Utah State University DigitalCommons@USU

Reports

Utah Water Research Laboratory

January 1970

Formulation and Solution of Transient Flow of Water From an Infiltrometer Using the Kirchhoff Transformation

Roland W. Jeppson

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons

Recommended Citation

Jeppson, Roland W., "Formulation and Solution of Transient Flow of Water From an Infiltrometer Using the Kirchhoff Transformation" (1970). *Reports.* Paper 308. https://digitalcommons.usu.edu/water_rep/308

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

FORMULATION AND SOLUTION OF TRANSIENT FLOW OF WATER FROM AN INFILTROMETER USING THE KIRCHHOFF TRANSFORMATION

by

Roland W. Jeppson

INTRODUCTION

In the progress report¹ dealing with methods for solving the three dimensional axisymmetric transient flow from infiltrometers, it was suggested that the numerical solution may be improved for situations containing regions of nearly saturated flow by transforming the hydraulic head (the dependent variable in the partial differential equation) by means of the Kirchhoff Transformation. While this transformation does not completely linearize the basic nonlinear partial differential equation, there are indications, as pointed out in the progress report, that solutions to the initial-boundary value problem might be more readily obtained for those situations in which the equation begins to change from parabolic to elliptic type.

Since writing the progress report, a computer program has been developed which implements the Kirchhoff transformation as suggested in the progress report. Use of the Kirchhoff Transformation in the formulatior of the mathematical problem of partially saturated unsteady flow from an infiltrometer results in improved solution capabilities, particularly for problems in which a portion of the region approaches unit saturation. This paper describes the solution methods used in the computer program and presents example solution results. Consequently, this paper is a supplement to the prior report. The parameters and notations used herein are more fully defined on the previous report.

¹Jeppson, R. W., "Transient Flow of Water from Infiltrometers--Formulation of Mathematical Model and Preliminary Numerical Solutions and Analyses of Results." Report PRWG-59c-2, Utah Water Research Laboratory, Utah State University, Logan, Utah, June 1970.

FORMULATION

The Darcian based differential equation describing axisymmetric flow in partially saturated porous media is

$$\nabla \cdot (\mathbf{K}_{\mathbf{r}} \nabla \mathbf{h}) + \frac{\mathbf{K}_{\mathbf{r}}}{\mathbf{r}} \frac{\partial \mathbf{h}}{\partial \mathbf{r}} = \frac{\mathbf{n}}{\mathbf{K}_{\mathbf{o}}} \frac{\partial \mathbf{S}}{\partial \mathbf{t}} \quad . \quad (1)$$

in which h is the hydraulic head, K_r is the relative hydraulic conductivity, η is the soil porosity, S is the saturation, and K is the saturated hydraulic conductivity.

Upon applying the Kirchhoff Transformation

$$\xi = \frac{1}{\rho g} \int_{P_o}^{P} K_r(p) \, dp$$

Eq. 1 becomes

$$\frac{\partial^2 \xi}{\partial r^2} + \frac{\partial^2 \xi}{\partial z^2} + \frac{1}{K_r} \frac{\partial K_r}{\partial p_h} \frac{\partial \xi}{\partial z} + \frac{1}{r} \frac{\partial \xi}{\partial r} = \frac{\eta}{K_r} \frac{\partial S}{\partial p_h} \frac{\partial \xi}{\partial \tau} \quad . \quad . \quad (2)$$

in which p is the pressure, p_h is the pressure head, and $\tau = K t$ (t is real time).

The formulation of the initial-boundary value problem for the transient movement of infiltrating water is depicted in Fig. 1. The boundary conditions are given by an equation by each boundary on this figure.

NUMERICAL SOLUTION

The alternating direction implicit method (ADI) used in the previous report has been applied to obtain the solution to the problem depicted in Fig. 1. The finite difference operator for the first portion of the time step in the ADI method is

$$-\xi_{i-1,j}^{*} + (\zeta + 2)\xi_{i,j}^{*} - \xi_{i+1,j}^{*} = \xi_{i+1,j}^{n} + \xi_{i-1,j}^{n} + 2(\xi_{i,j+1}^{n} + \xi_{i,j-1}^{n}) + (\zeta - 6)\xi_{i,j}^{n} - \alpha \Delta s(\xi_{i,j+1}^{n} - \xi_{i,j-1}^{n}) + \frac{\Delta s}{r}(\xi_{i+1,j}^{n} - \xi_{i-1,j}^{n})$$
(3)

Fig. 1. Formulation of the initial-boundary value problem for the transient flow of water from a circular infiltrometer after the introduction of a new dependent variable through the Kirchhoff Transformation to replace the hydraulic head.

and for the second portion of the time step is

In Eqs. 3 and 4 $\Delta s = \Delta r = \Delta z$, $\zeta = \frac{2\eta \Delta s^2}{\Delta \tau K_r} \frac{\partial S}{\partial p}$, $\alpha = \frac{1}{K_r} \frac{\partial K_r}{\partial p}$, the superscripts denote the time step and the subscripts the space increments such that $i = r/\Delta r + 1$ and $j = N_v - z/\Delta z$ ($N_v = \text{depth of soil}/\Delta z + 1$).

The procedure for obtaining the numerical solution of Eqs. 3 and 4 with the accompanying boundary condition operators is the same as described in the earlier progress report, with the exception of the operator for the boundary (1) to (5). The method for handling this boundary had to be modified to overcome difficulties resulting from a poor approximation of the finite differences in describing the actual behavior of the function ξ . The reasons for these difficulties and the methods used to overcome these difficulties are described below in detail.

Operator for Boundary (1) to (5)

The boundary condition for ① to ⑤ in Fig. 1 is derived from the condition that the normal derivative of the hydraulic head along this boundary vanishes, namely $\partial h/\partial z = 0$, as shown in the equation below.

$$\frac{\partial \mathbf{h}}{\partial \mathbf{z}} = \frac{\partial \mathbf{p}}{\partial \mathbf{z}} + 1 = \frac{\partial \mathbf{p}}{\partial \xi} \frac{\partial \xi}{\partial \mathbf{z}} + 1 = \frac{1}{K_r} \frac{\partial \xi}{\partial \mathbf{z}} + 1 = 0 \quad . \quad . \quad . \quad . \quad (5a)$$

A second order central difference approximation of Eq. 5b leads to

$$\xi_{i, N_{y}+1} - \xi_{i, N_{y}-1} = -2\Delta z K_{r}$$
 (6)

The usual manner for developing the finite difference operator for the boundary grid points along $\hat{\mathbb{Q}}$ to $\hat{\mathbb{S}}$ on Fig. 1 would combine Eq. 6 with the operators for the interior grid points in such a way as to eliminate the value ξ_{i, N_y+1} at the nonexistent grid points outside the boundary. This

combination leads to the following operator for the first portion of the time step.

$$-\xi_{i-1,N_{y}}^{*} + (\zeta + 2)\xi_{i,N_{y}}^{*} - \xi_{i+1,N_{y}}^{*} = \xi_{i+1,N_{y}}^{n} + \xi_{i-1,N_{y}}^{n} + (\zeta - 6)\xi_{i,N_{y}}^{n} + 4\xi_{i,1}^{n} + (2\alpha\Delta s^{2} - 4\Delta s)K_{r} + \frac{\Delta s}{r} (\xi_{i+1,N_{y}}^{n} - \xi_{i-1,N_{y}}^{n}) + (\zeta - 6)\xi_{i,N_{y}}^{n} + 4\xi_{i,N_{y}}^{n} + 4\xi_{i,N_{y}}^{n} + (\zeta - 6)\xi_{i,N_{y}}^{n} + (\zeta - 6)\xi$$

The above approach is generally valid. However, for the problem of infiltration, the parabolic approximation of the function given by Eq. 6 which leads to Eq.7 does not approximate the derivative $\partial \xi \partial z$ at z = 0 close enough to use the operator Eq. 7 for the boundary (1) to (5). Its use causes the value at ξ to be less (accompanied by a decrease in the hydraulic head) than the initializing values even though the wetting front has not reached the boundary. After a number of time steps this influence spreads to the interior grid points with a resulting further decrease in values of ξ at the boundary. This occurrence was observed in first attempts at obtaining a solution in which changes in the third digit beyond the decimal point were observed after the first time step.

To examine the accuracy of a second order polynomial approximation of the function ξ at z = 0, note that ξ varies according to the following equation provided that the hydraulic head is constant.

$$\xi = \frac{\mathbf{p}_{b}}{\alpha - 1} - \frac{\mathbf{p}_{b}^{\alpha}}{(\alpha - 1)(\mathbf{p}_{o} + \mathbf{z})^{\alpha - 1}} = C_{1} - \frac{C_{2}}{(\mathbf{p}_{o} + \mathbf{z})^{\alpha - 1}} \cdot \cdot \cdot$$

in which p_0 is the pressure at the boundary z = 0. The first and second derivatives of Eq. 8 are respectively

and

$$\frac{\partial^2 \xi}{\partial z^2} = - \frac{\alpha p_b^{\alpha}}{(p_o + z)^{\alpha + 1}} \qquad (10)$$

An indication of the accuracy of Eq. 6 in approximating the derivative $\partial \xi / \partial z$ at z = 0 can be had by comparing the values obtained from a second degree polynomial with values obtained from the latter part of Eq. 8 in which C_1 and C_2 may take on slightly different values than those defined by the first part of Eq. 8. To do this note that under the assumption C_1 and C_2 are constant adjacent to and on the boundary (1) to (5), that

$$\xi_{i, N_y} = C_1 - \frac{C_2}{p_0^{\alpha - 1}}$$
 (11)

and

$$\xi_{i, N_y} = C_1 - \frac{C_2}{(p_0 + \Delta s)^{\alpha - 1}}$$
 (12)

Subtracting Eq. 12 from Eq. 11 and solving for C2 gives

$$C_{2} = - \frac{\xi_{i, N_{y}} - \xi_{i, N_{y} - 1}}{\frac{1}{p_{o}^{\alpha-1}} - \frac{1}{(p_{o} + \Delta s)^{\alpha-1}}} \qquad (13)$$

Upon substituting Eq. 13 into Eq. 9 gives

$$\frac{\partial \xi}{\partial z}\Big|_{z=0} \approx -\frac{(\alpha - 1)(\xi_{i, N_y} - \xi_{i, N_y} - 1)}{p_o - \frac{p_o}{(p_o + \Delta s)^{\alpha - 1}}} \qquad (14)$$

Since $\partial \xi / \partial z = -K_r$ along (1) to (5)

$$\xi_{i, N_{y}} - \xi_{i, N_{y}-1} = \frac{K_{r}}{\alpha - 1} \left(p_{o} - \frac{p_{o}}{(p_{o} + \Delta s)^{\alpha - 1}} \right) \quad . \quad . \quad (15)$$

The difference in the right hand sides of Eqs. 6 and 15 illustrates the lack of good approximation by a second degree polynomial of the derivative $\partial \xi / \partial z$ at z = 0.

As an example to illustrate the magnitudes involved consider a probl with the following specifications: $h_o = 1.0$ ft, $\lambda = 1.28$, $\alpha = 5.84$, $p_b = 0$. and $\Delta s = 1.0/14.0$. These specifications lead to $\xi_{i,N_y} = 0.063120$, $\xi_{i,N_y-1} = 0.099164$, and $(2\alpha \Delta s^2 - 4\Delta s)K_r = 0.257704$. On the other hand an examination of Eq. 7 indicates that under the initial condition $h_o = -1.0$ the last quantity should equal $4(\xi_{i,N_y-1}^n - \xi_{i,N_y}^n) = 0.252480$. The differe is 0.005224. Since the magnitude ξ_{i,N_y} upon solving Eq. 7, equal to 0.063767 which deviates from the correct value ξ_{i,N_y} in the fourth digit beyond the decimal point.

From the above discussion it is obvious that an alternative to Eq. 3 must be developed as the finite difference operator along the boundary (1) to (5). The operator has been developed by noting from Eqs. 9 and 10 that along the boundary (1) to (5) (at least when $h_{i, N_{vr}} = h_{o}$)

and therefore the differential equation can be reduced to

$$\frac{\partial^2 \xi}{\partial r^2} + \frac{1}{r} \frac{\partial \xi}{\partial r} = \Gamma \frac{\partial \xi}{\partial \tau} \quad \dots \quad \dots \quad \dots \quad \dots$$

Approximating the derivations in Eq. 17 by appropriate central differences as needed for the first portion of the time step for the alternating direction implicit method leads to

and at point (1) this equation reduces to

$$(\zeta + 1)\xi_{2,N_{y}}^{*} - \xi_{3,N_{y}}^{*} = \xi_{3,N_{y}}^{n} + (\zeta - 1)\xi_{2,N_{y}}^{n} + \frac{\Delta s}{r}(\xi_{3,N_{y}}^{n} - \xi_{2,N_{y}}^{n}) \quad . \quad (19)$$

For the second portion of the time step the usual approach of combining Eq. 6 with Eq. 4 has been used and gives

$$(\frac{\zeta}{2}+1)\xi_{i,N_{y}}^{n+1} - \xi_{i,N_{y}}^{n+1} = \frac{\zeta}{2}\xi_{i,N_{y}}^{*} + \xi_{i,N_{y}}^{n} - \xi_{i,N_{y}-1}^{n} \dots \dots (20)$$

The usual second degree polynomial approximation has been used along boundary ③ to ④ without apparent difficulties.

RESULTS FROM A SAMPLE SOLUTION

The problem, selected to illustrate the solution capability using the Kirchhoff Transformation to the infiltration problem, specified a soil with the following parameters in the Brooks-Corey equations: $S_r = 0.120$, $\lambda = 1.28$, $\eta = .240$, $p_b = 0.92$. The initial condition was specified as a constant value of the hydraulic head $h_o = -1.0$ ft. The solution results which include data giving values for ξ , saturation and the hydraulic head throughout the flow field within the wetting front for a number of time steps are given in Table 1.

Table l.	Solution output for problem of infiltration from circular infiltrometer.	The output consists of value for	ξ,	saturation
	and hydraulic head within the wetting front.	-		

N2 X :	= 7 NX= 2 5	20 NY= 2	15 NT= 0 0	40 PI= 2	-1.000	DY= 1.1	DO DELT=	•0025	0= .5	000 00			
SR=	•120	LAMEDA=	1.28	POROSITY	-24	0 PB=	• 92 0 0						
RAD	IUS OVER	WHICH I	NF IL TRAT	ION OCCU	RS .4	2 85 7	`	•					20663
	1.1	0341	• 4 1	/14	• 42 8	5 /	1237	8	• 0714 3		4.84000		.20661
VAL	IES OF T	HE XI FO	R TIME=		2 50								
	1	2	3	* 4	5	6	7	8	9	10	11:	12	13:
1	.1670	.1670	.1670	.1670	.1670	.1670	.1683	.1849	.1855	.1856	.1856	1856	.1856
2	.1832	.1832	.1832	.1832	.1832	• 18 32	•1833	.1847	.1848	.1848	.1848	.1848	.1848
3	.1836	.1836	.1836	.1836	.1836	.1836	.1836	.1837	.1837	.1837	.1837	.1837	.1837
4	.1824	.1824	.1824	.1824	.1824	•1824	•1824	.1824	.1824	.1824	.1824	.1824	.1824
5	.1807	.1807	.1807	.1807	.1807	. 18 37	.1807	.1807	.1807	.1807	.1807	-1807	.1807
6	.1785	.1785	.1786	.1786	.17 95	.1786	.1786	.1785	.1785	.1786	• 17 85	•1785	.1786
VA	LUES OF	SATURATI	ON										
1	.6241	.6241	.6241	.6241	.6241	.6237	•6162	. 45 91	.4457				
2	.4852	.4962	.4862	.4862	.4862	.4851 -	.4838	.4622	.4612				
3	.4801	.4801	.4801	.4801	.4801	.4801	•4798	.4782					
4	.4967	.4967	.4967	.4967	.4967	•4967	.4967	.4965					
5	.5167	.5167	.5167										
VOL	UME OF W	ATER ABS	OR BED =	.0014	8 55								
V A	LUES FOR	HYDRAUL	IC HEAD										
	1	2	3	4	5	6	7	8	9	10	11	12	
1	422	422	422	422	422	423	439	-•938 -	-1.000	-1.000	-1.000	-1.000	
2	896	836	896	895	896	897	-,906	9 96	-1.000	-1.000	-1.000	-1.000	
3	992	992	992	992	-•992	992	993	-1.000	-1.000	-1.000	-1.000	-1.000	
4	999	999	-• 999	999	999	999	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	
5	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.0.00	-1.000	-1.000	-1.000	-1.000	-1.000	
6	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	

LUES OF T	HE XI FO	R TIME:	.02	3 75										
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0776	•0776	•0787	.0812	.0861	.0953	.1146	-1623	.1793	•1844	.1854	1855	1856	1856	.1
-1040	-1040	•1054	.1986	.1145	.1248	.1418	.1662	.1793	.1836	.1845	1848	. 1843	1848	•••
•1322	•1322	.1335	.1364	•1414	.1495	.1608	.1734	.1807	.1831	- 18 35	1837	- 1837	1937	- 1
•1556	• 1565	•1574	•15.92	• 16 22	• 16 58	•1725	•1781	.1811	-1821	- 18 24	- 18 74	-1824	1974	• 1 (
.1703	.1703	.1707	.1715	.1728	.1747	.1771	.1791	.1502	.1805	-1807	1807	.1807	1507	• 1 (
.1748	-1749	.1743	.1752	. 1757	. 1764	. 1773	1787	1700	1795	17.05	1705	1705	1700	• 1 0
1745	1745	1745	1765	1740	1751	1756	1765	•1704	•1/37	• 1785	•1780	•1730	•1785	• 1
1717	• 1 7 1 7	1710	1710	1719	•1751	•1754	+1755	•1/58	•1753	•1/58	•1758	-1753	.1758	• 1
•1/1/	• 1 / 1 /	•1/15	•1/10	• 17 [9	• 1.7 20	• 17 21	• 1 / 22	•1/22	•1/22	• 17 22	•1/22	•1/2,2	•1/22	• 1
•15/3	• 1673	•1675	•1673	• 16 74	• 16 74	• 16 / 4	• 16 / 5	• 16 / 5	•1675	• 16 /5	• 16 75	.1675	•1675	-16
• 1011	• 10 11	•1611	.1611	• 16 11	• 16 11	• 16 11	.1611	•1611	•1611	• 16 11	•1611	.1611	.1611	• 1 E
.1525	• 15 25	•1525	•1525	• 15 25	• 15 25	• 15 25	•1525	•1525	•15 25	• 15 25	•1525	•1525	•1525	•15
LUES OF	SATURATI	ON							1			:		
.8860	.8850	.8840	.8793	. 87 03	.8520	.80 92	.6465	.5315	.4582	. 44 97	.4463	. 44 57		
.8337	.8337	.8305	. 82 33	. 80 94	. 78 33	.7324	. 62.83	-5325	.4797	. 46 45	.4517	4613		
.7625	.7625	.7586	.7499	.7337	.7051	.65 66	.5822	•5177	.4879	47 99	4784	4781		
•6761	.6761	.6724	.6644	. 64 97	. 6253	. 58 87	. 54 39	.5127	.50.05	4973	.4967	4965		
-6035	6035	.5012	-5960	- 5867	5723	- 55 31	-5337	-5223	-51.82	- 51 70	- 51 68			
-5719	- 5719	- 5708	- 56.85	- 56 44	- 55.84	- 55 11	5444	-5408	.5394	53 90	• 51 00			
.5744	.5744	.5749	.5732	5717	56 97	-5673	-56.52	-5540	- 56 36	• 55 35				
-5941	. 5941	-5940	.5937	5932	- 5925	- 59 18	-5912	-5908	-5907	• • • • •				
-6220	-6220	-6220	-6219	. 62 18	- 5216	.6213	- 62 11	•0000						
-6553	.6553	-6553	-6552	- 65 52	-6551									
UME OF W	ATER ABS	OR SED =	-0155	5 37	••••									
LUES FOR	HYDRAUL	IC HEAD												
1	2	3	4.	5	6	7	`8	9	10	11.	12	13	14	
025	025	027	-•032	042	062	114	374	665	-•898	981	997	-1.000	-1.000	
155	155	159	157	185	219	293	484	734	922	985	998	-1.000	-1.000	
319	319	325	337	362	408	497	564	854	961	993	999	-1.000	-1.000	
531	531	5 38	553	582	633	719	842	942	985	997	-1.000	-1.000	-1.000	
754	754	760	773	796	833	886	945	981	995	999	-1.000	-1.000	-1.000	
906	905	909	915	925	943	964	984	994	999	-1.000	-1.000	-1.000	-1.000	
970	970	972	974	978	983	-•990	995	998	-1.000	-1.000	-1.000	-1.000	-1.000	
992	992	992	993	994	995	997	999	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	
998	998	998	998	998	999	999	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	
999	-,999	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	
-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	

VAL	JES OF TI	HE XI FOR	TIME=	•055	5 00											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	.0532	. 05 32	.0552	.05.90	. 06 56	.0763	.0982	.1485	•1584	1781	-1828	1848	.1854	-1856	.1856	-1856
2	. 1683	.0683	.0710	.0762	.0948	• 09 93	.11 83	•1473	.1556	.1767	.1817.	.1838	.1845	•1847	.1848	.1848
3	.0949	.0340	.0280	.0939	10 30	1158	.1328	.1518	.1664	.1757	• 18 Or	.1827	.1834	.1837	.1837	.1837
4	.1073	.1023	.1054	.1111	.1196	.1308	.1441	.1577	.1687	•175°	-1799	.1815	.1821	•1823	•1824	.1824
5	.1194	.1124	.1222	.1273	.1345	.1435	.15 35	.15 32	.1710	.1761	.1789	.1801	.1805	.1807	.1807	.1867
6	.1348	.1343	.1372	.1413	.1469	.1537	.1607	.1672	.1723	.1756	.1773	.1781	.1784	.1786	.1786	.1786
7	-1471	. 1471	.1489	.1519	.1558	.1604	.1650	15 90	·1720	.1740	 17 50 	•1755	.1757	.1758	.1758	.1758
8	1549	.1549	.1560	.1579	.1604	. 16 32	.16 59	.1583	.1700	.1711	.1717	.1720	.1722	.1722	.17.22	.1722
9	.1575	.1575	.1582	.1593	• 16 08	• 15 24	•1639	•1652	.1662	•1663	• 15 72	•1674	.1675	.1675	•1675	.1675
10	.1555	.1555	.1559	.1565	.1573	.1582	.15 91	.15 98	.1604	16 08	.1510	.1611	.1611	.1612	.1612	.1611
11	.1493	.1493	.1495	.1499	. 15 03	.1508	.1513	.1517	.1521	.15 27	• 15 24	•1525	.1525	•1525	.1525	,1525
12	1 3 8 7	- 1387	.1383	.1390	.1393	.1396	.1399	.1401	.1403	.1404	• 14 05	.1406	-1406	.1406	.1406	.1405
17	1275	1226	.1227	.1228	.12.29	.1231	. 12 33	.1234	.1235	.1236	. 12 37	.1237	.1237	.1237	.1237	•1236
1.5	.0987	. 1987	.0989	.0988	.0989	. 19 90	.0991	. 09 92	.0992	.0993	.09 93	.0993	.0993	.0993	.0993	.0993
15	.0530	- 05 30	-0630	.06 30	.06 30	.0631	.06 31	.06 31	.0531	.06 31	.05 32	.05 32	.0532	.0632	.0631	.0631
13		• • • • • •														
VA	LUES OF	SATURATIO	0 N													
1	• 926 8	.9268	.9238	. 91 76	97.68	. 8874	84 51	70 07								
	.4457								• 61 58	+5437	.4907	•4515	•4503	.4469	-4460	-4458
2	.9023	.9023	.9977	.8985	. 8727	- 84 50	70 07	71 71								
•	.4612						• / 3 0 /	•/131	.6315	• 56 UE	• 5072	•4775	.4560	.4624	•4615	-4613
3	.8724	. 8724	.8665	.85.50	. 8360	- 80.62	. 76 ח9	59 50	6374						-	
						00002	•	•6365	. 62 /4	• 56 4 /	• 51 79	•4924	•4824	•4792	.4784	•4782
4	.8374	.8374	.8306	.8175	.7969	.7667	.7247	. 6711	. 6139	55.75		5034				
									•••••	. 36 26	• 72 63	• 20 (4	.4999	.4975	•4968	.4 95 6
5	•7975	•7975	•7902	•7765	.7557	• 72 55	.68 90	. 64 44	. 5991	- 55 11	. 5767	5240	.			
										• 50 11	• 35 85	• 32 40	• 21 31	•5174	•5169	-5168
6	•7547	•7547	.7475	.7342	.7145	.6885	.6569	.6225	-5902	- 56 56	55.07	64 74				
7	.7138	•7138	•7073	.6957	.6793	.5586	.6353	- 61 20	-59.22	.5782	5707	• 34 34	• 5405	.5394	.5390	
8	•6835	•6835	•6786	.6700	. 65 84	. 6445	• 62 9°	.6164	-5055	. 59 44	- 5942	6971	- 36 4 4	.5637	.5635	
9	•6721	.5721	•6690	.6637	.6567	.6489	.6409	.6339	.5285	-5745	- 57 78	5717	- 5711	- 59 8		
10	•6809	•680°	•5792	·€764	.6727	.6685	•E547	.651?	.6585	-5569	. 55 58	65 67	• 6 2 1 2 6 5 4 0	.6210		
11	.7058	.7058	.7050	•7036	.7018	.6998	. 69 79	.6962	. 6949	.6941	- 69 76	- 69 32	• 2343			
12	-7427	• 74 27	•7423	•7416	• 74 በ7	.7398	.73 89	.7381	.7374	-7372		• = >				
13	•7892	.7892	.7890	•7887	.7993	.7878	.7874	.7870	.7867							
14	•8450	. 94 50	.8449	.8448	. 84 46	.8444	.84 42									
15	-9111	.9111	. •9111													

VOLUME OF WATER ABSORBED = .0347149

11

VA	LUES FOR	HYDRAUL	IC HEAD										
	1	2	3	4	5	6	7	8	9	10	11	12	13
1	.015	.015	.012	.007	004	024	069	259	440	628	807	927	978
2	080	080	085	094	111	141	198	324	477	651	819	931	979
3	183	183	189	202		260	321	424	557	711	853	944	983
4	294	294	302	317	344	385	448	540	659	783	8 97	961	988
5	- 414	414	424	442	472	516	579	664	765	864	937	976	992
6	545	545	- 555	576	507	651	711	783	858	923	965	985	995
7	680	680	693	710	740	779	826	878	925	961	982	993	998
8	803	803	812	828	?51	878	909	939	964	981	991	997	- 999
9	896	89F	901	912	925	941	957	972	994	991	9 96	999	-1.000
10	951	951	954	959	-•965	- 974	931	988	993	995	999	-1.000	-1.000
11	979	979	980	982	9.95	989	992	995	997	999	-1.000	-1.000	-1.000
12	991	991	992	993	994	995	997	998	999	-1.000	-1.000	-1.000	-1.000
13	997	997	997	997	998	998	999	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000
14	999	999	999	999	999	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000
15	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000

•

12

-	14	15	16	17
1	994	998	999	-1.000
2	995	999	-1.000	-1.000
3	995	999	-1.600	-1.000
4	997	999	-1.000	-1.000
5	998	999	- 1.0Cu	-1.000
6	- 994	-1 000	-1.000	-1.000
7	- 000	-1.000	- 1 000	-1.000
•	999	-1.000	-1.000	-1.000
~	-1.000	-1.000	-1.000	-1.000
3	-1.000	-1.000	-1.000	-1.000
10	-1.000	-1.000	-1.600	-1-000
11	1 0000	1 000	1 0 0 0	-1 000
12	-1.000	-1.000	-1.000	-1.00.0
13	-1.600	-1.000	-1.000	-1-000
14	-1.000	-1.000	-1.600	-1.000
15	-1.000	-1.000	-1.000	-1.000
• •	-1.000	-1.000	-1.000	-1.000