCS1, but with an increased

the number of modes, and additional transition triggers beyond power .load switch.adcs

events. The resulting process is similar in concept to a mode transition behavior defined in

terms of the state transition systems described in section 4.2.2. However, for compactness

we typically include simple mode-specific behaviors directly in the definition of the mode

transition process, and reserve the use of mode constraints for capturing more complex

mode-specific behavior.

Example 5.4.2.3. Consider an ADCS for a scientific spacecraft, with the following modes

of behavior:

• An unpowered mode, in which the ADCS does nothing.

• A detumbling mode, in which the ADCS nulls the spacecraft attitude rates.

• A safehold mode, in which the ADCS achieves and maintains a safe and power-positive

attitude.

• A science standby mode, in which the ADCS achieves and maintains a suitable

preparatory attitude for the commencement of science operations.

120

• A science active mode, in which the ADCS responds to commands to adopt specific

attitudes required for making scientific measurements.

The possible transitions between these different modes, and the kind of events that can

trigger those transitions, are depicted in fig. 5.16.

To model the ADCS in CSP, we begin by defining a datatype which specifies the dif-

ferent ADCS modes. For convenience, we also define a subset of the ADCS mode datatype,

consisting only of those modes which can be entered as the result of command. The oc-

currence of a mode transition is signaled by specification events on the channel modetrans,

which has type ModeTrans.ADCSmode. The values in the ModeTrans type are used to in-

dicate the beginning and end of a mode transition, which permits us to specify that certain

events occur during the mode transition.

datatype ADCSmode = unpowered

| detumble

| safehold

| science standby

| science active

nametype CommandableADCSmode = ADCSmode \ {unpowered}

datatype ModeTrans = begin | end

channel adcs modetrans : ModeTrans.ADCSmode

For the purposes of this example, we assume that the spacecraft attitude states are

drawn the Attitude datatype, which was defined in example 5.4.2.1. Changes in the at-

titude state are triggered by commands received via the ADCS command interface. We

define two kinds of commands: mode commands, which tell the ADCS to transition to a

particular mode, and attitude commands, which tell the ADCS to a specific attitude. Atti-

tude commands are only applicable to science attitudes, since all other mission attitudes are

produced as byproducts of a mode transition. The function fModeAtt defines the mapping

from modes to attitude states.

121

unpowered

safehold

science
standby

power on

science
active

detumble

commandcommand

command

command

command

command

power off

power off

power off

power off

Fig. 5.16: ADCS mode transitions for the model discussed in example 5.4.2.3.

nametype CommandableAttitude = {|science target |}

datatype AttitudeCmd = set attitude.CommandableAttitude

datatype ADCScmd = attcmd .AttitudeCmd | modecmd .CommandableADCSmode

channel cmd : ADCScmd

fModeAtt : ADCSmodes → Attitude

fModeAtt = {(unpowered , uncontrolled),

(detumble, rate nulled),

(safehold , sun safe),

(science standby , earth pointing),

(science active, earth pointing)}

To allow a more compact process model, we define some auxiliary functions that specify

the sets of acceptable and unacceptable mode transition commands for each mode.

AllowedModeCmd(detumble) = {safehold}

AllowedModeCmd(safehold) = {detumble, science standby}

AllowedModeCmd(science standby) = {safehold , science active}

AllowedModeCmd(science active) = {safehold , science standby}

DisallowedModeCmd(m) = CommandableADCSmodes \AllowedModeCmd(m)

122

The ADCS telemetry interface is a mix of streaming attitude data, and a few simple,

discrete messages related to the acceptance and rejection of mode commands. For simplicity,

we assume that all of this telemetry is communicated through a single channel.

datatype ADCStlm = adcs ack cmd .CommandableADCSmode

| adcs reject cmd .CommandableADCSmode

| adcs stream.StateIF .AttitudeTlm

channel tlm : ADCStlm

where AttitudeTlm is defined in example 5.4.2.2.

The ADCS process model is the process ComplexADCS1, defined below.

ComplexADCS1 =

let

Controller(unpowered) =

(power .load switch.adcs.on

→ adcs modetrans.begin!detumble → attitude.setval !rate nulled

→ adcs modetrans.end !detumble → Controller(detumble))

2

(power .load switch.adcs.off → Controller(unpowered))

2

(cmd .modecmd?m → Controller(unpowered))

Controller(m) =

(power .load switch.adcs.on → Controller(m))

2

(power .load switch.adcs.off

→ adcs modetrans.begin!unpowered → attitude.setval !uncontrolled

→ adcs modetrans.end !unpowered → Controller(unpowered))

2

123

(cmd .modecmd?m ′ : AllowedModeCmd(m)→ tlm!adcs ack cmd .m ′

→ adcs modetrans.begin!m ′ → attitude.setval !fModeAtt(m ′)

→ adcs modetrans.end !m ′ → Controller(m ′))

2

(cmd .modecmd?m ′ : DisallowedModeCmd(m)

→ tlm!adcs reject cmd .m ′ → Controller(m ′))

ScienceTargeting = LiftF (cmd .attcmd .set attitude, attitude.setval , fID)

TargetingModeConstraint =

ModeConstraint({|cmd .attcmd |}, adcs modetrans.end ,

science active,ADCSmode \ {science active})

AttitudeState(init) =

AssignableState(attitude.setval , attitude.getval , attitude.trans, init)

within

(((((Controller(unpowered) ||| ScienceTargeting)

|[{|cmd .attcmd , adcs modetrans.end |}]| TargetingModeConstraint)

|[{|attitude.setval |}]|AttitudeState(uncontrolled)) \ {|attitude.setval |})

|[{|power .load switch.adcs, attitude.getval , attitude.trans|}]|

StateTelemetryStream(power .load switch.adcs, attitude.getval , attitude.trans,

tlm.adcs stream.setval , tlm.adcs stream.getval ,

tlm.adcs stream.trans, fID)) \ {|tlm.adcs stream.setval |}

The initial state of ComplexADCS1 is an unpowered mode, in which commands have no

effect. Switching on power causes the ADCS to enter the detumble mode, and to produce a

rate nulled attitude state. In all of the powered ADCS modes, received mode commands are

accepted if they appear in the the AllowedModeCmd set for the active mode, and otherwise

rejected. Accepted mode commands produce a corresponding change in the attitude state.

In addition, science active mode enables a function which provides direct commanding of

the attitude. The process model also includes an attitude state, and a state telemetry

stream which is active whenever the ADCS is powered. A diagram of the internal structure

of the process model appears in fig. 5.17. �

124

ComplexADCS1

power
attitudeController Attitude

State
modecmd

State
Telemetry
Stream

tlm

Science
Targetingattcmd

ModeConstraint

Fig. 5.17: The ADCS model of example 5.4.2.3.

Including Power

Different ADCS modes may require the employment of different actuators or sensors.

For example, an earth-pointing mode may necessitate the use an accurate earth-sensor, while

other modes can achieve acceptable performance without the earth-sensor. These differences

in actuator and sensor usage may translate into variations in subsystem power consumption

across different modes. If these variations in power consumption have implications for the

behavior of other subsystems, then the power interface of the subsystem model should

include events to represent key changes in the level of power consumed.

The generic SubsysModePower process (definition 37) provides a way to add mode-

based power behavior to an existing subsystem process model. The SubsysModePower

process responds to mode transition events by generating power load transition events which

reflect the difference in power consumption between the old mode and the new mode. These

load transition events may in turn trigger changes in the behavior of other subsystems.

Example 5.4.2.4. Assume that the ADCS represented by ComplexADCS1 consumes differ-

ent quantities of power in different modes, and that these differences have some significance

for other subsystems. In order to add a SubsysModePower process to the ComplexADCS1

125

process model, it is first necessary to define a function which maps ADCS modes to their

corresponding levels of power consumption. We represent power consumption in each mode

using integer values, which we assume to be derived from a standard conceptual-level space-

craft power budget. The function fModePower specifies the mapping.

f ADCSModePower : ADCSmode → Integer

f ADCSModePower = {(unpowered , 0),

(detumble, 10),

(safehold , 15),

(science standby , 15),

(science active, 20)}

The ComplexADCS2 process (fig. 5.18) combines ComplexADCS1 with the generic

SubsysModePower process, synchronizing the two processes on ADCS mode transition

events which are signaled on adcs modetrans.

ComplexADCS2 = (ComplexADCS1

|[{|adcs modetrans|}]|

SubsysModePower(unpowered , adcs modetrans,

power .load delta.adcs, fADCSModePower))

The SubsysModePower process is initialized in the unpowered mode, and generates

power .load delta.adcs events based on the mapping defined by fADCSModePower . For exam-

ple, an initial transition from the unpowered mode to the detumble mode triggers the event

power .load delta.adcs.10, since the difference between the power consumed in unpowered

and the power consumed in detumble is 10. A transition from detumble back to unpowered

would produce the event power .load delta.adcs.− 10. �

126

ComplexADCS2

load_switch
attitudeController Attitude

State
modecmd

State
Telemetry
Stream

tlm

Science
Targetingattcmd

ModeConstraint

Subsys
ModePowerload_delta

Fig. 5.18: The ADCS model of example 5.4.2.4.

Incorporating Faults

Unfortunately, spacecraft subsystems do not work perfectly all of the time. It is there-

fore prudent to think about, and specify, the behavior of each subsystem in the face of

internal faults. As described in section 5.3.3, we represent the occurrence of a fault as an

abstract specification event. We incorporate faults into subsystem behavior models using

the fault-tolerance modeling approach prescribed in sec. 12.3 of Roscoe’s text [3], in which

faults events are treated as deterministic from the perspective of the process containing the

fault, and the occurrence of fault events is regulated by an external process which encodes

some hypothesis about the existence and quantity of fault events.

There are at least three different kinds of behavior a subsystem may exhibit in the

presence of faults:

1. Termination of some or all functions on the first occurrence of a given fault (exam-

ple 5.4.2.5).

127

2. Termination of some or all functions after more than one occurrence of a given fault;

i.e. the subsystem is fault-tolerant (example 5.4.2.6).

3. Transition to a different mode of behavior in an attempt to contain or mitigate the

effects of a fault (example 5.4.2.7).

We now consider examples of each of these three kinds of behavior.

Example 5.4.2.5. Suppose that the ADCS described by the SimpleADCS1 process is a

single-string design, and is consequently susceptible to complete subsystem failure in the

event of an internal subsystem hardware failure. We further assume that hardware failures

only occur when the subsystem is powered, and that the result of a subsystem failure is

an uncontrolled attitude. A SimpleADCS with Failure process which models this behavior

can be derived from the SimpleADCS1 process by modifying the Controller(on) process

(defined within SimpleADCS1, and describing the behavior of the ADCS when powered) to

include the possibility of engaging in the fault event adcs fault .hardware failure (defined

in example 5.3.3.1). The new definition of Controller(on) is:

Controller(on) =

cmd .attcmd .set attitude?a → attitude.setval !a → Controller(on)

2

power .load switch.adcs.off → attitude.setval !uncontrolled → Controller(off)

2

adcs fault .hardware failure → attitude.setval !uncontrolled → Failed

Upon occurrence of a fault, the new Controller(on) process enters the Failed state,

which is defined by the process

Failed = cmd .attcmd .set attitude?a → Failed

2

power .load switch.adcs?o → Failed

128

Once in the Failed state, commands and power switching events have no effect, and no

event can produce a transition out of Failed . �

Example 5.4.2.6. Now suppose that the SimpleADCS1 ADCS is robust to a single hard-

ware failure, but cannot tolerate more than that. Such behavior might be exhibited by

a design which uses a traditional, redundant 4-reaction-wheel configuration to control the

spacecraft attitude. We again assume that hardware failures only occur when the subsystem

is powered, and that the result of a subsystem failure is an uncontrolled attitude.

Defining the SimpleADCS with FaultTolerance process requires modifying both the

Controller(off) and Controller(on) processes within SimpleADCS1, since to model fault

tolerance we need to track the number of faults which have occurred. The Failed process

retains the definition given it in example 5.4.2.5. The new definitions of Controller(off)

and Controller(on) are:

Controller(off ,n faults) =

cmd .attcmd .set attitude?a → Controller(off ,n faults)

2

power .load switch.adcs.on → Controller(on,n faults)

Controller(on,n faults) =

cmd .attcmd .set attitude?a → attitude.setval !a → Controller(on,n faults)

2

(power .load switch.adcs.off → attitude.setval !uncontrolled

→ Controller(off ,n faults))

2

(n faults ≥ 1) & (adcs fault .hardware failure

→ attitude.setval !uncontrolled → Failed)

2

(n faults < 1) & adcs fault .hardware failure → Controller(on,n faults + 1)

where the initial state of the Controller process is assumed to be Controller(off , 0).

129

Following the approach to modeling and analyzing fault tolerance laid out in Roscoe’s

text, we define a regulating process which encodes our “fault hypothesis,” i.e. the assump-

tions we wish to make about how many fault events might plausibly occur over the course

of the spacecraft mission. The regulating process acts to limit the number of fault events

that can occur, and is defined as

Fault(n) = if n > 0

then adcs fault .hardware failure → Fault(n − 1)

else Stop

Roscoe’s technique for verifying fault tolerance involves composing the fault regulating

process with the process to be verified, lazily abstracting (see [3]) the fault events, and

refinement checking the resulting abstracted composite process against a version of the

process to be verified which has fault events suppressed. Performing such a refinement check

on the SimpleADCS with Failure defined in example 5.4.2.5 using FDR demonstrates that

(SimpleADCS with Failure |[{|adcs fault |}]| Stop)

��vFD L{|adcs fault |}(SimpleADCS with Failure |[{|adcs fault |}]| Fault(1))

That is, as expected, the behavior of SimpleADCS with Failure when at least one fault is

permitted to occur is not the same as that of SimpleADCS with Failure when no faults

can occur.

In contrast,

(SimpleADCS with FaultTolerance |[{|adcs fault |}]| Stop)

vFD L{|adcs fault |}(SimpleADCS with FaultTolerance |[{|adcs fault |}]| Fault(1))

meaning that the behavior of SimpleADCS with FaultTolerance does not change when a

single fault is allowed to occur. The process is robust to single faults.

130

Of course,

(SimpleADCS with FaultTolerance |[{|adcs fault |}]| Stop)

��vFD L{|adcs fault |}(SimpleADCS with FaultTolerance |[{|adcs fault |}]| Fault(2))

since SimpleADCS with FaultTolerance is robust to only a single fault. If, over the duration

of the mission, two or more fault events can occur, the subsystem will fail. �

Example 5.4.2.7. Figure 5.11 on page 106 is an example of an informal specification of a

fault response involving a change in behavior. In the specification shown in that figure, the

detection of a particular fault results in a transition to a different ADCS operating mode. We

can produce a similar, but more formal, specification by modifying the Controller process

defined within the ComplexADCS1 model.

In constructing the modified controller process, we assume that the ADCS fault han-

dling mechanism reports the occurrence of any faults to other subsystems via the ADCS

telemetry interface. Reporting faults in this way gives other subsystems a chance to change

their own behavior to accommodate the altered ADCS behavior caused by the fault, or

to make some attempt to remedy the fault. To incorporate fault reporting, we modify the

definition of the ADCStlm datatype to accommodate a new kind of message, the adcs fault .

datatype ADCStlm = adcs ack cmd .CommandableADCSmode

| adcs reject cmd .CommandableADCSmode

| adcs stream.StateIF .AttitudeTlm

| adcs fault .ADCSFaultEvent

channel tlm : ADCStlm

We assume that the fault for which we are specifying a response (violation of a Sun-

Earth pointing constraint necessary for the well-being of a scientific instrument) can only

occur in the science standby and science active modes. The auxiliary function SafingMode

131

specifies, for a given mode, the mode to which the ADCS transitions if a fault occurs:

SafingMode(science active) = science standby

SafingMode(science standby) = safehold

The modified Controller process which incorporates the fault response specification is:

Controller(m) =

(power .load switch.adcs.on → Controller(m))

2

(power .load switch.adcs.off

→ adcs modetrans.begin!unpowered → attitude.setval !uncontrolled

→ adcs modetrans.end !unpowered → Controller(unpowered))

2

(cmd .modecmd?m ′ : AllowedModeCmd(m)

→ tlm!adcs ack cmd .m ′ → adcs modetrans.begin!m ′

→ attitude.setval !fModeAtt(m ′)→ adcs modetrans.end !m ′

→ Controller(m ′))

2

(cmd .modecmd?m ′ : DisallowedModeCmd(m)

→ tlm!adcs reject cmd .m ′ → Controller(m ′))

2

((m ∈ {science active, science standby}) &

(adcs fault .sun earth violation → tlm.adcs fault .sun earth violation

→ let m ′ = SafingMode(m)

within

adcs modetrans.begin!m ′ → attitude.setval !fModeAtt(m ′)

→ adcs modetrans.end !m ′ → Controller(m ′)))

132

This process states that the sun earth violation fault is assumed to occur only in the

science active and science standby , that the detection of a fault is immediately reported

as a telemetry message, and that the ADCS adopts a new mode in response to the fault. In

this case, the detection of a fault (represented by the occurrence of a fault event) has been

defined as part of an external choice among several other kinds of events. Thus, as written,

the specification implies that the ADCS will not respond to faults while a command is in the

midst of being acted upon. If this is not the intended behavior, then the specification would

need to be rewritten, for example by using the interrupt operator to allow fault events to

occur at any time during the response to a command event. �

5.4.3 Command and Data Handling

The command and data-handling (CDH) subsystem is the focal point of spacecraft

system behavior. It provides for spacecraft control and reconfiguration, and also collects

and stores mission and housekeeping data. In most spacecraft designs, all of the other

subsystems interface with the CDH subsystem, receiving commands from it, and passing

data to it. We consider the problems of commanding and data storage separately, although

the resulting models can, and should, be composed into a single CDH subsystem model.

Command and Control

Since CSP was originally developed for modeling and analyzing software systems, the

command and control elements of the CDH subsystem are perhaps the most readily suited

of any part of the spacecraft to modeling using CSP. Although this natural affinity makes

the modeling task easier, it is still necessary to consider exactly how CSP should be applied

to modeling typical spacecraft command and control systems.

Our approach in modeling the command and control portion of the CDH subsystem is to

abstract from low-level operations which directly control individual hardware components,

and to focus on high-level commands which may correspond to a sequence of several low-

level hardware changes. For example, a high-level command to fire a thruster may actually

involve a series of low-level operations to switch on various catalyst heaters, and open

redundant thruster valves. However, explicating such a sequence of low-level operations is

133

unlikely to be possible during the early system design phases where we expect the modeling

techniques described here to be of the most use, since the hardware design is unlikely to

have reached that level of detail. Nor is it desirable from a modeling perspective, since

extended sequences of low-level events are likely to result in an explosion of model states

when the CDH model is composed with other subsystem models, making analysis of the

system model intractable.

Spacecraft commanding is typically carried out through a mixture of real-time com-

mands which are executed immediately upon receipt, and stored command sequences which

may be triggered by a real-time command, timer, or some other event. Figure 5.19 is

an example of a typical command handling requirement, excerpted from the WIRE Sys-

tem Requirements [24]. Similar requirements can be found in the ACE Spacecraft Design

Specification [22] and the MGS Spacecraft Requirements [23], among others.

The core of our CDH models is a command processor which translates individual com-

mands and events into corresponding actions, or commands to other subsystems. This

command processor models the real-time, or immediate, commanding aspect of the CDH

system. A simple command processor consists of an external choice over the commands and

events to which the CDH is capable of responding. More complex command processors may

provide different behavior in different subsystem modes. We model such mode-based be-

havior using the same approach as previously described for modeling mode-based behavior

in an ADCS, such as that used in example 5.4.2.3.

Example 5.4.3.1. In this example we model an extremely simple command processor

model for a scientific spacecraft. The command processor consists of a basic command de-

coder/router, which translates received spacecraft commands into corresponding subsystem

commands. The processor is also capable of responding to ADCS fault events by placing

the science payload into a standby mode, presumably in an effort to protect the instrument

from adverse attitudes.

In this simple model the possible spacecraft commands consist only of commands to

start and stop science operations, and commands to switch on and off certain subsystems.

134

CDH.REQ.GEN.7 COMMAND DISTRIBUTION
The C&DH system shall distribute a real-time command to the appropriate subsys-
tem prior to the complete reception of the next command. Additionally, the C&DH
system shall distribute stored commands at a maximum rate of ten per second.

Fig. 5.19: Command distribution requirement for the WIRE CDH.

In this example, we also include an “invalid” command alternative to model the reception

of fragmentary or incorrectly formatted commands, which allows us to define the response

of the CDH to the reception of these messages.

datatype SpacecraftCommand= start science

| stop science

| switch.Subsystem.OnOff

| invalid

channel cmdin : SpacecraftCommand

We assume that all subsystem commands and all subsystem telemetry are commu-

nicated over a system bus, as described in section 5.3.1. We present only the subsystem

commands and telemetry relevant to this example:

datatype PayloadCmd = pl active | pl standby

datatype DownlinkMsg = reject cmd | · · ·

datatype EPSCmd = load switch.Subsystem.OnOff | · · ·

datatype SubsysCmd = pl cmd .PayloadCmd

| dl cmd .DownlinkMsg

| eps cmd .EPSCmd

datatype SubsysTlm = adcs tlm.ADCSFaultEvent | · · ·

nametype SysBus = SubsysCmd ∪ SubsysTlm

channel systembus : SysBus

135

The actual command processor model, CommandProcessor1, is an extremely straight-

forward external choice over cmdin events, along with the ADCS fault events that we assume

the processor responds to:

CommandProcessor1 =

(cmdin.invalid → systembus.dl cmd !rejectcmd → CommandProcessor1)

2

(cmdin.start science → systembus.pl cmd .pl active → CommandProcessor1)

2

(cmdin.stop science → systembus.pl cmd .pl standby → CommandProcessor1)

2

(cmdin.switch?x → systembus.eps cmd .load switch!x → CommandProcessor1)

2

(systembus.adcs tlm.adcs fault?f

→ systembus.pl cmd .pl standby → CommandProcessor1)

In this case, the behavior specified for the command processor does not distinguish

which ADCS fault event has occurred, but responds the same way to any ADCS fault. �

Beyond simple command processors, more complex command and control systems add

the capability to store sequences of commands (see fig. 5.20, excerpted from the WIRE

CDH FSW Requirements Specification [119]), and to execute predefined procedures which

may include conditional logic [120]. Although stored command sequences are, for the most

part, relatively easy to model in CSP as sequences of events, there are two issues which

require some additional consideration. Namely, time-tagging of individual commands, and

storage of arbitrary command sequences.

In many spacecraft designs, the commands within a stored sequence are tagged with

either an absolute or relative time at which the command should be executed [22–24, 120].

However, in developing CSP models of spacecraft behavior we are largely concerned with

temporal ordering, rather than the details of timing, which makes including direct modeling

136

257 The flight software shall autonomously process individual com-
mands from the relative time-tagged command buffers.
257.1 The flight software shall permit the relative time command sequences to ex-
ecute concurrently.
257.2 The flight software shall initiate a relative time command sequence based on:

• receipt of a RTS control command from the ground,

• request from another flight software subsystem,

• an absolute time-tagged command, and

• a relative time-tagged command.

Fig. 5.20: Specification of stored-command handling for WIRE.

of time-tagged commands problematic (although not impossible). Fortunately, time-tags in

stored sequences are largely used as a mechanism for establishing the execution sequence

of commands [121], rather than as a way to define timing critical operations. As a result,

our modeling of stored sequences abstracts from time-tags, and simply specifies the order

of the commands in a sequence. This has the additional advantage that we can model and

understand the impact of particular command sequences even when the design has not yet

reached a stage where the precise timing of the commands can be specified. Where timing is

particularly important for the analysis of a command sequence, or the interaction between

several command sequences, we can add temporal constraints such as those described in

section 4.3.2. However, critical timing requirements are probably better analyzed using

tools specifically intended for the analysis of timed systems, such as Uppaal [122].

Example 5.4.3.2. A command sequence intended to first switch a payload into standby

mode, and then to power it down, might be represented by the abstracted event sequence

〈systembus.pl cmd .pl standby , systembus.eps cmd .load switch.pl .off 〉

�

137

Spacecraft designs that include stored command sequences usually provide the capa-

bility for ground controllers to upload new stored sequences to the spacecraft for later

execution, giving the spacecraft a certain amount of operational flexibility. While this is

convenient for spacecraft operators, it is less so for those of us wishing to analyze spacecraft

behavior. To begin with, it is very difficult to predict all of the possible command sequences

that a spacecraft operator might choose to upload to the spacecraft, so we must content

ourselves with modeling only those sequences which seem most likely to be used in the mis-

sion under design. Of more immediate concern, attempting to directly model the upload

and buffering of stored sequences is infeasible: buffer processes with capacities sufficient to

hold sequences of more than a few commands result in intractably large state-spaces.

Instead of trying to model command uploading and storage directly, we adopt the ap-

proach of modeling as sequential processes specific sequence uploads that are likely to be

used during the mission under design, and including those processes within the CDH sub-

system model. The command sequence processes are composed in parallel with a controller,

which moderates execution of the stored-sequence processes (fig. 5.21).

Stored Sequences

Execution
Controller

Stored
Sequence 1

sequence
load, store,

and run
commands

Stored
Sequence 2

Stored
Sequence 3

subsystem
commands

subsystem
commands

subsystem
commands

Fig. 5.21: Controlling the execution of stored sequence processes.

138

We model uploading of a given sequence as communication of a token which represents

the “uploaded” sequence from the ground station to the CDH subsystem. The set of

tokens held at any given time by the execution controller represents the command sequences

presently stored in the CDH. The execution controller refuses to execute stored sequences

for which it does not presently hold a token. This approach to modeling sequence uploads

is similar to the way in which mobile channels were previously modeled by the author [123].

Figure 5.22 illustrates the token-based approach to modeling sequence-loading. Initially

the execution controller holds the token 1, and only the process representing stored sequence

1 is considered “loaded.” Commands to run sequence 1 will result in the process representing

that sequence being triggered, while commands to run any of the other sequences will be

rejected since those sequences are not considered to have yet been loaded into the sequence

store. Once the execution controller receives the token 2, it begins to treat stored sequence 2

as having been loaded, allowing the process representing that sequence to also be triggered.

Example 5.4.3.3 illustrates the use of token-based modeling of stored sequences.

LoadedLoaded

Execution
Controller

Tokens: 1

Stored
Sequence 1

Stored
Sequence 2

Stored
Sequence 3

Stored
Sequence 1

Stored
Sequence 2

Stored
Sequence 3

receive token 2 Execution
Controller

Tokens: 1, 2

Fig. 5.22: Modeling sequence-loading using tokens.

139

Example 5.4.3.3. For the purposes of this example, we assume that there are three possible

stored sequences that might be loaded onto the spacecraft being modeled, and define a

datatype to refer to these sequences accordingly:

datatype SequenceName = seq .{1 . . 3}

We use the values in the datatype SequenceName as the tokens which represent loading and

unloading of sequences.

Command sequences may be loaded, unloaded, run, or stopped. Commands to perform

each of these actions are received by the execution controller over the channel cmdin. The

sequence to which a given command applies is determined by the token associated with that

command.

datatype SeqCmd = load seq | unload seq | run seq | stop seq

channel cmdin = SeqCmd .SequenceName

Internally, the execution controller may either run a loaded sequence, or terminate an

already running sequence:

datatype SeqOp = run | terminate

channel seq exec : SequenceName.SeqOp

We define three processes to represent the three stored sequences which may be loaded.

The first sequence, CommandSeq1, commands the ADCS to the science active mode, and

switches the payload to its active mode. Execution of the sequence is triggered by reception

of a run command from the execution controller, and may be interrupted at any time by

reception of a terminate command.

140

CommandSeq1 = ((seq exec.seq .1.run

→ EventSeq(〈systembus.adcs cmd .modecmd .science active,

systembus.pl cmd .pl active〉))

4 seq exec.seq .1.terminate → Skip); CommandSeq1

The second and third sequences follow a similar format to CommandSeq1. CommandSeq2

switches the payload into standby mode, and then powers the payload down. CommandSeq3

is a little more complex than the other two sequences, in that it includes conditional logic.

CommandSeq3 checks the current attitude state as reported by the ADCS, and, if the atti-

tude is one of scientific relevance, switches the payload into active mode.

CommandSeq2 =

((seq exec.seq .2.run

→ EventSeq(〈systembus.pl cmd .pl standby ,

systembus.eps cmd .load switch.pl .off 〉))

4 seq exec.seq .2.terminate → Skip); CommandSeq2

CommandSeq3 =

((seq exec.seq .3.run → systembus.adcs tlm.adcs stream.getval?a

→ if a ∈ {|science target |}

then systembus.pl cmd .pl active → Skip else Skip)

4 seq exec.seq .3.terminate → Skip); CommandSeq3

The three stored sequence processes are composed in parallel with the execution con-

troller, which manages loading, unloading, and running of the stored sequences:

StoredSequenceProcessor =

(((ExecutionControl |[{|seq exec.seq .1|}]| CommandSeq1)

|[{|seq exec.seq .2|}]| CommandSeq2)

|[{|seq exec.seq .3|}]| CommandSeq3) \ {|seq exec|}

141

The execution controller itself is defined as an external choice over sequence commands.

The tokens representing currently loaded sequences are kept in the set Loaded , which is

initially empty (i.e. no sequences are loaded). A load seq command causes a new token to

be added to the Loaded set, while an unload seq command removes the designated token

from the Loaded set. Decisions about whether or not to allow a sequence to be executed

are made based on the current membership of the Loaded set.

ExecutionControl =

let

EC (Loaded) =

cmdin.load seq?s → EC (Loaded ∪ {s})

2

cmdin.run seq?s : Loaded → seq exec.s.run → EC (Loaded)

2

cmdin.run seq?s : (SequenceName \ Loaded)

→ systembus.dl cmd .rejectcmd → EC (Loaded)

2

cmdin.unload seq?s : Loaded

→ seq exec.s.terminate → EC (Loaded \ {s})

2

cmdin.unload seq?s : (SequenceName \ Loaded)

→ systembus.dl cmd .rejectcmd → EC (Loaded)

2

cmdin.stop seq?s → seq exec.s.terminate → EC (Loaded)

within

EC (∅)

As an example of how the composite StoredSequenceProcessor operates, consider the

following trace, which first attempts to execute sequence 1 before it has been loaded, then

142

loads the sequence and executes it. We use τ (ev) to represent a hidden occurrence of the

event ev .

cmdin.run seq .seq .1

systembus.dl cmd .rejectcmd

cmdin.load seq .seq .1

cmdin.run seq .seq .1

τ (seq exec.seq .1.run)

systembus.adcs cmd .modecmd .science active

systembus.pl cmd .pl active

�

Stored commands provide a limited amount of onboard autonomy, allowing a spacecraft

to undertake complex operations when out of contact with a ground station. Beyond simple

sequences, several kinds of autonomous spacecraft control are also possible, including rule-

based reactions to events, and onboard planning to manage resource allocation between

different tasks. However, detailed modeling of those kinds of autonomy is both beyond the

scope of the present work, and to a certain extent already addressed by existing research.

For example, research by O’Halloran and McEwan on expressing rule-based control systems

in CSP [124] is a good candidate for modeling rule-based autonomy. Similarly, work by

Smith et al. on the use of Promela and Spin to model and verify autonomous planners [32]

is, given the similarities between Promela and CSP, likely to be easy to translate into CSP.

Data Handling

Data handling is largely concerned with the aggregation and storage of housekeeping

and payload telemetry. But, just as direct modeling of stored commands sequences in terms

of classical CSP buffer processes results in intractably large state-spaces, so too does direct

modeling of data storage. Moreover, there are tools other than CSP which are far better

suited to computing onboard data buffer usage profiles.

143

Instead of attempting to directly model data storage, we consider an abstract view of

the data-handler which focuses on those aspects of data-handling that are most relevant to

defining subsystem and system behavior. Figures 5.23 (excerpted from the ACE Spacecraft

Design Specification [22]) and 5.24 (excerpted from the WIRE CDH FSW Requirements

Specification [119]) exemplify the type of information that we are interested in capturing

within the process model of a data-handler: the behavior of the handler in different operating

modes, how the handler transitions between those modes, and how the handler reacts to

reaching a resource limit. These aspects of data-handling behavior are independent of the

actual data values being stored, which allows us to abstract from individual items of data.

6.2.11. Data Recorders
Recorder operational modes shall be:

• record

• reproduce

• set record pointer

• set reproduce pointer

• standby

Fig. 5.23: Specification of data storage modes for ACE.

401.5 The flight software shall provide via ground command two modes of bulk
memory data storage when a partition is full,

• discard any new data for the full partition, and

• continue storing new data, overwriting the oldest data in that partition.

401.6 A system event shall be generated when the data storage area for a particular
partition is determined to be full.

Fig. 5.24: Specification of data-handling for the WIRE spacecraft.

144

At an intermediate level of abstraction, we can define data-handling models which

ignore the content of received data messages, but explicitly track the number of messages,

and thus the quantity of data that is stored at any given time. Models of this sort are most

useful when the production of the data to be stored is modeled as discrete messages, and

knowledge of the quantity of data that has been stored is important. The latter condition

may be important in systems where avoidance of a storage overflow relies on assumptions

about how other subsystems operate, rather than on a controller which senses the state of

the storage resource and switches data sources on and off accordingly.

Models of the sort just described are essentially counters, which increment or decrement

their value whenever a message is received or transmitted. However, in addition to the basic

counting behavior, the model of the data-handler must also define the data-handler modes

of behavior, the mode transitions, and the responses (if any) to reaching counter values

which represent key quantities of stored data.

Example 5.4.3.4. A data-handling system receives discrete packets of payload data to

be stored, and can store up to N packets. The data-handler can be commanded into two

modes: a standby mode, in which it neither stores nor provides data, and an active mode,

in which it is capable of performing both packet read and packet write operations (contrast

this behavior with the example in fig. 5.23, in which there are separate modes for reading

and writing). The data-handler generates a system event when its store becomes full.

The types and channels which represent the explicit interfaces implied by the preceding

description of the data-handler are:

datatype SystemEvent = data store full | · · ·

datatype DownlinkMsg = no data | pl data | system event .SystemEvent | · · ·

datatype SubsysCmd = dl cmd .DownlinkMsg | · · ·

datatype SubsysTlm = pl tlm.Measurement | · · ·

nametype SysBus = SubsysCmd ∪ SubsysTlm

channel systembus : SysBus

145

datatype DataHandlerMode = standby | active

datatype DataHandlerCommand = read packet | modecmd .DataHandlerMode

channel cmd : DataHandlerCommand

In addition to the explicit interfaces, the model incorporates an abstract specification

event which signals a loss of data when packets are received after the data store has become

full, and a specification-event channel which signals data-handler mode transitions.

channel dhd modetrans : ModeTrans.DataHandlerMode

channel packet dropped

The DiscreteDataHandler process models the behavior described above. The data-

handler is assumed to be initially in standby mode, with no data stored. In active mode,

the response to read packet commands varies depending on whether or not there are any

packets in the data store. Similarly, the response to receiving a new data packet depends

on whether or not the data store is at capacity.

DiscreteDataHandler(N) =

let

Standby(n) =

(cmd .modecmd .active → dhd modetrans.begin.active

→ dhd modetrans.end .active → Active(n))

2

(cmd .read packet → Standby(n))

2

(systembus.pl tlm.meas?m → Standby(n))

Active(n) =

(cmd .modecmd .standby → dhd modetrans.begin.standby

→ dhd modetrans.end .standby → Standby(n))

146

2

(n > 0) & (cmd .read packet

→ systembus.dl cmd !pl data → Active(n − 1))

2

(n ≤ 0) & (cmd .read packet

→ systembus.dl cmd !no data → Active(n))

2

(n < N − 1) & (systembus.pl tlm.meas?m → Active(n + 1))

2

(n = N − 1) & (systembus.pl tlm.meas?m

→ systembus.dl cmd !system event .data store full → Active(n + 1))

2

(n ≥ N) & (systembus.pl tlm.meas?m → packet dropped → Active(n))

within

Standby(0)

Although we haven’t shown it here, a generic SubsysModePower could be added to

the model in this example, providing a way to capture the impact of differences in power

consumption between the active and standby modes. �

Although the approach to modeling data-handlers just described will work in some

situations, it does suffer from two problems. First, the discrete, message-based way of

dealing with incoming data meshes poorly with our approach for modeling streams of data,

which is exemplified by the StateTelemetryStream behavior. Second, as the value assigned

to N is made larger, there is a corresponding growth in the state-space of the data-handler

model. At some point, the resulting state-space will become large enough to preclude timely

behavior analysis. One solution to both of these problems is to adopt an even more abstract

modeling approach.

We achieve a greater level of abstraction by making two changes to the way in which

the data-handler is modeled. First, instead of explicitly tracking the quantity of stored data,

147

we use three qualitative values to represent the state of the data storage resource: empty,

partially full, and full ; additional qualitative states may be added if the data-handling

behavior is expected to vary for different levels of partial storage resource consumption.

Second, instead of dealing with individual data messages, our stream-based data-handler

models respond only to transitions between the inactive stream state, and any active state.

That is, whether or not a transition from one qualitative storage state can occur is dependent

on the state of the stream providing data to be stored. For example, if the stream is inactive,

then it doesn’t make sense for the storage state to be able to transition to a qualitative

state representing greater consumption of storage resources.

A stream-based data-handler model specifies the data-handling behavior as a function

of the three different qualitative states. As with the message-based data-handling models,

the stream-based data-handler also defines the different modes of data-handling behavior,

and the events which cause transitions between those modes.

Example 5.4.3.5. A data-handling system stores a stream of payload data. The data-

handler can be commanded into three modes: a standby mode, in which it neither stores

nor provides data, and a read mode, in which it responds to request for stored data by

sending a data packet to the downlink, and a write mode, in which it stores streaming data.

We first define datatypes to represent the qualitative storage states, and to help keep

track of whether or not the data stream is active or inactive.

datatype StorageState = store empty | store partial | store full

datatype StreamState = stream inactive | stream active

The types and channels which represent the explicit interfaces for the data-handler are:

datatype DownlinkMsg = no data | pl data | · · ·

datatype SubsysCmd = dl cmd .DownlinkMsg | · · ·

datatype SubsysTlm = pl tlm stream.StateIF .MeasurementStream | · · ·

nametype SysBus = SubsysCmd ∪ SubsysTlm

148

channel systembus : SysBus

datatype DataHandlerMode = standby | read | write

datatype DataHandlerCommand = read packet | modecmd .DataHandlerMode

channel cmd : DataHandlerCommand

We also include specification events to signal loss of data, and data-handler mode

transitions. As a convenience, we define a subset of data stream values which correspond

to an active stream.

channel dhd modetrans : ModeTrans.DataHandlerMode

channel data loss

nametype ActiveStream = MeasurementStream \ {inactive}

The actual data-handler behavior is captured in the StreamDataHandler process. The

data-handler is assumed to start in the standby mode, with an empty data store, and an

inactive incoming data stream. In both the standby mode and the read mode a transition

on the part of the incoming data stream to an active state results in data loss, since the

incoming data is not stored in either of those modes.

In the read mode, the response to a request for a packet of data depends on the

qualitative state of the data store. The new store state also depends on the current state. In

particular, a read operation while the store is partially full can result either in a continuation

of the partially full state, or a transition to the empty state. Since the actual size of the data

store is undefined, the number of read operations required to produce a transition to the

empty state is also undefined. We use a nondeterministic choice to represent this inherent

uncertainty in the model. A similar line of reasoning leads to the nondeterministic choice

which appears in the write mode.

149

StreamDataHandler =

let

Standby(store, stream) =

(cmd .modecmd .read → dhd modetrans.begin.read

→ dhd modetrans.end .read → Read(store, stream))

2

(cmd .modecmd .write → dhd modetrans.begin.write

→ dhd modetrans.end .write →Write(store, stream))

2

(systembus.pl tlm stream.trans?m : ActiveStream

→ data loss → Standby(store, stream active))

2

(systembus.pl tlm stream.trans.inactive

→ Standby(store, stream inactive))

Read(store, stream) =

(cmd .modecmd .standby → dhd modetrans.begin.standby

→ dhd modetrans.end .standby → Standby(store, stream))

2

(cmd .modecmd .write → dhd modetrans.begin.write

→ dhd modetrans.end .write →Write(store, stream))

2

(store = store empty) & (cmd .read packet

→ systembus.dl cmd !no data → Read(store, stream))

2

(store = store partial) & (cmd .read packet

→ systembus.dl cmd !pl data

→ (Read(store partial , stream) u Read(store empty , stream)))

150

2

(store = store full) & (cmd .read packet

→ systembus.dl cmd !pl data → Read(store partial , stream))

2

(systembus.pl tlm stream.trans?m : ActiveStream

→ data loss → Read(store, stream active))

2

(systembus.pl tlm stream.trans.inactive → Read(store, stream inactive))

Write(store, stream inactive) =

(cmd .modecmd .standby → dhd modetrans.begin.standby

→ dhd modetrans.end .standby → Standby(store, stream inactive))

2

(cmd .modecmd .read → dhd modetrans.begin.read

→ dhd modetrans.end .read → Read(store, stream inactive))

2

(s = store empty) & (systembus.pl tlm stream.trans?m : ActiveStream

→Write(partial , stream active))

2

(s = store partial) & (systembus.pl tlm stream.trans?m : ActiveStream

→ (Write(store partial , stream active)

u

Write(store full , stream active)))

2

(s = store full) & (systembus.pl tlm stream.trans?m : ActiveStream

→ data loss →Write(store full , stream active))

Write(store empty , stream active) =

Write(store partial , stream active)

151

Write(store, stream active) =

(cmd .modecmd .standby → dhd modetrans.begin.standby

→ dhd modetrans.end .standby → Standby(store, stream inactive))

2

(cmd .modecmd .read → dhd modetrans.begin.read

→ dhd modetrans.end .read → Read(store, stream inactive))

2

(systembus.pl tlm stream.trans.inactive →Write(store, stream inactive))

2

(s = store partial) & (Write(store partial , stream active)

u

(data loss →Write(store full , stream active)))

within

Standby(store empty , stream inactive)

�

5.4.4 Electrical Power

The spacecraft electrical power subsystem (EPS), as its name suggests, is the source of

electrical power for a spacecraft. Power may be generated in a wide variety of ways, although

the most common configuration consists of a combination of solar arrays and rechargeable

batteries, the latter providing power when the solar arrays are unable to do so. In addition

to managing power generation, many spacecraft designs allocate responsibility for switching

on and off the various spacecraft loads to the EPS. Some spacecraft designs also give the

EPS responsibility for managing pyrotechnic events, such as mechanism deployments.

Power Source Models

In modeling how the EPS interacts with other subsystems, we are not particularly

concerned with the specifics of how the EPS generates power. Rather, what matters is

152

the quantity of power available, and how the quantity varies in response to interactions

with other subsystems. This allows us to treat the EPS as a black-box, and to abstract

the power generation aspect of EPS behavior into a relatively simple model which captures

system-level assumptions (or EPS design requirements) regarding the EPS load capacity.

Perhaps the simplest model of a power source consists of a source with a fixed load

capacity. This corresponds to a fairly strict EPS design requirement which permits no

variation in the quantity of power available to the electrical loads; the actual EPS must

always be capable of supplying at least the amount of power specified by the fixed load

capacity. A simple fixed-capacity model is easily defined using a quantitative resource

process (see section 4.3.1).

Example 5.4.4.1. Consider a simple EPS behavioral specification, consisting of a fixed-

capacity power source with a load capacity of CAPACITY = 20 integer-scaled units of

power, and an associated telemetry stream. The process model is a composition of a

QuantResource process, which represents the amount of power currently allocated to the

various loads, and a StateTelemetryStream (fig. 5.25). The explicit interface for the EPS is

defined as

nametype PowerRange = {−CAPACITY . . CAPACITY }

channel power : Power

datatype EPStlm : load level .PowerRange

channel eps tlm stream : StateIF .EPStlm

datatype EPScmd : eps tlm.OnOff

channel cmd : EPScmd

where power is the interface through which other subsystems communicate power consump-

tion changes, eps tlm stream is the channel for the telemetry stream, and cmd is a channel

through which commands to activate and deactivate the telemetry stream can be sent.

Internally, we require a channel for communications between the StateTelemetryStream

process and the QuantResource process. We also require a channel for communicating load

153

FixedCapacityEPS

power.load_delta Quantitative
Resource

State
Telemetry
Streameps_tlm_stream

cmd.eps_tlm

po
we
r_
al
lo
c

po
we
r_
de
lta

Fig. 5.25: The EPS model of example 5.4.4.1.

level changes to the QuantResource process, since it does not understand the different

subsystem names that appear in power .load delta events. We use renaming to bring this

internal channel into correspondence with the EPS explicit interface defined above.

channel power alloc : StateIF .PowerRange

channel power delta : PowerRange

The FixedCapacityEPS process combines the QuantResource and StateTelemetryStream

processes. The QuantResource process is permitted to take on a range of values between 0

and CAPACITY , and is set to an initial value of 0. The function fEPStlm(l) = load level .l

converts load quantities into telemetry values.

FixedCapacityEPS =

((QuantResource(power delta, power alloc.getval , power alloc.trans,

0,CAPACITY , 0)

|[{|power alloc|}]|

StateTelemetryStream(cmd .eps tlm, power alloc.getval , power alloc.trans,

eps tlm stream.setval , eps tlm stream.getval ,

eps tlm stream.trans, fEPStlm))

\ {|power alloc, eps tlm stream.setval |})

[[s : Subsystem • power delta← power .load delta.s]]

154

When the FixedCapacityEPS process is composed with other subsystem process mod-

els, power .load delta events generated by the subsystems will cause the value of the total

allocated power to change. These variations will also be apparent in the telemetry stream

produced by the EPS. For example, the sequence of power .load delta events

power .load delta.adcs.5

power .load delta.cdh.3

power .load delta.adcs.− 2

power .load delta.payload .10

will result in the sequence of telemetry transition events

eps tlm stream.trans.load level .5

eps tlm stream.trans.load level .8

eps tlm stream.trans.load level .6

eps tlm stream.trans.load level .16

If the amount of allocated power exceeds CAPACITY , the QuantResource will produce

a resource overflow exception-event. �

The fixed-capacity EPS is conceptually very simple. However, not all spacecraft are

designed with a fixed maximum load level, and may operate in different modes depending

on the state of the power source upon which they rely. For example, some spacecraft designs

cannot provide as much power during eclipse as they do during sunlit periods due to battery

capacity limitations, and will operate in a reduced power mode (perhaps disabling certain

payloads) during eclipse periods. Other designs, especially those with fixed (rather than

sun-tracking) solar arrays, generate different quantities of power in different attitudes, and

again may use different operating modes depending on the spacecraft attitude.

Modeling a variable-capacity power source is, not surprisingly, somewhat more complex

than modeling a fixed-capacity source. In addition to tracking the allocated power via a

155

QuantResource process, it is necessary to track the available power, which will change as

a result of implicit interface events such as attitude state changes. Whenever the levels of

available or allocated power change, we must check to ensure that the allocated power (i.e.

the total power being consumed by all subsystems) does not exceed the available power.

A check of this sort can be accomplished using a process such as the one in the following

example.

Example 5.4.4.2. DynamicCapacityCheck is a parameterized process suitable for checking

the relationship between available and allocated power in an EPS process model. The

process parameters are StateIF channels that provide an interface to the present allocated

and available power states. Each transition in one of the states triggers a comparison of

both state values.

DynamicCapacityCheck(power alloc, power avail) =

let

Check(pA, pL) = if pA < pL

then eps exception.resource overflow → STOP

else DynamicCapacityCheck(power alloc, power avail)

within

(power alloc.trans?pL→ (power avail .getval?pA→ Check(pA, pL)

2

power avail .trans?pA→ Check(pA, pL)))

2

(power avail .trans?pA→ (power alloc.getval?pL→ Check(pA, pL)

2

power alloc.trans?pL→ Check(pA, pL)))

In this version of the DynamicCapacityCheck process, if the amount of allocated power

exceeds the amount of available power, the spacecraft is assumed to have entered an unsup-

portable state, and an exception-event is issued. Other variants of DynamicCapacityCheck

156

might instead issue commands to switch off certain non-essential loads when the allocated

power is too high.

The external choice between getval and trans events in each branch of the process

prevents a deadlock from occurring if both the allocated and available power states undergo

a transition at the same time. �

Example 5.4.4.3. As an example of a variable-capacity EPS, consider a spacecraft power

subsystem which provides different amounts of power in different spacecraft attitudes. In

this case, we assume that the (integer-scaled) quantities of power available in the different

spacecraft attitudes are defined by the function

available(uncontrolled) = 8

available(sun pointing) = 10

available(earth limb scan) = 10

where uncontrolled , sun pointing , and earth limb scan represent the three different atti-

tude states in which the spacecraft may find itself.

As with the FixedCapacityEPS , in the VariableCapacityEPS process (fig. 5.26) we

model the amount of allocated power using a QuantResource process. In addition, we

add an AvailablePower process to map spacecraft attitude states to quantities of available

power, and make use of the DynamicCapacityCheck process defined in the previous example

to carry out comparisons between the levels of allocated and available power.

VariableCapacityEPS

power.load_delta Allocated
Power

Dynamic
Capacity
Check

power_alloc

po
we
r_
de
lta

Available
Power

power_avail

attitude

eps_exception

Fig. 5.26: The EPS model of example 5.4.4.3.

157

VariableCapacityEPS =

let

AvailablePower(a) =

(attitude.trans?a ′

→ power avail .trans!available(a ′)→ AvailablePower(a ′))

2

power avail .getval !available(a)→ AvailablePower(a)

AllocatedPower =

QuantResource(power delta, power alloc.getval ,

power alloc.trans, 0,CAPACITY , 0)

INIT ATTITUDE = uncontrolled

within

(((AllocatedPower |[{|power alloc|}]|

DynamicCapacityCheck(power alloc, power avail))

|[{|power avail |}]|

AvailablePower(INIT ATTITUDE))

\ {|power alloc, power avail |})

[[s : Subsystem • power delta← power .load delta.s]]

The VariableCapacityEPS process behaves as follows:

• power .load delta events cause the quantity of allocated power to change.

• attitude.trans events cause the quantity of available power to change.

• If the allocated power exceeds the available power, an exception-event is generated.

A similar approach to that used in the preceding example can be applied to model

the different levels of available power in and out of eclipse, or indeed any other externally

158

induced variation in the level of available power. However, the more external influences

that are added, the greater the state-space of the EPS process model will become. So in

general it is preferable to limit the variability of the available power level within the process

model as much as possible.

Power-Switching Behavior

In addition to providing a source of power, the spacecraft EPS is typically also respon-

sible for managing the switching of power to different spacecraft loads. Power-switching is

usually performed in response to commands from the spacecraft CDH subsystem, although

other events may sometimes trigger autonomous action on the part of the EPS. Figure 5.27

contains an example description of the power switching behavior of an EPS, excerpted from

the WIRE System Requirements [24].

A simple EPS power-switching behavior may consist of little more than translation of

commands received from the CDH into load-switching events which represent the opening

and closing of power relays. Such behavior is fairly straightforward to represent in CSP,

either as a lifted function, or more directly as a process expression.

Example 5.4.4.4. Recall the fixed-capacity EPS of example 5.4.4.1. We now extend that

EPS by adding a simple switching behavior. We first modify the definition of the EPScmd

type to include switch commands.

datatype EPScmd = eps tlm.OnOff | sw .Subsystem.OnOff

. . . Commands for controlling the power distribution relays are received from the
SCS [spacecraft computer system] over the 1553 data bus. The SPE [spacecraft
power electronics] decodes the command and provides pulse shaping and current
drive to the appropriate relays . . . Commands for controlling the power, solar array,
and pyro relays are initiated by the SCS. The SPE command timer provides a one-
time power “on” command to the ACE [attitude control electronics] power relays.

Fig. 5.27: EPS switch-command handling for the WIRE spacecraft.

159

The switching behavior is defined by the process CommandLogic. The CommandLogic

process runs in parallel with the rest of the EPS model. We assume that the execution of

switching commands is independent of the amount of available power, and therefore the

two processes are simply interleaved.

FixedCapacityEPS2 =

let

CommandLogic = cmd .sw?x → power .load switch!x → CommandLogic

within

CommandLogic ||| FixedCapacityEPS

�

The power-switching behavior in the preceding example is very simple, and could in fact

have been expressed directly as LiftF (cmd .sw , power .load switch, fID). Many spacecraft,

however, have somewhat more complicated switching behavior. For example, as fig. 5.27

and fig. 5.28 (excerpted from the WIRE System Requirements [24]) illustrate, the WIRE

spacecraft includes both a power-switching action which occurs upon EPS startup, and

switching of multiple loads simultaneously in response to both internal and external events.

However, even complex switching requirements tend to involve little beyond translating

events into switch actions. Thus, extending the behavior of the CommandLogic process

to handle these additional requirements is generally a straightforward matter of adding

external choice branches corresponding to each event which might cause a switch action,

and adding sequential behavior components to model things like startup behaviors.

The power subsystem includes an isolation relay to disconnect the non-essential
bus in the event that the spacecraft loads are drawing excessive current, the battery
is in an undervoltage condition, or when the spacecraft goes into safehold.

Fig. 5.28: Power buses on the WIRE spacecraft.

160

One issue that does need to be addressed in extending the power-switching behavior

to accommodate more complex requirements is the modeling of actions which can affect

multiple subsystems simultaneously. For example, the previously mentioned WIRE EPS

has the capability to switch off multiple loads at once. However, all of the switching events

we have described so far involve a single subsystem at a time.

Modeling a simultaneous switch action in terms of individual subsystem events is prob-

lematic for two reasons: first, the use of individual switching events can result in unnecessary

interleaving, which may cause an undesirable growth in the state-space of the system model;

second, the actual switch action will most likely be implemented using a single relay, which

means that the additional interleavings associated with using individual switching events

misrepresent the way the system is actually intended to operate. To circumvent these diffi-

culties, we define an auxiliary switching event, and require that all subsystem models which

will be affected by the event respond both to their individual subsystem switching events,

and to the new auxiliary event. This requirement can usually be fulfilled by applying the

renaming operator, as we do in the following example. By ensuring that all of the subsystem

models synchronize on the auxiliary switching event when they are composed into a system

model, we can model simultaneous switching without incurring any unwanted interleaving.

Example 5.4.4.5. The CommandLogic2 process approximates the power-switching behav-

ior of the WIRE EPS. Following the WIRE example, we split the power bus into an essential

bus and a nonessential bus:

channel essential bus,nonessential bus : Power

We assume that the sets

Essential ⊂ Subsystem.OnOff

Nonessential ⊂ Subsystem.OnOff

have been defined, and specify the power-switching commands that apply to each bus.

161

To the existing EPScmd datatype we add commands for triggering safehold powerdown

of the nonessential bus, and for triggering pyrotechnics. The additional channels deploy

and eps fault are respectively used to signal deployment events, and to abstractly model

overcurrent and undervoltage conditions.

datatype EPScmd= eps tlm.OnOff

| sw .Subsystem.OnOff

| safehold powerdown

| pyro.Mechanism

channel cmd : EPScmd

channel deploy : Mechanism

channel eps fault

The CommandLogic2 process itself is defined as

CommandLogic2 =

let

Init = essential bus.load switch.cdh.on

→ essential bus.load switch.adcs.on → SKIP

Operational =

(cmd .sw?x : Essential → essential bus.load switch!x → Operational)

2

(cmd .sw?x : Nonessential

→ nonessential bus.load switch!x → Operational)

2

(cmd .pyro?m → deploy !m → Operational)

2

(cmd .safehold powerdown

→ nonessential bus.load switch.all .off → Operational)

162

2

(eps fault → nonessential bus.load switch.all .off → Operational)

within

Init ; Operational

The process Init completes before the rest of the EPS behavior, and models internally-

triggered switch events which occur on EPS startup.

We model the capability of the EPS to shut off all power to loads on the nonessential

bus by assuming that the Subsystem datatype has been extended with the symbol all , and

that all of the subsystem models interfacing to the nonessential bus channel respond both

to switching commands involving their subsystem name, and to commands involving the

all symbol. The latter assumption is most easily accommodated through a renaming which

causes each subsystem switching event to be mapped both to itself, and to the all switching

event. For example, a Payload subsystem model could have the following renaming applied:

Payload [[nonessential bus.load switch.pl ← nonessential bus.load switch.pl ,

nonessential bus.load switch.pl ← nonessential bus.load switch.all]]

�

5.4.5 Communications

Spacecraft communications subsystems typically have a fairly simple behavior. The

role of the communications subsystem is essentially to transform internal spacecraft signals

into radio-frequency signals, and vice versa. However, although performing these transfor-

mations may require sophisticated electronics, the details of how the transformations are

accomplished is not a significant consideration for determining system behavior. Nor are

the details of modulation schemes or error control coding relevant at the level of abstraction

in which we are interested. Since the information content of the signals on each side of the

transformation is nominally the same, the communications uplinks and downlinks can be

treated as black boxes that simply move messages from a channel representing one kind of

163

signal to a channel representing a different kind of signal. The “messages” that are moved

between channels can be either symbols representing discrete packets of data, or symbols

that represent key transitions in a stream of data.

Example 5.4.5.1. We model the downlink portion of a communications subsystem as

a process that, when in a powered state, transforms messages on the systembus channel,

which represents an internal spacecraft signal, into messages on the downlink channel, which

represents a radio-frequency signal.

datatype SysBus = dl cmd .DownlinkMsg | · · ·

channel systembus : SysBus

channel downlink : DownlinkMsg

channel power : Power

Downlink =

let

DL(s) =

s = off & systembus.dl cmd?m → DL(s)

2

s = on & systembus.dl cmd?m → downlink !m → DL(s)

2

power .load switch.dl?s ′ → DL(s ′)

within

DL(off)

�

The Downlink process in the preceding example effectively provides single-message

buffering for downlinked messages, since any process that generates a message on the

systembus channel is free to proceed, while the Downlink process blocks until the occur-

rence of the downlink event which signals actual message transmission. If desired, multiple-

message buffering can be added using the buffer processes described in section 4.3.1.

164

We may sometimes wish to create a model in which no message buffering occurs, for

example to represent a command uplink which immediately passes received commands to

the CDH subsystem for execution. This requires a slightly different approach to modeling

the transformation from one type of signal to another, since instead of using two separate

events to represent the transformation we must somehow use a single event to simultaneously

signify the presence of a message on two different channels. This feat can be accomplished by

using the renaming operator to identify internal spacecraft events as radio-frequency events

from the perspective of an external transmitter or receiver. The role of the process which

represents the communications subsystem then becomes simply that of a “gatekeeper,”

either permitting or preventing the occurrence of a communications event depending on the

state of the subsystem.

Example 5.4.5.2. To model immediate execution of uplinked spacecraft commands we

construct an Uplink process which acts as a gatekeeper for the occurrence of the cmdin

events that signify receipt of a command by the CDH subsystem. We assume that commands

are received from an external source via the uplink channel.

channel cmdin, uplink : SpacecraftCommand

channel power : Power

Uplink =

let

UL(s) =

s = off & uplink?m → UL(s)

2

s = on & cmdin?m → UL(s)

2

power .load switch.ul?s ′ → UL(s ′)

within

UL(off)

165

To use the Uplink process, we place it in parallel with a process CDH , which is assumed

to represent the spacecraft CDH subsystem. The Uplink and CDH processes synchronize

on cmdin events. We apply a renaming to the composite process which makes cmdin events

appear as uplink events from the perspective of processes outside the renaming:

(Uplink |[{|cmdin|}]| CDH)[[cmdin← uplink]]

Now, when the Uplink process is in the off state the composite process directly accepts

uplink events, but does nothing with them since they are simply discarded by the Uplink .

When the Uplink process is in the on state the composite process also accepts uplink events,

but in this case the accepted events are actually renamed cmdin events, upon which the

CDH process synchronizes in order to receive the command message. Thus, the Uplink

process acts as a gatekeeper that only allows the CDH process to synchronize on command

message events when the Uplink is powered on. �

The basic communications subsystem behaviors that we have just described can be

extended in a few different ways. A more complex communications subsystem model might

include:

• Several different modes, each representing transmission or reception on different bands

(e.g. S-band vs. X-band) in terms of differing output or input channels. Transitions

between modes might occur upon command, or as the result of other spacecraft events.

• Subsystem mode power behavior, if communications subsystem load management is

a key part of the system behavior.

• Fault events, and associated fault-tolerance behaviors.

However, modeling of all of these extensions to the basic communications behavior can be

carried out using the same techniques as were discussed in section 5.4.2, so we will not

consider them further here.

166

5.4.6 Payload

The payload subsystem is the primary contributor to achieving the spacecraft mission,

and ultimately the reason for designing a spacecraft. Spacecraft missions can range from

providing a communications relay or a navigation signal, through various kinds of observa-

tional and data collection missions in pursuit of scientific or military goals [19], to proposed

ideas for missions such as on-orbit refueling or repair of existing satellites [125]. Conse-

quently, the type of payloads that make up the payload subsystem also varies widely from

spacecraft to spacecraft. However, as with other subsystems, modeling the behavior of a

payload subsystem in CSP involves abstracting from the internal details of how the payload

accomplishes its tasks, and focusing on defining the payload interactions at its command,

data, and power interfaces.

Even with the application of abstraction, payloads for different missions often have

widely differing expected behaviors. Some payloads may require little more as an input

than electrical power, and simply produce a steady stream of data. Other payloads, as

the excerpt from the WIRE Instrument to Spacecraft Computer System ICD [126] shown

in fig. 5.29 demonstrates, may require careful coordination with other subsystems in order

to successfully complete their tasks. As a result, unlike other spacecraft subsystems, it is

much more difficult to develop a general approach for creating payload behavior models.

Instead, we outline the basic questions that need to be addressed in developing a payload

process model.

The WIRE C&DH will use three commands to perform all of a WIRE observa-
tion segment; the first is a command to the ACS to specify observation location
and dither pattern; the second is to the WIRE instrument controller to initiate
the observation; the third is to the WIRE instrument controller and will be exe-
cuted about 20 seconds before the end of an observation segment and will perform
whatever finish/stim flash operations are required.

Fig. 5.29: Payload operation requirements for the WIRE CDH.

167

The questions that should be considered in developing a payload process model are:

• Inputs

– Does the payload depend on commands received from other subsystems? What

effect do these commands have?

– Does the payload behavior depend on data received from other subsystems? How

does this data alter or affect the behavior of the payload?

• Outputs

– Does the payload produce any data? If so, how is the data best represented in

the process model: as discrete messages or as a stream?

– For a message-based output, what triggers the production of a discrete message:

external events, or decisions internal to the payload?

– For a stream-based output, what are the qualitative values that an output data

stream can communicate, and what controls the current value of the stream? If

the stream is dependent upon a state, then a StateTelemetryStream process can

be applied to model the stream.

– Does the payload need to command other subsystems? Under what conditions

are these commands generated?

• Modes

– Does the payload have mode-dependent behavior? If so, a process which specifies

the payload behavior in different modes, and the events that trigger transitions

between different modes, such as that used for modeling the ADCS in exam-

ple 5.4.2.3, would be a good starting point for the payload process model.

– What is the power consumption in different modes? If the power consumption

varies, then it may be helpful to incorporate a SubsysModePower process into

the payload process model.

168

Example 5.4.6.1. As an example of working through the questions outlined above to

develop a process model, consider the behavior of a notional still-frame camera payload for

an observational mission:

• Inputs – We assume that, like the WIRE payload described in fig. 5.29, the camera

must be commanded to make an observation. However, unlike the WIRE payload,

we assume that each observation corresponds to the collection of a single image.

Therefore, the observation can be adequately modeled as a single input event, and

the camera does not require a command to terminate an observation. No data inputs

are required.

• Outputs – Since observations are modeled as single events which occur upon com-

mand, the data output from the camera payload is most easily modeled in terms of

discrete messages. We assume that each message contains image data in a bitmap

format, and that communication of these messages immediately follows collection of

an image.

• Modes – We assume that the camera has only two modes: on (powered) and off

(unpowered). In the off mode the camera does nothing. In the on mode it responds

to command inputs by making an observation and producing a data output. Tran-

sitions between the two modes are triggered by EPS switching events. The power

consumption in each mode is defined by the mapping

fCameraModePower : CameraMode → Integer

fCameraModePower = {(off , 0), (on, 5)}

We model observation events using the channel camera. Since, from the description

above, the actual data taken during an observation event has no impact on the behavior of

the payload, we model it as a single abstract symbol at this point.

169

datatype CameraData = image

channel camera : CameraData

Based on the description above, we define the following datatypes and channels to

represent the camera command and data interfaces. We also include a specification event

channel to signal mode transitions. The power interface uses the same channel and type

structure described in previous sections.

datatype CameraCmd = take image

channel pl cmd : CameraCmd

datatype CameraTlm = bitmap.CameraData

channel pl tlm : CameraTlm

channel camera modetrans : ModeTrans.OnOff

We construct the Payload process model from a parameterized process represent-

ing the behavior of the camera in each of its two modes, and a SubsysModePower pro-

cess. The behavior of the camera in the on mode formalizes the description of the com-

mand/observation/output sequence described above.

Payload =

let

Camera(off) =

(power .load switch.payload .on → camera modetrans.begin.on

→ camera modetrans.end .on → Camera(on))

2

pl cmd .take image → Camera(off)

Camera(on) =

(power .load switch.payload .off → camera modetrans.begin.off

→ camera modetrans.end .off → Camera(off))

170

2

(pl cmd .take image

→ camera?i → pl tlm.bitmap!i → Camera(on))

within

(Camera(off)

|[{|camera modetrans|}]|

SubsysModePower(off , camera modetrans,

power .load delta.payload ,

fPayloadModePower)) \ {|camera modetrans|}

�

5.4.7 Propulsion

The propulsion subsystem of a spacecraft provides the capability to exercise control

over the orbit of the spacecraft, either changing to a new orbit, or maintaining an existing

orbit in the face of external perturbations. Propulsion is sometimes also used to support

spacecraft attitude control, either directly, by modifying the attitude, or indirectly, by pro-

viding a torque suitable for removing accumulated spacecraft angular momentum. Almost

all spacecraft propulsion is carried out using some type of rocket, and it is on this form of

propulsion that we focus our behavior modeling efforts.

In comparison to most of the other spacecraft subsystems, propulsion subsystems typi-

cally have a fairly simple behavior. Like the example in fig. 5.30, most propulsion subsystems

consist of little more than thrusters, propellant tanks, and plumbing to carry propellant be-

tween the tanks and the thrusters. Control over the thrusters is exercised by opening and

closing valves contained in the thrusters, and in the propellant lines. Our modeling of

propulsion system behavior centers on the states of these valves, and how changes in the

valve states affect the orbit state and the quantity of propellant remaining.

The elements of our approach to propulsion behavior modeling are the following:

• We model the propellant as an integer-valued quantitative resource (see section 4.3.1).

171

Pr
es
su
ra
nt

Station
Keeping
Thrusters

Attitude
Control
Thrusters

Latch
Valves

Propellant

Fig. 5.30: Example schematic for a monopropellant blowdown propulsion subsystem.

• We model the orbit state as an abstracted set of qualitative symbols, similar to the

way that attitude states were modeled in section 5.4.2.

• We abstract from individual thrusters, and consider the state of the propulsion subsys-

tem as an aggregate of the underlying thruster states, which may either be providing

thrust, or not. The effects of a given thruster burn are determined by abstract pa-

rameters carried in the events which signal the start and end of a burn, rather than

in the actual choice of individual thrusters to fire.

• For simplicity, we assume that the ∆v required for a given maneuver is always the

same, and that the propellant consumed to produce that ∆v also remains constant

over the operational life of the spacecraft.

• We model the change in propellant level that results from a maneuver as a single delta

event applied to the QuantResource that represents the propellant level. The delta

event occurs between the events that represent the beginning and end of the burn

used to execute a maneuver.

The following example illustrates the preceding ideas in action.

172

Example 5.4.7.1. Consider a typical spacecraft propulsion system, capable of providing

both orbit adjustments, and dumping of spacecraft momentum. These two different types

of maneuvers are represented by the datatype

datatype BurnType = momentum dump | orbit maneuver .OrbitState

where the OrbitState type defines the qualitative orbit states the spacecraft may take on:

datatype OrbitState= launch orbit

| transfer orbit

| mission orbit

| disposal orbit

The explicit interface to the propulsion subsystem consists of commands to actuate

latch valves, which enable and disable the thruster systems as a whole, and commands to

start and stop thruster burns of a given type. The latter are an abstract representation

of underlying concrete commands to actuate particular combinations of individual thruster

valves.

datatype OpenClose = open | close

datatype PropCmd = latch valve.OpenClose

| start burn.BurnType

| stop burn.BurnType

channel prop cmd : PropCmd

The orbit channel provides an implicit interface between the propulsion model and

models of other subsystems that depend on the orbit state.

channel orbit : StateIF .OrbitState

173

Internally, the propulsion subsystem process model includes a QuantResource process

representing the available amount of propellant. The following channels define the specifica-

tions events that form the interface for this QuantResource process. The value MAXPROP

represents the maximum (integer-scaled) quantity of available propellant.

MAXPROP = 15

channel prop delta, prop getval , prop trans : {−MAXPROP ..MAXPROP}

The Prop process defines the behavior of the propulsion subsystem. Within this pro-

cess, the Orbit and Propellant processes represent the orbit state and propellant level respec-

tively. The DUMP DELTA constant and the fProp function define the change in propellant

level associated with each kind of maneuver. We assume that maneuvers in which the

starting and final states are mission orbit represent station-keeping maneuvers. Maneu-

vers that generate orbit state transitions not explicitly defined by fProp are assumed to be

errors, and generate a maximal change in propellant level. The Off , Standby , OrbitAdjust ,

and MomentumDump processes define the different modes of the propulsion subsystem.

Prop =

let

Orbit = AssignableState(orbit .setval , orbit .getval ,

orbit .trans, launch orbit)

Propellant = QuantResource(prop delta, prop getval ,

prop trans, 0,MAXPROP ,MAXPROP)

DUMP DELTA = −1

fProp(launch orbit , transfer orbit) = −5

fProp(transfer orbit ,mission orbit) = −2

fProp(mission orbit ,mission orbit) = −1

fProp(mission orbit , disposal orbit) = −5

fProp(,) = −MAXPROP

174

Off = prop cmd .latch valve.open → Standby

Standby =

prop cmd .latch valve.close → Off

2

prop cmd .start burn.orbit maneuver?s ′ → OrbitAdjust(s ′)

2

prop cmd .start burn.momentum dump → MomentumDump

OrbitAdjust(s ′) =

orbit .getval?s

→ prop delta!fProp(s, s ′)

→ orbit .setval !s ′

→ prop cmd .stop burn.orbit maneuver .s ′

→ Standby

MomentumDump =

prop delta!DUMP DELTA→

prop cmd .stop burn.momentum dump → Standby

within

((Off |[{|prop delta|}]| Propellant) \ {|prop delta|}

|[{|orbit .getval , orbit .setval |}]|

Orbit) \ {|orbit .setval |}

�

The basic modeling approach just outlined can easily be extended with additional

commands and subsystem modes to model design-specific propulsion components, such

as the catalyst-bed heaters found in many mono-propellant systems. We can also use

the modeling techniques described earlier in this chapter to incorporate things like fault

events and fault tolerance measures, and load delta events to represent variations in power

consumption in different propulsion modes.

175

5.4.8 Structures and Mechanisms

Spacecraft structures and mechanisms are often grouped into a single subsystem [9,19],

which provides both mechanical support for the rest of the spacecraft subsystems, and

motion for those subsystems which require it. Spacecraft structures do not generally exhibit

behavior, at least in the sense that we are using the term in this dissertation. Low-cyclic

spacecraft mechanisms provide deployment of spacecraft components that must be stowed

for geometric or environmental reasons, such as deployable solar arrays or antennas. High-

cyclic mechanisms provide articulation for components that are required to move relative to

the rest of the spacecraft to perform their function, such as sun-tracking solar arrays [19].

The behavior associated with both kinds of mechanisms is straightforward, and can be

modeled in terms of commanded changes in qualitative states.

The states for deployment mechanisms are essentially binary: either the actuated com-

ponent is deployed, or it is not. Modeling the behavior of such a mechanism is a simple

matter of changing the deployment state based on received commands.

The states used to represent articulation mechanisms are typically more complex than

those for deployment mechanisms, since it may be necessary to represent key changes in

the position or speed of the articulated component. The typical behavior exhibited by

articulation mechanisms is well-suited to a modeling approach essentially the same as that

used to model attitude control in section 5.4.2, in which commands are translated into

changes in the value of the qualitative state.

We model the effect of both deployment and articulation mechanisms, on the spacecraft

components they are intended to control, in terms of implicit interfaces tied to the state of

the mechanism. Although we consider “mechanisms” as a separate subsystem, it is usually

more convenient to include a mechanism process model as part of the larger process model

for the subsystem to which the mechanism provides service, rather than grouping all of the

mechanism process models as an explicit subsystem process of their own. This approach

has the advantage of making obvious the association between each mechanism and the

subsystem to which that mechanism provides services.

176

Example 5.4.8.1. An instrument payload for a scientific spacecraft relies on a deployable

antenna for its measurements. The antenna is a two-piece component, and both pieces must

be deployed in order for samples taken using the antenna to provide meaningful data.

In this case, we model the deployment state of the mechanism as a set containing

the identifiers of the deployed antenna elements. Reception of a deploy .ant command by

the deployment mechanism results in the identifier included as part of the command being

added to the deployed set.

datatype DeploymentCmd = ant .{1..2}

channel deploy : DeploymentCmd

Reports of a successful deployment are communicated to other subsystems through the

payload telemetry interface.

datatype PLtlm = tlm deploy .{1..2} | · · ·

datatype SysBus = pl tlm.PLtlm | · · ·

channel systembus : SysBus

The Payload process model includes the process model for the deployable antenna. The

interaction between the antenna and the instrument it supports take place via the implicit

interface antenna. When the antenna has been fully deployed, the antenna process permits

meaningful sample data to be taken by the instrument. Otherwise, the instrument receives

only junk data. We leave out the process model for the instrument, since it isn’t relevant

to defining the mechanism model.

datatype ScienceData = sample | junk

channel antenna : ScienceData

177

Payload =

let

Instrument = [Instrumentprocessmodel]

Antenna(deployed) =

(deploy .ant?x → systembus.pl tlm.tlm deploy !x → Antenna(deployed ∪ {x}))

2

(#deployed = 2) & antenna!sample → Antenna(deployed)

2

(#deployed 6= 2) & antenna!junk → Antenna(deployed)

within

(Instrument |[{|antenna|}]|Antenna(∅))

�

As with other subsystem behavior modeling approaches, the techniques described here

for modeling mechanism behavior can readily be extended to incorporate additional behav-

ior, such as faults and power consumption variations.

5.4.9 Thermal Control

The thermal control subsystems of most spacecraft designs are primarily passive. That

is, thermal regulation of the spacecraft is achieved by applying a combination of surface

finishes, radiators, and insulation to modulate heat absorption and rejection. There is no

behavior, in the sense that we use the term, associated with these approaches to thermal

control, and thus no need to develop a thermal control process model. However, some

spacecraft thermal control subsystems make use of active thermal control, in the form of

things like heaters, pumped fluid loops, and louvers. These active thermal controllers are

typically operated in a closed-loop manner, and do have some behavior associated with

them, although it tends to be fairly straightforward behavior.

When an active thermal control subsystem is operating correctly, the system-level ef-

fects of the controller appear primarily as variations in power consumption. In a process

178

model of an active thermal control subsystem, changes in the thermal control power con-

sumption may be triggered by external events (e.g. the occurrence of eclipse), as well as

implicit interface events or specification events (e.g. mode transitions) which signal changes

in the thermal state of some other subsystem. A thermal control failure may induce a

corresponding fault event in a thermally sensitive subsystem.

Example 5.4.9.1. A simple active thermal control subsystem has a power consumption

which varies depending on whether or not the spacecraft is presently in sunlight, or in

eclipse. The behavior of this subsystem can be modeled as a mode-based control system

similar to the ADCS models of section 5.4.2, except that instead of translating commands

into attitudes, the thermal control behavior translates thermal events (the transitions to

and from eclipse in this case) into load delta events.

datatype SunState = in sun | eclipse

channel sun state = StateIF .SunState

ThermalControl =

let

Controller(off) = power .load switch.thermal .on →

((sun state.getval .in sun

→ power .load delta.thermal .5→ Controller(in sun))

2

(sun state.getval .eclipsed

→ power .load delta.thermal .10→ Controller(eclipsed)))

Controller(in sun) =

power .load switch.off → power .load delta.thermal .− 5→ Controller(off)

2

sun state.trans.eclipse → power .load delta.thermal .5→ Controller(eclipsed)

179

Controller(eclipsed) =

(power .load switch.off → power .load delta.thermal .− 10→ Controller(off))

2

(sun state.trans.in sun → power .load delta.thermal .− 5

→ Controller(in sun))

within

Controller(off)

�

5.5 System Analysis

Subsystem process models developed using the approaches described in the previous

section are useful for precisely defining the behavior of individual subsystems. However, the

real value of such models lies in being able to analyze the behavior that emerges when the

subsystem models are connected together, and interact with one another. In this section, we

describe how subsystem models may be combined into a system model suitable for analysis.

More importantly, we look at how the resulting system models can be analyzed to verify

that the system possesses desirable properties. We focus on checks that can be automated

using FDR. Appendix D contains a machine-readable CSP example of a spacecraft behavior

model built using the approach developed in this chapter, and several examples of property

verification on this model.

5.5.1 Connecting Subsystems

The connections between subsystems can be as critical to defining overall spacecraft

system behavior as the behavior of the individual subsystems. Obviously, missing connec-

tions between subsystems, such as the failure to connect a subsystem command input to the

command bus, will produce a non-functional spacecraft. But, in addition, the configuration

of the connections between subsystems can be an important design consideration. For ex-

ample, the choice between allowing individual subsystems to communicate directly with one

180

another, or requiring all inter-subsystem communication to be routed through some central

executive, may have important implications for the management of overall spacecraft state

and the robustness of the spacecraft to single-point failures.

Given a selection of subsystem behavior models, part of the spacecraft system design

process may involve experimenting with different configurations of subsystem interconnec-

tions, and exploring the resulting behavior of the composite system. Even if this is not the

case, providing an explicit definition of how the spacecraft subsystems are connected to form

the composite system is a key part of defining the spacecraft system, as illustrated by the

prevalence of system block diagrams in spacecraft design documentation, and a necessary

prerequisite to the analysis of a composite system model.

Although any of the synchronizing parallel operators provided by CSP could probably

be applied to define the composition of spacecraft subsystem process models into a system

model, our approach relies on the use of the generalized alphabetized parallel operator.

Unlike the binary parallel operators, building a multi-process composition using the gener-

alized alphabetized parallel operator does not require consideration of the order in which

the subsystems are composed when defining the interface set for each subsystem process.

Instead, using the generalized alphabetized parallel operator, we simply define an interface

set for each subsystem which specifies exactly those channels over which the subsystem is

willing to communicate. Connections between a given pair of subsystems are then defined

by the existence of a non-empty intersection between the interface sets of the two subsystem

process models. This aspect of the generalized alphabetized parallel operator makes it an

appealing choice for defining subsystem composition, since it means that subsystem process

models can be added to, modified, and removed from, the composite system model without

requiring any changes in the interface sets of other subsystem process models.

Definition 38 (Spacecraft System Model). A spacecraft system model is a composite pro-

cess of the form

SysModel = ‖(IF ,Subsys) : Subsystems • IF ◦ Subsys

181

where Subsystems is a set of 2-tuples, with each 2-tuple consisting of a subsystem process,

Subsys, and a corresponding interface set, IF ⊆ α(Subsys). �

Due to the semantics of the alphabetized parallel operator used in definition 38, the

interface set for each subsystem must include any specification events that we want to be

visible at the level of the composite system model. Events which we do not want to be

visible must be hidden within the subsystem process model, since if they are not hidden,

and do not appear in the interface set, they will be blocked from executing.

As a consequence of using synchronization on common channels to define subsystem

connectivity, the connections between subsystems are, to a certain extent, governed by the

choice of channels that we use in building the models of each subsystem. However, while all

of the examples we have presented in this chapter embed the use of specific channels within

the behavior description, there is nothing to prevent us from defining subsystems models

such that they are parameterized by their interface channels. Even in the case of process

models that include embedded channel names, the CSP renaming operator can be used to

redefine the names of these channels at the interface between the subsystem model and the

rest of the system. As a result the definition of subsystem connectivity ultimately resides

in the the interface sets which specify how the subsystems process models synchronize with

one another.

Example 5.5.1.1. Assume that we have defined a collection of spacecraft subsystem pro-

cess models, consisting of the processes ADCS ,CDH ,Comm,EPS , and Payload . To define

a composite spacecraft system model, we first define the interface sets for each subsystem.

ADCSIF = {|power .load switch.adcs, power .load delta.adcs,

systembus.adcs cmd , systembus.adcs tlm,

attitude.trans, fault |}

CDHIF = {|power .load switch.cdh, cmdin, systembus|}

CommIF = {|cmdin, power .load switch.ul , downlink ,

systembus.dl cmd , power .load switch.dl |}

182

EPSIF = {|separation, power , systembus.eps cmd , attitude.trans,

deploy , qr exception, eps exception|}

PayloadIF = {|power .load switch.payload , power .load delta.payload ,

systembus.pl cmd , instrument , systembus.pl tlm,

deploy .antenna|}

For most of the subsystems, the interface set simply consists of the appropriate com-

mand, telemetry, and power channels. However, a few of the subsystems also include spec-

ification events intended to be visible at the system level. Thus, for example, the EPSIF

interface set includes the exception-events qr exception, and eps exception, since we want

to be able to verify at the system level that they do not occur. However, EPSIF does not

include the events which are internally used to track the levels of allocated and available

power within the EPS, and as a consequence the definition of the EPS process model will

need to hide these events.

Given the interface sets defined above, the composite spacecraft system model is

Subsystems = {(CDHIF ,CDH),

(EPSIF ,EPS),

(ADCSIF ,ADCS),

(PayloadIF ,Payload),

(CommIF ,Comm)}

SCsys = ‖(IF ,Subsys) : Subsystems • IF ◦ Subsys[[cmdin← uplink]]

Note that this composite model includes a renaming that maps the cmdin channel to

the uplink channel, as described in sec. 5.4.5.

Figure 5.31 illustrates the connections between subsystems defined by the preceding

CSP expressions. �

183

CDHDownlink

Uplink

ADCS EPS

Payload

powersystembus

separation

downlink

uplink

deploy

attitude

cmdin

Fig. 5.31: System block diagram corresponding to the CSP in example 5.5.1.1.

5.5.2 Verifying System Behavior

Verification involves determining whether or not a given design is, in some sense, correct.

The correctness of a design is not an absolute, but rather is relative to the requirements

the design seeks to fulfill. Correctness is decided by analyzing the design to ensure that

it possesses certain desirable properties. Classical conceptual-level spacecraft design and

analysis [19] focuses on properties such as positive launch mass margin, i.e. the spacecraft

mass is less than the launch mass capability of the intended launch vehicle, and positive

power margin, i.e. the spacecraft EPS is capable of producing more power than is consumed

by the other subsystems. These properties are verified by, for example, summing simplified,

abstracted models of the mass of individual subsystems to find a total system mass, and

comparing it against the required maximum spacecraft system mass. In the similar way,

we seek to verify that the behavior of the spacecraft is correct by “summing” simplified,

abstracted models of the behavior of individual subsystems into a system behavior model,

and comparing the resulting system behavior against various required behavioral properties.

184

In this section we consider several different kinds of system behavior properties which

can be expressed in CSP, and automatically verified using the FDR refinement checker.

In defining these properties, we follow the nomenclature developed by Avizienis et al. for

describing different characteristics of dependable systems [127], using the term error to

refer to an internal problem within a system, and service failure (which is not the same as

a failure in the CSP process-semantics sense) to refer to an observable deviation from the

behavior required of the system. Since all of the examples in this section are intended to

be representative of checks that can be performed using FDR, we use the machine-readable

CSPM syntax throughout the section. The sample spacecraft system model in appendix D

includes a complete system model of a spacecraft against which example properties of the

kinds defined in this section can be verified.

5.5.3 Model Sanity

The most straightforward properties that we might verify for a given spacecraft system

model are basic sanity checks that ensure the model is producing meaningful results. In

classical spacecraft conceptual design, model sanity can be checked by, for example, verifying

that the proportions of mass allocated to the different subsystems are not wildly outside of

the historical range. In the realm of spacecraft behavior design, we can check model sanity

by verifying that the modeled spacecraft is able to operate at all (i.e. that it is free of

halt-failures), regardless of whether or not those operations are correct. In particular, we

can verify that the spacecraft model has the properties freedom from livelock, and freedom

from deadlock.

Freedom from livelock indicates that the spacecraft never reaches a state in which the

subsystems continue to communicate with one another, but the system no longer produces

observable outputs or responds to external inputs. A spacecraft which continues to maintain

its attitude, and to collect data, but which never accepts commands from the ground station,

and never transmits data, can be considered to be in a livelocked state. While a spacecraft

in a livelocked state is, in some sense, still operating, it is effectively non-operational from

an external perspective.

185

Example 5.5.3.1. The example in appendix D includes a check for freedom from livelock,

expressed as an FDR assertion that the SCsystem’ process does not diverge.

assert SCsystem’ \ union(Faults, {|deploy|}) :[divergence free]

Some explanation of the preceding assert statement is in order. The definition of

SCsystem’ hides internal spacecraft channels such as system and power buses. The channels

for uplink, downlink, and launch vehicle separation remain externally observable. To aid the

verification of other properties, the channel deploy, which signals mechanical deployments,

and the channels

Faults = {|fault, qr_exception, eps_exception|}

which represent different faults and errors are also left observable. However, for the livelock-

freedom check we hide the fault and deployment channels. As a result, verifying that the

spacecraft model is free of livelock ensures that the spacecraft will always eventually perform

some kind of interaction via the uplink, downlink, and separation channels. Furthermore,

since the separation event can only occur once (as part of EPS initialization) the livelock-

freedom check ensures that the spacecraft will always eventually either accept an uplinked

command, or provide some kind of downlink signal. �

Freedom from deadlock indicates that the spacecraft never reaches a state in which it

is “stuck,” or no longer operating. A successful check for deadlock-freedom ensures that

none of the subsystems make unwarranted assumptions about which communications to

expect from the other subsystems. A deadlock situation might occur when, for example,

a particular subsystem does not perform a deployment that is required for the rest of the

mission to proceed, leaving all of the other subsystems waiting for a signal indicating a

successful deployment.

Example 5.5.3.2. The example in appendix D includes a check for freedom from deadlock,

expressed as an assertion that the SCsystem process failures refines the process DFtick.

assert DFtick [F= ((SCsystem [|Faults|] CHAOS(Faults)) \ Faults)

186

There are two points to note about the preceding assertion. The first point is that we

perform lazy abstraction of events in the set Faults prior to carrying out the refinement

check, which ensures that deadlock-freedom of the SCsystem process does not rely on the

occurrence of fault events – a spacecraft that requires faults to occur in order to operate

is obviously undesirable. The second point is that, for the same reasons outlined in exam-

ple 4.3.4.2, we use the DFtick process to test deadlock-freedom, rather than FDR’s built-in

deadlock check. �

As with the sanity checks used in classical conceptual design, there is no requirement

that a spacecraft must pass the sanity checks. Rather, a failure to pass these checks may be

an indication that the spacecraft is being called upon to do something unusual. However,

designers should make sure that they understand why the check in question failed, and be

able to elucidate the justification for proceeding with the design in the face of such a failure.

5.5.4 Avoiding Bad Behavior

The model sanity checks just discussed are useful for ensuring that a given spacecraft

system model describes a spacecraft that does not unintentionally cease to operate. How-

ever, the sanity checks say nothing about whether or not the operations the spacecraft

performs actually conform to the requirements of a particular mission. We consider here

the problem of ensuring that the spacecraft never behaves in a way that is forbidden by its

requirements. Verification of such a property is analogous to, for example, verifying that

the intended spacecraft geometric configuration does not exceed the envelope of the launch

vehicle fairing.

System properties that forbid certain actions are sometimes referred to as safety prop-

erties. For spacecraft behavior verification, we distinguish two different kinds of safety

properties. The first is concerned with errors in internal spacecraft states, without regard

to their impact on external behavior. The second kind of property focuses on externally

observable service failures involving forbidden behavior, without considering internal states.

These two kinds of properties have slightly different uses. Verifying the first kind of prop-

erty helps to ensure that the spacecraft design operates as intended, while verifying the

187

second kind of property ensures that the spacecraft fulfills its requirements. On first glance,

the goals of verifying both kinds of properties may appear to be the same. However, it is

entirely possible for a design to operate as intended, but for the intentions of the designer

to not correctly fulfill the requirements. Similarly, a design may meet its requirements, but

do so in an unintended manner, indicating that the designer does not fully understand the

design. Verification of both kinds of properties is therefore useful.

Errors

In many cases, verifying that a spacecraft model is free of a particular class of error

can be as simple as checking that the events which signal entry into a particular erroneous

internal state can never occur. A check of this kind can be readily expressed in terms of a

trace refinement assertion of the form

assert STOP [T= Sys \ diff(Events, Err)

where Sys is a system model, and Err is a set of events that signal a particular class of

errors. The assertion evaluates to true if none of the traces of Sys contain an event in Err.

Example 5.5.4.1. The SCsystem model in appendix D can be verified error-free with re-

spect to overconsumption and underproduction of electrical power by checking the assertion:

assert STOP [T=

SCsystem \ diff(Events, {|qr_exception, eps_exception|})

�

The simple assertion described above identifies any occurrence of a particular event

as an error. However, some kinds of errors involve events which are acceptable in certain

situations, but not in others. This is particularly true of errors that result from an in-

teraction between subsystems, since the events produced by one subsystem may only be

erroneous when another subsystem is in certain states. In these cases, a more complex pro-

cess specification which defines the acceptable and unacceptable sequences of events must

be developed. The form of the specification depends heavily on which sequences of events

188

are considered acceptable, although generic specifications such as the Between and Outside

constraint processes defined in the previous chapter often provide a good starting point.

Example 5.5.4.2. To verify that the SCsystem model contained in appendix D only per-

mits the science instrument to be used when the spacecraft is in the science attitude, we

make use of the following assertion:

GoodAtt = {attitude.trans.earth_limb_scan}

BadAtt = diff({|attitude.trans|}, GoodAtt)

assert Between(GoodAtt, BadAtt, {|instrument.sample|}) [T=

SCsystem \ diff(Events, {|attitude.trans, instrument|})

The assertion evaluates to true if instrument.sample events, which indicate instru-

ment use, only occur when the spacecraft is in the earth_limb_scan attitude. �

Failures of Commission

By failures of commission, we mean spacecraft service failures which involve the oc-

currence of a forbidden sequence of events at the interface between the spacecraft and its

end-users. Typically, the interface in question involves channels representing uplinks, down-

links, and interfaces with the launch vehicle. Verifying the absence of failures of commission

is different from verifying the absence of errors, in that the former says nothing about how

the spacecraft internally accomplishes the avoidance of those failures. However, defining

checks for failures of commission allows end-user expectations about the behavior of the

spacecraft to be directly captured as part of the formal modeling process, and ensures that,

from the perspective of a user, the spacecraft never does anything unexpected.

As with checks for freedom from errors, simple checks for freedom from failures of com-

mission, i.e. checks for properties that involve placing an absolute ban on certain events, can

easily be expressed using the same assertion form that we used for verifying simple error-

freedom properties. However, more complex limitations on permissible behavior again re-

quire the development of property-specific assertions. The following two examples illustrate

both kinds of check.

189

Example 5.5.4.3. Appendix D includes an example of a simple check to verify that the

only science data transmitted over the downlink is data collected after the instrument an-

tennas have been deployed, and while the spacecraft is in the required attitude for science.

Acceptable science data transmissions are defined as the set of missiondata messages con-

sisting of a sample (rather than junk) taken in the earth_limb_scan attitude:

GoodScienceOutput =

{downlink.missiondata.formatted.(m,a) | m <- {sample},

a <- {earth_limb_scan}}

The property to be checked is expressed as an assertion that no trace of the SCsystem

process contains any missiondata message not contained in the GoodScienceOutput set.

BadScienceOutput = diff({|downlink.missiondata|}, GoodScienceOutput)

assert STOP [T= SCsystem \ diff(Events, BadScienceOutput)

Note that successful verification of this property does not guarantee that the spacecraft

will not collect science data in attitudes other than the earth_limb_scan attitude. It only

guarantees that if any data is collected in other, undesirable attitudes, that data will not

be downlinked to the ground station. �

Example 5.5.4.4. An example of a slightly more complex verification of freedom from

failures of commission is a check to ensure that the SCsystem process never attempts to

make downlink transmissions before the spacecraft has separated from the launch vehicle.

The property in question is not an absolute ban on downlink events – a spacecraft which

obeyed such a ban would be less than useful – but rather a ban on those events which lasts

up until the occurrence of the separation event. The following assertion captures this

requirement:

SepPrecedesDownlink = separation -> RUN({|downlink|})

assert SepPrecedesDownlink [T=

SCsystem \ diff(Events, {|separation,downlink|})

190

5.5.5 Requiring Good Behavior

Checking safety properties ensures that the spacecraft doesn’t do anything that it

should not. But safety properties cannot guarantee that the spacecraft will do those things

it is supposed to do, or even that it will do anything at all. Just as a spacecraft launch mass

requirement can be met by launching an inert block of metal, a required safety property

can be provided by simply launching a spacecraft that does nothing. Obviously, neither

of these spacecraft would be particularly useful. Thus, in addition to negatively defining

what the spacecraft may do, it is also necessary to positively define what the spacecraft

must do. Properties that specify behaviors which must occur are sometimes referred to as

liveness properties. There are several different kinds of liveness properties that are relevant

to spacecraft behavior. We consider three of those kinds of properties here: scenarios,

mandatory internal states, and freedom from service failures of omission.

Scenarios

Scenarios are perhaps the simplest way to specify what a spacecraft must do. Designers

typically have at least a nominal mission scenario in mind when developing a spacecraft

design. The act of building a spacecraft system model can help to clarify the nominal mission

scenario, and also to identify other possible operational scenarios. Although individual

scenarios can be checked using a process exploration tool such as ProBE, verification that

a spacecraft system model, especially one with many hidden internal states, is capable of

operating in accordance with a given scenario can be performed in a much faster, easier, and

more repeatable manner by testing the scenario using a check within FDR. Indeed, it may

be useful to develop a suite of such checks, each defining a different intended operational

scenario. The spacecraft model can then be automatically checked against every scenario

it is expected to be capable of performing. The suite of checks can be re-run whenever the

spacecraft design is changed, to ensure that the design change has not altered the spacecraft

behavior such that it can no longer operate in the desired way.

We assume that an individual scenario can be described as a single, linear, finite se-

quence of events which describes an expected series of interactions between the spacecraft

191

and its end-users. Thus, an individual scenario can be modeled as an EventSeq process, as

defined in sec. 4.2.1. Our approach to automatically verifying the capability to perform a

scenario is essentially a form of must-testing [99]: we place the spacecraft model in parallel

with a process representing the scenario to be verified, and follow successful termination of

the scenario event sequence with a special event which denotes successful completion of the

test. We use a failures/divergences refinement assertion of the form

assert (success -> STOP) [FD=

(Sys [|ScenIF|] (EventSeq(S); success -> STOP))

\ diff(Events, {success})

to check that the model Sys is capable of performing the scenario defined by EventSeq(S).

The refinement check will succeed if the composite process on the right-hand side of the

expression is cannot refuse to produce a success event. A failed refinement check indicates

that the model and scenario processes are able to deadlock or diverge prior to reaching

the success event, and thus that the spacecraft is somehow able to refuse to provide the

behavior expected of it.

Example 5.5.5.1. Appendix D contains a definition of a simple mission scenario, in which

the spacecraft is initialized into its science data collection mode, and then downlinks a valid

science sample. A diagram of the scenario appears in fig. 5.32. In CSP, the scenario is

defined in terms of events on the separation, downlink, and uplink channels:

ScenIF = {|separation,downlink,uplink|}

Scenario =

EventSeq(<separation,

downlink.modestatus.launch,

downlink.modestatus.safe,

uplink.mode.nominal,

downlink.modestatus.nominal,

uplink.att.science_attitude,

downlink.missiondata.formatted.(sample,earth_limb_scan)>)

192

Launch Vehicle Spacecraft Ground Station

separation

downlink.modestatus.launch

downlink.modestatus.safe

uplink.mode.nominal

downlink.modestatus.nominal

uplink.att.science_attitude

downlink.missiondata

Fig. 5.32: Message sequence chart for the scenario described in example 5.5.5.1.

Because successful execution of the scenario is predicated on the assumption that no

faults occur during the execution of the scenario, we suppress fault events by placing the

SCsystem’ process in parallel with STOP, synchronizing on Faults. The resulting refinement

assertion is:

assert (success -> STOP) [FD=

((Scenario; success -> STOP)

[|ScenIF|]

((SCsystem’ [|Faults|] STOP)))

\ diff(Events, {success})

A check of the preceding assertion is successful, indicating that the spacecraft is capable

of performing the specified scenario. Appendix D also includes an example of a refinement

check for an invalid scenario, which omits the science attitude required by the spacecraft to

initiate science data collection, and thus results in a failed check. �

193

Mandatory Internal States

In sec. 5.5.4 we introduced the idea of defining safety properties applicable to the in-

ternal states of a spacecraft model. In addition to defining safety properties for internal

spacecraft states, it is also useful to define liveness properties for these same states. Typ-

ically, what we wish to be able to specify is that a particular state or collection of states

is not just reachable, but that under certain circumstances those states must be reached.

That is, that the states in question are mandatory. Liveness properties of this sort are useful

both for verifying that a system model is parsimonious, i.e. that it does not include unused

states, and that our understanding of why the model reaches certain states is correct.

We formulate checks for mandatory internal states using an assumption/commitment

specification style [128] in which the assumption encodes the conditions under which a given

set of states is mandatory, and the commitment is that the mandatory internal states will

occur. The generic form of an assumption/commitment assertion in CSP is

assert Commitment [FD=

(Sys [|AssumpIF|] Assumption) \ diff(Events, CommIF)

where AssumpIF is the alphabet of the Assumption process, and CommIF is the alphabet

of the Commitment process. The assertion states that, given some assumption about the

behavior of the environment in which Sys is operating, the behavior of Sys, when viewed in

terms of just those events in CommIF, will not appear to be divergent, will not generate any

traces forbidden by Commitment, and will not block any events required by Commitment.

Example 5.5.3.2 includes a simple example of an assumption/commitment assertion, in

which the assumption involves the occurrence of fault events, and the commitment is that

the spacecraft be free of deadlock.

Example 5.5.5.2. Among the example liveness properties in appendix D is a refinement

check which verifies that the spacecraft achieves all of the controlled attitude states into

which it can be commanded. The controlled attitudes, and the corresponding attitude state

transitions are:

ControlledAtt = {sun_pointing, earth_limb_scan}

194

AttTrans =

{|attitude.trans.sun_pointing,attitude.trans.earth_limb_scan|}

The assumption in this case involves the commands that may be sent to the spacecraft.

Specifically, we assume that the spacecraft may be either left in its safe mode, or commanded

into the nominal mission mode. We further assume that every attitude command is sent

once, although the order in which the commands are sent is arbitrary. Because the inter-

leaving operator is used to compose the two command assumptions, any combination of

mode and attitude command is possible.

Assumption =

let

ModeCmdAssumption = ((uplink.mode.nominal -> STOP) |~| STOP)

AttCmdAssumption({}) = STOP

AttCmdAssumption(Cmds) =

|~| cmd:Cmds @ uplink.att.cmd

-> AttCmdAssumption(diff(Cmds,{cmd}))

within

ModeCmdAssumption ||| AttCmdAssumption(AttitudeCommand)

The commitment we choose to verify is that, given the assumptions outlined above,

every controlled attitude is achieved at least once. This is effectively a check that all of the

controlled attitudes are reachable.

Commitment =

let

AttCommit({}) = CHAOS(AttTrans)

AttCommit(Atts) =

|~| a:Atts @ attitude.trans.a -> AttCommit(diff(Atts,{a}))

within

AttCommit(ControlledAtt)

195

The refinement assertion follows the form described earlier:

assert Commitment [FD=

(SCsystem [|{|uplink|}|] Assumption) \ diff(Events, AttTrans)

Checking this assertion in FDR verifies that all controlled attitude states are indeed

reachable. On the other hand, if the f_ACS function in the ADCS portion of the spacecraft

model is altered such that all of the attitude commands produce a sun_pointing attitude,

the spacecraft can never reach the earth_limb_scan attitude, and the refinement check

will fail. �

Failures of Omission

Specifications associated with failures of omission are the liveness counterparts of fail-

ures of commission. We use the term failure of omission to mean a service failure which

results from the spacecraft failing to perform some required behavior. Thus, a failure of

omission involves a spacecraft failing to perform some required interaction with an end-user.

In some cases, the required behavior upon which a freedom from failures of omission

check is based may be directly derived from the spacecraft requirements. In other cases, a

collection of scenarios may suggest a more general behavior invariant of some sort, which

can be captured as a check for freedom from failures of omission. In either situation, the

refinement check defines some aspect of externally observable behavior which is required

of the spacecraft, and the conditions under which that behavior is required. Given the

preceding description, it should come as no surprise that the refinement assertion is well-

suited to being defined using an assumption/commitment style. The following example

illustrates the use of an assumption/commitment assertion to specify freedom from a failure

of omission.

Example 5.5.5.3. This example again draws from appendix D. We seek to verify that the

spacecraft must return valid science data, under the following assumptions:

• The spacecraft initially receives the commands necessary to move it into an attitude

and mode sufficient to allow science data collection to commence.

196

• The spacecraft consistently receives commands to start a new sample run, whenever

such commands are needed.

• Upon detecting that the spacecraft has experienced a fault, the ground station trans-

mits the command necessary to reenter a science mode.

• Faults occur nondeterministically. Only a finite number of faults can occur, i.e. the

spacecraft cannot diverge on faults.

These assumptions are captured in the CmdAssumption and FaultHypothesis processes:

CmdAssumption =

let

RunSampling(n) =

(n <= 0) & uplink.mode.nominal -> RunSampling(5)

[]

(n > 0) & downlink.missiondata?_ -> RunSampling(n-1)

[]

downlink.fault_occurred -> CmdAssumption

within

uplink.mode.nominal

-> uplink.att.science_attitude

-> RunSampling(5)

FaultHypothesis =

let

FH(0) = STOP

FH(n) = (fault -> FH(n-1)) |~| STOP

within

FH(3)

197

The commitment in this case can simply be represented by the process DF(A), which

provides non-terminating deadlock-free behavior over the set of events A. The refinement

assertion to verify that the spacecraft successfully provides valid science data when placed

in the correct mode for data collection is then

assert DF(GoodScienceOutput) [FD=

((SCsystem’

[|{|uplink,downlink.fault_occurred,downlink.missiondata|}|]

CmdAssumption)

[|{fault}|] FaultHypothesis)

\ diff(Events, GoodScienceOutput)

Checking this assertion with FDR confirms that the spacecraft system model defined

in appendix D successfully produces valid science data. �

5.5.6 Verification Against a System Behavior Specification

In addition to verifying individual properties, it is also possible to check a system

model against a system behavior specification of the sort described in the previous chapter.

Given a system behavior specification, it is thus possible to directly verify that the proposed

spacecraft design actually implements the specified behavior. Incompatibilities between the

modeled design and the specification may indicate design errors, or they may elucidate areas

in which the specification should be more precise. In either case, verifying a system model

against a specification helps to clarify the designers’ understanding of both the specified and

designed behaviors, and can increase confidence that the design will provide the behavior

required of it.

Verification against a system behavior specification can typically be expressed using a

straightforward refinement assertion of the form

assert SCspec [M= SCsystem

198

In some cases, it may also be necessary to include within the refinement assertion

processes that define any assumptions about either the environment in which the spacecraft

is to operate, or the occurrence of specification events within the spacecraft:

assert SCspec [|AssumpIF|] Assumption [M=

SCsystem [|AssumpIF|] Assumption

For example, the behavior of the spacecraft may rely on an assumption about how the

ground station will command the spacecraft. Incompatibilities between the specification

and model outside of this assumed environment is likely to be irrelevant, since any failure

of the system in this situation would be a consequence of a malfunctioning ground station

rather than an incorrect spacecraft design.

Example 5.5.6.1. Appendix D includes a revised version of the system behavior specifica-

tion first presented in the previous chapter, and several refinement assertions which check

the spacecraft system model against this revised specification. All of these assertions make

use of the SCsystem’ process, which hides the internal channels of the system model.

The traces refinement assertion provides a guarantee that the spacecraft system model

does not do anything forbidden by the specification.

assert SCspec [T= SCsystem’

The two failures refinement assertions provide guarantees that the spacecraft does the

things required by the system specification.

assert SCspec [F= SCsystem’

assert SCspec [|Faults|] CHAOS(Faults) [F=

SCsystem’ [|Faults|] CHAOS(Faults)

Failures refinement alone is sufficient for these assertions, because the SCsystem’ is

already known to be free of divergence (see example 5.5.3.1). The second of the two asser-

tions is an example of the inclusion of an assumption process, in this case regulating the

occurrence of fault events, as part of the refinement assertion.

199

Early attempts to verify the SCsystem’ process against SCspec helped to uncover a

number of problems with the design, including poor assumptions about when ADCS faults

might be a problem, and a mistake in the definition of the CDH safe mode which failed to

fully account for the handling of ADCS faults. As detailed in appendix D, the verification

process also led to a number of revisions to the specification which clarify what the spacecraft

is supposed to do. �

5.5.7 Automated Verification in Action

The example spacecraft system model which appears in appendix D illustrates the use

of a number of the modeling approaches developed in this chapter. The model is simple,

but non-trivial. It is simple in the sense that the modeled spacecraft is intended to be a

relatively simple-minded scientific spacecraft which relies on ground commands for most of

its operations. It is non-trivial in that it includes elements such as deployments, streaming

attitude telemetry, mode-based power for at least some of the subsystems, an EPS which

provides varying power depending on the spacecraft attitude state, and a CDH capable of

a limited amount of fault-handling.

In addition to the spacecraft system model, appendix D contains a number of example

refinement assertions, including several which demonstrate that the system model refines

a system behavior specification. Using FDR (see fig. 5.33) to verify all of the example

refinement assertions that appear in appendix D takes around 2 minutes 40 seconds, running

on a 1.5 GHz PowerPC. Due to the way in which FDR operates on processes which appear

on the left-hand side of a refinement assertion, the checks which include more complex

processes on the left-hand side consume the most time. For example, checking the assertion

assert SCspec [|Faults|] CHAOS(Faults) [F=

SCsystem’ [|Faults|] CHAOS(Faults)

takes approximately 35 seconds, during which time FDR explores a total of 613,074 states,

and 2,639,867 transitions.

200

Fig. 5.33: Verifying properties of a spacecraft system model using FDR.

Detecting Design Errors

Although the present version of the model which appears in appendix D successfully

passes all of the refinement checks included in the appendix, it did not always do so. Indeed,

a large part of the value of developing process algebraic models of the spacecraft system is

the fact that such models can be analyzed to uncover and correct design errors.

Example 5.5.7.1. Despite being intentionally designed to avoid overconsumption of elec-

trical power, an early revision of the SCsystem model, when checked with the assertion

assert STOP [T=

SCsystem \ diff(Events, {|qr_exception, eps_exception|})

was found to produce resource exception-events which indicated that the power system

could become overloaded.

By analyzing the counterexample traces produced by FDR, the cause of the errors was

eventually determined to be an improperly handled interaction between the CDH and ADCS

subsystems. Specifically, the problem lay in a CDH initialization sequence that did not

correctly wait for the attitude to transition out of the uncontrolled state before switching

the payload on. Resolving this problem led to the introduction of the AwaitAttitudeAcq

201

portion of the CDH startup behavior. Analysis of the revised model confirmed that the

modified CDH design did not induce EPS overloads. �

In retrospect, the failure to include sensing of attitude transitions during CDH startup,

as described in the preceding example, was an obvious omission. But the problem was

overlooked in the initial formulation of the model, despite the fact that the model itself

is relatively simple, and that the modeled design was deliberately intended to address the

variability in EPS power production capability in different attitudes. Similar omissions

could no doubt occur during the design of a real spacecraft, and, in the absence of analysis,

might remain undetected until system integration and test, or even until the spacecraft was

operating on-orbit. The ability to catch such errors as early as possible is one of the primary

benefits of performing behavior analysis and verification.

Scalability Considerations

Although we have called the model in appendix D “non-trivial,” it is nevertheless likely

that modeling a spacecraft with more complex mission behaviors than those assumed for

our example model will result in larger state-spaces, and corresponding increases in the

time it takes to complete a set of refinement checks. Had verifying our non-trivial example

model involved run-times on the order of hours, rather than minutes, the prospects for

checking more complex models would appear somewhat grim. However, since it is not

uncommon for computational analyses of other aspects of a spacecraft design to take hours,

or sometimes days, even significant increases over the computational time observed for

verifying the example model should not preclude the inclusion of behavior modeling and

analysis in the spacecraft design process.

Should the verification run-times for more complex behavior models become undesir-

ably large, several avenues of mitigation are available. First of all, there are a number of

techniques, such as hierarchical state-space compression [129] and watchdog transforma-

tions [130], which we have not applied to the example spacecraft model, but which can be

exploited to make tractable the verification of process models with very large state-spaces.

202

Recent work on combining state-exploration and theorem-proving to perform refinement

checks on systems having infinite state-spaces may also be applicable [69]. Other options

for keeping the size of the model state-space in check include reducing interleaving by in-

troducing system-wide “ticks” to synchronize different subsystems, and breaking the model

into several less complex models, each representing the behavior of the spacecraft in a

different phase of its mission.

5.6 Summary

The essential task of the spacecraft systems engineer is to ensure that the various sub-

systems which make up a spacecraft interact harmoniously, and that the resulting spacecraft

system is capable of performing its mission. The existing approaches to reasoning about

spacecraft subsystem interactions which are available to spacecraft engineers are for the

most part informal and intuitive rather than analytical. Those tools which do have a pre-

dictive, analytical capability seem to focus more on computing resource consumption and

performance metrics than on command and data-driven interactions between subsystems.

In this chapter we have developed an approach for modeling spacecraft subsystems

and their interactions in terms of CSP process models. We treat a spacecraft as a net-

work of subsystems which interact via commands, telemetry streams, power buses, and

physical states. Our modeling approach emphasizes the construction of process models

that have a structural similarity to existing ways of describing spacecraft systems, with

the intent that informal concepts should have an obvious mapping into the formal domain.

We have provided example-driven guidelines for modeling each of the classical spacecraft

subsystems using CSP, and described the different kinds of analysis and verification that

can be performed on system models built using our subsystem modeling techniques. We

have demonstrated that verification run-times for a non-trivial model constructed using the

approach presented in this chapter are relatively short, on the order of minutes.

Although the descriptions of subsystem modeling that appear in this chapter have

focused on the classical set of spacecraft subsystems found in most spacecraft systems

engineering textbooks, there is nothing in our approach that precludes a slightly different

203

organization of subsystems and their responsibilities. For example, some spacecraft designs

combine the ADCS and Propulsion subsystems into a single Attitude and Orbit Control

Subsystem (AOCS). The spacecraft system model should reflect this alternative system

structure, by including an AOCS process model. Of course, the techniques used to model

the individual behaviors which make up the AOCS model will be quite similar to those

used for separately modeling the ADCS and Propulsion subsystems. Thus, ultimately, the

modeling approach we have developed should be seen not as a rigid set of rules that prescribe

a fixed methodology for modeling each subsystem, but rather as a toolkit of techniques and

guidelines for modeling different aspects of subsystem behavior, and constructing spacecraft

system models.

204

Chapter 6

Conclusions

“Writing is nature’s way of letting you know

how sloppy your thinking is.”

– Richard Guindon

“Mathematics is nature’s way of letting you know

how sloppy your writing is.”

– Leslie Lamport

We write requirements and design documentation because we cannot hold in our heads

all of the information necessary to design a spacecraft. The act of writing the documen-

tation often helps to clarify the requirements and the design, and to identify omissions,

oversights, contradictions, and inconsistencies in our mental model of the spacecraft and its

mission. Similarly, we formalize requirements and design information because we cannot

concisely capture in our written documentation the level of precision necessary to allow the

requirements or design to be rigorously analyzed. The act of formalization often helps to

further clarify the requirements and the design, and to identify ambiguities, omissions, and

inconsistencies in our informal description of the spacecraft and its mission. Moreover, the

analytical tools that can be brought to bear on a formal model can be used to identify subtle

errors and unforeseen interactions that might otherwise go unnoticed. Process algebra can

provide spacecraft designers with a mathematical formalism for specifying, understanding,

analyzing, and verifying spacecraft system behavior.

The approach to formalizing spacecraft behavior that we have developed in this dis-

sertation involves using the process algebra CSP to construct mathematical models that

describe spacecraft behavior at two different levels of abstraction: black-box specifications

205

of desired system behavior, and block-diagram-level models of the behavior of interacting

spacecraft subsystems. Although we have emphasized the construction of models which are

suitable for analysis and verification, the act of model construction alone can be valuable,

since it helps to crystallize thoughts, and clarify specifications. However, as we demon-

strated in the examples which appear at the end of chapters 4 and 5, bringing analytical

tools to bear on a model can help to uncover additional mistakes and oversights not brought

to light during the modeling process.

It must be emphasized that the specifications and models developed using the approach

described in this dissertation are not in any way intended to provide a complete description

of either the spacecraft requirements, or the spacecraft design. Rather, they provide an-

other view of the system, complementary to existing views such as mass estimates, power

estimates, and geometric configuration models.

6.1 Summary of Contributions

The overall contribution of the research reported in this dissertation is an exploration

of the application of process algebra to the problem of specifying and verifying spacecraft

system behavior, and a demonstration that such an application is both feasible and useful.

A number of other, more specific contributions are also embodied in this work, including

the following:

• The identification of spacecraft behavior as something that can and should be formally

modeled and analyzed. There is little or no research in the literature which even

considers spacecraft system behavior (as opposed to just spacecraft software behavior),

and none that we have been able to find which examines the application of formal

methods to such behavior.

• An example of the application of CSP to a domain to which it has not previously been

applied, and a demonstration by example that CSP can be used to describe different

aspects of spacecraft behavior. CSP was originally developed for modeling and an-

alyzing concurrent software, and that has been its predominant application domain.

206

However, many other kinds of systems can be viewed as networks of communicating

processes, and thus can potentially benefit from the application of CSP theory and

tools. The work in this dissertation demonstrates that a spacecraft is one such system.

• The identification and definition of several different informally-defined specification

constructs commonly used in spacecraft behavior specification, and the development

of formal representations of these constructs using CSP. Not only does formalization

of these constructs allow more precise specifications to be developed, but it permits

all of the constructs to be understood within a common conceptual framework, and

composed in meaningful ways.

• A formal, CSP-based semantics for Functional Flow Block Diagrams. FFBDs are a

traditional tool of systems engineering. But the meaning of the different FFBD con-

structs are typically loosely defined, open to interpretation, and vary somewhat from

author to author. The formal semantics for FFBDs developed in this dissertation pro-

vides a precise and unambiguous meaning for each of the standard FFBD constructs.

Although the semantics presented in this dissertation is not the only possible formal

semantics for FFBDs, it is the first such semantics of which we aware.

• A library of predefined CSP specification constructs suitable for developing spacecraft

behavior specifications. This library provides a basis upon which to build tools which

may be more accessible than raw CSP to spacecraft systems engineers.

• A taxonomy of different kinds of spacecraft subsystem interfaces, and a set of guide-

lines for representing each kind of interface in terms of CSP datatypes and processes.

This taxonomy extends beyond the usual explicit signal interfaces to include implicit

interfaces and abstract specification events.

• An approach to spacecraft system modeling which produces CSP process models that

are structurally similar to informal system block diagrams. This approach makes

relating spacecraft system block diagrams to the corresponding process models fairly

straightforward. It permits spacecraft designers to formalize a block diagram by

207

assigning behavior models to each block, and using CSP parallel composition operators

to specify the connections between blocks.

• A set of guidelines for modeling the behavior of spacecraft subsystems in CSP. The

guidelines provide a starting point from which to develop new spacecraft system mod-

els in CSP, and a collection of techniques for developing those models. A variety of

abstraction techniques for modeling key features of each of the subsystems are intro-

duced, including abstracting the EPS as an event-dependent quantitative resource,

abstracting CDH stored sequences as processes accessed via tokens, and abstracting

telemetry streams as abstract state machines.

• A catalog of different kinds of behavior properties, each of which can be automatically

verified in spacecraft system models developed using the aforementioned approach to

subsystem modeling. Designers can select appropriate properties from this catalog,

based on what it is they wish to verify about a system model. The catalog includes

discussions of how to define process-based specifications for each of the properties.

• An example of the use of automated verification techniques to find errors in a space-

craft system design. This example demonstrates that the ideas and techniques devel-

oped in this dissertation can actually be applied to a practical problem, and that the

resulting models do permit flaws in a spacecraft design to be discovered.

6.2 Directions for Further Research

The contributions described in the preceding section, along with the rest of the work

reported in this dissertation, lay out the fundamental elements of a formal approach to

specifying and verifying spacecraft behavior. However, much work can be done to refine the

ideas presented herein, and to make those ideas more easily used in an industrial setting.

6.2.1 Refinements

The behavior specification approach that we developed in chapter 4 is largely based on

translating existing informal concepts into a more formal structure. This approach to devel-

208

oping specification constructs has the advantage of providing spacecraft behavior specifiers

with a familiar set of specification tools. However, experience with using the formalized

specification constructs has shown that some traditional ways of specifying spacecraft be-

havior can be difficult to use when forced to be precise and explicit, and constraining in

their lack of expressiveness when compared to directly writing specifications in CSP. This

does not mean that the use of domain-specific specification constructs should be completely

abandoned, but rather that it may be worthwhile to investigate other kinds of specification

constructs which are better suited to precisely expressing typical elements of spacecraft

behavior. Similarly, further research into the kind of spacecraft behavior properties that

can and should be specified, expanding on the catalog of properties developed in chapter 5,

should also be considered.

Also of interest are ways to more systematically move from a specification to a design.

Some methods of formal software development provide techniques for rigorously deriving

an implementation from a specification [131]. It would be interesting to explore methods

for performing similar sorts of derivation to get from a system behavior specification to a

system model that implements the specified behavior. A related notion is that of submodule

construction [132, 133], through which the behavior for a previously undefined subsystem

can be derived from a system behavior specification, and models of the other subsystems.

Derivation of a complete design from a specification is most likely to be useful when de-

veloping a clean-sheet design. In contrast, submodule construction techniques are likely be

helpful for determining how to adapt an existing set of subsystems to a new mission.

Another issue worthy of further investigation is the scalability of the techniques pre-

sented in this dissertation, and how that scalability can be improved. Exhaustive state-space

exploration, of the kind performed by the FDR refinement checker, is prone to difficulties

with state explosion, which can make analysis of a model intractable. To combat this prob-

lem, we have put much effort into devising subsystem modeling approaches that capture the

essential behavior of each subsystem without producing an unnecessary proliferation in the

number of states. However, case studies on real spacecraft designs are necessary to really

209

know how effective that effort has been. Depending on the outcome of the case studies, it

may, as we mentioned in chapter 5, become necessary to incorporate hierarchical state-space

compression techniques [129] as an integral part of the CSP-based approach to spacecraft

behavior modeling. Since the effectiveness of hierarchical compression depends on the order

in which the different elements of a process network is composed [3], it would be useful

to test different ways of assembling system behavior specifications and system models to

see which give the best runtime for refinement checks. Other existing techniques in the

CSP literature for mitigating state-space explosion should also be evaluated, to determine

whether they are applicable to the kinds of models we use to represent spacecraft behavior.

In addition to developing refined methods of applying the CSP-based approach de-

scribed in this dissertation, another potential direction for research is the translation of the

ideas introduced here into other formalisms. For example, the industrially popular LOTOS

specification language shares much in common with CSP [134], but is associated with an

alternative set of analysis and verification tools to those available for CSP [135]. Efforts

to model highly-reconfigurable spacecraft might benefit from the dynamic process topolo-

gies provided by the π-calculus [62], although the lack of multi-way synchronization in the

π-calculus is likely to require the use of a modeling approach with substantial differences

to the one developed in this dissertation. Extension of the present work to hybrid CSP, or

some other hybrid process algebra [136], would allow a closer integration of the discrete and

continuous aspects of spacecraft behavior.

6.2.2 Practicalities

Several things can be done to make the techniques we have presented in this disser-

tation easier to apply in an industrial setting. One of these things is an expansion and

systematization of the guidelines we have developed for modeling spacecraft subsystems.

Given a greater amount of experience with attempting to model different kinds of space-

craft, it should become possible to develop a pattern language [137] of subsystem modeling

techniques. Such a pattern language would make the task of subsystem modeling easier,

by providing not just a set of modeling techniques, but also guidance on when to apply a

210

particular technique, and indications of which other techniques might also be helpful. Ulti-

mately, a pattern-based approach to spacecraft subsystem behavior design may benefit not

just the model development process, but also the spacecraft design process itself, by helping

designers to sift through different behavior options available to them, and find those most

suitable for the design context in which they are working.

Another worthwhile line of research is the development of one or more domain-specific

languages (DSLs) for describing spacecraft behavior, and tools for translating these lan-

guages into corresponding CSP models constructed using the methods developed in this

dissertation. These DSLs may be text-based, graphical, or some combination of the two.

Providing a DSL for spacecraft behavior makes it possible to shield end-users of the language

from the many internal details of our modeling approach which are necessary to produce

a useful CSP model, but which are irrelevant to the task of spacecraft behavior definition.

As a result, spacecraft behavior models should become easier to produce, and much more

readable. A good example of the use of a DSL to make the model development task eas-

ier is the Casper toolkit [47], which facilitates the modeling of security protocols using a

language similar to standard protocol description techniques, and automatically translates

the protocol descriptions into a set of CSP process models. Eames et al. [80] describe a

graphical DSL and associated tools which permit model-building using a subset of the ideas

presented in chapter 4 of this dissertation.

Research into improving the integration of our CSP-based approach to spacecraft be-

havior modeling into the rest of the spacecraft design process is also likely to be beneficial.

A number of opportunities exist for greater integration of CSP into the spacecraft design

process. For example, the literature already includes work that facilitates the verification

of digital designs developed in languages such as VHDL and occam against CSP specifica-

tions [83,85,138], as well as methods for deriving software and hardware designs from CSP

specifications [44,68,124]. However, further investigation into how to relate our CSP models

to those required as input to the existing CSP tools and methods for hardware and software

design is necessary. Similarly, there exist tools for automatically testing hardware and soft-

211

ware in accordance with specifications written in CSP [36, 139], but it is not immediately

clear how those specifications relate to the models produced using our approach. Finding

a way to translate parts of our CSP-based models into Matlab’s Stateflow R© [140] would

permit the combined simulation of both the discrete and continuous dynamics of various

hybrid spacecraft elements, such as attitude controllers, while ensuring that the discrete

portions of the model accurately reflected the system-level assumptions made about them.

Finally, efforts to translate existing work on formalizing and model-checking spacecraft au-

tonomy systems [32, 90, 141] into a CSP framework would enable designers to rigorously

verify that the behaviors of the spacecraft autonomy system and the rest of the spacecraft

system are compatible.

6.2.3 Other Directions

Although we have focused on spacecraft systems engineering in this dissertation, many

of the techniques developed herein can be applied to a much wider range of systems engi-

neering problems. Possible directions for future research in that area include:

• Developing a formal, CSP-based semantics for the behavior diagrams found in the

systems engineering modeling language SysML [142]. SysML includes a FFBDs as

one of its modeling views, although those FFBDs appear to have a slightly different

semantics than we have presented here. It would be interesting to be able to compare

both sets of FFBD semantics through formal representations of each.

• Investigating the relationship between the CSP-based approach to system modeling

and Wymore’s hierarchical state-machine-based approach [6]. Wymore’s approach

also includes considerations such as technology requirements, test requirements, and

rigorous design trade-offs, all of which are well outside the scope of the work presented

in this dissertation, but of which it would be useful to take advantage.

• Generalizing the spacecraft-specific elements of our approach into something more

suitable for modeling of arbitrary systems. Alternatively, it may be more practical to

develop guidelines for generating domain-specific modeling approaches.

212

6.3 Envisioned Place Within the Design Process

Formal modeling of spacecraft behavior using the techniques described in this disser-

tation is likely to provide the most benefit during the conceptual and preliminary design

phases of a spacecraft development program, when the essential system-level behavior of

the spacecraft is defined and refined. By developing formal specifications of the intended

system behavior, spacecraft designers can flush out problems and ambiguities in the be-

havior before those problems have a significant impact on the evolving spacecraft design.

Similarly, by constructing and verifying models of the behavior of a proposed system de-

sign, spacecraft designers can gain greater confidence that their basic concept for the way

in which the different subsystems will interact is sound, before investing significant time

and effort in the detailed design of each subsystem.

The techniques we have laid out for modeling each of the subsystems largely treat those

subsystems as black-boxes, and ignore the details of how the subsystems internally operate.

However, the resulting subsystem models can themselves be used as specification processes,

against which more detailed, design-oriented subsystem models can be verified. For example,

we might decompose a CDH subsystem into processes representing the different circuit

boards which make up the design, and verify the composite model of the CDH subsystem

against our black-box CDH process model. As long as the detailed CDH model refines

the abstract, black-box model of the CDH subsystem we can, due to the transitivity and

monotonicity of refinement relations, be confident that the detailed design will interact

correctly with the rest of the spacecraft, without needing to perform a direct verification of

those interactions. Compositional reasoning of this sort can be used to make tractable the

verification of quite complex systems.

An end-to-end application of the approach developed in this dissertation might involve:

• Development of a formal system behavior specification, based on mission scenarios,

operational concepts, and informally expressed requirements. At the same time as the

specification is developed, formal expressions of mission scenarios, and of desirable

system behavior properties may also be developed.

213

• Construction of process models defining the intended behavior of each subsystem, and

construction from those subsystem models of a spacecraft system model representing

the proposed spacecraft design.

• Verification that the system behavior specification is consistent, and provides the de-

sired operational behavior, and that the spacecraft system model possesses the desired

behavior properties, and implements the system behavior specification. Achieving all

of these goals will likely involve iterative refinement of both the specification and the

system design.

• Use of the subsystem process models as a part of the specification from which the

detailed subsystem designs are developed. Continued refinement of the specification

and system design as the subsystem designs are fleshed out, and necessary changes in

subsystem interactions are identified.

Of course, it is not necessary to perform all of the preceding tasks in every spacecraft

development project. A completely formal development of the kind just described may be

considered too burdensome for some projects. In those cases, some benefit may still be de-

rived by applying only parts of the approach. For example, some design teams may choose

to construct a system model, but not bother with developing a complete formal system

behavior specification, and instead verify the system model against a suite of individual

properties and scenarios. The approach described in this dissertation provides a framework

and method for thinking clearly about the potentially confusing and ambiguity-prone prob-

lems of defining spacecraft system behavior, and a toolkit from which spacecraft designers

can select those tools which they feel will provide the most benefit to the development of a

spacecraft behavior design.

214

References

[1] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, “A theory of communicating
sequential processes,” Journal of the ACM, vol. 31, no. 3, pp. 560–599, 1984.

[2] C. A. R. Hoare, Communicating Sequential Processes. Englewood Cliffs, NJ: Prentice
Hall, 1985.

[3] A. W. Roscoe, The Theory and Practice of Concurrency, ser. Prentice Hall Interna-
tional Series in Computer Science. Englewood Cliffs, NJ: Prentice Hall, 1998.

[4] J. C. M. Baeten, “A brief history of process algebra,” Vakgroep Informatica,
Technische Universiteit Eindhoven, Tech. Rep. CSR 04-02, 2004 [Online]. Available:
www.win.tue.nl/fm/0402history.pdf.

[5] S. D. Wall, “Model-based engineering design for space missions,” in Proceedings of
the 2004 IEEE Aerospace Conference, no. IEEEAC paper 1005. IEEE, 2004.

[6] A. W. Wymore, Model-Based Systems Engineering: An Introduction to the Mathe-
matical Theory of Discrete Systems and to the Tricotyledon Theory of System Design,
ser. Systems Engineering Series. Boca Raton, FL: CRC Press, 1993.

[7] C. M. Holloway, “Why engineers should consider formal methods,” in Proceedings of
the 16th Digital Avionics Systems Conference, Oct. 1997.

[8] M. J. Sidi, Spacecraft Dynamics and Control: A Practical Engineering Approach.
Cambridge: Cambridge University Press, 1997.

[9] T. P. Sarafin, Spacecraft Structures and Mechanisms from Concept to Launch, ser.
Space Technology Library. El Segundo, CA: Microcosm/Kluwer, May 1995.

[10] W. G. Vincenti, What Engineers Know and How They Know It: Analytical Studies
from Aeronautical History, ser. Johns Hopkins Studies in the History of Technology.
Baltimore, MD: The Johns Hopkins University Press, 1990.

[11] J. C. Kelly and R. Covington, “Experience with formal methods techniques
at the Jet Propulsion Laboratory from a quality assurance perspective,”
NASA Jet Propulsion Laboratory, Tech. Rep. 93-1527, 1993 [Online]. Available:
http://techreports.jpl.nasa.gov/1993/93-1527.pdf.

[12] A. Wong and M. Chechik, “Formal modeling in a commercial setting: A case study,”
Journal of Systems and Software, vol. 60, no. 1, pp. 57–80, Jan. 2002.

[13] S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton, “Expe-
riences using lightweight formal methods for requirements modeling,” IEEE Transac-
tions on Software Engineering, vol. 24, no. 1, pp. 4–14, Jan. 1998.

www.win.tue.nl/fm/0402history.pdf
http://techreports.jpl.nasa.gov/1993/93-1527.pdf

215

[14] M. Satpathy, C. Snook, R. Harrison, and M. Butler, “A comparative study of formal
and informal specifications through an industrial case study,” in IEEE/IFIP Joint
Workshop on Formal Specifications of Computer-Based Systems, pp. 133–137, Apr.
2001.

[15] L. Léonard, “The lotos specification of the enhanced transport service,” Université of
Liège, Belgium, ESPRIT Research Report Project 5341, RS94-05, July 1994.

[16] N. G. Leveson, M. P. Heimdahl, H. Hildreth, and J. D. Reese, “Requirements spec-
ification for process-control systems,” IEEE Transactions on Software Engineering,
vol. 20, no. 9, pp. 684–707, Sept. 1994.

[17] D. Craigen, S. Gerhart, and T. Ralston, “An international survey of industrial appli-
cations of formal methods: Volume 1 - purpose, approach, analysis and conclusions,”
National Institute of Standards and Technology, Tech. Rep. GCR 93-626, 1993.

[18] R. J. Allen, A Formal Approach to Software Architecture. Ph.D. dissertation, Carnegie
Mellon University, Pittsburgh, PA, May 1997.

[19] J. R. Wertz and W. J. Larson, Space Mission Analysis and Design, 3rd ed., ser. Space
Technology Library. El Segundo, CA: Microcosm/Kluwer, 1999.

[20] R. Shishko et al., “NASA Systems Engineering Handbook,” NASA, Tech. Rep. SP-
6105, 1995.

[21] D. Davis et al., SMC Systems Engineering Primer & Handbook, 2nd ed. USAF Space
and Missile Systems Center, Jan. 2004.

[22] U. von Mehlem, “Advanced Composition Explorer spacecraft design specification,
revision A,” The Johns Hopkins University Applied Physics Laboratory, Tech. Rep.
JHU/APL 7345-9001A, Feb. 1995.

[23] J. L. Torgerson, “Mars Global Surveyor spacecraft requirements, revision A,” NASA
Jet Propulsion Laboratory, Tech. Rep. JPL D-11509, 1996.

[24] D. Everett, “Wide-Field Infrared Explorer system requirements, revision C,” NASA
Goddard Space Flight Center, Tech. Rep. WIRE-SPEC-003, 1997 [Online]. Available:
http://sunland.gsfc.nasa.gov/smex/wire/mission/sysreq/concept.html.

[25] D. A. Bearden and G. W. Law, “An integrated approach to concurrent conceptual
design and cost estimation of small planetary missions,” in Small satellites systems
and services; Proceedings of the 3rd International Symposium, no. IAA-L-0803, June
1996.

[26] A. I. McInnes, D. M. Harps, J. A. Lang, and C. M. Swenson, “A systems engineer-
ing tool for small satellite design,” in Proceedings of the 15th Annual AIAA/USU
Conference on Small Satellites, Aug. 2001.

[27] C. A. Liceaga, “SPASIM: A spacecraft simulator,” in 6th International Space Univer-
sity Alumni Conference, July 1997.

http://sunland.gsfc.nasa.gov/smex/wire/mission/sysreq/concept.html

216

[28] S. Stanton, “Modeling and simulation tools for rapid space system analysis and design:
Falconsat-2 applications,” in Proceedings of the 2001 IEEE Aerospace Conference,
Mar. 2001.

[29] P. Fortescue and J. Stark, Spacecraft Systems Engineering, 2nd ed. Chichester, West
Sussex: John Wiley & Sons, 1995.

[30] V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems, ser. JHU/APL
Series in Science and Engineering. New York: Oxford University Press, May 1994.

[31] K. J. Barltrop and P. J. Pingree, “Model checking investigations for fault protection
system validation,” in Proceedings of the NASA SMC-IT Conference, July 2003.

[32] M. H. Smith, G. C. Cucullu, G. J. Holzmann, and B. D. Smith, “Model checking
autonomous planners: Even the best laid plans must be verified,” in Proceedings of
the 2005 IEEE Aerospace Conference. IEEE, Mar. 2005.

[33] S. A. Johnson, “Introduction to complex fault protection software testing,” in Pro-
ceedings of the American Control Conference, pp. 909–911, June 1998.

[34] R. H. Maurer and A. G. Santo, “The NEAR Discovery mission: Lessons learned,” in
Proceedings of the 10th Annual AIAA/USU Conference on Small Satellites, 1996.

[35] K. Havelund, M. Lowry, and J. Penix, “Formal analysis of a space craft controller
using SPIN,” NASA Ames Research Center, Tech. Rep. TR-1770, 1998.

[36] H. Schlingloff, O. Meyer, and T. Hülsing, “Correctness analysis of an embedded con-
troller,” in Proceedings of the International Conference on Data Systems in Aerospace
(DASIA 99), May 1999.

[37] M. S. Feather, S. Fickas, and N.-A. Razermera-Mamy, “Model-checking for
validation of a fault protection system,” in Proceedings of 6th IEEE International
Symposium on High Assurance System Engineering. Los Alamitos, CA:
IEEE Computer Society Press, Oct. 2001 [Online]. Available: http://http:
//citeseer.ist.psu.edu/621580.html.

[38] J. Eickhoff, A. Falke, and H.-P. Röser, “Model-based design and verification - state of
the art from galileo constellation down to small university satellites,” in Proceedings of
the 57th International Astronautical Congress, no. IAC-06-D1.3.02, Valencia, Spain,
Oct. 2006.

[39] E. A. Lee and P. Varaiya, Structure and Interpretation of Signals and Systems. Read-
ing, MA: Addison-Wesley, 2003.

[40] J. M. R. Martin, The Design and Construction of Deadlock-Free Concurrent Systems.
Ph.D. dissertation, University of Buckingham, 1996.

[41] R. S. Lazić, A Semantic Study of Data-Independence with Applications to Mechanical
Verification of Concurrent Systems. Ph.D. dissertation, Oxford University, 1998.

http://http://citeseer.ist.psu.edu/621580.html
http://http://citeseer.ist.psu.edu/621580.html

217

[42] S. Creese, Data Independent Induction: CSP Model Checking of Arbitrary Sized Net-
works. Ph.D. dissertation, Oxford University, 2001.

[43] A. Hall and R. Chapman, “Correctness by construction: Developing a commercial
secure system,” IEEE Software, vol. 19, no. 1, pp. 18–25, Jan./Feb. 2002.

[44] J. D. Phillips and G. S. Stiles, “An automatic translation of CSP to Handel-C,” in
Communicating Process Architectures 2004, I. East, J. Martin, P. Welch, D. Duce,
and M. Green, Eds., pp. 19–37. Amsterdam, The Netherlands: IOS Press, 2004.

[45] B. Buth, M. Kouvaras, J. Peleska, and H. Shi, “Deadlock analysis for a fault-tolerant
system,” in Proceedings of the 6th International Conference on Algebraic Methodology
and Software Technology (AMAST’97), M. Johnson, Ed., pp. 60–75, Dec. 1997.

[46] B. Buth, J. Peleska, and H. Shi, “Combining methods for the livelock analysis of a
fault-tolerant system,” in Proceedings of the 7th International Conference on Algebraic
Methodology and Software Technology (AMAST’98), A. M. Haeberer, Ed., pp. 124–
139, Jan. 1999.

[47] P. Y. A. Ryan, S. A. Schneider, M. H. Goldsmith, G. Lowe, and A. W. Roscoe, The
Modelling and Analysis of Security Protocols: the CSP Approach. Harlow, England:
Addison-Wesley, 2001.

[48] P. Gardiner, M. Goldsmith, J. Hulance, D. Jackson, B. Roscoe, B. Scattergood,
and P. Armstrong, Failures-Divergence Refinement: FDR2 User Manual, Formal
Systems (Europe) Ltd, May 2003 [Online]. Available: http://www.fsel.com/
documentation/fdr2/fdr2manual.pdf.

[49] Formal Systems (Europe) Ltd, Process Behaviour Explorer: ProBE User
Manual, Formal Systems (Europe) Ltd, Jan. 2003 [Online]. Available: http:
//www.fsel.com/documentation/probe/probe-doc.pdf.

[50] J. Crow et al., NASA Formal Methods Specification and Analysis Guidebook for
the Verification of Software and Computer Systems, Volume II: A Practitioner’s
Companion. NASA Office of Safety and Mission Assurance, 1998, vol. 2 [Online].
Available: http://www.csl.sri.com/papers/cvrsgnsg/.

[51] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete event
processes,” SIAM Journal of Control Optimization, vol. 25, no. 1, pp. 206–230, 1987.

[52] D. Griffioen and M. Huisman, “A comparison of PVS and Isabelle/HOL,” in
Theorem Proving in Higher Order Logics: 11th International Conference, TPHOLs
’98, J. Grundy and M. Newey, Eds., vol. 1479, pp. 123–142. Canberra,
Australia: Springer-Verlag, 1998 [Online]. Available: http://citeseer.ist.psu.
edu/article/griffioen98comparison.html.

[53] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and abstraction,” ACM
Trans. Program. Lang. Syst., vol. 16, no. 5, pp. 1512–1542, 1994.

http://www.fsel.com/documentation/fdr2/fdr2manual.pdf
http://www.fsel.com/documentation/fdr2/fdr2manual.pdf
http://www.fsel.com/documentation/probe/probe-doc.pdf
http://www.fsel.com/documentation/probe/probe-doc.pdf
http://www.csl.sri.com/papers/cvrsgnsg/
http://citeseer.ist.psu.edu/article/griffioen98comparison.html
http://citeseer.ist.psu.edu/article/griffioen98comparison.html

218

[54] E. M. Clarke et al., “Formal methods: state of the art and future directions,”
ACM Computing Surveys, vol. 28, no. 4, pp. 626–643, 1996 [Online]. Available:
http://citeseer.ist.psu.edu/article/clarke96formal.html.

[55] D. Prandi, C. Priami, and P. Quaglia, “Process calculi in a biological context,” Bul-
letin of the European Association for Theoretical Computer Science, no. 84, Feb. 2005.

[56] H. Smith and P. Fingar, Business Process Management: The Third Wave. Tampa,
FL: Meghan-Kiffer Press, 2003.

[57] C. A. Petri, “Introduction to general Petri net theory,” in Proceedings of the Advanced
Course on General Net Theory, Processes and Systems, ser. Lecture Notes in Com-
puter Science, W. Brauer, Ed. Berlin, Germany: Springer-Verlag, 1980, no. 84, pp.
1–20.

[58] G. A. Agha, Actors: A model of concurrent computation in distributed systems. Ph.D.
dissertation, University of Michigan, Ann Arbor, June 1985.

[59] L. Lamport, Specifying Systems. Boston, MA: Addison-Wesley, 2002.

[60] N. A. Lynch and M. R. Tuttle, “An introduction to Input/Output Automata,” CWI-
Quarterly, vol. 2, no. 3, pp. 219–246, Sept. 1989.

[61] R. Milner, A Calculus of Communicating Systems, ser. Lecture Notes in Computer
Science. Berlin, Germany: Springer-Verlag, 1980, no. 92.

[62] R. Milner, Communicating and Mobile Processes: the π-Calculus. Cambridge: Cam-
bridge University Press, 1999.

[63] J. A. Bergstra and J. W. Klop, “Process algebra for synchronous communication,”
Information and Control, pp. 109–137, 1984.

[64] J. Ouaknine, Discrete Analysis of Continuous Behaviour in Real-Time Concurrent
Systems. Ph.D. dissertation, University of Oxford, 2000.

[65] J. M. R. Martin, “A tool for checking the CSP sat property,” Computer Journal,
vol. 43, no. 1, pp. 32–45, 2000.

[66] A. W. Roscoe, “On the expressive power of CSP refinement,” in Proceedings of the
3rd Workshop on Automated Verification of Critical Systems (AVoCS03), Apr. 2003.

[67] W. Zhou and G. S. Stiles, “The automated serialization of concurrent CSP scripts
using mathematica,” in Communicating Process Architectures 2000, P. H. Welch and
A. W. P. Bakkers, Eds., pp. 15–32. Amsterdam, The Netherlands: IOS Press, 2000.

[68] V. Raju, L. Rong, and G. S. Stiles, “Automatic conversion of CSP to CTJ, JCSP,
and CCSP,” in Communicating Process Architectures 2003, J. F. Broenink, Ed. Am-
sterdam, The Netherlands: IOS Press, 2003.

http://citeseer.ist.psu.edu/article/clarke96formal.html

219

[69] S. Kundu, S. Lerner, and R. Gupta, “Automated refinement checking of CSP
programs,” UCSD Department of Computer Science and Engineering, La Jolla, CA,
Tech. Rep. CS2007-0882, Jan. 2007 [Online]. Available: http://www.cs.ucsd.edu/
Dienst/Repository/2.0/Body/ncstrl.ucsd_cse/CS2007-0882/postscript.

[70] J. Peleska and M. Siegel, “Test automation of safety-critical reactive systems,” South
African Computer Journal, vol. 19, pp. 53–77, 1997.

[71] G. H. Hilderink, “Graphical modelling language for specifying concurrency based on
CSP,” IEE Proceedings: Software, vol. 150, no. 2, pp. 108–120, Apr. 2003.

[72] D. S. Jovanovic, B. Orlic, G. K. Liet, and J. F. Broenink, “gCSP: A graphical tool
for designing CSP systems,” in Communicating Process Architectures 2004, I. East,
J. Martin, P. Welch, D. Duce, and M. Green, Eds., pp. 233–251. Amsterdam, The
Netherlands: IOS Press, 2004.

[73] D. Harel, “Statecharts: A visual formalism for complex systems,” Science of Computer
Programming, no. 8, pp. 231–274, 1987.

[74] A. W. Roscoe, “Compiling Statemate statecharts into CSP and verifying them using
FDR,” Jan. 2003 [Online]. Available: http://web.comlab.ox.ac.uk/oucl/work/
bill.roscoe/publications/94ab.ps.

[75] M. Y. Ng and M. Butler, “Tool support for visualizing CSP in UML,” in Proceedings
of International Conference on Formal Engineering Methods (ICFEM), C. George
and H. K. Miao, Eds., pp. 287–298, 2002.

[76] M. Y. Ng and M. Butler, “Towards formalizing UML state diagrams in CSP,” in Pro-
ceedings of 1st IEEE International Conference on Software Engineering and Formal
Methods, A. Cerone and P. Lindsay, Eds., pp. 138–147, 2003.

[77] G. Engels, J. M. K. R. Heckel, and L. Groenewegen, “A methodology for specifying
and analyzing consistency of object-oriented behavioral models,” in Proceedings of
the 8th European Software Engineering Conference (ESEC) and 9th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-9), V. Gruhn, Ed., pp.
186–195. New York: ACM Press, Sept. 2001.

[78] Object Management Group, OMG Unified Modeling Language Specification, version
1.5. Object Management Group, Mar. 2003, no. formal/03-03-01 [Online]. Available:
http://www.omg.org/cgi-bin/apps/doc?formal/03-03-01.pdf.

[79] C. Fischer, E.-R. Olderog, and H. Wehrheim, “A CSP view on UML-RT structure
diagrams,” in Fundamental Approaches to Software Engineering, ser. Lecture Notes
in Computer Science, H. Husmann, Ed. Berlin, Germany: Springer-Verlag, 2001,
vol. 2029, pp. 91–108.

[80] B. K. Eames, A. I. McInnes, J. E. Crace, and J. M. Graham, “A model-based
design tool for systems-level spacecraft design,” in Proceedings of the 20th Annual
AIAA/USU Conference on Small Satellites, Aug. 2006.

http://www.cs.ucsd.edu/Dienst/Repository/2.0/Body/ncstrl.ucsd_cse/CS2007-0882/postscript
http://www.cs.ucsd.edu/Dienst/Repository/2.0/Body/ncstrl.ucsd_cse/CS2007-0882/postscript
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/94ab.ps
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/94ab.ps
http://www.omg.org/cgi-bin/apps/doc?formal/03-03-01.pdf

220

[81] G. Barrett, “Model checking in practice: The T9000 Virtual Channel Processor,”
IEEE Transactions on Software Engineering, vol. 21, no. 2, pp. 69–78, 1995.

[82] A. E. Abdallah and I. W. Damaj, “Reconfigurable hardware synthesis of the
IDEA cryptographic algorithm,” in Communicating Process Architectures 2004,
I. R. East, D. Duce, M. Green, J. M. R. Martin, and P. H. Welch, Eds., pp.
387–416. Amsterdam, The Netherlands: IOS Press, 2004 [Online]. Available:
http://wotug.org/paperdb/send_file.php?id=131.

[83] R. M. A. Peel and W. H. F. Javier, “Using CSP to verify aspects of
an occam-to-FPGA compiler,” in Communicating Process Architectures 2004,
I. E. East, J. Martin, P. Welch, D. Duce, and M. Green, Eds., pp.
339–352. Amsterdam, The Netherlands: IOS Press, 2004 [Online]. Available:
http://wotug.org/paperdb/send_file.php?id=129.

[84] A. Bardsley, Implementing Balsa Handshake Circuits. Ph.D. dissertation, University
of Manchester, Manchester, UK, 2000 [Online]. Available: ftp://ftp.cs.man.ac.
uk/pub/amulet/theses/bardsley_phd.pdf.

[85] X. Wang, M. Kwiatkowska, G. Theodoropoulos, and Q. Zhang, “Towards a
unifying CSP approach for hierarchical verification of asynchronous hardware,”
in Proceedings of the Fourth International Workshop on Automated Verification
of Critical Systems (AVOCS 2004), London, UK, Sept. 2004 [Online]. Available:
http://www.cs.bham.ac.uk/research/parlard/papers/avocs.pdf.

[86] P. H. Welch and J. M. R. Martin, “Formal analysis of concurrent Java systems,” in
Communicating Process Architectures 2000, P. P. H. Welch and A. W. P. Bakkers,
Eds., pp. 275–301. Amsterdam, The Netherlands: IOS Press, 2000.

[87] G. Lowe, “Breaking and fixing the Needham-Schroeder public-key protocol using
FDR,” in Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), vol. 1055, pp. 147–166. Berlin, Germany: Springer-Verlag, 1996 [Online].
Available: http://citeseer.ist.psu.edu/lowe96breaking.html.

[88] P. Broadfoot and G. Lowe, “Analysing a stream authentication protocol using model
checking,” in Proceedings of ESORICS’02, ser. Lecture Notes in Computer Science,
vol. 2502, pp. 146–161. Berlin, Germany: Springer-Verlag, Oct. 2002 [Online].
Available: http://citeseer.ist.psu.edu/broadfoot02analysing.html.

[89] A. Mota and A. C. A. Sampaio, “Model-checking processes with states: An industrial
case study,” in Anais do XII Simposio Brasileiro de Engenharia de Software, 1998.

[90] M. G. Hinchey, C. A. Rouff, J. L. Rash, and W. F. Truszkowski, “Requirements of an
integrated formal method for intelligent swarms,” in Proceedings of the 10th Interna-
tional Workshop on Formal Methods for Industrial Critical Systems (FMICS’05), pp.
125–133. New York: ACM Press, 2005.

[91] G. J. Holzmann, “The model checker SPIN,” IEEE Transactions on Software Engi-
neering, vol. 23, no. 5, pp. 279–295, 1997.

http://wotug.org/paperdb/send_file.php?id=131
http://wotug.org/paperdb/send_file.php?id=129
ftp://ftp.cs.man.ac.uk/pub/amulet/theses/bardsley_phd.pdf
ftp://ftp.cs.man.ac.uk/pub/amulet/theses/bardsley_phd.pdf
http://www.cs.bham.ac.uk/research/parlard/papers/avocs.pdf
http://citeseer.ist.psu.edu/lowe96breaking.html
http://citeseer.ist.psu.edu/broadfoot02analysing.html

221

[92] P. R. Gluck and G. J. Holzmann, “Using spin model checking for flight software
verification,” in Proceedings of the 2002 IEEE Aerospace Conference. IEEE, Mar.
2002.

[93] W. Visser, K. Havelund, G. Brat, and S.-J. Park, “Model checking programs,”
in Proceedings of the 15th IEEE International Conference on Automated Software
Engineering, 2000 [Online]. Available: http://citeseer.ist.psu.edu/article/
visser00model.html.

[94] K. Havelund et al., “Formal analysis of the remote agent before and after flight,” in
Proceedings of 5th NASA Langley Formal Methods Workshop, June 2000.

[95] K. A. Weiss, E. C. Ong, and N. G. Leveson, “Reusable specification components
for model-driven development,” in Proceedings of the International Conference on
Systems Engineering (INCOSE 03), July 2003.

[96] E. C. Ong and N. G. Leveson, “Fault protection in a component-based spacecraft
architecture,” in Proceedings of the International Conference on Space Mission Chal-
lenges for Information Technology, July 2003.

[97] P. A. Stadter, G. R. Barrett, D. P. Watson, T. C. Esposito, and J. O. Bristow,
“Autonomous command and control for distributed spacecraft system operations,” in
Proceedings of the IEEE Aerospace Conference, vol. 2, pp. 825–835, Mar. 2003.

[98] C. A. R. Hoare, “Communicating sequential processes,” Communications of the ACM,
vol. 21, no. 8, pp. 666–677, 1978.

[99] S. A. Schneider, Concurrent and Real-time Systems: The CSP Approach, ser. World-
wide Series in Computer Science. Chichester, West Sussex: John Wiley & Sons,
2000.

[100] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation, 2nd ed. Boston, MA: Addison-Wesley, Nov. 2000.

[101] A. E. Lawrence, “Acceptances, behaviours and infinite activity in CSPP,” in Commu-
nicating Process Architectures 2002, J. Pascoe, P. Welch, R. Loader, and V. Sunderam,
Eds., pp. 17–38. Amsterdam, The Netherlands: IOS Press, 2002.

[102] W. Fokkink, J. F. Groote, and M. A. Reniers, “Process algebra needs proof methodol-
ogy,” Bulletin of the European Association for Theoretical Computer Science, no. 82,
Feb. 2004.

[103] J. F. Groote and M. A. Reniers, “Algebraic process verification,” in Handbook of Pro-
cess Algebra, J. Bergstra, A. Ponse, and S. Smolka, Eds. Amsterdam, The Nether-
lands: Elsevier, 2001, pp. 1151–1208.

[104] ESA-ESTEC Requirements & Standards Division, “Space engineering: Functional
analysis,” European Cooperation for Space Standardization, ECSS Standard ECSS-
E-10-05A, Apr. 1999.

http://citeseer.ist.psu.edu/article/visser00model.html
http://citeseer.ist.psu.edu/article/visser00model.html

222

[105] S. Dahlberg, “INCOSE SE terms glossary,” International Council on Sys-
tems Engineering, INCOSE Technical Data 1998-10 TWG, 1998 [On-
line]. Available: http://www.incose.org/ProductsPubs/pdf/techdata/ERTC/
GlossaryDefnsOfTerms_1998-10_TWG.pdf.

[106] L. Qian and J. S. Gero, “Function-behaviour-structure paths and their role in analogy-
based design,” Artificial Intelligence for Engineering, Design and Manufacturing
(AIEDAM), vol. 10, pp. 289–312, 1996.

[107] M. Broy, “Functional specification of time-sensitive communicating systems,” ACM
Transactions on Software Engineering Methodology, vol. 2, no. 1, pp. 1–46, 1993.

[108] D. M. Horan, “Deep Space Program Science Experiment (DSPSE) Mission Require-
ments Document,” Naval Research Laboratory, Tech. Rep. SSD-D-DS001, Mar. 1993.

[109] A. G. Santo, S. C. Lee, and R. E. Gold, “Near spacecraft and instrumentation,” J.
Astronautical Sci., vol. 43, no. 4, pp. 373–397, Oct. 1995.

[110] R. K. Huebschman, “The MSX spacecraft system design,” Johns Hopkins APL Tech-
nical Digest, vol. 17, no. 1, pp. 41–48, 1996.

[111] D. Curtis, “High Energy Spectroscopic Imager (HESSI) Mission Requirements,”
U.C. Berkeley, Tech. Rep. HSI SYS 021B, Aug. 1998 [Online]. Available:
ftp://apollo.ssl.berkeley.edu/pub/hessi/general/HSI_SYS_021B.pdf.

[112] NASA GSFC, “New Millennium Program Earth Orbiter-1 (EO-1) Spacecraft
Level II Requirements,” NASA Goddard Space Flight Center, Tech. Rep. EO-1
Spacecraft, July 1998 [Online]. Available: http://mtpeweb1.gsfc.nasa.gov/
Eo1cm/documents/LVL_II_Space_rqt1.PDF.

[113] R. J. Harvey, “TIMED autonomy system,” Johns Hopkins APL Technical Digest,
vol. 24, no. 2, pp. 201–208, 2003.

[114] W. P. Sidney, “Mars Global Surveyor (MGS) block dictionary, revision: Final - rev.
2,” NASA Jet Propulsion Laboratory, Tech. Rep. JPL D-12424, 1997.

[115] NASA GSFC, “Earth Orbiter-1 (EO-1) Spacecraft-to-Ground Interface Control
Document,” NASA Goddard Space Flight Center, Tech. Rep. EO-1 ICD-023,
Sept. 1998 [Online]. Available: http://eo1.gsfc.nasa.gov/ISO9000/Catalogue/
BaseDocs/EO-1_Space_to_Ground_ICD_Baseli.pdf.

[116] D. W. Oliver, T. P. Kelliher, and J. G. Keegan, Engineering Complex Systems with
Models and Objects. Columbus, OH: McGraw-Hill, 1997.

[117] C. A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma, “Specification
styles in distributed systems design and verification,” Theoretical Computer
Science, vol. 89, no. 1, pp. 179–206, 1991 [Online]. Available: http:
//citeseer.ist.psu.edu/vissers91specification.html.

[118] NASA GSFC. (2002) Earth Orbiter-1 preliminary technology and science validation
report [Online]. Available: http://eo1.gsfc.nasa.gov/new/validationReport.

http://www.incose.org/ProductsPubs/pdf/techdata/ERTC/GlossaryDefnsOfTerms_1998-10_TWG.pdf
http://www.incose.org/ProductsPubs/pdf/techdata/ERTC/GlossaryDefnsOfTerms_1998-10_TWG.pdf
ftp://apollo.ssl.berkeley.edu/pub/hessi/general/HSI_SYS_021B.pdf
http://mtpeweb1.gsfc.nasa.gov/Eo1cm/documents/LVL_II_Space_rqt1.PDF
http://mtpeweb1.gsfc.nasa.gov/Eo1cm/documents/LVL_II_Space_rqt1.PDF
http://eo1.gsfc.nasa.gov/ISO9000/Catalogue/BaseDocs/EO-1_Space_to_Ground_ICD_Baseli.pdf
http://eo1.gsfc.nasa.gov/ISO9000/Catalogue/BaseDocs/EO-1_Space_to_Ground_ICD_Baseli.pdf
http://citeseer.ist.psu.edu/vissers91specification.html
http://citeseer.ist.psu.edu/vissers91specification.html
http://eo1.gsfc.nasa.gov/new/validationReport

223

[119] M. Blau and J. Chiralo, “Wide-Field Infrared Explorer (WIRE) command &
data handling flight software requirements specification, draft,” NASA Goddard
Space Flight Center, Tech. Rep. WIRE-SPEC-009, 1996 [Online]. Available:
http://sunland.gsfc.nasa.gov/smex/wire/mission/cdhsw/wirrqtop.htm.

[120] C. A. Grasso, “The fully programmable spacecraft: procedural sequencing for JPL
deep space missions using VML (Virtual Machine Language),” in Proceedings of the
2002 IEEE Aerospace Conference, vol. 1, pp. 75–81, 2002.

[121] E. Gat, “Non-linear sequencing,” in Proceedings of the 1999 IEEE Aerospace Confer-
ence, 1999.

[122] G. Behrmann, A. David, K. G. Larsen, O. Möller, P. Pettersson, and W. Yi, “Up-
paal - present and future,” in Proceedings of 40th IEEE Conference on Decision and
Control. Los Alamitos, CA: IEEE Computer Society Press, 2001.

[123] A. I. McInnes, “Design and implementation of a proof-of-concept MMORPG using
CSP and occam-π,” in Proceedings of the 2005 International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA’05), H. Arabnia,
Ed., June 2005.

[124] A. A. McEwan, “A calculated implementation of a control system,” in Communicating
Process Architectures 2004, I. East, J. Martin, P. Welch, D. Duce, and M. Green, Eds.,
pp. 265–280. Amsterdam, The Netherlands: IOS Press, 2004.

[125] J. Moore and S. Owens, “On-orbit refueling,” in ITS 6th Annual Workshop on Space
Operations Applications and Research (SOAR 1992), vol. 2, Feb. 1993.

[126] M. Baxter, “WIRE instrument to spacecraft computer system ICD,” NASA
Goddard Space Flight Center, Tech. Rep. WIRE-ICD-001, 1996 [Online]. Available:
http://sunland.gsfc.nasa.gov/smex/wire/mission/sysreq/icd/insscs.html.

[127] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and tax-
onomy of dependable and secure computing,” IEEE Transactions on Dependable and
Secure Computing, vol. 1, no. 1, pp. 11–33, Jan.-Mar. 2004.

[128] W. Simmonds and T. Hawkins, “A CSP framework for analysing fault-tolerant dis-
tributed systems,” QinetiQ, FORWARD Deliverable D9, June 2004.

[129] A. Roscoe, M. Goldsmith, P. Gardiner, J. Hulance, D. Jackson, and J. Scatter-
good, “Hierarchical compression for model-checking CSP or how to check 1020 dining
philosophers for deadlock,” in Proceedings of TACAS 1995, 1995.

[130] M. Goldsmith, N. Moffat, A. Roscoe, T. Whitworth, and I. Zakiuddin, “Watch-
dog transformations for property-oriented model checking,” in Proceedings of Formal
Methods Europe (FME) 2003, 2003.

[131] C. Morgan, Programming from Specifications. Hertfordshire, UK: Prentice-Hall, 1990.

[132] L. Lai and J. W. Sanders, “A weakest-environment calculus for communicating pro-
cesses,” Oxford University Computer Laboratory, Tech. Rep. PRG-TR-12-95, 1995.

http://sunland.gsfc.nasa.gov/smex/wire/mission/cdhsw/wirrqtop.htm
http://sunland.gsfc.nasa.gov/smex/wire/mission/sysreq/icd/insscs.html

224

[133] V. Carchiolo, N. De Francesco, A. Fantechi, and G. Mangioni, “Algorithmic
resolution of LOTOS equations,” Gruppo di Lavoro 3 del sottoprogetto Sistemi
Reattivi, Tech. Rep. MOSAICO Project Technical Report, 1998 [Online]. Available:
http://info.iet.unipi.it/~cofin/finanziati98/Papers/equ7.ps.gz.

[134] C. J. Fidge, “A comparative introduction to CSP, CCS and LOTOS,” Software
Verification Research Centre, University of Queensland, Tech. Rep. 93-24, 1994
[Online]. Available: www.itee.uq.edu.au/~cjf/Publications/fidge94g.pdf.

[135] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M. Sighireanu,
“CADP - a protocol validation and verification toolbox,” in Proceedings of the 8th
International Conference on Computer Aided Verification (CAV ’96), pp. 437–440.
London, UK: Springer-Verlag, 1996.

[136] J. A. Bergstra and C. A. Middelburg, “Process algebra for hybrid systems,” Depart-
ment of Mathematics and Computer Science, Eindhoven University of Technology,
Tech. Rep. Computer Science Report 03-06, 2003.

[137] D. Lea, “Christopher Alexander: An introduction for object-oriented designers,” Soft-
ware Engineering Notes, vol. 19, no. 1, pp. 39–46, Jan. 1994.

[138] R. Chapman and D.-H. Hwang, “A process-algebraic semantics for VHDL,” in
SIG-VHDL Spring ’96 Working Conference, W. Ecker, Ed., pp. 157–168. Dresden,
Germany: Shaker Verlag, 1996 [Online]. Available: citeseer.ist.psu.edu/
chapman96processalgebraic.html.

[139] J. Peleska, “Formal methods for test automation - hard real-time testing of controllers
for the Airbus aircraft family,” in Proceedings of the 6th Biennial World Conference
on Integrated Design and Process Technology, IDPT-2002, June 2002.

[140] The MathWorks, Inc., Stateflow R© and Stateflow R© Coder 6 User’s Guide. Natick,
MA: The MathWorks, Inc., Mar. 2007.

[141] T. Mahtab, “Automated verification of model-based programs under uncertainty,”
Master’s thesis, Massachusetts Institue of Technology, May 2004.

[142] SysML Merge Team, “Systems Modeling Language (SysML) specification,” SysML
Partners, Tech. Rep. v1.0 Draft, Apr. 2006.

http://info.iet.unipi.it/~cofin/finanziati98/Papers/equ7.ps.gz
www.itee.uq.edu.au/~cjf/Publications/fidge94g.pdf
citeseer.ist.psu.edu/chapman96processalgebraic.html
citeseer.ist.psu.edu/chapman96processalgebraic.html

225

Appendices

226

Appendix A

Spacecraft Behavior Framework Library

{-

---- Spacecraft Behavior Framework ------------------------------------

A library of building blocks for constructing spacecraft behavior

specifications. This library can be ’included’ into other CSP scripts.

The process definitions contained herein can then be used to build

spacecraft behavior specifications.

CSPm seems to have a nasty habit of capturing non-locally defined

names inside process definitions, even if a local version of those

names is provided as a process parameter. To avoid this problem, every

process parameter has been tagged with a "namespace" prefix which

should reduce the likelihood of name conflicts. This is ugly, but

seems to work. The "namespace" prefix is "SCBF_"

-}

{-

---- Lifting functions --

__LiftF__ ‘lifts’ a function ’f’ to a process which receives values

from the input set of ’f’ over channel ’in’, and sends corresponding

values from the output set of ’f’ over channel ’out’. The function ’f’

is defined using CSPm’s embedded functional programming language.

227

The __LiftF2__ process provides the same behavior as the ’LiftF’

processes, but allows the function ’f’ to be provided in terms of

a binary relation (i.e. a set of tuples) rather than directly as

a function definition.

__MIMOLiftF__ behaves similarly to LiftF, but is intended for use

with MI or MO functions, which must have some kind of input sequencing

strategy associated with them. The ’reqin’ channel is used to request

that an MI behavior obtain a group of inputs. The ’ackout’ channel is

used to receive an acknowledgment from an MO behavior that a group of

outputs has been completely transmitted.

__SwitchedLiftF__ is a modal lifted function that provides the

behavior of LiftF when in the ’on’ mode, and acts as a sink for input

values when in the ’off’ mode. The mode is changed by sending an ’on’

or ’off’ symbol through the ’switch’ channel. The initial mode is

’off’.

-}

LiftF(SCBF_in, SCBF_out, f) =

SCBF_in?x -> SCBF_out!f(x) -> LiftF(SCBF_in, SCBF_out, f)

LiftF2(SCBF_in, SCBF_out, f) =

SCBF_in?x -> SCBF_out!apply(f,x) -> LiftF2(SCBF_in, SCBF_out, f)

MIMOLiftF(SCBF_in, SCBF_out, SCBF_reqin, SCBF_ackout, f) =

let

228

SCBF_MLF = SCBF_reqin -> SCBF_in?x -> SCBF_out!f(x)

-> SCBF_ackout -> SCBF_MLF

within

SCBF_MLF

SwitchedLiftF(SCBF_in, SCBF_out, SCBF_f, SCBF_switch) =

let

SCBF_SLF(s) =

s == off & SCBF_in?_ -> SCBF_SLF(s)

[]

s == on & SCBF_in?x -> SCBF_out!SCBF_f(x) -> SCBF_SLF(s)

[]

SCBF_switch?s’ -> SCBF_SLF(s’)

within

SCBF_SLF(off)

{-

---- MI/MO behaviors ---

Generic 2I/2O behavior specifications.

__SeqIn2__ awaits a request in the ’reqin’ channel, following which

it receives values from channel ’in1’ and then ’in2’. The two values

are aggregated into a 2-tuple which is output through channel ’tuple’.

__SeqOut2__ receives a 2-tuple through channel ’tuple’. It sends the

first element of the tuple through ’out1’, then the second element

229

through ’out2’, then sends an ’ackout’ signal.

__ParIn2__ awaits a request in the ’reqin’ channel, following which

it receives values from channels ’in1’ and ’in2’. The two values

are aggregated into a 2-tuple which is output through channel ’tuple’.

__ParOut2__ receives a 2-tuple through channel ’tuple’. It sends the

first element of the tuple through ’out1’, the second through ’out2’,

then sends an ’ackout’ signal when both outputs have completed.

-}

SeqIn2(SCBF_reqin, SCBF_in1, SCBF_in2, SCBF_tuple) =

SCBF_reqin -> SCBF_in1?x -> SCBF_in2?y -> SCBF_tuple!(x,y)

-> SeqIn2(SCBF_reqin, SCBF_in1, SCBF_in2, SCBF_tuple)

SeqOut2(SCBF_tuple, SCBF_out1, SCBF_out2, SCBF_ackout) =

SCBF_tuple?(x,y) -> SCBF_out1!x -> SCBF_out2!y -> SCBF_ackout

-> SeqOut2(SCBF_tuple, SCBF_out1, SCBF_out2, SCBF_ackout)

ParIn2(SCBF_reqin, SCBF_in1, SCBF_in2, SCBF_tuple) =

let

X = extensions(SCBF_in1)

Y = extensions(SCBF_in2)

In1 = SCBF_reqin -> SCBF_in1?x -> [] y:Y @ SCBF_tuple!(x,y) -> In1

In2 = SCBF_reqin -> SCBF_in2?y -> [] x:X @ SCBF_tuple!(x,y) -> In2

within

In1 [| {|SCBF_reqin, SCBF_tuple|} |] In2

230

ParOut2(SCBF_tuple, SCBF_out1, SCBF_out2, SCBF_ackout) =

let

Out1 = SCBF_tuple?(x,y) -> SCBF_out1!x -> SCBF_ackout -> Out1

Out2 = SCBF_tuple?(x,y) -> SCBF_out2!y -> SCBF_ackout -> Out2

within

Out1 [| {|SCBF_ackout, SCBF_tuple|} |] Out2

{-

---- Event Sequence --

__EventSeq__ specifies a sequential execution of events in the list

of events ’S’.

-}

EventSeq(SCBF_S) = ; e:SCBF_S @ e -> SKIP

{-

---- State Transition System ---

__StateTransitions__ defines a state transition system in terms of

transitions between different states, and the events that can trigger

those transitions. The initial state is ’s0’. The auxiliary channel

’transition’ is used for signaling state transitions to other

processes. ’TransDefs’ is a set of 3-tuples defining state transitions

in terms of current state, transition trigger event, and new state.

-}

231

StateTransitions(SCBF_s0, SCBF_transition, SCBF_TransDefs) =

let

-- Find the transitions definitions for state ’s’

Trans(s) = { (e,s’) | (state,e,s’) <- SCBF_TransDefs, s == state }

-- The transition behavior for state ’s’

State(s) =

[] (e,s’):Trans(s) @ e -> SCBF_transition.s’ -> State(s’)

within

SCBF_transition.SCBF_s0 -> State(SCBF_s0)

{-

---- Event-Triggered Behavior --

__EventTrigger__ is a process parameterized by a set of triggering

events (’Triggers’), the occurrence of any of which causes the

behavior defined by the process ’P’.

-}

EventTrigger(SCBF_Triggers, SCBF_P) = [] t:SCBF_Triggers @ t -> SCBF_P

{-

---- Assignable State --

__AssignableState__ is a process encapsulating a state value (’val’)

that may be either set through the channel ’set’, or read through the

232

channel ’get’. Assignment of a new state value generates a signal on

the channel ’trans’. The initial value of ’val’ is ’init’.

-}

AssignableState(SCBF_set, SCBF_get, SCBF_trans, SCBF_init) =

let

State(val) =

(SCBF_get!val -> State(val))

[]

(SCBF_set?val’

-> if (val’ != val)

then (SCBF_trans!val’ -> State(val’))

else State(val))

within

State(SCBF_init)

{-

---- Quantitative Resource ---

__QuantResource__ is a process encapsulating an integer quantitative

value (’val’). This value has upper and lower bounds ’max’ and ’min’.

The value can be changed by sending an integer-valued magnitude of

change through channel ’delta’, and read through channel ’get’.

Changes in the value result in a signal on channel ’trans’.

The initial value of ’val’ is ’init’. Changes in the value that

result in ’val’ exceeding the upper or lower bounds result in a

corresponding signal on channel ’qr_exception’ and termination of

233

the process.

-}

datatype ResourceException = resource_overflow | resource_underflow

channel qr_exception : ResourceException

QuantResource(SCBF_delta, SCBF_get, SCBF_trans,

SCBF_min, SCBF_max, SCBF_init) =

let

Range = {SCBF_min..SCBF_max}

Quantity(val) =

val > SCBF_max & qr_exception.resource_overflow -> STOP

[]

val < SCBF_min & qr_exception.resource_underflow -> STOP

[]

member(val, Range) & (SCBF_get!val -> Quantity(val))

[]

member(val, Range) &

(SCBF_delta?d ->

let

val’ = val + d

within

if (val’ != val) and member(val’, Range)

then (SCBF_trans!val’ -> Quantity(val’))

else Quantity(val’))

within

Quantity(SCBF_init)

234

{-

---- Bounded Blocking Buffer ---

__BoundedBlockingBuffer__ is a standard CSP buffer process. It accepts

up to ’N’ values on channel ’in’, after which it refuses further

inputs until an output has occurred. Values are output on channel

’out’. Output events are refused when the buffer is empty.

-}

BoundedBlockingBuffer(SCBF_in, SCBF_out, SCBF_N) =

let

Buff(s) =

(#s < SCBF_N & SCBF_in?x -> Buff(s^<x>))

[]

(#s > 0 & SCBF_out!head(s) -> Buff(tail(s)))

within

Buff(<>)

{-

---- Generic constraints ---

We can define two quite general constraint processes which are useful

for capturing a variety of different sequencing requirements. These

constraint processes are ’Between’, and ’Outside’. The ’Between’ and

’Outside’ constraint processes allow events in the set ’Ev’ to occur

only in the interval between the occurrence of some enabling event and

235

the next occurrence of a disabling event. The difference between the

two constraints is that ’Between’ assumes that events in ’Ev’ are

initially disabled, while ’Outside’ assumes that they are initially

enabled. These constraint processes can be defined in terms of each

other. The design of these processes is due to Roscoe.

-}

Between(SCBF_En, SCBF_Dis, SCBF_Ev) =

([] x:SCBF_En @ x -> Outside(SCBF_Dis, SCBF_En, SCBF_Ev))

[]

([] x:SCBF_Dis @ x -> Between(SCBF_En, SCBF_Dis, SCBF_Ev))

Outside(SCBF_Dis, SCBF_En, SCBF_Ev) =

([] e:SCBF_Ev @ e -> Outside(SCBF_Dis, SCBF_En, SCBF_Ev))

[]

([] x:SCBF_En @ x -> Outside(SCBF_Dis, SCBF_En, SCBF_Ev))

[]

([] x:SCBF_Dis @ x -> Between(SCBF_En, SCBF_Dis, SCBF_Ev))

{-

---- Mode Constraint ---

__ModeConstraint__ is a ’Between’ constraint that enables events in

’InitEv’ between any mode transition ’modetrans’ from the ’Enable’

set, and the next transition to a mode in the ’Disable’ set.

-}

236

ModeConstraint(SCBF_InitEv, SCBF_modetrans, SCBF_Enable, SCBF_Disable) =

let

SCBF_En = { SCBF_modetrans.m | m <- SCBF_Enable }

SCBF_Dis = { SCBF_modetrans.m | m <- SCBF_Disable }

within Between(SCBF_En, SCBF_Dis, SCBF_InitEv)

{-

---- FFBD building blocks --

Building block process for translating FFBDs into CSP constraint

processes. Each process corresponds to a standard FFBD graphical

element.

See Oliver et al., "Engineering Complex Systems with Models and

Objects", McGraw-Hill, 1997 for more information on FFBDs.

-}

-- A single function block, characterized by the input and output

-- channels of the represented function

FFBDblock(SCBF_in, SCBF_out) =

[] i:{|SCBF_in|} @ i -> ([] o:{|SCBF_out|} @ o -> SKIP)

-- FFBD sequencing (i.e. the arrows between blocks)

FFBDseq(SCBF_FFBD_1, SCBF_FFBD_2) = SCBF_FFBD_1; SCBF_FFBD_2

-- FFBD concurrency - the AND bubble

FFBDand(SCBF_FFBDset) = ||| FFBD:SCBF_FFBDset @ FFBD

237

-- FFBD selection - the OR bubble

FFBDor(SCBF_FFBDset) = [] FFBD:SCBF_FFBDset @ FFBD

-- FFBD selection - the choice function

FFBDchoice(SCBF_test_state, SCBF_GoSet, SCBF_GoFFBD, SCBF_NoGoFFBD) =

SCBF_test_state?x -> if member(x, SCBF_GoSet)

then SCBF_GoFFBD

else SCBF_NoGoFFBD

-- FFBD iteration

FFBDiteration(SCBF_test_state, SCBF_GoSet, SCBF_FFBD) =

let

Loop =

FFBDseq(SCBF_FFBD,

FFBDchoice(SCBF_test_state, SCBF_GoSet, SKIP, Loop))

within

Loop

{-

---- Temporal constraints --

Temporal constraints provide a way to define timing relationships

between different system events.

-}

-- Timeline constructor

238

Timeline(SCBF_T) = ; t:SCBF_T @ t -> SKIP

-- Before constraint - ’event’ _must_ occur before ’time’, and only once

MustBeforeTime(SCBF_event, SCBF_time) = SCBF_event -> SCBF_time -> SKIP

-- Events in ’Ev’ may occur before ’time’, but not after

MayBeforeTime(SCBF_Ev, SCBF_time) = Outside({SCBF_time}, {}, SCBF_Ev)

-- Events in ’Ev’ may occur after ’time’, but not before

MayAfterTime(SCBF_Ev, SCBF_time) = Between({SCBF_time}, {}, SCBF_Ev)

-- Events in ’Ev’ may occur between ’time1’ and ’time2’

MayBetweenTimes(SCBF_Ev, SCBF_time_1, SCBF_time_2) =

Between({SCBF_time_1}, {SCBF_time_2}, SCBF_Ev)

{-

---- Constraint network --

__ConstraintNet__ is a parallel composition of constraints. ’Constr’

is a set of constraints, each defined as a 2-tuple consisting of

an alphabet set and a constraint process.

__aConstraintNet__ is the alphabet of the corresponding

’ConstraintNet’ process.

-}

aConstraintNet(SCBF_Constr) = Union({ aC | (aC,C) <- SCBF_Constr })

239

ConstraintNet(SCBF_Constr) = (|| (aC,C):SCBF_Constr @ [aC] C)

{-

---- Generic subsystem datatypes ------------------------------------

The __OnOff__ and __StateIF__ datatypes are convenience datatypes

for use in subsystem model construction.

-}

datatype OnOff = on | off

datatype StateIF = setval | getval | trans

{-

---- State Telemetry Stream ---

The __State Telemetry Stream__ process is constructed under the

assumption that the data contained in the telemetry stream

represents some kind of subsystem state information. Transitions

(’state_trans’) in the subsystem state produce corresponding

transitions (’stream_trans’) in the telemetry data state. The

telemetry stream itself may be either inactive, in which case

telemetry data is unavailable, or active, in which case telemetry

data is available to consumers of the telemetry stream.

Signals on a control channel (’mode’) allow the telemetry stream

to be switched to and from its inactive state.

-}

datatype GenericStreamState = stream_inactive

240

StateTelemetryStream(SCBF_mode, SCBF_state_get, SCBF_state_trans,

SCBF_stream_set, SCBF_stream_get,

SCBF_stream_trans, SCBF_f) =

let

StreamState =

AssignableState(SCBF_stream_set, SCBF_stream_get,

SCBF_stream_trans, stream_inactive)

Inactive =

SCBF_state_trans?_ -> Inactive

[]

SCBF_mode.off -> Inactive

[]

SCBF_mode.on -> Setup

Setup =

SCBF_state_trans?x -> SCBF_stream_set!SCBF_f(x) -> Active

[]

SCBF_state_get?x -> SCBF_stream_set!SCBF_f(x) -> Active

[]

SCBF_mode.off -> SCBF_stream_set.stream_inactive -> Inactive

[]

SCBF_mode.on -> Setup

Active =

SCBF_state_trans?x -> SCBF_stream_set!SCBF_f(x) -> Active

[]

241

SCBF_mode.off -> SCBF_stream_set.stream_inactive -> Inactive

[]

SCBF_mode.on -> Active

within

Inactive

[SCBF_stream_set <-> SCBF_stream_set]

StreamState

{-

---- Subsystem Mode Power ---

The __Subsystem Mode Power__ process translates transitions in the

operating mode of a subsystem (’modetrans’) into transitions in the

quantity of power consumed by the subsystem (’power_delta’).

-}

datatype ModeTransDelimiter = begin | end

SubsysModePower(SCBF_initmode, SCBF_modetrans,

SCBF_power_delta, SCBF_f_ModePower) =

let

f_PowerDelta(m,m’) = SCBF_f_ModePower(m’) - SCBF_f_ModePower(m)

PMode(m) =

SCBF_modetrans.begin?m’

-> if m != m’

then (SCBF_power_delta!f_PowerDelta(m,m’)

242

-> SCBF_modetrans.end.m’ -> PMode(m’))

else SCBF_modetrans.end.m -> PMode(m)

within

PMode(SCBF_initmode)

{-

---- Binary relations --

Auxiliary functions for working with spacecraft functions defined as

binary relations. These are mostly inspired by the Z specification

language.

-}

-- Find the domain of relation ’rel’

dom(SCBF_rel) = { d | (d,r) <- SCBF_rel }

-- Find the range of relation ’rel’

range(SCBF_rel) = { r | (d,r) <- SCBF_rel }

-- The relation that results when we restrict the domain of ’rel’ to ’dset’

dom_restrict(SCBF_dset, SCBF_rel) =

{ (d,r) | (d,r) <- SCBF_rel, member(SCBF_dset, d) }

-- The relation that results when we restrict the range of ’rel’ to ’rset’

range_restrict(SCBF_rset, SCBF_rel) =

{ (d,r) | (d,r) <- SCBF_rel, member(SCBF_rset, r) }

-- Apply the relation ’func’ to the value ’val’

-- We assume here that ’func’ is a relation that is a partial function

243

apply(SCBF_func, SCBF_val) =

let

pick({x}) = x

within pick({ r | (d,r) <- SCBF_func, d == SCBF_val })

244

Appendix B

Machine-Readable CSP Translation of Example 4.3.3.1

include "sc-behavior-framework.csp"

-- Type and channel defs

datatype Attitude = tumbling | earth_limb_scan | sun_pointing

datatype AttitudeCommand = detumble | science_attitude | safe_attitude

datatype Mode = launch | safe | nominal

datatype Command = att.AttitudeCommand | mode.Mode

datatype Measurement = sample

nametype ScienceData = (Measurement,Attitude)

datatype Data = formatted.ScienceData

datatype DownlinkMsg = modestatus.Mode | attstatus.Attitude

| missiondata.Data | fault_occurred

datatype Deployables = antenna.{1..2} | solar_array

-- External channels

channel cmd : Command

channel instrument : Measurement

channel downlink : DownlinkMsg

channel separation

-- Internal channels

channel attitude, sense_attitude, attitude_transition: Attitude

channel in_Sci : ScienceData

245

channel sci_req, sci_out_ack

channel trans_Mode : Mode

channel deploy : Deployables

channel fault

SCspec =

let

-- Separation behavior

Deployments = EventSeq(<deploy.solar_array, deploy.antenna.1,

deploy.antenna.2>)

SeparationBehavior =

EventTrigger({separation}, Deployments)

-- Spacecraft functions

f_Att(c) =

let

f = {(detumble, sun_pointing),

(science_attitude, earth_limb_scan),

(safe_attitude, sun_pointing)}

within apply(f,c)

f_Sci((m,a)) = formatted.(m,a)

-- Lifted spacecraft functions

AttitudeCommanding = LiftF(cmd.att, attitude, f_Att)

Science’ = (SeqIn2(sci_req, instrument, sense_attitude, in_Sci)

246

[|{|sci_req, in_Sci|}|]

MIMOLiftF(in_Sci, downlink.missiondata,

sci_req, sci_out_ack, f_Sci))

\{|in_Sci, sci_req, sci_out_ack|}

-- Fault response

FaultResponse =

EventTrigger({fault},

EventSeq(<attitude.sun_pointing,

downlink.fault_occurred>));

FaultResponse

-- Spacecraft mode transition behavior

SC_Modes =

let

TransitionDefs = {(launch, separation, safe),

(safe, cmd.mode.nominal, nominal),

(nominal, cmd.mode.safe, safe),

(nominal, fault, safe)}

within

StateTransitions(launch, trans_Mode, TransitionDefs)

f_ReportMode(m) = modestatus.m

SC_Modes’ = (SC_Modes

[|{|trans_Mode|}|]

LiftF(trans_Mode, downlink, f_ReportMode))

-- States

247

AttitudeState =

AssignableState(attitude, sense_attitude,

attitude_transition, tumbling)

-- Mode constraints

aAtt_Modes = {|cmd.att, trans_Mode|}

Att_Modes =

ModeConstraint({|cmd.att|}, trans_Mode,

{safe, nominal}, {launch})

aScience_Modes = {|instrument, trans_Mode|}

Science_Modes =

ModeConstraint({|instrument|}, trans_Mode,

{nominal}, {launch, safe})

-- Other constraints

aNoAttChange = {|instrument, downlink.missiondata, attitude|}

NoAttChangeDuringScience =

Outside({|instrument|}, {|downlink.missiondata|},

{|attitude|})

aNoDL = {|downlink, attitude_transition|}

NoDLWhileTumbling =

Between({attitude_transition.sun_pointing,

attitude_transition.earth_limb_scan},

{attitude_transition.tumbling}, {|downlink|})

aNoDownlinkBeforeSep = {|downlink, separation|}

248

NoDownlinkBeforeSep = Between({separation}, {}, {|downlink|})

-- Constraint network

ConstraintSet = {(aAtt_Modes, Att_Modes),

(aScience_Modes, Science_Modes),

(aNoAttChange, NoAttChangeDuringScience),

(aNoDL, NoDLWhileTumbling),

(aNoDownlinkBeforeSep, NoDownlinkBeforeSep)}

aCNet = aConstraintNet(ConstraintSet)

CNet = ConstraintNet(ConstraintSet)

within

(((((((AttitudeCommanding -- spacecraft behaviors

||| Science’)

||| SC_Modes’)

[|{separation}|]

SeparationBehavior)

[|{fault}|]

FaultResponse))

[|{|attitude, sense_attitude|}|] -- behavior/state interface

AttitudeState) -- states

[|aCNet|]

CNet) -- the constraint network

249

Appendix C

Machine-Readable CSP for the Example Specification from

“A Model-Based Design Tool for Systems-Level Spacecraft

Design”

The following machine-readable CSP was generated for the paper “A Model-Based

Design Tool for Systems-Level Spacecraft Design” [80], which was presented at the 2006

AIAA/USU Conference on Small Satellites. Among other things, the specification demon-

strates the integration of mode-transition systems and FFBDs. There are some idiosyn-

crasies in the datatypes (notably the lack of compound data values) which were necessi-

tated by limitations in the version of the prototype graphical modeling tool which the paper

described.

include "sc-behavior-framework.csp"

-- Types

datatype Attitude = sun_pointing | target_attitude_1

| target_attitude_2 | earth_pointing

datatype AttitudeCommand = safehold | science_target_1

| science_target_2 | science_standby

datatype Mode = standby | science | wait_to_science | wait_to_standby

datatype Command = att.AttitudeCommand | mode.Mode

datatype Measurement = datum

nametype ScienceData = (Measurement,Attitude)

-- External channels

250

channel cmd_att : AttitudeCommand

channel cmd_mode : Mode

channel instrument : Measurement

channel data : ScienceData

-- Internal channels

channel set_attitude, sense_attitude, trans_attitude: Attitude

channel trans_mode : Mode

channel get_modestate, trans_modestate : Mode

channel begin_ffbd, end_ffbd : {standby, science}

channel in_Sci : ScienceData

channel sci_in_req, sci_out_ack

SCspec =

let

-- Spacecraft functions

-- The attitude mapping

f_Att(c) =

let

f = {(safehold, sun_pointing),

(science_target_1, target_attitude_1),

(science_target_2, target_attitude_2),

(science_standby, earth_pointing)}

within apply(f,c)

-- The science mapping

f_Sci(x) = x -- identity function

251

-- Lifted spacecraft functions

AttitudeCommanding = LiftF(cmd_att, set_attitude, f_Att)

-- SeqIn2 is the "input strategy" that implements the input merging

-- in_Sci is the internal channel that passes the tuple from the

-- input strategy to the actual lifted function

Science = (SeqIn2(sci_in_req, instrument, sense_attitude, in_Sci)

[|{|sci_in_req, in_Sci|}|]

MIMOLiftF(in_Sci, data, sci_in_req, sci_out_ack, f_Sci))

\{|in_Sci|} -- hide the internal channel

-- State transition system defining spacecraft mode transition

-- behavior. Note the "wait" states necessary to enforce

-- exclusive execution of the FFBDs

InitialMode = standby

SC_Modes =

let

TransitionDefs =

{(standby, cmd_mode.science, wait_to_science),

(wait_to_science, end_ffbd.standby, science),

(science, cmd_mode.standby, wait_to_standby),

(wait_to_standby, end_ffbd.science, standby)}

within

StateTransitions(InitialMode,trans_mode,TransitionDefs)

-- Shared state objects

252

AttitudeState =

AssignableState(set_attitude, sense_attitude,

trans_attitude, sun_pointing)

ModeState =

AssignableState(trans_mode, get_modestate,

trans_modestate, InitialMode)

-- Standby Mode FFBD

StandbyFFBD =

let

AttitudeBlock = FFBDblock(cmd_att, set_attitude)

aFFBD = {|cmd_att, set_attitude|}

-- Note that diff(Modes,{standby}) is a set difference

-- operation, so the "GoSet" (i.e. loop termination

-- condition) is any mode *except* standby

-- The FFBD is can *always* signal "end" if it’s not

-- active, but must terminate before it can signal

-- "end" if it *is* active - we need to do this to

-- prevent commanded mode transitions from blocking in

-- the wait state in cases where the FFBD process

-- hasn’t become active before the command arrives

FFBD =

(end_ffbd.standby -> FFBD)

[]

(begin_ffbd.standby ->

253

FFBDiteration(get_modestate, diff(Mode,{standby}),

AttitudeBlock);

end_ffbd.standby -> FFBD)

within

AttitudeCommanding

[|aFFBD|]

FFBD

-- Science Mode FFBD

ScienceFFBD =

let

AttitudeBlock = FFBDblock(cmd_att, set_attitude)

ScienceBlock = FFBDblock(sci_in_req, sci_out_ack)

aFFBD = {|cmd_att, set_attitude, sci_in_req, sci_out_ack|}

FFBD =

(end_ffbd.science -> FFBD)

[]

(begin_ffbd.science ->

FFBDiteration(get_modestate, diff(Mode,{science}),

FFBDor({AttitudeBlock, ScienceBlock}));

end_ffbd.science -> FFBD)

within

((AttitudeCommanding ||| Science)

[|aFFBD|]

FFBD) \ {|sci_in_req, sci_out_ack|}

-- Mode constraints

-- This is the "alphabet" for the mode constraint, i.e. all events

254

-- that it must synchronize on.

aStandbyFFBDConstraint = {|begin_ffbd.standby,trans_mode|}

-- This mode constraint says that the event begin_ffbd.standby is

-- enabled between any occurrence of the event trans_mode.standby,

-- and the next occurrence of any other event on trans_mode

StandbyFFBDConstraint =

ModeConstraint({begin_ffbd.standby},

trans_mode,{standby},diff(Mode,{standby}))

aScienceFFBDConstraint = {|begin_ffbd.science,trans_mode|}

ScienceFFBDConstraint =

ModeConstraint({begin_ffbd.science},

trans_mode,{science},diff(Mode,{science}))

-- Constraint network

ConstraintSet = {(aStandbyFFBDConstraint, StandbyFFBDConstraint),

(aScienceFFBDConstraint, ScienceFFBDConstraint)}

aCNet = aConstraintNet(ConstraintSet)

CNet = ConstraintNet(ConstraintSet)

within

((((SC_Modes

[|{end_ffbd.standby}|]

StandbyFFBD)

[|{end_ffbd.science}|]

ScienceFFBD)

[|{|set_attitude,sense_attitude,trans_mode,get_modestate|}|]

255

(AttitudeState ||| ModeState))

[|aCNet|]

CNet) \ diff(Events,{|cmd_mode,cmd_att,instrument,data|})

-- Consistency check, performed as a test for deadlock

-- We use renaming to to map all events in SCspec to an "abstract_event",

-- and then check for refinement against a terminating deadlock-free

-- process with only abstract_event in its alphabet. This trick seems to

-- reduce the time required for the check to about 80% of the time

-- required for a check using the standard DFtick.

channel abstract_event

DFtick’ = (abstract_event -> DFtick’) |~| SKIP

SCspec’ =

SCspec[[x <- abstract_event | x <- diff(Events,{abstract_event})]]

assert DFtick’ [FD= SCspec’

-- Check for our desired property: "downlinked science data should only

-- be collected in valid science attitudes".

-- The Run process

RUN(A) = [] a:A @ a -> RUN(A)

-- Define acceptable science outputs more formally

AcceptableScienceOutput =

{data.(meas,a) | meas <- Measurement,

a <- {target_attitude_1,target_attitude_2}}

256

-- The assertion: the only events on channel "data" that SCspec will

-- produce are those in the set AcceptableScienceOutput.

-- We expect this assertion to fail for the unconstrained system, so

-- we prefix the asserted refinement with "not"

assert not RUN(AcceptableScienceOutput) [T=

SCspec \ diff(Events, {|data|})

-- If we now assume a "sensible" ground station (i.e. one that won’t

-- issue commands to non-science attitudes after the transition to

-- science mode), then the property should be satisfied.

GS = (|~| a:AttitudeCommand @ cmd_att!a -> GS)

|~|

(cmd_att!science_target_1 -> cmd_mode!science -> GS’)

GS’ = (|~| a:{science_target_1,science_target_2} @ cmd_att!a -> GS’)

assert RUN(AcceptableScienceOutput) [T=

(SCspec

[|{|cmd_mode, cmd_att|}|]

GS) \ diff(Events, {|data|})

257

Appendix D

Example of Composing Subsystem Models into a Spacecraft

System Model

The example presented here defines the behavior of the subsystems for a simple scientific

spacecraft, and verifies several different properties of the system model formed by composing

those subsystem models. The modeled subsystems are the ADCS, CDH, Communications,

EPS, and Payload. The spacecraft is assumed to have no propulsion system, and a passive

thermal subsystem, so models for those subsystems are not included in the system model.

Furthermore, it is assumed that only the ADCS and Payload have power consumption that

varies with their operating mode, and thus only mode power events for those subsystems

are included in the model. It is implicitly assumed that the EPS provides enough power

in all modes to support the baseline load of the other subsystems, and that the level of

available power modeled in the EPS represents power beyond the baseline load level which

may be consumed by the ADCS and Payload.

The subsystems have the following characteristics:

• The ADCS behavior is mode-based, and includes a safe-mode transition in response

to faults.

• The CDH is primarily a command router, although it also performs some spacecraft

initialization tasks, and manages science data collection. It only performs science

data collection when the spacecraft is in an attitude suitable for science, and takes

a limited number of samples before awaiting a command to commence a new run of

sample collection. It responds to ADCS faults by powering down the payload, and

transitioning to a safe mode.

258

• The Communications subsystem consists of simple uplink and downlink behaviors,

both modeling the transformation of internal spacecraft signals into RF, and vice

versa.

• The EPS is of a type that provides a varying level of power depending on the spacecraft

attitude. It also performs some initialization activities in response to the spacecraft

separation signal, and manages subsystem power switching and pyrotechnic deploy-

ments.

• The payload is a generic scientific instrument. It has two deployable antennas, both

of which must be deployed in order to take valid data. The payload captures a sample

of data upon command, and transfers it to the CDH subsystem.

In addition to providing an example of constructing a system model from subsystems

models, the CSP below is also an example of how early design efforts can help to sharpen

a specification as both design and specification evolve in tandem. The original intent of

the example was to develop a design which implemented the specification presented in ap-

pendix A. However, as the design progressed several areas of the specification were identified

which were either under-constrained, or difficult to implement. As a consequence, the spec-

ification was revised during the design process to address these issues, with the result that

the final specification presented in this example is not the same as the original version that

appears in appendix A, but a slightly more complex specification which better reflects the

desired behavior. The bulk of the specification remains the same as the original. Most of

the modifications consist of additional constraints, which more precisely bound the desired

behavior. The major modifications to the specification are:

• All downlink communications now pass through a bounded blocking buffer of depth

1, which ensures consistent handling of downlinked information.

• The transition to safe mode now occurs only after the spacecraft initialization sequence

is completed.

259

• Rather than having fault events directly cause a mode transition, faults now trigger

a fault response which includes the mode transition.

• Faults are now permitted to occur during safe mode, as well as nominal mode. How-

ever, they are restricted to only occur when the spacecraft is in the earth limb scan

attitude state.

• Several new constraints prevent undesirable interactions between the attitude function

and the science function, and enforce valid science measurements.

• A new constraint ensures that the downlink of mode status reports is initiated imme-

diately following a mode transition event.

• A new constraint prevents science operations from continuing indefinitely, without

any pause to check for incoming commands.

include "sc-behavior-framework.csp"

-- Type and channel definitions

datatype Attitude = uncontrolled | earth_limb_scan | sun_pointing

datatype AttitudeCommand = detumble | science_attitude | safe_attitude

datatype Mode = launch | safe | nominal

datatype CommandMsg = att.AttitudeCommand | mode.{safe, nominal}

datatype Measurement = sample | junk

nametype ScienceData = (Measurement,AttitudeTlm)

datatype Data = formatted.ScienceData

datatype DownlinkMsg = modestatus.Mode | missiondata.Data | fault_occurred

datatype Deployables = antenna.{1..2} | solar_array

260

datatype Subsystem = adcs | cdh | eps | ul | dl | payload

-- External channels

channel uplink : CommandMsg

channel instrument : Measurement

channel downlink : DownlinkMsg

channel separation

-- Specification and implicit interface channels

channel cmdin : CommandMsg

channel attitude : StateIF.Attitude

channel adcs_sense : Attitude

channel in_Sci : ScienceData

channel sci_req, sci_out_ack

channel data : DownlinkMsg

channel trans_Mode : Mode

channel deploy : Deployables

channel fault

-- Subsystem power interfaces

nametype PowerRange = { -10..10}

datatype Power = load_switch.Subsystem.OnOff

| load_delta.Subsystem.PowerRange

channel power : Power

channel power_avail, power_alloc : StateIF.PowerRange

channel power_delta : PowerRange

261

-- Subsystem command interfaces

datatype PayloadCmd = take_sample

datatype EPSCmd = sw.Subsystem.OnOff | pyro.{antenna.1, antenna.2}

datatype SubsysCmd = adcs_cmd.AttitudeCommand

| eps_cmd.EPSCmd

| pl_cmd.PayloadCmd

| dl_cmd.DownlinkMsg

-- Subsystem telemetry interfaces

nametype AttitudeTlm = union(Attitude, GenericStreamState)

datatype ADCSTlm = att_violation

| att_cmd_ack

| att_tlm_stream.StateIF.AttitudeTlm

datatype PayloadTlm = meas.Measurement | tlm_deploy.{1..2}

datatype SubsysTlm = adcs_tlm.ADCSTlm

| pl_tlm.PayloadTlm

channel systembus : union(SubsysCmd, SubsysTlm)

-- Specification events

nametype ADCSMode = {off, earth_limb_scan, sun_pointing}

nametype PayloadMode = {on, off}

channel modetrans_payload : ModeTransDelimiter.PayloadMode

channel modetrans_adcs : ModeTransDelimiter.ADCSMode

channel eps_exception : ResourceException

-------- Spacecraft system model ---

262

SCsystem =

let

INIT_ATTITUDE = uncontrolled

f_ID(x) = x -- identity function

---- ADCS --

ADCS_IF = {|power.load_switch.adcs, power.load_delta.adcs,

systembus.adcs_cmd, systembus.adcs_tlm,

attitude.trans, fault|}

ADCS =

let

-- ADCS functions

f_ADCSModePower(m) =

let

f = {(off, 0),

(sun_pointing, 4),

(earth_limb_scan, 5)}

within apply(f,m)

f_ACS(c) =

let

f = {(detumble, sun_pointing),

(science_attitude, earth_limb_scan),

(safe_attitude, sun_pointing)}

within apply(f,c)

-- ADCS modes

263

ADCSMode(off) =

(power.load_switch.adcs.on

-> modetrans_adcs.begin!sun_pointing

-> attitude.setval!sun_pointing

-> modetrans_adcs.end!sun_pointing

-> ADCSMode(sun_pointing))

ADCSMode(m) =

(power.load_switch.adcs.off

-> modetrans_adcs.begin!off

-> attitude.setval!uncontrolled

-> modetrans_adcs.end!off

-> ADCSMode(off))

[]

(systembus.adcs_cmd?c

->

let

m’ = f_ACS(c)

within

if m’ == m

then systembus.adcs_tlm!att_cmd_ack -> ADCSMode(m)

else

(modetrans_adcs.begin!m’

-> attitude.setval!m’

-> modetrans_adcs.end!m’

-> ADCSMode(m’)))

[]

-- Faults only occur in earth_limb_scan mode

264

(m == earth_limb_scan) & (fault -> ADCSfault)

ADCSfault =

-- ignore commands, and try to report attitude violation

(systembus.adcs_cmd?_ -> ADCSfault)

[]

(systembus.adcs_tlm!att_violation

-> modetrans_adcs.begin!sun_pointing

-> attitude.setval!sun_pointing

-> modetrans_adcs.end!sun_pointing

-> ADCSMode(sun_pointing))

AttitudeState = AssignableState(attitude.setval, attitude.getval,

attitude.trans, INIT_ATTITUDE)

within

((((ADCSMode(off)

[|{|power.load_switch.adcs|}|]

StateTelemetryStream(power.load_switch.adcs, adcs_sense,

attitude.trans,

systembus.adcs_tlm.att_tlm_stream.setval,

systembus.adcs_tlm.att_tlm_stream.getval,

systembus.adcs_tlm.att_tlm_stream.trans,

f_ID))

[|{|modetrans_adcs|}|]

SubsysModePower(off, modetrans_adcs,

power.load_delta.adcs,

f_ADCSModePower)) \ {|modetrans_adcs|})

[|{|attitude.setval, attitude.trans, adcs_sense|}|]

265

AttitudeState

-- Internally use adcs_sense to allow StateTelemetryStream

-- to read the attitude state without blocking other

-- processes that might wish to perform a getval event

[[attitude.getval <- attitude.getval,

attitude.getval <- adcs_sense]])

\ {|attitude.setval, adcs_sense|}

---- CDH ---

CDH_IF = {|power.load_switch.cdh, cmdin, systembus|}

CDH =

let

Off =

power.load_switch.cdh.on

-> systembus.dl_cmd!modestatus.launch

-> systembus.eps_cmd.sw.adcs.on

-> AwaitAttitudeAcq

AwaitAttitudeAcq =

systembus.adcs_tlm.att_tlm_stream.trans?a

-> if a == sun_pointing

then Deployments

else AwaitAttitudeAcq

Deployments =

systembus.eps_cmd.pyro.antenna.1

-> systembus.pl_tlm.tlm_deploy.1

-> systembus.eps_cmd.pyro.antenna.2

266

-> systembus.pl_tlm.tlm_deploy.2

-> systembus.dl_cmd!modestatus.safe

-> Safe(false)

-- Standby/safe mode

Safe(ready_for_sci) =

((cmdin.mode.nominal

-> systembus.eps_cmd.sw.payload.on

-> systembus.dl_cmd!modestatus.nominal

-> Nominal(ready_for_sci, 5))

[]

(cmdin.mode.safe

-> systembus.dl_cmd!modestatus.safe

-> Safe(ready_for_sci))

[]

(cmdin.att?a

-> systembus.adcs_cmd!a

-> ((systembus.adcs_tlm.att_tlm_stream.trans?a’

-> if a’ == earth_limb_scan

then Safe(true)

else Safe(false))

[]

systembus.adcs_tlm.att_cmd_ack -> Safe(ready_for_sci)

[]

systembus.adcs_tlm.att_violation -> HandleADCSFault))

[]

(systembus.adcs_tlm.att_violation -> HandleADCSFault))

267

-- Science mode

-- * takes science data only when in science attitude

-- * coordinates science data-take

-- * takes no more than 5 consecutive samples before

-- stopping to wait for a command to continue

-- * will not act on attitude commands during a data-take

-- * waits for ack to ensure attitude shift has taken place

Nominal(ready_for_sci, n) =

(cmdin.mode.nominal

-> systembus.dl_cmd!modestatus.nominal

-> Nominal(ready_for_sci, 5))

[]

(cmdin.mode.safe

-> systembus.eps_cmd.sw.payload.off

-> systembus.dl_cmd!modestatus.safe

-> Safe(ready_for_sci))

[]

(cmdin.att?a

-> systembus.adcs_cmd!a

-> ((systembus.adcs_tlm.att_tlm_stream.trans?a’

-> if a’ == earth_limb_scan

then Nominal(true, n)

else Nominal(false, n))

[]

(systembus.adcs_tlm.att_cmd_ack

-> Nominal(ready_for_sci, n))

[]

(systembus.adcs_tlm.att_violation

268

-> HandleADCSFault)))

[]

(systembus.adcs_tlm.att_violation -> HandleADCSFault)

[]

((ready_for_sci == true) and (n > 0) &

systembus.pl_cmd.take_sample

-> systembus.pl_tlm.meas?m

-> systembus.adcs_tlm.att_tlm_stream.getval?a

-> systembus.dl_cmd!missiondata.formatted.(m,a)

-> Nominal(ready_for_sci, n-1))

HandleADCSFault =

let

FaultResponse =

systembus.eps_cmd.sw.payload.off

-> systembus.dl_cmd!fault_occurred

-> AwaitSafeAttitude

AwaitSafeAttitude =

systembus.adcs_tlm.att_tlm_stream.trans?a

-> if a == sun_pointing

then

(systembus.dl_cmd!modestatus.safe

-> Safe(false))

else AwaitSafeAttitude

within

FaultResponse

269

within

Off

---- Comm --

Comm_IF = {|cmdin, power.load_switch.ul, downlink,

systembus.dl_cmd, power.load_switch.dl|}

Comm =

let

Uplink =

let

UplinkOff = power.load_switch.ul.on -> UplinkOn

UplinkOn =

power.load_switch.ul.off -> UplinkOff

[]

cmdin?_ -> UplinkOn

within

UplinkOff

Downlink = SwitchedLiftF(systembus.dl_cmd,

downlink, f_ID,

power.load_switch.dl)

within

Uplink ||| Downlink

---- EPS ---

EPS_IF = {|separation, power, systembus.eps_cmd, attitude.trans,

deploy, qr_exception, eps_exception|}

270

EPS =

let

-- Init sequence

-- EPS detects separation,

-- powers up CDH,

-- autonomously deploys array

Init =

separation

-> power.load_switch.ul.on

-> power.load_switch.dl.on

-> power.load_switch.cdh.on

-> deploy.solar_array -> SKIP

CommandLogic =

systembus.eps_cmd.sw?x -> power.load_switch!x -> CommandLogic

[]

systembus.eps_cmd.pyro?x -> deploy!x -> CommandLogic

-- Available power as a function of attitude state

MAXPOWER = 10

available(uncontrolled) = 8

available(sun_pointing) = 10

available(earth_limb_scan) = 10

DynamicCapacityCheck =

let

Check(pA, pL) =

if pA < pL

271

then eps_exception.resource_overflow -> STOP

else DynamicCapacityCheck

within

(power_alloc.trans?pL

-> (power_avail.getval?pA -> Check(pA, pL)

[]

power_avail.trans?pA -> Check(pA, pL)))

[]

(power_avail.trans?pA

-> (power_alloc.getval?pL -> Check(pA, pL)

[]

power_alloc.trans?pL -> Check(pA, pL)))

AvailablePower(a) =

(attitude.trans?a’

-> power_avail.trans!available(a’) -> AvailablePower(a’))

[]

power_avail.getval!available(a) -> AvailablePower(a)

AllocatedPower =

QuantResource(power_delta, power_alloc.getval,

power_alloc.trans, 0, MAXPOWER, 0)

PowerSource =

((AllocatedPower

[|{|power_alloc|}|]

DynamicCapacityCheck)

[|{|power_avail|}|]

272

AvailablePower(INIT_ATTITUDE))

\{|power_avail, power_alloc|}

within

-- Must complete init sequence before anything else happens

Init; (CommandLogic ||| PowerSource)

[[power_delta <- power.load_delta.s | s <- {payload, adcs}]]

---- Payload ---

Payload_IF = {|power.load_switch.payload, power.load_delta.payload,

systembus.pl_cmd, instrument, systembus.pl_tlm,

deploy.antenna|}

Payload =

let

f_PayloadModePower(m) =

let

f = {(off, 0), (on, 5)}

within apply(f,m)

PLMode(off) =

(power.load_switch.payload.on

-> modetrans_payload.begin.on

-> modetrans_payload.end.on

-> PLMode(on))

[]

(power.load_switch.payload.off -> PLMode(off))

PLMode(on) =

(power.load_switch.payload.off

273

-> modetrans_payload.begin.off

-> modetrans_payload.end.off

-> PLMode(off))

[]

(systembus.pl_cmd.take_sample

-> instrument?m

-> systembus.pl_tlm.meas!m

-> PLMode(on))

-- Both antennas must be deployed for useful measurements

-- to be gathered

Antenna(deployed) =

(card(deployed) == 2) & instrument!sample -> Antenna(deployed)

[]

not (card(deployed) == 2) &

((instrument!junk -> Antenna(deployed))

[]

(deploy.antenna?x

-> systembus.pl_tlm.tlm_deploy!x

-> Antenna(union(deployed,{x}))))

within

((PLMode(off)

[|{|instrument|}|]

Antenna({}))

[|{|modetrans_payload|}|]

SubsysModePower(off, modetrans_payload,

power.load_delta.payload,

f_PayloadModePower)) \ {|modetrans_payload|}

274

Subsystems = {(CDH_IF, CDH),

(EPS_IF, EPS),

(ADCS_IF, ADCS),

(Payload_IF, Payload),

(Comm_IF, Comm)}

within

(|| (IF, Subsys):Subsystems @ [IF] Subsys)

[[cmdin <- uplink]]

InternalChannels = {|power, cmdin, systembus, attitude|}

SCsystem’ = SCsystem \ InternalChannels

-------- Property verification ---

-- Auxiliary processes RUN, DF (deadlock free), and

-- DFtick (deadlock free, can successfully terminate)

RUN(A) = [] a:A @ a -> RUN(A)

DF(A) = |~| a:A @ a -> DF(A)

DFtick = (|~| e:Events @ e -> DFtick) |~| SKIP

Faults = {|fault, qr_exception, eps_exception|}

---- Sanity Checks ----

-- PROPERTY: Free of livelock

275

assert SCsystem’ \ union(Faults, {|deploy|}) :[divergence free]

-- PROPERTY: Deadlock-free operation does not rely on faults or errors

assert DFtick [F=

((SCsystem’ [|Faults|] CHAOS(Faults)) \ Faults)

---- Safety Properties ----

-- PROPERTY: No resource overflows or underflows

assert STOP [T= SCsystem \ diff(Events, {|qr_exception, eps_exception|})

-- PROPERTY: No instrument use in undesirable attitudes

GoodAtt = {attitude.trans.earth_limb_scan}

BadAtt = diff({|attitude.trans|}, GoodAtt)

assert Between(GoodAtt, BadAtt, {|instrument.sample|}) [T=

SCsystem \ diff(Events, {|attitude.trans, instrument|})

-- Define desirable science outputs more formally

GoodScienceOutput =

{downlink.missiondata.formatted.(m,a) | m <- {sample},

a <- {earth_limb_scan}}

BadScienceOutput = diff({|downlink.missiondata|}, GoodScienceOutput)

-- PROPERTY: No downlink of bad science data

assert STOP [T= SCsystem \ diff(Events, BadScienceOutput)

-- PROPERTY: No downlinking occurs prior to separation from

-- the launch vehicle

276

SepPrecedesDownlink = separation -> RUN({|downlink|})

assert SepPrecedesDownlink [T=

SCsystem \ diff(Events, {|separation,downlink|})

---- Liveness Properties ----

-- Signal event for successful completion of a check

channel success

-- PROPERTY: Valid scenario (assuming no faults)

ScenIF = {|separation,downlink,uplink|}

Scenario =

EventSeq(<separation,

downlink.modestatus.launch,

downlink.modestatus.safe,

uplink.mode.nominal,

downlink.modestatus.nominal,

uplink.att.science_attitude,

downlink.missiondata.formatted.(sample,earth_limb_scan)>)

assert (success -> STOP) [FD=

((Scenario; success -> STOP)

[|ScenIF|]

((SCsystem’ [|Faults|] STOP)))

\ diff(Events, {success})

-- EXAMPLE: Invalid scenario (spacecraft must be in science attitude

-- to take a sample)

277

InvalidScenario =

EventSeq(<separation,

downlink.modestatus.launch,

downlink.modestatus.safe,

uplink.mode.nominal,

downlink.modestatus.nominal,

downlink.missiondata.formatted.(sample,earth_limb_scan)>)

assert not (success -> STOP) [FD=

((InvalidScenario; success -> STOP)

[|ScenIF|]

((SCsystem’ [|Faults|] STOP)))

\ diff(Events, {success})

-- PROPERTY: Spacecraft is able to attain all controlled

-- attitude states, in both Safe and Nominal modes

ControlledAtt = {sun_pointing, earth_limb_scan}

AttTrans =

{|attitude.trans.sun_pointing,attitude.trans.earth_limb_scan|}

Assumption =

let

-- May be in either safe mode or nominal mode

ModeCmdAssumption = ((uplink.mode.nominal -> STOP) |~| STOP)

-- Every attitude command is sent

AttCmdAssumption({}) = STOP

278

AttCmdAssumption(Cmds) =

|~| cmd:Cmds @ uplink.att.cmd

-> AttCmdAssumption(diff(Cmds,{cmd}))

within

ModeCmdAssumption ||| AttCmdAssumption(AttitudeCommand)

-- Every controlled attitude is achieved at least once

Commitment =

let

AttCommit({}) = CHAOS(AttTrans)

AttCommit(Atts) =

|~| a:Atts @ attitude.trans.a -> AttCommit(diff(Atts,{a}))

within

AttCommit(ControlledAtt)

assert Commitment [FD=

(SCsystem [|{|uplink|}|] Assumption) \ diff(Events, AttTrans)

-- PROPERTY: Produces desirable science

-- Assumptions:

-- * Initially receives command into science attitude and science mode

-- * Consistently receives commands to start a new sample run

-- * On detection of a fault, re-enters science mode

-- * The number of faults is bounded (i.e. cannot diverge on faults)

CmdAssumption =

let

RunSampling(n) =

279

(n <= 0) & uplink.mode.nominal -> RunSampling(5)

[]

(n > 0) & downlink.missiondata?_ -> RunSampling(n-1)

[]

downlink.fault_occurred -> CmdAssumption

within

uplink.mode.nominal

-> uplink.att.science_attitude

-> RunSampling(5)

FaultHypothesis =

let

FH(0) = STOP

FH(n) = (fault -> FH(n-1)) |~| STOP

within

FH(3)

assert DF(GoodScienceOutput) [FD=

((SCsystem’

[|{|uplink,downlink.fault_occurred,downlink.missiondata|}|]

CmdAssumption)

[|{fault}|] FaultHypothesis)

\ diff(Events, GoodScienceOutput)

-- PROPERTY: Always accepts all commands

assert RUN({|uplink|}) [FD=

((SCsystem [|Faults|] CHAOS(Faults)) \ Faults)

\ diff(Events, {|uplink|})

280

-------- Revised system specification ----------------------------------

channel init_complete

channel fault_response

SCspec =

let

InternalChannels =

{|in_Sci, sci_req, sci_out_ack, trans_Mode, attitude,

init_complete, data, fault_response|}

-- Separation behavior

Initialization =

EventSeq(<deploy.solar_array, attitude.setval.sun_pointing,

deploy.antenna.1, deploy.antenna.2, init_complete>)

SeparationBehavior =

EventTrigger({separation}, Initialization)

-- Spacecraft functions

f_Att(c) =

let

f = {(detumble, sun_pointing),

(science_attitude, earth_limb_scan),

(safe_attitude, sun_pointing)}

within apply(f,c)

281

f_Sci((m,a)) = formatted.(m,a)

-- Lifted spacecraft functions

AttitudeCommanding = LiftF(uplink.att, attitude.setval, f_Att)

Science’ = (SeqIn2(sci_req, instrument, attitude.getval, in_Sci)

[|{|sci_req, in_Sci|}|]

MIMOLiftF(in_Sci, data.missiondata, sci_req,

sci_out_ack, f_Sci))

-- Fault response

FaultResponse =

EventTrigger({fault},

EventSeq(<attitude.setval.sun_pointing,

fault_response>));

FaultResponse

FaultReport =

(trans_Mode.safe -> FaultReport)

[]

(fault_response

-> data.fault_occurred

-> trans_Mode.safe

-> FaultReport)

-- Spacecraft mode transition behavior

SC_Modes =

let

282

TransitionDefs = {(launch, init_complete, safe),

(safe, uplink.mode.safe, safe),

(safe, uplink.mode.nominal, nominal),

(safe, fault_response, safe),

(nominal, uplink.mode.safe, safe),

(nominal, uplink.mode.nominal, nominal),

(nominal, fault_response, safe)}

within

StateTransitions(launch,trans_Mode,TransitionDefs)

f_ReportMode(m) = modestatus.m

SC_Modes’ = (SC_Modes

[|{|trans_Mode|}|]

LiftF(trans_Mode, data, f_ReportMode))

[|{|fault_response,trans_Mode.safe|}|]

FaultReport

-- States

AttitudeState =

AssignableState(attitude.setval, attitude.getval,

attitude.trans, uncontrolled)

-- Mode constraints

aAtt_Modes = {|uplink.att,trans_Mode|}

Att_Modes =

ModeConstraint({|uplink.att|},trans_Mode,

{safe,nominal},{launch})

283

aScience_Modes = {|sci_req,trans_Mode|}

Science_Modes =

ModeConstraint({|sci_req|},trans_Mode,{nominal},{launch,safe})

-- Other constraints

aNoAttChange = {|instrument,data.missiondata,attitude.setval|}

NoAttChangeDuringScience =

Outside({|instrument|},{|data.missiondata|},

{|attitude.setval|})

aNoDownlinkBeforeSep = {|downlink, separation|}

NoDownlinkBeforeSep = Between({separation},{},{|downlink|})

-- New constraints

aSciOnlyInSciAtt = {|sci_req,attitude.setval|}

SciOnlyInSciAtt =

Between({attitude.setval.earth_limb_scan},

diff({|attitude.setval|},

{attitude.setval.earth_limb_scan}),

{|sci_req|})

aNoAttCmd = {|uplink.mode,init_complete,

fault_response,data.modestatus,uplink.att|}

NoAttCmdDuringModeTrans =

Outside({|uplink.mode,init_complete,fault_response|},

{|data.modestatus|},{|uplink.att|})

aNoSciMode = {|uplink.mode,init_complete,

284

fault_response,data.modestatus,sci_req|}

NoSciDuringModeTrans =

Outside({|uplink.mode,init_complete,fault_response|},

{|data.modestatus|},{|sci_req|})

aNoCmdSci = {|sci_req,data.missiondata,uplink|}

NoCmdDuringScience =

Outside({|sci_req|},{|data.missiondata|},{|uplink|})

aFaultResponseWaitsForSci =

{|sci_req,data.missiondata,fault_response|}

FaultResponseWaitsForSci =

Outside({|sci_req|},{|data.missiondata|},{|fault_response|})

aAtomicModeStatusReport =

{|separation,init_complete,fault_response,

uplink.mode,data.modestatus|}

AtomicModeStatusReport =

[] e:{|separation,init_complete,fault_response,uplink.mode|}

@ e -> data.modestatus?_ -> AtomicModeStatusReport

aFaultOnlyInSciAtt = {|fault,attitude.setval|}

FaultOnlyInSciAtt =

Between({attitude.setval.earth_limb_scan},

diff({|attitude.setval|},

{attitude.setval.earth_limb_scan}),

{|fault|})

285

aNoInfiniteSci = {|uplink.mode.nominal,instrument|}

NoInfiniteSci = NoInfiniteSci’(0)

NoInfiniteSci’(0) = uplink.mode.nominal -> NoInfiniteSci’(5)

NoInfiniteSci’(n) = uplink.mode.nominal -> NoInfiniteSci’(5)

[]

instrument?_ -> NoInfiniteSci’(n-1)

aGoodScience = {|instrument|}

GoodScience = instrument.sample -> GoodScience

-- Constraint network

ConstraintSet =

{(aSciOnlyInSciAtt,SciOnlyInSciAtt),

(aAtt_Modes,Att_Modes),

(aScience_Modes,Science_Modes),

(aNoAttChange,NoAttChangeDuringScience),

(aNoAttCmd,NoAttCmdDuringModeTrans),

(aNoSciMode,NoSciDuringModeTrans),

(aNoDownlinkBeforeSep,NoDownlinkBeforeSep),

(aNoCmdSci,NoCmdDuringScience),

(aFaultResponseWaitsForSci,FaultResponseWaitsForSci),

(aAtomicModeStatusReport,AtomicModeStatusReport),

(aFaultOnlyInSciAtt,FaultOnlyInSciAtt),

(aNoInfiniteSci,NoInfiniteSci),

(aGoodScience,GoodScience)}

aCNet = aConstraintNet(ConstraintSet)

CNet = ConstraintNet(ConstraintSet)

286

within

((((((((AttitudeCommanding

||| Science’)

||| SC_Modes’)

[|{init_complete}|]

SeparationBehavior)

[|{fault_response}|]

FaultResponse))

[|{|attitude.setval, attitude.getval|}|]

AttitudeState)

[|{|data|}|]

BoundedBlockingBuffer(data, downlink, 1))

[|aCNet|]

CNet)

\ InternalChannels

-- The design does not do anything forbidden by the specification

assert SCspec [T= SCsystem’

-- The design does the things the specification requires it to do

assert SCspec [F= SCsystem’

-- The specification/design correspondence does not rely on faults

assert SCspec [|Faults|] CHAOS(Faults) [F=

SCsystem’ [|Faults|] CHAOS(Faults)

287

Vita

Allan McInnes

Education

• Ph.D. Electrical and Computer Engineering (Phi Kappa Phi), Utah State University,

Logan, UT, 2007.

• M.S. Aeronautics and Astronautics, Purdue University, West Lafayette, IN, 2000

• B.E. Electrical and Electronic Engineering (1st Class Honours), University Of Can-

terbury, Christchurch, New Zealand, 1997

Professional Experience

• Embedded System Engineer, Syncroness, Inc. Westminster, CO, Oct. 2006 - Present

• Member of the Technical Staff - Vehicle Concepts Department, The Aerospace Corpo-

ration. El Segundo, CA, Sep. 2000 - Aug. 2003

• Associate Design/Test Engineer - B-2 Program Analog Group, RJO Enterprises Inc.

Hunt Valley, MD, Feb. 1998 - Aug. 1998

Honors and Awards

• Space Dynamics Laboratory Tomorrow Ph.D. Fellowship, 2003-2006

• Aerospace Corporation Spot Award (GPS III), 2002

• Aerospace Corporation Performance Recognition Award (ST5), 2002

288

• Aerospace Corporation Performance Recognition Award (MER), 2001

• Aerospace Corporation Achievement Award (Mars Exploration Rover), 2001

• Purdue University Frederick N. Andrews Fellowship, 1998-2000

• Purdue University Warren G. Koerner Fellowship, 1998-2000

• Canterbury Research Award (Masters Level), 1997

Publications

Conference Proceedings

• B. K. Eames, A. I. McInnes, J. E. Crace, and J. M. Graham, “A Model-Based

Design Tool for Systems-Level Spacecraft Design,” Proceedings of the 20th Annual

AIAA/USU Conference on Small Satellites, Aug. 14-17, 2006.

• A. I. McInnes, “Design and Implementation of a Proof-of-Concept MMORPG Using

CSP and occam-pi,” Proceedings of the 2005 International Conference on Parallel and

Distributed Processing Techniques and Applications (PDPTA’05), Jun. 27-30, 2005.

• A. I. McInnes, D. M. Harps, J. A. Lang and C. M. Swenson, “A Systems Engineering

Tool for Small Satellite Design,” Proceedings of the 15th Annual AIAA/USU Small

Satellite Conference, Aug. 13-16, 2001.

Technical Reports

• P. C. Anderson, H. C. Koons, and A. I. McInnes, “GOUDA communications using

crosslink or downlink options,” Aerospace Corporation ATR-2004(8194)-1, Jun. 15,

2004.

• P. C. Anderson, H. C. Koons, and A. I. McInnes, “GPS observations of the up-

per and deep atmosphere (GOUDA) - phase A study,” Aerospace Corporation ATR-

2003(8194)-2, Sep. 30, 2003.

289

• E. M. Mahr and A. I. McInnes, “High Power Microwave Technology for Space Appli-

cations,” Aerospace Corporation TOR-2003(1214)-2887, Sep. 30, 2003.

• A. I. McInnes et al. “Near Horizon Concept Design Center (CDC) Study Final Report

SST054,” Aerospace Corporation TOR-2003(1609)-2386, Jan. 30, 2003

• S. M. Feldman, A. I. McInnes, E. C. Byrne, J. Willis, Z. N. Cox, J. Nunes, “Mars Ex-

ploration Rover Systems Functional Failure Modes, Effects and Criticality Analysis,”

JPL D-21053, Apr. 30, 2002

• A. I. McInnes with C. S. Taylor et al. “Global Multi-mission Service Platform

Concept Design Center Study Final Report SST038,” Aerospace Corporation TOR-

2001(8511)-4, Aug. 1, 2001

Invited Talks

• A. I. McInnes, “Making Things Behave: Software and System Design Using CSP,”

University of Canterbury, Nov. 2005.

• A. I. McInnes, “Integrated Concurrent Design,” Utah State University, Apr. 2003.

Significant Professional Presentations

• A. I. McInnes, “Developing Concurrent Design Teams,” Presentation to NASA Ames

Research Center, Feb. 6th, 2003

• A. I. McInnes, “STSS (SBIRS Low) Common Bus Study Final Results,” Briefing to

STSS Core Team, Dec. 13, 2002

• A. I. McInnes, “Concept Design Center Space Segment Team Support for GPS III,”

Presentation to Aerospace Corporation Engineering Technology Group Vice President,

Sep. 17, 2002

• S. M. Feldman, A. McInnes, “SBIRS Low Common Bus Study Results,” Briefing to

SBIRS Low Program Office, Jun. 4, 2002

290

• C. S. Taylor, S. M. Feldman, A. I. McInnes, “GPS III Independent Technical Baseline

Study,” Briefing to GPS Joint Program Office, May 22, 2002

• A. I. McInnes, D. A. Bearden, P. B. Burridge, “New Millennium Program ST5 COTS

Spacecraft Compatibility Assessment,” Briefing to NASA HQ and New Millenium

Program Managers, May 8, 2002

• A. I. McInnes, “SmallSatCEM: A Systems Engineering Tool to Support the Con-

ceptual Design of Small Satellites,” Presentation to Aerospace Corporation Systems

Engineering Division , Oct. 18, 2001

