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ABSTRACT 

The rapid development of stochastic or operational hydrology 
over the past 10 years has led to the need· for some comparative 
analyses of the currently available long-term persistence models. 
Five annual stochastic streamflow generation models (autoregressive, 
autoregressive-moving-average (ARMA), ARMA-Markov, fast fractional 
Gaussian noise, and broken line) are compared on their ability to 
preserve drought-related time series properties and annual statistics. 
Using Monte Carlo generation procedures and comparing the average 
generated statistics and drought or water supply properties, a basis 
is established to evaluate model performance on four different Utah 
study streams. 

A seasonal disaggregation model is applied to each of the gener­
ated annual models for each of the four study streams at a monthly 
disaggregation level. A model choice strategy is presented for the 
water resources engineer to select an annual stochastic streamflow 
model based on values of the historic time series' lag-one serial 
correlation and Hurst coefficient. Procedures are presented for 
annual and seasonal model parameter estimation, calibration, and 
generation. Techniques to ensure a consistent matrix for successful 
matrix decomposition are included such as normality, trend-analysis, 
and choice of model. User oriented model parameter estimation tech­
niques that are easy and efficient to use are presented in a system-
atic manner. . 

The ARMA-Markov and ARMA models are judged to be the best overall 
models in terms of preserving the short and long term persistence 
statistics for the four historic time series studied. The broken 
line model is judged to be the best model in terms of minimizing the 
economic regret as determined by an agricultural crop production 
function. . 

Documentation and listings of the computer programs that were 
used for the stochastic models' parameter estimation, generation, 
and comparison techniques are presented in a supplementary appendix. 
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CHAPTER 1 

INTRODUCTION 

Background 

One can approximate the flood flow for a 
return period equal to the length of gaged 
r~cord as being equal to the largest flow 
recorded during the period of record, but a 
flood frequency analysis performed by fitting 
the data of record to a statistical distri­
bution provides a much better estimate. 
Similarly, one can use the worst drought of 
record as a basis for water supply design, 
but assessment of the return period of that 
design drought requires a model that can 
~enerate flow sequences having the same 
magnitudes and the same patterns as to order 
as does the historical record. 

Modeling to match historical distribu­
tions of magnitude in itself poses no real 
problem, but efforts to match order patterns 
is ~reat1y complicated by the tendency for 
streams to have high flows followed by high 
flows, and low flows followed by low flows, 
as a result of moisture storage in the 
atmosphere, on the ground surface, or under­
ground. Model problems in generating flow 
sequences that match this historical tendency 
have induced many researchers to investigate 
the nature of this behavior known as persis­
tence in annual streamflows. This research 
has been directed towards determining the 
laws governing the stochastic processes 
determining streamflow. The search is 
complicated by the fact that persistence 
subjects the estimates of statistics used 
to characterize streamflow to large sampling 
errors. In fact, the errors may be so large 
that use of the estimates in the design of 
wat~r storage systems may be very misleading. 

Burst (1951, 1956)" pioneered the study 
of lon~ term persistence by empirical studies 
that led him to propose an empirical law that 
j?eophysical time series seem to follow and 
wh ich can be used to express the degree of 
persistence as a coefficient. Since then, 
Dlany advances in stochastic hydrological 
models have increased our ability to preserve 
the long term memory represented by the Hurst 
coefficient. 

Prior to the recent emphasis on persis­
tence in streamflow time series, annual flows 
were considered to be represented by indepen­
dent random processes. Modeling advances 
that also preserve persistence mean that the 
probability of an extreme drought can be 
assigned with a greater degree of confidence 
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and the risk of water supply shortages 
can be better quantified. 

Operational hydrology encompasses a 
variety of stochastic models for generating 
synthetic hydrologic time series that the 
water resource planner may then use to make 
realistic projections of future water supply 
conditions and associated estimates of the 
reliability of the supply. The modeling of 
hydrologic time series can be approached in 
a logical and systematic manner by using a 
form of the Box and Jenkins (1970) modeling 
approach. This iterative modeling approach, 
generalized to encompass a broader class of 
stochastic streamflow models, comprises the 
following five steps (see Figure L 1. ) : 1) 
identification of the water resources system 
and model composition (e.g .• univariate or 
multivariate, annual or seasonal); 2) choice 
of model type--short term or long term persis­
tence model (e.g. autoregressive or fraction­
al Gaussian noise); 3) identification of 
model form (e.g. order of the autoregressive 
model); 4) parameter estimation; and 5) model 
performance evaluation. Inadequate model 
performance may be judged by certain criteri­
on such as preservation of historic statis­
tics and reservoir storage requirements or 
runs. During model calibrationl inadequate 
performance detected at step 5 may result in 
trial runs with alternative values assigned 
to model parameters or a change in the model 
form. If inadequate model performance 
persists over the entire range of model 
parameters and model forms it may be neces­
sary to return to step 2 to select an alter­
native type of model, or to step 1 to simpli­
fy the system or model composition. Methods 
for implementing steps 1, 3, 4, and 5 are 
well covered in the literature, but a 
broadly applicable strategy for model choice 
instep 2 has yet to be developed. The 

lIn this report the term model calibration 
is used to describe steps 2 and 3 of the 
systematic modeling procedure. It therefore 
includes the identification of model form, 
parameter estimation by rigorous mathemati­
cal techniques where applicable, and for 
some models, the trial-and-error deter­
mination of values for parameters fot which 
rigorous parameter estimation techniques 
were not used (e.g. Band L in the fast 
fract ional Gaussian noise moq.el described in 
Chapter 4). 



1. IDENTIFICATION OF 
WATER RESOURCES SYSTEM 
AND MODEL COMPOSITION 

2. CHOICE OF MODEL 
TYPE 

3. IDENTIFICATION OF 
MODEL FORM 

PARAMETER ESTI-

No 

-----, 
f 
I 
I 
I ___ ..J 
I 
I 
I 
I 

Figure 1.1. Systematic procedure for sto­
chastic modeling of hydro­
logic time series (adapted from 
Box and Jenkins (1970) and 
Salas and Smith (1980». 

research reported herein is directed toward 
establishing a preliminary strategy for 
choosing between stochastic streamflow 
models. 

Objective 

The overall objective of this study is 
to compare the performance of five different 
stochastic streamflow models in order to 
develop a preliminary strategy for model 
choice in step 2 of the systematic modeling 
procedure (see Figure 1.1). The comparison 
was based on applying the five models to 
represent the streamflow records at four 
locations in Utah. Model performance was 
evaluated in terms of the following five 
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factors: the preservat ion of the short and 
long term persistence statistics for annual 
streamflows; the preservation of seasonal 
crossing properties; the cost and ease of 
model use; a comparison of reservoir capacity 
and critical drought design parameters; and 
minimizing economic regret associated with 
drought-related agricultural losses. Short 
term persistence was measured by the lag-one 
autocorrelation coefficient and long term 
persistence by the Hurst coefficient. Annual 
streamflow time ser ies generated by the 
five stochastic models were disaggregated 
into monthly flow volumes. Reservoir capaci­
ty was calculated using the sequent peak 
algorithm and critical drought was calculated 
as the negative run-sum, defined with respect 
to monthly irrigation requirements, that has 
a 98 percent probability of nonexceedance. 
Economic regret was calculated based on a 
model for estimating agricultural economic 
losses from drought as a function of the 
shortfall of monthly irrigation diversions 
below crop water requirements. 

Summary of Contents 

A review of operational hydrology, 
univariate annual streamflow models, seasonal 
streamflow models, drought characteristics, 
and models of agricultural economic losses 
from drought is presented in Chapter 2. In 
Chapter 3, the selection of the study streams 
is described, followed by sections on non­
homogenuity analysis of the streamflow 
records, the annual streamflow statistics, 
and the monthly streamflow statistics. 
Chapter 4 describes the structure, calibra­
tion, and generation procedures for each of 
the five annual stochastic streamflow models, 
and Chapter 5 describes the same items for 
the disaggregation models. The crop yield 
model, the calculation of irrigation diver­
sions, the calculation of irrigation water 
requirements, and the procedure for calcu­
lating economic regret are explained in 
Chapter 6. In Chapter 7, model performance 
is evaluated with respect to the five factors 
listed under the statement of objective 
above and the proposed model choice strategy 
is presented. A summary of the research 
procedure is contained in Chapter 8, together 
with a list of study conclusions and recom­
mendations for further work. 

A user's manual for the computer pro­
grams for annual flow generation and dis­
aggregation to monthly flows, the agricul­
tural economic model, routines for calcu­
lating model performance statistics, param­
eter estimation for the disaggregation 
models, and calculation of the parameter al 
in the broken line model has been printed 
separately and can be obtained by writing to 
the Utah Water Research Laboratory. A 
listing of the monthly streamflow time series 
for the four study streams can be found 
in, Appendix A. 



CHAPTER 2 

LITERATURE REVIEW 

Introduction 

The review of literature begins with a 
oescription of the purpose of operational 
hydrology, a systematic approach to sto­
chastic modeling in operational hydrology, 
and various streamflow statistics. The 
following sections contain a review of annual 
stochastic streamflow models, comparisons of 
these models, and a review of seasonal and 
disaggregation models. Other sections are 
brief reviews of models of drought character­
i st ies and agr icultural economic losses due 
to drought. 

Operational Hydrology 

Operational hydrology, sometimes called 
synthetic or stochastic hydrology, denotes 
generation of hydrologic sequences for use by 
the water resource planner. They can be used 
to project future water supply availabilities 
and to assess drought risks. There are 
always uncertainties associated with planning 
a water resource system. The historic time 
series represents only one of many equally 
likely hydrologic time series that may occur 
at the same location. Operational hydrology 
does not provide new information,. rather it 
is a means for extracting more information 
from the available historical record using a 
stochastic model of the underlying physical 
generating process. In practice, the under­
lying population distribution of the. hydro-
1 c time series is never known but must be 
i from the historical record. Also, 
the autocorrelation structure is not fully 
known, and a model must be chosen to approxi­
mate the apparent structure. 

The statistical properties of a station~ 
ary time series can be obtained based on a 
s Ie realization over a time interval or on 
several realizations at a particular time •. 
The latter case does not occur in nature but 
is a necessary theoret ical constraint in 
stochastic methods. The properties based on 
a single realization are known as time 
average properties. The properties based on 
several realizations at a given time are 
known as the ensemble properties, and while 
these cannot be estimated from historical 
records they can be represented by an "en­
semble" of generated hydrologic sequences. 
If the time average properties and the 
ensemble properties are the same, the time 
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series is said to be ergodic. From a practi­
cal view point a time series can be said to 
be stationary if its time averaged properties 
estimated over several different time inter­
vals ~o not change significantly from one 
time interval to another. Bendat and Piersol 
(1966) found that random data representing 
stationary physical phenomena are geI)erally 
ergodic. Thus, it is usually assumed that 
the properties of a stationary random process 
can be estimated from a single historical 
record, since several simultaneous records 
are unavailable in hydrology, and used as a 
basis for parameter estimation for stochastic 
models. Stationary ergodic time series are 
important in hyd rology for two reasons: 1) 
the mathematical techniques for modeling 
stationary series are well developed and 
2) it is usually unclear how nonstation­
arities should be represented in future time 
periods unless they can be explained by such 
human activities as ur.banization or the 
construction of reservoir storage. 

O'Connell (1974) defines two types of 
resemblance between the statistics of his­
toric time series and those of generated 
synthetic sequences. He refers to them as 
Type A and Type B resemblance. Under Type A 
resemblance the time-averaged values of the 
statistics of each generated sequence ap­
proach the values of the histotical statis­
tics asymptotically as the length of the 
generated sequence approaches infinity. Type 
B resemblance refers to the convergence 
of the ensemble-averaged statistics of the 
generated sequences, to the values of the 
historical statistics as the number of 
generated sequences is increased. For 
comparison purposes, the historic and syn­
thetic sequences are made of equal length 
under Type B resemblance. Many model compari­
sons of the fractional Gaussian noise family 
of models are made by the Type A resemblance 
method in order to overcome small sampling 
biases for the long-term memory statistics 
such as the Hurst coefficient. However, Type 
B resemblance would appear to be the most 
appropriate in water resources planning 
because resemblance is achieved over a time 
period which is probably of length similar to 
that of the project life and because individ­
ual generated sequences may possess variabil­
ity in their statistics consistent with the 
estimation error in the historic statistics. 

Thus, the current state-of-the-art of 
stochastic modeling seeks to match statistics 



computed from observed data sequences with 
corresponding statistics computed from an 
ensemble generated data sequence. Since 
available models cannot guarantee preser­
vation of all statistics of interest over 
the entire range of values encountered in 
nature, one must often sacrifice in matching 
some statistics which are perhaps not of 
practical importance in order to do a better 
job of matching others. The implications of 
water resource design of not preserving 
certain parameters are not always considered. 

Systematic apsroach to hydrologic 
stochastic mo eling 

A systematic procedure for stochastic 
modeling of hydrologic time series was 
briefly described in Chapter 1. A more 

A. Characteristics 
of the overall 

detailed description is presented by Salas 
and Smith (1980). Figure 2.1 is taken from 
their paper and illustrates the iterative 
procedure linking the six steps and four sets 
of factors that contribute to decisions that 
must be made at each step. The six steps 
are: 

1) Identification of system - model 
compos it ion 

2) Selection of model type 
3) Identification of model form 
4) Estimation of model parameters 
5) Testing of goodness-of-fit of the 

model 
6) Evaluation of uncertainties 

and the four sets of factors are grouped 
under the following headings: 

~. Modeler Input: 
Knowledge, Expe-l--

Water Resources 1. IDENTIFICATION OF 
rience, Biases 

System Limitation. 

Figure 2.1. 

SYSTEM - MODEL 
COMPOSITION r--1 

• 
I 
1 

B. Characteristics r 
2. SELECTION OF 1--1 p. Characteristics of Hydrologic 

Time Series MODEL TYPE l of Hydrologic 
r Physical 

~ I Processes 

I 

-" 3. IDENTIFICATION OF ~ 
MODEL FORM r--

~ 
4. ESTHtll.TION OF 

~ 
MODEL PARAMETERS 

• 5. TESTING GOODNESS r--
OF FIT OF THE HODEL 

• 6. EVALUATION OF 

UNCERTAINTIES 

Systematic approach of hydrologic times series modeling (after Salas and Smith 
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A) Characteristics of the overall water 
resources system 

B) Characteristics of the hydrologic 
time series 

C) Modeler input, knowledge, experience, 
biases, limitations 

D) Characteristics of hydrologic physi­
cal processes 

The first step is concerned with whether 
the model should be univariate or multi­
variate, or a combination of an annual model 
and a seasonal disaggregation model. Th is 
decision will depend on 1) the character­
istics of the overall water resource system, 
2) cross-correlations between the hydrologic 
time series, 3) the modeler's biases and 
preferences, and 4) the temporal and spatial 
resolution of the generated data required to 
solve the design or planning problem. 

Once a decision ~as been made on the 
model composition, the type of stochastic 
hydrology model must be selected in step two. 
The various types of models include auto­
regressive, ARMA, autoregressive-moving­
average, ARMA-Markov, fractional Gaussian 
noise, and Broken Line. The choice of model 
type may be influenced by 1) the physical 
characteristics of hydrologic processes, 
(e.g. the influence of storage in the hydro­
logic system on the typical autocorrelation 
for the hydrologic variable being modeled), 
2) the statistical characteristics of hydro­
logic time series relative to the feasible 
range of various statistics that can be 
preserved by each type of modt;!l, 3) the 
modeler's biases and preferences, and 4) 
prior unsuccessful attempts to use other 
types of models which might narrow the range 
of choice. 

Once the model type has been selected, 
the form of the model needs to be identified. 
For example, the order of the autoregressive 
and moving average processes in an ARMA model 
must be determined. Also nonhomogeneities 
in the historic time series must be re­
moved and a suitable transformation made to 
normality. Model form identification depends 
on 1) the characteristics of hydrologic time 
series and specifically the characteristics 
of the autocorre lat ion and part ial auto­
correlation functions in determining the 
order of an ARMA model, 2) the modeler's 
input, and 3) earlier unsuccessful attempts 
to use other model forms. 

Step 4, parameter estimation is per­
formed once the model form is identified. 
Parameter estimation is usually by rigorous 
procedures such as the method of moments or 
maximum likelihood, but in some cases param­
eters are estimated by trial-and-error 
procedures. Model performance or testing the 
goodness of fit of the model is evaluated at 
Step 5 by comparing the values of the statis­
tics of the generated sequences to the 
historic values. These statistics should 
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include the mean, variance, skew, auto­
correlogram, Hurst coefficient, and cross­
correlation matrices for multivariate and 
disaggregation models. Statistical tests 
can be used to identify significant differ­
ences between generated and historic values 
of all of these statistics except skew. If 
these tests and comparisons indicate an 
unacceptable resemblance then the model forIll, 
the model type, or even the model composition 
may need to be changed and the steps follow­
ing the. change repeated until Step 5 is 
satisfactorily completed. 

The sources of uncertainty in stochastic 
hydrologic modeling have been placed into 
three categories: 1) natural uncertainty, 
the uncertainty as to the size of a given 
event, 2) statistical uncertainty, the 
uncertainty in estimation of the parameters 
of the stochastic model due to limited data, 
and 3) model uncertainty, the uncertainty 
wi th respect to how well a particular sto­
chastic model type and form approximate the 
true model. These sources of uncertainty 
must be taken into consideration for evalu­
ating the model at Step 6. 

Streamflow statistics 

The historic time series of a hydrologic 
variable, such as annual. streamflow, is 
considered to be a sample realization taken 
from the population of possible streamflow 
sequences. Quantities that are descriptive 
of a population are called parameters, and 
estimates of these quantities based on a 
sample realization are called sample esti­
mates or statistics. Several important 
statistics in operational hydrology are 
defined and discussed below. 

Mean. One important parameter or 
statistic is the mean, average, or expected 
value, which is a measure of the central 
tendency of the random variable. This 
parameter is estimated as follows for the 
random variable X: 

_ 1 n 
X" - ~ Xi 

n i=1 

in which 

(2.1) 

X sample mean of X which is an un­
biased estimator of the popula­
tion mean, ].l 

Xi observed values of X at time i 

n == number of observed values of X in 
the historic record or sample 

Standard deviation. The next sample 
statistic of interest is the variance or its 
square root, the standard deviation, which 
is a measure of dispersion of the random 
variable about its mean. From the estimated 
second moment about the mean, the following 
u~biased estimation, s2, of the variance, 
a , is obtained, as follows: 



2 
s2 =(_1_) ~ (x _ 5{)2 

n-1 i=1 i 
(2.2) 

in which 

s2 sample variance of X 

Skew. A measure of asymmetry of the 
probability distribution of a hydrologic 
variable is the next statistic of interest. 
The coefficient of skewness is estimated 
from the third central sample moment and the 
standard deviation as follows: 

n 
1: (X. _ X) 3 

i=1 ~ 
g=.....;:;......:.-----

2/3 

in which 

(2.3) 

g = the coefficient of skew and is a 
biased estimator of Yl' the popula­
tion coefficient of skew 

To unbias the estimation for skewness, Bobee 
and Robitaille (1975) suggest the following 
bias correction of g: 

(2.4) 

in which 

g' c the unbiased coefficient of skew 

Stochastic models are usually written in a 
form that assumes that the hydrologic vari­
able being modeled is unskewed. If the 
hydrologic variable is significantly skewed 
it is necessary to apply a transformation to 
remove the skew. The Box and Cox (1964) 
transformation was used in this study. The 
general form of the Box-Cox transformation is 
as follows: 

xA 
- 1 

Y '" --A- , A '" 0 

'" LnX , A = 0 (2.5) 

in which 

Y transformed variable 

X untransformed variable 

A coefficient 

The coefficient, i" is estimated such that 
the following goodness-of-fit statistic, T, 
is minimized (Hinckley 1977): 

y - y 
T '" __ .!!!m;::.d 

s 
y 

(2.6) 
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in which 

y sample mean of Y 

Ymd sample median of Y 

Sy sample standard deviation of Y 

Serial correlation. One measure of 
persistence in a time series is the degree of 
1 inear dependency or correlat ion between 
series values in consecutive time periods, 
called the serial correlation or autocorrela­
t ion. The sample lag-k correlation coeffi­
cient is given by: 

[

- n-k 

1: (Xi 
i=1 

(2.7) 

in which 

r(k) 

k 

sample estimate of population 
lag-k autocorrelation coeffi­
cient, p( k), for X 

number of time intervals involved 
in correlation 

mean computed over interval 
i=l to n-k 

mean computed over interval 
i = l+k to n 

K enda 11 (1954) showed 
Markov model the small 
lag-one autocorrelation 
corrected as follows: 

that for a lag-one 
sample bias in the 
coefficient can be 

r'(I) = t(l) -! (1 + 4t(I» 
n 

(2.8) 

in which 

r'(l) = unbiased sample lag-one auto­
correlation statistic 

?(l) c sample lag-one autocorrelation 
coefficient 

Wallis and O'Connell (1972) present small 
sample bias corrections for the lag-one 
Markov process. Small sample bias problems 
for approximations to discrete fractional 
Gaussian noise (FGN) models have been dis­
cussed by Wallis and Matalas (1971), Matalas 
and Wallis (1976), and Slack (1972). Esti­
mates of sample variance from a lag-one 
Markov process are also biased and satisfy 
the following expression (Matalas 1966): 

,2 
8 

811- _2_'fB r' (l){l l n(n-l) L 
- r' (1» - r' (1) (1 

(l - r' (1»2 
-"(l)nj} 

(2.9) 



in which 

s'2 unbiased estimate of variance 

s2 biased populat ion est imate of 
variance using Equation 2.2 

h0\,Jever, the complexity of the available 
ap~roximations precludes the analytical 
derivation of small sample properties for FG~ 
(U'Connell 1974). For this study the biased 
sam~le estimates for variance and lag-one 
autocorrelation coefficients were used to 
,'volo the complexity of bias corrections for 
the FGN model and because bias corrections 
are not available for some of the models 
which were applied. 

Hurst phenomenon. Hurst (1951) calcu­
lated the range of cumulative departures 
from the sample mean, called the adjusted 
ran/!-e, R'~, and normalized it by dividing by 
the estimated standard deviation, s, to 
develop a statistic called the Hurst coeffi­
c iel"'t that represents long-term persistence 
il"' hydrologic time series. He examined 690 
annual tiIl1e series of streamflow, river and 
1 a k e I eve Is, pre c i pit at ion. t em per at u r e , 
pressure, tree ring growth, mud varves, 
sunspots, and wheat-price records for periods 
varying from 30 to 2000 years and found that 
the rescaled adjusted range can be repre­
sented as follows: 

K 

(~ ) (2.10) 

in which 

K = estimate of the population Hurst 
coefficient, h 

The mean value of K for the 690 ser ies was 
tound to be 0.729 with a standard deviation 
of U.092. HUrst compared his empirical 
coefficient, K, with results from series of 
numbers taken from a normal distribution and 
found the latter K to equal 0.5. Feller 
(1951), using the theory of Brownian motion, 
(ound the same asymptotic results without 
assuming normality in the underlying process. 
The disagreement between the empirical Hurst 
coefficient of 0.729 and the theoretical 
value 0.5 has led to many efforts to explain 
this observed nonrandomness which is commonly 
referred to as the HUrst phenomenon. 

Mandelbrot and Wallis (1969) suggested a 
more general form of Equation 2.10, as 
follows: 

R* = H c n 
s 

in which 

(2.11) 

H = estimate of population Hurst coeffi­
cient, h 

The estimate of the Hurst coefficient ob­
tained by Hurst using Equation 2.10 is 
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normally des ated K, whi Ie the est imate 
o b t a i ned from the ' pox P lot' met hod i s 
designated H. The two Hurst estimates can be 
quite different for the same time series. 
They found that values of H calculated from 
Equation 2.11 for data by a white 
noise process tended to somewhat erratic 
for series lengths shorter than about 20 
years. One would expect that, for natural 
series which have higher values of h, a 
longer record may be required to achieve a 
stable estimate. For this reason, Mandelbrot 
and Wallis proposed plotting a 'pox diagram' 
of R*/s versus ns, the subsequence lenrth, 
on a log-log scale (See Figure 2.2) so that 
one could determine visually whether the 
length of record was sufficient to achieve a 
stable estimate. 

Wallis and Matalas (1970) compared H 
estimates from the pox diagram method using 
Equation 2.11 with K estimates from Equation 
2.10 for independent processes, lag-one 
Markov processes, and an approximat ion to 
discrete fractional Gaussian noise. They 
found that the pox diagram method showed less 
bias but greater variance. 

Several explanations of the Hurst 
phenomenon have been proposed since Hur.st' s 
empirical findings in 1951 and these explana­
tions are summarized in Table 2.1. These 
explanations are briefly discussed in the 
remaining paragraphs of this section. 

1. Nonnormality of the marginal distri­
bution. Marginal distribution as an explana­
tion for the Hurst phenomenon has been stated 

(/) 

"" a:: -
c 

In (n
S

) 

+ LN Rls FOR'INDIVIDUAL SEQUENCES OF 
LENGTH ns 

o MEAN LN Rls FOR ALL SEQUENCES OF 
LENGTH ns 

Figure 2.2. Pox diagram of logarithm of the 
rescaled range 'for various 
series lengths (after O'Connell 
1974 and James et a1. 1979). 



Table 2.1. Exp lanat ions for Hurst Phenomenon (after Bowles 1979). 

Explanation Comments Reference 

Persistence Tendency of high values of a time series to follow 
high values and low values to follow low values 

Hurst (1951) 

Autocorrelation No simple correlations account for the phenomenon Feller (1951) 

Multiple-Lag Autocorrelation Using 20 lags for N less than 60 K varied with N Fiering (1967) 

Infinite memory Small but significant interdependence between values 
of a process at points in time long distant from 
each other 

Mandelbrot and 
Wallis (1968, 1969) 

Skewness (Nonnormality) Many of Hurst's time series approximately normal. 
K might converge slowly to asymptotic value of 0.5 

Lloyd (1967) 

Nonstationarity Fluctuating mean (climatic epochs) Klemes (1974) 

Semiinfinite Reservoir Storage Hurst phenomenon result of ~any physical causes. 
one being starage sy<stems 

Klemes (1974) 

Transience in small samples Autocorrelation. nonstationarity and departure 
from normality all lead to transient behavior in 
small samples 

Salas et al. (1977) 

by Moran (1964) and Boes and Salas-LaCruz 
(1973) wherein they showed that the expected 
range, E[R), and the expected adjusted range, 
E[R*], of the partial sums of independent, 
stable random variables behave asymptotically 
like nh with O.S<h<l.O thus paralleling the 
Hurst phenomenon. The effect of skewness on 
the marginal distribution and hence on 
the range statistics has been studied by 
Yevjevich (1965), Matalas and Huzzen (1967), 
Moran (1968), Mande1brot and Wallis (1969c), 
Anis and Lloyd (1975) and Salas et al. 
(1977). They have concluded < that. skewness 
has a small but detectable effect on the 
Hurst phenomenon in that it does affect the 
mean adjusted range, R* in the transi­
tional preasymptotic region but does not 
affect the mean rescaled adjusted range 
appreciably. 

2. Autocorrelation structure. The 
autocorrelation structure of most geophysical 
time series describes the nature of its time 
dependent relationships. Feller (1951) was 
the first to suggest this as a possible cause 
for the Hurst phenomenon. Mandelbrot and 
Wallis (1969b) consider all Brownian domain 
models (which include: autoregressive 
models AR(p) , autoregressive-moving-average 
models ARMA (a,q), and~ARMA-Markov models) to 
follow the R Is = cn~ law asymptotically. 
They stated that 

•.• were the records in question 
generated by a random process such 
that observations far removed in 
time can be considered indepen­
dent, R(t,n)/s(t,n) should beco1,1le 
asymptotically proportional to n~, 
which means that Hurst's law would 
have to I break' for large enough 
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lags. But no such break has been 
observed. Thus, for pract ical 
purposes, geophysical records must 
be considered to have an 'infi­
nite' span of statistical inter­
dependence. (Mandelbrot and 
Wallis 1969b, p. 321.) 

Most existing hydrologic time series are not 
sufficiently long to be asymptotic; but many 
existing models that belong to the Brownian 
domain of attraction and hence should not 
exhibit the Hurst phenomenon, do within the 
preasymptotic range. Gomide (1978) found 
that Markovian models can produce H estimates 
similar in magnitude to those found in 
geophysical time series by Hurst if the 
series are sufficiently long; that is n>lOOO. 

3. Nonstationarity in the mean. Non-
stationarity of the mean as an explanation 
for the Hurst phenomenon was first suggested 
by HUrst (1956). Klemes (1974) conducted a 
series of Monte Carlo experiments with a 
fluctuating mean that varied normally but 
wh ich rema ined constant for vary ing length 
intervals, called epochs, which were dis­
tributed exponentially, in order to show how 
various mechanisms produce different shapes 
of the plot R*/s vs ns' Similar experi­
ments were also conducted by Potter (1975). 
Klemes concluded that the Hurst phenomenon 
cannot be attributed only to a specific 
physical cause; it may be caused by a type 
of infinite memory, nonstationarity in the 
process mean brought about by specific 
storage systems, and perhaps other causes as 
we'Ll. Salas et al. (1977) found that the 
"nonstationary" Hurst model has a correlation 
structure identical to the ARMA (1,1) model 
i.e. Pk= <PPk-l. k=2,3, ••• , where 4> is the 



parameter of the autoregressive component and 
the lag-one autocorrelation coefficient, P, 
is a function of both 4> and e, the parameter 
of the moving-average component. Their 
finding indicates the applicability of the 
ARMA (l, 1) model given that the hydrologic 
time series is nonstationary. O'Connell 
(1971) implied that dependence-induced 
transience is a possible explanation of the 
Hurst phenomenon and Klemes (1974) and Potter 
(1975) working with nonstationary models 
showed the importance of transient effects on 
pox diagrams. 

4. Transient behavoir. Under this 
explanation the occurrence of values of h>0.5 
is attributed to a transient phenomenon for 
small sample size in the preasymptotic range, 
100<n<1000 (Anis and Lloyd 1975). For larger 
sample sizes n>lOOO, h converges asymptoti­
cally to the Brownian domain of attraction 
value of h=0.5. 

5. Physical explanation. The final 
explanation~or the Hurst phenomenon is long 
term persistence as a result of physical 
storage processes. A series of fractional 
Gaussian noise (FGN) models and approxima­
tions have been developed to preserve the 
Hurst phenomenon. Even though these FGN 
models can preserve values of h other than 
0.5, they do so purely as operational tools 
developed apart from an understanding of the 
underlying physical processes. As a caution 
to those who would accept the mathematical 
basis of these models as an explanation of 
the physical basis for persistence in a 
geophysical system, Klemes (1974) noted: 

It would be more realistic to say 
that: 1) fractional noises 'offer 
one possible explanation of the 
Hurst phenomenon; and 2) approxi­
mations to fractional noises 
provide a flexible operational 
tool for the simulation of series 
exhibiting the Hurst phenomenon. 
An ability to simulate, and even 
successfully predict, a specific 
phenomenon does not necessarily 
imply an ability to explain it 
correctly. A highly successful 
operational model may turn out to 
be totally unacceptable from the 
physical point of view (Klemes 
1974, p. 675). 

In support of this warning, Klemes 
showed that zero memory as well as infinite 
memory models can exhibit the Hurst phenome­
non. Stochastic models that operate on 
stationarity of the mean can represent 
nonstationary time series for short time 
intervals, and stationarity or nonstation­
arity is a matter of time-series length. 
Experimentally, Klemes generated synthetic 
sequences from a distribution whose param­
eters were varied during the total simulation 
period but kept constant over shorter time 

iods called epochs. He showed that the 
nfinite memory concept in FGN models can be 

a function of epoch length rather than of 
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total series length in accounting for the 
Hurst phenomenon. Specifically, Klemes 
attempted to show that a semi infinite-storage 
reservoir model with various and diverse 
input processes might also explain the Hurst 
phenomenon. While Klemes was not able to 
prove or disprove specific physical explana­
tions for the Hurst phenomenon, he did show 
that it can be generated using several 
models: long-term memory, nonstationarity 
in geophysical phenomena, or storage systems. 
Salas et a1. (1977) have stated that the 
Hurst phenomenon might be explained by: 
"autocorrelation, nonstationarity, and 
departure from normality which either in­
dividually or combined accentuate a transient 
behavior, which is present in independent 
time series." In conclusion, one finds the 
Hurst phenomenon to be a property of hydro­
logic time series that can be quantified 
numerically but for which the physical causes 
are poorly understood and much debated. 

Hydrologic nonhomogeneities 

Nonhomogeneities may occur in hydrologic 
sequences due to natural or cultural under­
lying causes and may take on several differ­
ent forms. These forms include periodici­
ties, trends, and abrupt jumps in the mean or 
other statistics such as the variance, skew, 
serial and cross correlation coefficients. 
Natural causes include climate change and 
catastrophic events such as major earth­
quakes, landslides, and floods that change 
channel geometry or drainage systems. Cul­
tural causes include the effects of reservoir 
construction, channelization, urbanization, 
and other land use changes. Nonhomogeneities 
must be identified and removed before param­
eter estimation can be performed. Methods 
for detecting nonhomogeneities include visual 
inspection of plots of raw data, cumulated 
data, and double mass plots; and statistical 
tests on split samples. Removal is achieved 
by describing the nonhomogeneity by a deter­
ministic function of time, such as a step 
function, a sine wave, or a linear trend, and 
subtracting the values of this underlying 
deterministic component from the observed 
time series. An excellent discussion of 
hydrologic nonhomogeneities, their caus~s and 
removal, can be found in Kottegoda (1980). 

The effects of nonhomogeneity on the 
persistence parameters of a time series can 
be significant. Yevjevich and Jeng (1969) 
demonstrate the effect of single and multiple 
jumps and linear and nonlinear trends on the 
probability distribution function, mean, 
variance, skewness, kurtosis and autocorrela­
tion function of a time series. Systematic 
errors increase both variance and short-lag 
autocorrelations. Klemes (1974) and Potter 
(1975, 1976) show that stochastic models 
which exhibit random shifts in the mean level 
reproduce the Hurst phenomenon for very long 
time periods. These models can be considered 
as models of nonhomogeneity and therefore 
demonstrate that systematic errors can also 
inflate the Hurst coefficient of a time 
series. 



State-of-the-Art for Annual 
Stochastic Streamflow Models 

St0chastic flow simulation began with 
the univariate models of the Harvard water 
program (Maass 1962). Markovian models were 
used in the Harvard program. However, Markov 
models d0 not replicate the Hurst phenomenon. 
I, ract ional Gaussian noise was introduced 
in the late 1 '160s in an attempt to preserve 
the Hurst phenomenon.' The original form of 
H;r-, was too complex to model analyt ically and 
therefore approximations such as discrete 
fractional Gaussian noise and fast fractional 
Gaussian noise were developed. O'Connell 
(1971) proposed the autoregressive-moving­
average (ARMA) process as an approximation to 
fractional Gaussian noise (O'Connell 1971). 
An alternative method for preserving the 
Hurst phenomenon is the Broken Line process 
(Rodriguez-Iturbe, Mejia, and Dawdy 1972 and 
Mejia 1972). A detailed historical account 
of these efforts has been recorded by 
() 'Connell (1974). Each of these models is 
briefly described below. More detailed 
descriptions of the model structure, param­
eter estimation, and generation are given in 
Cha(Jter 4. Table 2.2 contains a summary of 
the fJarameters preserved by several annual 
stochastic models. The short term models, 
which are not capable of preserving the Hurst 
coefficient, are listed first in Table 2.2, 
followed by the long term models. which can 
be used to preserve the Hurst coefficient. 

Markov models 

The Markov generating function for 
annual flows used by Thomas and Fiering 
(1962) is 

(2.12) 

in which 

Xt = flow in time period t 

A 

mean flow 

regression coefficient of Xt on 
Xt-l (equal to the la~-one serial 
correlation coefficlent, pO) 

standard deviation of flows 

random variate from a standard 
normal distribution 

Equation 2.12 is a first order autoregressive 
model in which the antecedent term, Xt-l. 
is sufficient to describe the current 
value, Xt • This can be extended to the 
nth order model as follows: 

+ (2.13) 

in which 

Ai ith mUltiple regression coefficient 

R2 multiple regression coefficient of 
determination 

Multiple autocorrelation anaiysis would then 
be used to determine the linear association 
within the historic time series through 
estimates of values for the A's. Mathemati­
cally, one needs to estimate the partial 
autocorrelations to determine the order of 
the process. Physically, the maximum number 
of significant correlations is limited by the 
maximum duration of storage routing through 
aquifers making significant contribution to 
base flow. Fiering and Jackson (1971) 
describe tests for the significance of the 
parameters in autoregressive models and the 
order n required. Applications show the 
first-order model is adequate for most 
applications to annual streamflow and precip­
itation series. 

Table 2.2. Parameters preserved by annual stochastic models (after Bowles 1979). 

Parameters Preserved 
Model Reference 

IJ 0 Y1 p(1) p(2) h 

1. AR1 X X X X Matalas (1967) 

2. AR2 X X X X X Matalas (1967) 

3. Fast fraction Gaussian noise X X X X Mandelbrot (1971) 

4. ARMA (l. 1) X X X X X O'Connell (1974) 

s. ARMA-MARKOV X X X X Burges and Lettenmaier (1977) 

6. Broken Line X X X X X. Mejia et al. (1972) 
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Markov models do not replicate the Hurst 
phenomenon. The first models to succeed in 
preserving a Hurst coefficient exceeding 
0.5 were the fractional Gaussian noise (FGN) 
~odels introduced to synthetic hydrology by 
Mandelbrot and Wallis (1968, 1969a,b,c). 
These models preserve long-term persistence 
by caus lng the autocorrelat ion funct ion to 
decay increasingly slowly as h becomes larger 
than 0.5. The desired h is used as a model 
parameter and then preserved in the generated 
sequences. Fractional Gaussian noise se­
quences having h values exceeding 0.5 lie 
outside the Brownian domain, in that they do 
not satisfy the mixing property of Brownian 
motion. Specifically, past and future 
averages of the process become independent 
as the sample size approaches infinity. 
Mandelbrot and Van Ness (1968) and Mandelbrot 
and Wallis (1969c) define FGN mathematically, 
and O'Connell (1971) reviews the relationship 
of FGN to the Hurst phenomenon. The princi­
pal drawback of fractional Gaussian noise as 
a technique for generating flow sequences is 
its complexity and consequent high computer 
cost. 

To s impli fy computat ion, Mandelbrot 
(1971) proposed an approximation of fraction­
al Gaussian noise as a sum of Markov pro­
cesses; he called the result model the 
fast fractional Gaussian noise model, FFGN. 
Chi, Neal,and Young (1973) have discussed 
Mandelbrot's FFGN model and outlined pro­
cedures for its implementation. An important 
aspect of FFGN is the use of autoregressive 
Markov-Gauss variables, instead of indepen­
dent normal variables, which greatly reduces 
generation time (Lawrance and Kottegoda 
1977). FFGl'I is composed of two additive 
components to represent the high-frequency 
and low-frequency effects. The choice of h 
and pel) completely determines the correla­
tion structure of FFGN, and the other param­
eters Band N are determined based on empiri­
cal results by Chi, Neal, and Young (1973) 
and Kottegoda (1974). 

ARMA models 

The ARM A (p,q) acronym stands for 
autoregressive-moving-average, and the two 
numbers in parentheses p and q indicate the 
order of the autoregressive and the moving­
average pr ocesses respect ively. 0' Connell 
(1974) found that for most annual streamflows 
an order of one for both the p and q would 
suffice. The equation for the ARMA (1,1) 
model is 

(2.14 ) 

in which £t is the error term. Comparison of 
Equations 2.14 and 2.12 shows the same form 
of relationship except that the memory of 
the preceding generated error term (Ct-l) is 
added to maintain stability in the moving 
average. The parameters, ¢ and 0, in 
Equation 2.14 vary with the values for hand 
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p(l) to be preserved. A disadvantage of the 
ARMA (1,1) model is that the ¢ and 0 required 
to preserve given values of p(l) and h cannot 
be determined explicitly. They have to be 
approximated empirically from tables given by 
OConnell (1974) based on completed simula­
t ions or curves based on these tables given 
by Burges and Lettenmaier (1975, p. 17). 

ARMA-Markov model 

In order to have a generating model in 
which the parameters are an explicit function 
of the values of hand p(l) to be preserved, 
Lettenmaier and Burges (1977) proposed 
combining Equations 2.12 and 2.14 into what 
they called an ARMA-Markov model having the 
form: 

(2.15) 

in which 

M label for Markov terms 

AM label for ARMA (1,1) terms 

(M) and c (A'M) . d d . E t ~t = 1n epen ent n01se 
processes 

Variance for E~M) and E£AM) can be estab­
lished from the other model parameters. The 
authors also provide .a method for estab­
lishing values for ¢ and 0 for the values of 
v, 0, pel), and h estimated from the histori­
cal record. Details of this parameter esti­
mation are given in Chapter 4. Lettenmaier 
and Burges (1977) found the ARM A (1,1) and 
ARMA-Markov models to provide reasonable 
approximation of the FGN process for values 
of h<0.80 but for the results to become 
quite-poor for higher values of h. The above 
mentioned ARMA (1,1) and similar models offer 
alternative approaches to univariate genera­
t ion by which the Hurst phenomenon is main­
tained over finite time horizons. 

Broken Line model 

The simple Broken Line process results 
from the linear interpolation of equally­
spaced independent random variables. The 
series is made stationary by imposing a 
random initial displacement. By summing N 
weighted simple Broken Line processes, a 
Broken Line process can be constructed that 
approx imately reproduces the correlat ion 
function required to preserve the Hurst 
phenomenon. The weighting factor is derived 
from a relationship between the Hurst coeffi­
cient, h, and a quality parameter, B, and the 
t i:ne distance, a, between the random vari­
abIes. 

The Broken Line model has the advantage 
of preserving the second derivative of the 



autocorrelation function at the origin, 
p"(O), which is not possible in the FGN 
models, and provides better results with 
respect to crossing properties, extreme 
events, run lengths, and run sums for con­
tinuous time series. For the discrete 
time series used in hydrologic modeling, 
these advantages disappear .. Curry and Bras 
(1978) showed that one could explicitly 
preserve the Hurst coefficient if one sacri­
ficed the capability of preserving p"(O). 
Use of the model is further handicapped by 
t he fact that the parameters for the Broken 
Line model are difficult to compute as many 
investigations have found (Lawrance and 
Kottegoda 1977). 

stochastic 

Water resource system simula­
tion models are used to evaluate 
alternative system designs and 
operating policies. Either 
historical or generated streamflow 
data are input to these models, 
and computed time series of annual 
benefits and other performance 
information are output(s). Sys­
tems designs and operating 
policies are evaluated and ranked 
on the basis of summary statistics 
from these output time series 
(Fiering 1967). For example, if 
alternatives were to be ranked by 
mean annual net benefits, the 
better of two alternat ives would 
tend to have the greater simulated 
mean annual net benefits. But the 
latter will not always be greater 
because of random variations in 
simulation outputs caused by 
random variations in the stream­
flow inputs. There exists some 
risk, therefore, that alternatives 
may not be correctly ranked 
depending on length of simulation 
runs, serial and cross-correlation 
of annual benefits, variance of 
annual benefits, and required 
level of resolution of differ­
ences between alternatives. 
(Vicens and Schaake 1980, p. 
333.) 

Stochastic hydrological models for 
generating streamflow or precipitation have 
been used by planners for evaluating various 
design alternatives. The role of operational 
hydrology in the design of water supply 
systems and the protect ion from floods and 
droughts has been well documented in the 
literature (e.g., Matalas 1975 and Lawrance 
and Kottegoda 1977). Obviously the severity 
of a drought will be greatest if several 
years of low flows follow each other and thus 
it is important to have a stochastic stream­
flow model that resembles this characteristic 
when applied to the system design. However, 
the interest of the engineer may not be in 
detailed representation of the streamflow but 
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in characterization of those properties of 
the time series that are pertinent to design 
in the planning s ituat ion being cons idered 
(Jackson 1975). These are not necessarily 
statistical moments of the flows; for 
example, maximum run-lengths and run-sums as 
measures of drought severity. 

The operational hydrologic models 
applicable to the design of a water resource 
system can be evaluated with respect to 
several decision criteria. First, does the 
model adequately resemble the historic 
sequence in terms of its statistical moments 
and other statistical characterist ics, such 
as crossing properties, important for system 
design. 

The literature is replete with descrip­
t ions of research on the capabi lity of the 
various models in generating synthetic flow 
sequences that preserve the statistical 
moments of the historic flow sequences. The 
coverage is much more meager on the impor­
tance of preserving these moments. For ex­
ample, no one questions the need to preserve 
the mean and standard deviation; however, the 
skewness, lag-one serial correlation, and 
Hurst coefficient may also require close 
preservation. Sample size ser iously affects 
estimates of parameters such as the coeffi­
.c ient of skew and the Hurst coefficient. 
This means that for the lengths of historic 
time series usually available in hydrology 
the historical estimates for these statistics 
ate biased. On account of the uncertainty in 
these estimates it is questionable how 
closely they need to be preserved in the 
stochastic generation. Another aspect of how 
well it is necessary to preserve the coeffi­
c ient of skew and Hurst coefficient is the 
sensitivity of the water resource system 
design to the accurate preservation of these 
statistics. In other words, does preserving 
the coefficient of skew or Hurst coefficient 
have a significant effect on the size of a 
reservoir, the severity of a water supply 
deficit or the magnitude of a flood? 

Burges and Lettenmaier (1977, p. 1004) 
compare stochastic models on the basis of 
reservoir sizing and point out that: 

Correct modeling of long term 
persistence (Hurst effect) will 
not in itself guarantee an accurate 
estimation of the storage d istri­
bution needed to satisfy a specific 
demand pattern. A careful analysis 
of the relative importance of 
parameters of the marginal distri­
bution (coefficient of variation, 
CV, and skew, G) as opposed to 
persistence parameters (p(l) and 
H) must be made, as well as between 
short and long-term persistence 
(p (1) and H, respectively). The 
marginal distribution parameters, 
CV and G, have been shown to be 
much more important, even in cases 
where substantial long-term persis­
tence is present, than had earlier 



been thought. Specifically, for 
large H, pO) is relatively un­
important. The value of H is most 
important at high demand levels. 
For all other parameters held 
constant, increasing the magnitude 
of the marginal distribution skew 
reduces storage needs. Skew has 
most impact at moderate values of H 
and p(1). 

Some per t inent find ings from the re­
search by Burges and Lettenmaier (1977) are 
summarized below: 

1) The importance of preserving the 
Hurst coefficient depends on the ratio of the 
annual demand to the average annual stream­
flow. If the demand ratio, D, is low, i.e. 
0.5 to 0.7 then the Hurst coefficient has 
little effect on the distribution of reser­
voir size, but if the demand ratio is high, 
say D > 0.7, then the Hurst coefficient has 
greater importance. 

2) 
periods 

FGN models generate fewer critical 
or droughts than Markov models. 

3) Demand ratio (D), coefficient of 
variation (CV) and skew (G) are the most 
significant parameters affecting reservoir 
storage and critical droughts. 

4) A low CV with high Hurst coefficient 
(i.e. > 0.8) gives longer length critical 
droughts • 

5) As CV increases so do reservoir 
storage requirements and the mean length of 
the critical drought. Based on the experi­
mental work of Burges and Lettenmaier (1977), 
one would expect the seasonal operational 
models to follow the same patterns in model 
performance given the various combinations of 
CV, D, skew, p(l), and Hurst coefficient. 

Burges and Lettenmaier (1977) present a 
study of the sensitivity of reservoir capac­
i ty for 98 percent reliability to the lag­
one serial correlation and Hurst coeffi­
cients. At an annual demand level of 0.9 and 
holding CV and G constant, a change in p(l) 
from 0.2 to 0.45 caused an increase in 
reservoir capacity storage from 3.5 to 4.0 
units; while as K was changed from 0.70 to 
0.85 the reservoir capacity increased from 
4.0 to 6.0 units. The ratio of the incre­
mental increase in reservoir capacity to the 
incremental increase in p(l) is 

in which 

IIp(1) 

(2.16) 

change in reservoir capacity 

change in lag-one serial corre­
lation coefficient 

For an incremental increase in the Hurst 
coefficient a similar ratio can be defined as 
follows: 
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(2.17) 

in which 

11K = change in Hurst coefficient 

By divid 
obtain: 

Equation 2.16 by Equation 2.17 we 

llK 
IIp(l) = 0.15 

(2.18) 

which indicates that the Hurst coefficient 
has more of an influence on reservoir capac­
ity than does the lag-one serial correlation 
coefficient. This ratio is used in the 
analysis of the model formance in Chapter 
7 to weigh the signi icance of errors in 
preserving p(l) and K. 

Burges and Linsley (1971) found that 
distributions of reservoir storage can be 
represented by the extreme value Type I 
(Gumbel) distribution. One would expect the 
critical drought to be distributed similarly 
to reservoir storage because of the similar­
ity in their duration. 

Another consideration for model selec­
tion is that the selected model should be the 
simplest of the models which are deemed 
adequate according to a statistical preserva­
tion criterion. Can a simple model replace a 
complex model if accuracy in certain types of 
resemblance can be sacrificed and what 
the trade offs involved? Perhaps a simp 
stochastic streamflow model is adequate for 
the purposes involved in the water resource 
system design problem at hand, but what are 
the advantages, if any, to using a higher. 
order or more complex model? By comparing 
different generating techniques, Askew, Yeh, 
and Hall (1971) found that for low-flow 
analysis the fractional Gaussian noise models 
were the most successful in resemblance 
of critical period characteristics, but that 
a simple Markovian model could be used, with 
some loss of representativeness, and with a 
saving in computational costs and time. By 
using an economic loss function, Jettmar and 
Young (1975) concluded that the problem of 
reservoir sizing is sensitive to the choice 
of stochastic model, while the problem of 
reservoir operation was insensitive to the 
choice of the stochastic model. 

The need for research into model selec­
tion has been pointed out by several authors. 
In a discussion of a paper on advances 
in stochastic hydrology by Lawrance and 
Kottegoda (1977), P. E. O'Connell (p. 32) 
stated that, 

•.• really formidable statistical 
difficulties arrive in applying 
some of these models about which 
the authors have said somewhat 
less, for example, questions of 
model choice and evaluation for a 
specific application, and param­
eter estimation in small samples .•. 



it is suggested that future re­
search should seek to establish the 
performance of such models in 
planning water resource systems, so 
that feedback can be obtained on 
where further model development 
should be concentrated. 

Jackson (1975, p. 59) suggested that decision 
theory 

.•• should be evaluated in terms of 
the benefits that they can be 
expected to provide, damages that 
they might cause, other costs, and 
similar measures; the models serve 
to allow the investigator to 
explore more fully the potential 
benefi ts and costs of the various 
decision choices. 

Askew, Yeh, and Hall (1971) and Jettmar 
and Young (1975) compared alternative models 
and concluded that the simple Markovian 
models are sufficiently accurate and reason­
able in cost for reservoir design purposes. 
The study on droughts by Askew, Yeh, and Hall 
(1971) did not use an economic loss function 
for evaluation of the different models. 
Research on model comparison using an econom­
ic loss function by Jettmar and Young (1975) 
was for a mUltipurpose reservoir; however, 
the results were heavily influenced by large 
flood damages. Most of the operat ional 
comparisons of annual stochastic streamflow 
models have not been in real world design 
situations. In general, researchers have 
been more statisticians than engineers and 
preferred to examine synthetic reservoir 
inflows and associated probability distribu­
tions of storage (Wallis and Matalas 1972, 
Slack, Wallis, and Matalas 1975, Burges and 
Lettenmaier 1975, 1977). Lawrance and 
Kottegoda (1977) do not consider that there 
is a best model available for all applica­
tions, especially with the unknown effects of 
future climatic changes. They consider that 
one should "let the historical data and 
physical understanding dictate the simplest 
model with which it is possible to get by." 
Also they see the need for some sort of 
reliability criterion for model choice as 
related to specific design purposes. 

To evaluate the performance of the 
various models for a particular design 
purpose, several approaches have been used. 
Rogers (1978, p. 1004) applied the "type of 
errors" approach proposed by Thomas (1967). 

Thomas considered two kinds of 
costs associated with errors 
in design parameters. He defined 
these costs in terms of the 're­
gret,' defined as the difference 
in benefits obtained with the best 
design possible and the benefits 
obtained when the design is based 
upon faulty estimates of the 
parameters implicit in making the 
design. The first kind of cost (or 
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regret), called 'type A error I is 
evaluated as the difference in 
benefits between the best possible 
design and the faulty design, the 
design benefits being evaluated, 
however, with the correct value of 
the design parameters. The second 
kind, called 'type B error' is 
similar but the faulty design 
is evaluated with the incorrect 
value of the design parameters • 

Rogers adapted this approach using comparison 
of models instead of parameters and did pair 
wise comparisons of alternative models 
against some model which is believed to be 
superior or "best." 

Jettmar and Young (1975) compared 
several hydrologic models using an economic 
loss function as the basis for regret (Thomas 
1967). They found that the present value of 
the losses estimated with the economic 
simulation model was extremely sensitive to 
the Hurst coefficient while fairly insensi­
tive to the lag-one serial correlation 
coefficient, thus i nd icat ing long-memory 
models more robust than short memory models 
for that part icular design purpose. Askew, 
Yeh, and Hall (1971) found that fractional 
Gaussian noise models were superior to 
Markovian models in simulating the maximum 
permissible historic extraction rate per year 
from a reservoir and the historic deficiency 
accumulated relative to the mean flow. 

The Akaike information criteria (a 
maximum-log-likelihood function) is one 
method for model selection recommended by 
McLeod and Hipel (1978) and by which they 
claim the ARMA model superior to the FGN 
models. However, McLeod and Hipel use a 
maximum likelihood estimator (MLE) of the 
Hurst coefficient which is highly correlated 
with the lag-one serial correlation thus 
biasing their work towards short term persis­
tence (Todini and 0 'Connell 1979). Another 
disadvantage to the MLE method is the lengthy 
computer runs necessary to perform the 
estimation, McLeod and Hipel (1978) mention 
11 minutes of computer cpu time for maximum 
likelihood estimation of the Hurst coeffi­
cient for a time series between 100 and 
150 years in length. 

State of the Art for Seasonal 
Stochastic Streamflow Models 

Many critical water supply conditions 
exist only during the irrigation season when 
demands are high and streamflows are low. 
Therefore, operational hydrology includes the 
capability of generating flows over periods 
of less than a year in duration, for example 
a month, or a season. These models follow 
two approaches; first, the direct modeling of 
the seasonal periodicity by using a seasonal 
autoregressive model or a Box-Jenkins season­
a 1 model; second, the d i saggr egat ion of 
generated annual flows to seasonal flows. 
The advanta~e of disaggregation is in the 



preservation of the long-term annual statis­
tics not necessarily preserved by the season­
al models. Table 2.3 contains a summary of 
the parameters preserved by six seasonal and 
disal"Jl:.regation models. Model structure and 
parameter estimation solution procedures for 
some of these models are briefly presented 
below. More detailed descriptions of the two 
disaggregation models used in this study are 
contained in Chapter 5. 

~Iodel structure 

The seasonal autoregressive Thomas­
Fiering (1962) model and the seasonal Box­
Jenkins (1970) models have been used to 
preserve periodicities in hydrologic and 
other phenomena. The disadvantages of these 
seasonal models have been their inability to 
preserve long-term properties, such as the 
Hurst coefficient, crossing properties 
and moments of annual flows; in fact, Box­
Jenkins models do not preserve the periodic­
i ty in the variance. The annual stochastic 
models, such as fractional Gaussian noise, 
Broken Line and ARMA-Markov, that preserve 
the long-term properties cannot be adapted to 
preserve the seasonal short-term properties. 

A disaggregation model was first devel­
oped by Valencia and Schaake (1973) and later 
modified by Mejia and Rousselle (1976), 
with another similar modification proposed by 
Hoshi and Burges (1979). Lane (1979) applied 
a disaggregation model to a multistation 
scheme with only selected cross-correlations 
being preserved. 

Table 2.3. Parameters preserved by seasonal and 

Parameters 
Model type 

II (J p(l) h lJ. O'i 
~ 

SEASONAL 

l. Lag-one Auto-
regressive seasonal X X 

2. Seasonal Auto-
regressive-moving 
average X X 

DISAGGREGATION 

3. Disaggregat ion X X X X X X 

4. Disaggregation X X X X X X 

5. Disaggregat ion X X X X X X 

6. Disaggregation X X X X X X 

The Valencia and Schaake (VS) model 
satisfactorily preserves within the year 
seasonal cross-correlations but does not 
preserve season-to-season correlation between 
water years. The Mejia and Rousselle (MR) 
model is an improved technique for preserving 
this season-to-season correlation between 
water years by incorporating an additional 
term containing some of the previous year' s 
seasonal flows. 

The VS model is represented by the 
following equations: 

Xt = ~t + ~ 

in which 

(2.19) 

y n-vector of disaggregated standard-
ized monthly flow volumes 

X standardized annual flow volume 

V n-vector of random elements with 
zero mean and unit variance 

A n-vector of model parameters 

B nxn matrix of model parameters 

n number of months in a year (i.e. 12) 

The MR model is a slightly expanded form 
of the VS model and is given by the following 
equation: 

Xt = .f.Xt + DZ t + EVt • (2.20) 

disaggregation models (Bowles 1979). 

Reference 
Pi 0) P ij (O) P

ij 
(1) 

X X Thomas-Fiering (1962) 

X X X Box and Jenkins (970) 

X Valencia and Schaake 
(1973) 

X X Mejia and Rouselle 
(1976) 

X Xb Hoshi and Burges (1979) 

XC Lane (1979) 

a i ,j = season index, Dij (O) = 
~even years only (Bowles 1980) 

cross correlation between seasons at lag zero 

only selected cross-correlations for multistation case 
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in which 

z 

C 

D 

E 

m 

m-vector of standardized flow 
volumes for the last m months 
of the previous year 

n-vector of model parameters 

nxm matrix of model parameters 

nxn matrix of model parameters 

number of months in (t-l)st year 
which are included in ~t 

~arameter estimation solution procedures 

The derivation of the coefficient matrix 
I:) in the \Is model and E in the MR model 
r equi res the solut ion of- a matr ix eq uat ion 
with the unknown s ide in the form of a BBT 
orE E T . The sol uti 0 n for the B ( 0 r E) 
matrix can be accomplished by two general 
methods: 1) the principal components method 
and 2) Young's (1968) lower triangular 
method. Both methods are based on the 
property that BBT is an n dimensional real 
symmetric matriX: 

f£inciE~1-co~Eon~g!~_metQ~i. The 
principal components method -rKendall 1961) 
utilizes the spectral theorem which applies 
to BBT because it is symmetric and leads to 
the following solution to ~: 

(2.21) 

in which 

P matrix of eigen vectors 

A diagonal matrix of eigen values 

In order to obtain a real-valued solution for 
B, the matrix BBT must be positive semi­
definite. This condition is met if all the 
eigen values of ~BT are positive. Many 
computer applications of this solution 
procedure set small negative eigen values to 
zero which results in the corresponding 
columns of the ~ matrix being zero. 

Young's method. The other decomposition 
technique developed by Young (1968) also 
utilizes the principal of symmetry and is 
also known as the lower triangular solution. 
The matrix B can be chosen as a lower tri­
angular matrix such as: 

B = 

bll 0 
bZI bZZ 

bnl bnZ 

o 
o 

bnn 

(2.22) 
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Ther"efore 

bllbnl 

b,!l bnl + bZZbnZ 

(2.23) 

The solution for the bij'S is per­
formed sequentially, starting WIth the first 
row in Equation 2.23 and moving to the right 
in that row. The solution then proceeds to 
the next row and goes along as the first, row 
to row until the general solution is ob­
tained. Here, the problem of a nonpositive 
semidefinite matrix also arises when one 
tries to take the square root of a negative 
element. If it is only a small negative 
value the solution is to set the negative 
element to zero and then to use programming 
logic that avoids division by zero. 

Valencia and Schaake (1973) and Slack 
(1973) discuss the importance of using 
proper estimators for the computation of 
serial and cross correlation matrices to 
ensure that the resulting coefficient 
"matrices are positive semidefinite. Slack 
(1973) mentions as important c-onditions to 
help overcome the problem of inconsistent 
matrices the following: 1) positive lag-one 
serial correlation observed in historical 
records. 2) the less complex the stochastic 
equation of a model, the more likely the 
availability is of parameter estimation 
techniques yielding an unconditional model. 
Other schemes for ensuring a positive semi­
definite matrix are suggested by Fiering 
(1968) and Crosby and Maddock (1970) as 
corrections to make if the record lengths are 
not equal, but successful arrival to positive 
semidefinite coefficient matrices cannot be 
guaranteed (Slack 1973). 

Modeling Drought Characteristics 

Drought characteristics such as duration 
and severity are measured by the critical 
per i.ods as defined by Askew, Yeh, and Hall 
(1971) or by the crossing properties (Kotte­
goda 1974) determined from the theory of runs 
(Yevjevich 1967). Millan and Yevjevich 
(1971, p. 1) discuss these properties in the 
following quotation: 

In the past, standard practice 
for designing reservoirs relied 
heavily on the "critical period," 
defined as that period in time when 
the historic record would have been 
most critical with respect to water 
demands required from a system. It 
is claimed (Hall and Askew 1969) 



[sic.] that design based on a 
critical period results in a 
reservoir storage capacity equal to 
the capacity obtained by using the 
total length of record. However, 
to determine this critical period· 
accurately reliable knowledge of 
system performance, particularly 
demand patterns and operational 
rules and policies, is required. 
In the absence of this knowledge 
or because of complexity in ob­
taining this kind of information, 
the critical drought period is 
usually determined under simplified 
assumptions. Even though some 
current design practices take into 
account not only the critical 
drought period but also the total 
deficit of water supply by a 
reservoir under study, it still 
remains that this critical drought 
period represents, in most cases, 
the largest part of the deficit 
allowed by these design criteria. 

W. Hall and A. 1. Askew (1969) 
[sic.] found for 25 selected rivers 
across the continental United 
States that the dates of the 
critical periods agree with the 
dates of the major droughts in each 
region. Using this information, 
in general, a historic drought is 
cons idered that event for wh ich 
most deSigns must perform satis­
factorily. This is based on the 
assumptions that the most severe 
drought to be observed during the 
lifetime of a project will b. about 
the same as a previously recorded 
maximum historic drought. The 
probability, however, that the 
critical drought period observed in 
the past will be the same as the 
critical drought period expected to 
be observed in the future is 
usually small. The Rrobability is 
large that a very different drought 
will be observed. 

Therefore replication of the historic 
maximum drought is not the purpose of opera­
tional hydrology. The purpose is instead the 
generation of different droughts which will 
make possible the estimation of a probability 
distribution of droughts and thus estimates 
of the probability of nonexceedance of any 
drought magnitude. Thus a stochastic model 
is not rejected because the generated maximum 
drought does not match the historic maximum. 
In fact, when long streamflow sequences are 
generated by a drought representative model 
one would expect to find more severe and some 
less severe droughts than in the historic 
record. 

The crossing properties used to define 
drought duration and severity are illustrated 
in Figure 2.3. For a particular sequence 
of streamflows, X(t), and a given demand 
level, Xo , which could in general also be a 
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function of time and streamtlow, Xo(t,x), the 
periods when demands exceed the flows are 
readily indentified. Both the duration of 
each period, termed the run-length, and the 
volume or severity of the excess demands in 
each period, termed the run-sum, are readily 
calculated. The distribution of run-lengths 
can be used to assess the probability of 
different length droughts. The number of 
crossings of Xo by X(t) also can be used to 
characterize the time series. Thus crOSSing 
properties are random variables and their 
estimation is based on historical records in 
which large fluctuations in their observed 
values occur over the period of record. 
Millan and Yevjevich (1971) proposed a 
mathematical model for the distribution of 
the crossing properties. Their work was 
based on the following simplifying assump­
tions: 

1) The observed time series is a sta­
tionary stochastic process 

2) No trends or positive or negative 
jumps 

3) No periodicities 

4) Either independent process or simple 
dependent process such as a lag-one 
Markov process. 

They further defined a representative drought 
by the expected value of run length and 
run-sum. Saldarriaga and Yevjevich (1970) 
have shown that run-length properties for 
flows following stationary processes are 
independent of the mean and the standard 
deviation of the underlying process, but 
they are dependent on the crOSSing level, 
Xo , the lag-one serial correlation, p(l), 
and the coefficient of skewness, g, of the 
underlying flow population distribution. The 
magnitude of the run-sum propert ies is also 
directly proportional to the standard devia­
tion of the process (Millan and Yevjevich 
1971). 

The probability distributions of gener­
ated drought parameters of most interest are 
those associated with the largest drought in 
the sample. There are two probability 
distributions associated with the investi­
gation of drought properties, which can be 
derived by Monte Carlo method: 1) the 
distribution of the longest run-length or 
drought duration, P(Lmax) in the generated 
hydrologic time series; Z) the distribution 
of the largest run-sum or drought deficit, 
P (Drpax) in the generated hydrologic time 
serIes. Millan and Yevjevich (1971) con­
ducted a detailed analYSis of regression 
coefficients and partial correlation coeffi­
cients of a mathematical relationship between 
crossing level, sample size, lag-one serial 
correlation coefficient, and coefficient of 
s~ewness as the independent variables and 
the crossing properties such as mean longest 
run-length, mean largest run-sum, as depen­
dent variables. From their regression 
analysis they concluded that the most signif-



KEY 

x = monthly streamflow in acre-feet 

Xo = level of demand for a certain water supply 

L = run-length of negative deviations from the base level, Xo' 
measure of the duration of the drought 

D = run-sum of the negative deviations from the base level, Xo ' 
measure of the severity of a drought 

x 

L=4 

o 5 10 15···· . N 

Figure 2.3. Crossing property definitions for droughts (after Salas et al. 1980). 

icant (in terms of explained variance) 
independent variables are the crossing level 
and the sample size, next in importance is 
the lag-one serial correlation coefficient 
and last was the coefficient of skewness. As 
expected though, skewness was more important 
for the largest run-sum than for the longest 
run-length. As the lag-one serial correla­
tion coefficient increases, the run-length 
increases, and the number of crossings 
decrease. The importance of preserving the 
skewness of the historic series in regards to 
maintaining the crossing properties has 
been pointed out by Kottegoda (1974). 
Kottegoda's work also indicates that the 
simpler autoregressive model is sufficient 
f or preserving the cross ing· propert ies when 
compared with the more sophisticated frac­
tional Gaussian noise and Broken Line models. 
Kottegoda (1974) notes, however, that preser­
vation of the crossing properties alone 
is not sufficient for water supply system 
design and that consideration of the effects 
of long-term persistence on storage require­
ments is also important. , 

An interesting result from the appli­
cation of the probability distributions for 
the drou'ght properties to annu'al stream­
flow series of 10 rivers, showed 3 rivers 
(Mi ssou'r i, Rio Grande and MeKong) to have 
historical critical periods, more severe than 
would be predicted from generated sequences 
of flows, while the other 7 rivers, using 
first-order autoregressive linear models, 
gave on the average longer or larger repre­
sentative droughts than were observed his­
torically. These results do not support the 
conclusions by Hall, Askew, and Yeh (1969), 
that the historic droughts were significantly 
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more severe than the generated droughts. The 
models u'sed by Hall, Askew, and Yeh (1969) 
were the autoregressive model and thefrac­
tional Gaussian noise model prior to the 
approximations of FGN developed since 1969. 
The selection of the crossing level is an 
important factor in defining the propert ies 
for both historic and generated drou'ghts. 
The characteristics of the hydrologic time 
series plays an important part in deter­
mining the "best" type of model to apply. 

In conclu'sion, the correct model should 
be fitted to the streamflow time series 
based on the importance and magnitude of the 
demand or crossing level for the water 
resource system and based on the statistics 
of the time series such as serial correlation 
and skewness. One would not be justified in 
aprior discarding operational hydrology 
models in favor of the historic statistics 
for a water supply design problem as recom­
mended by Hall, Askew, and Yeh (1969). 
Neither would one be justified in always 
choosing a Markov model as recommended by 
Yevjevich (1964). Millan and Yevjevich 
(1971) showed that not all streamflows are 
well modeled by Markov models. Perhaps much 
of the confusion over which model to choose 
based on preservation of the drought crossing 
properties lies in the fact that the crossing 
properties have large sampling variations and 
are very sensitive to the correlation struc­
ture present in the historic streamflow time 
series. Therefore a strategy for model 
choice is needed in order to determine which 
type of model fits best the streamflow time 
series for the water resource design purposes 
at hand. 



Models of Agricultural Economic 
Losses Due to Drought 

A nonlinear loss function has been used 
by Jettmar and Young (1975) for measuring 
model performance. For agricultural drought 
analysis, a crop production function that 
operates over an inter season time period 
provides the most information on the harm 
associated with various situations with 
respect to timing and severity of droughts. 
Such a crop yield funct ion would respond 
to an inadequate water supply during a 
critical crop growth stage. Unfortunately, 
most crop yield functions that do not operate 
on a seasonal basis operate on a daily level 
and require daily meteorologic and irrigation 
data. Generating these data was beyond the 
scope of this study. 

Crop yield is measured by the amount of 
vegetative matter produced and the weight of 
the vegetation is proportional to the amount 
of water transpired during the growing 
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season (Stewart et al. 1977). Hexem and 
Heady (1978) reviewed the literature con 
cerning crop production functions basing a 
large part of their research on the pio­
neering work of Mitscherlich (Briggs 1925). 
Mitscherlich quantified the relationships 
between plant growth and environmental 
factors. Hexem and Heady (1978) using 
multiple regression analysis predicted crop 
yields on a seasonal basis from such vari­
ables as water supply, fertilizer, water 
holding capacity and other soil properties. 
Another study on crop yield models by Stewart 
eta 1. (l 9 7 7) pro v ide d d a t a c 0 mp a r i n g 
different models on a regional basis for 
corn. 

Hanks (1974) developed a water-budget 
crop-yield model relating the yield as a 
function of evapotranspiration. The economic 
application to the Hanks model was performed 
by Gowon, Anderson, and Biswas (1978) with 
emphasis on critical growth stages for corn 
crop s. 



CHAPTER 3 

SELECTION AND ANALYSIS OF STREAMFLOW TIME SERIES 

Introduction 

Both the selection of model type and 
form, and the acceptability of model perfor­
mance depend heavily on the value of the 
streamflow statistics estimated from the 
historic record. Therefore, one of the 
first tasks in step one of the systematic 
modeling procedure (see Figure 1.1), is to 
obtain these estimates from the streamflow 
record. At the beginning of this chapter the 
selection of the study streams is described, 
followed by sections on nonhomogeneity 
analysis, the annual streamflow statistics, 
and the monthly streamflow statistics. 

Selection ?f Study Streams 

Synthetic traces from stochastic hydro­
logic models are only as good as the statis­
t lCS used to generate them, hence, the 
importance of accurate measurements over a 
long enough period to provide a good data 
sample from which to estimate the statistics. 
Data collection requires searching out time 
series of recorded data (for th;is study, 
streamflow data), that are both reliable and 
long enough for good statistical estimation. 
Specific considerations in choosing the 
streamflow time series for comparison of' 
stochastic models were: 1) a record of at 
least 60 years in length for both annual and 
monthly flows to provide good estimates of 
streamflow statistics; 2) to ensure a statis­
tically homogeneous time series there should 
be no storage reservoirs, only small diver­
sion and little change in watershed develop­
ment above the gaging station over the period 
of record j 3) a wide range in important 
streamflow statistics (e.g. lag-one auto­
correlation and Hurst coefficients) on which 
to test the models. Only the first of these 
three criteria would be necessary in evalu­
ating a streamflow series for use in a design 
application. If the time series is statis­
t ically nonhomogeneous then various de­
trending techniques such as reverse reservoir 
routing or subtracting a known mean trend 
component can be used to approximately 
restore a streamflow series to a homogeneous 
s er ies. The danger of detrend ing is that a 
trend caused by some physical change in the 
watershed or due to a natural climatic trend, 
perhaps with a long periodicity, may be 
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removed with relative ease: but the question 
is what assumptions should be made about its 
cont inuation in the future? Where possible 
these assumptions must be based on a cause­
and-effect explanation of the trend; for 
example the growth of urbanization. 

The four streamflows chosen for study 
are the Beaver River near Beav,er, Utah, 
Blacksmith Fork above Utah Power and Light 
Company's Dam, near Hyrum, Utah, the Logan 
River above State Dam, near Logan, Utah, and 
Weber River near Oakley, Utah.' The stream­
flow series appears to satisfy all three 
selection criteria as can be seen from the 
descriptions in Table 3.1 and the analysis of 
the series presented later in this chapter. 
The historic streamflow series was obtained 
from the Water Resources Data for Utah, Part 
1, Surface Water Records (USGS 1979). Figure 
3.1 shows the location of the streamflow 
gaging stations on a map of the State of 
Utah. Annual flows are listed in Table 3.2 
and presented graphically in 3.2-3.5. 
Monthly flows are listed in Appendix A. 

Nonhomogeneity Analysis 

Before estimat ion of either the annual 
or seasonal statistics of a streamflow time 
series is attempted it is necessary to verify 
that the series is statistically homogeneous. 
The following four approaches were used to 
investigate the annual streamflow records 
for trends or jumps: 

1) Study of streamflow gage history and 
other information on upstream watershed 
development affecting streamflows. 

2) Visual inspection of tabulated and 
plotted records (see Table 3.2 and Figures 
3.2-3.5). 

3) Visual inspection of double-mass 
plots and plots of cumulative streamflows. 

4) Fisher-Behrens (Kendall and Stuart 
1973) test on the difference in the means of 
split samples. 

The only nonhomogeneities identified were a 
drop in the mean streamflows of the Logan 



Table 3.1. Streamflow gaging station location and watershed description. 

Stream USGS Station No. Period of Record 
(Water Years) 

Beave r Ri ve r 234500 1915-1978 

Blacksmith Fork 113500 1914-1978 

Logan River 109000 1901-1978 

Weber River 128500 1905-1978 

from USGS (1979). 

and Weber Rivers which appears to have 
occurred between 1910 and 1920 (see Figures 
3.4 and 3.5). It was also found that pre­
Cipitation levels were higher before this 
per.iod. The records for the Beaver and 
Blacksmith Fork Rivers did not begin early 
enough to clearly show the effects of this 
apparent climatic shift. This downshift in 
the mean streamflows was found to influence 
the outcome of parameter estimation for the 
disaggregation model of the Logan stream­
flows. Specifically, if statistics based on 
the entire period of record, including the 
earlier high flow years, were used it was not 
possible to obtain real-valued solutions to 
the dissaggregation model parameters. How­
ever, if the starting year for estimating 
statistics was moved to 1913, to exclude the 
earlier high flow years, then real-valued 
model parameters were obtained. Therefore, 
the Logan record was used beginning with 
1913. This parameter estimation problem did 
not occur for the Weber River and it was 
decided to use the entire period of record 
and not to omit the earlier high flow 
years on the basis that this apparent shift 
in the mean may provide a more realistic 
estimate in the long-term persistence as 
measured by the Hurst coefficient. 
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Drainage Area 
(Square Miles) 

91 

268 

214 

162 

Remarks 

No diversions upstream 
for irrigation. Water diverted 
for hydroelectric power, but 
returned to stream above station. 
Some regulation by power plants 
and several small reservoirs. 

A few small diversions for 
irrigation of about 200 acres 
above station. Flow is slightly 
regulated by power plant above 
station. 

Flow effected by regulation 
and diversion above station for 
power, irrigation, and municipal 
culinary supply. Utah Power and 
Light Co. stopped diverting water 
from river November 1970 at which 
time the tailrace station was 
discontinued. Logan, Hyde Park 
and Smithfield Canal diversions 
are combined with the Logan River 
flows for purposes of this study. 

Several small diversions for 
irrigation above'station. Flow 
slightly regulated by several 
small lakes on head waters and 
a small reservoir on Smith and 
Morehouse Creek. Total capacity 
of lakes and reserVOir is 3400 
acre feet. 

Annual Streamflow Statistics 

Several annual streamflow statistics 
were calculated for the four study streams 
and are presented in Table 3.3. The statis­
tics estimated are: mean, standard devia­
tion, coefficient of variation, skew coeffi­
cient, lag-one autocorrelation coefficient, 
and Hurst coefficient. In addition, the 
expected run length and run sum with respect 
to a crossing level equal to the annual mean 
flow was also ca lculated. Both the K and H 
estimators of the Hurst coefficient were 
calculated. 

The calculated statistics indicate 
average variabilities as measured by the 
coefficient' of variation. Since the annual 
skews are low, no attempt was made to use a 
transformation to account for skew. There is 
greater variability in the value of H than K, 
as is characteristic of the H estimator 
(Wallis and Matalas 1970). The values of K 
are within the range normally found in 
streamflows (Hurst 1951). Values of the 
expected run length are quite similar for all 
four streams, perhaps suggesting that this 
statistic can be expected to be fairly stable 
in a given geographic region. 



Table 3.2. Annual streamflow data in acre-feet 

Year Beaver Blacksmith Logan Weber 
River Fork River River 

l-qlll 235400. 
tc~n2 213nsO. 
PUI3 22897 0 • 
1901.1 170S90. 
1905 180240. 118170. 
1900 222320. 1807]0. 
\CJ07 373550. ,\00240. 
1908 201.1090. t5801 O• 
190CJ 1201.170. 2771&n. 
1910 281390. 183220. 
1911 28472n. 1114~ln. 

t912 21117n20. 20nOn. 
1913 185700. 108210. 
1914 11 7g eO, 23111.10. 241370. 
1915 4S'560~ &7«100. 136470. laOS]O. 
PUo nno. 119330. 224900. t!tlOS70. 
1917 1893n. l a8'570. 233950. .,!St.20. 
t9U1 319tO~ 105020. 19a120. llJ~8eo. 
tqlQ 351)52, 7398n. IS115'50. 12\20(1. 
1920 IIQ9U, 10ger;0. 220400. 1974711. 
t921 53/0 O. 15111)00. 28020('). 270360. 
19?2 l5e420~ 1110900. 244010. ?31970. 
\92! 51470: 137080. 23978('). 2(121)30. 
1924 ?9nl0. 93080. 171550. 1I0'iOO. 
t92S UU7~ 8041 ". 171a70. \!CIU91'1. 
\c~?o u"UO, 67130. 135880. 1'32Q5n. 
1917 J&(21). 88070. 187000. 1&05(,)0. 
1928 uoeQo. 90980. 200 400 • l&e18('). 
19j!9 45970: A81j20~ 11.1245(') • 180290. 
tHO 30090: ,&0640. 1451100. 13173n. 
1931 teTi5: 4]200. 9281.10.: 78070. 
1932 37710; 102500. 215130. 182b40. 
1933 H&15, 741b10~ 170900. U7B40. 
IH4 1&480, 42100, «11000. r;001j0. 
193'5 '5&108, 52300. 14141l0. 142«110. 
1930 48]'50. 110190. 234530. 17913n. 
1937 ~0120, 8&980. 105280. 128480. 
lH8 43820, 88Z80, 190510. t S50 70. 
1..!!.~9 _ .,i.~ 119~1t3080 .. ___ ..Jl7 tl~.L. t09250. 

Monthly Streamflow Statistics 

Tables 3.4 through 3.7 contain the 
monthly streamflow statistics calculated for 
the four study streams. The mean monthly 
flows and the percentages of the mean annual 
flow represented by the mean monthly flow 
show that more than 50 percent of the annual 
flow occurs in a two or three month period in 
the late spring. Variability in the monthly 
flows is greatest during the late spring and 
early summer as indicated by the standard 
deviat ions and coefficients of var iat ion 
of the monthly flows. The skew coefficient 
of monthly flows is generally small and 
positive. The largest values of the skew 
coefficient generally occur during the 
spring runoff period and especially in March 
and June. A BOX-Cox transformation with A = 
0.33 was found to minimize the average 
monthly goodness-of-fit statistic, T (see 
Equation 2.6), for all study streams. The 
effect of this transformation on parameter 
estimation for the disaggregation models is 
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by water year. 

Year Beaver Blacksmith Logan Weber 
River Fork River River 

191.10 31354 ~ 1.151.1S0. 113110. 89290. 
1941 UIIO: 381';0. 97250. 121"0 0 • 
1942 47290, 4'5100. 120000. 11.I7eeo. 
191.13 34890. 8481 o. 209410. ICj2Qeo. 
111144 S1410~ oOeSO~ 1401570. tb120n. 
111145 1.12840; 7111120. 158980. 11270(\. 
lCJ40 J1l10~ 125n20. 21Mi70. 14&2e O• 
191.17 I)()IUO. IHSOO, 17'5I.1CJO. IS&1CJO. 
191.18 157bn; 1014&0. 191.1]00. lU18S0. 
I 1111.19 4&200. 98470. 183571'1. 10:;7900. 
191j0 244bl.l t 1391.180. 262780. 1994QO. 
USI 23891.1. 13&870, 237410. 173820. 
lCJ52 Ub4I.1~ 147820. 220330. <,,7300. 
1953 23188 ~ 90gen. 17(11.1110. \18&30. 
1951.1 H4&&. &9810 • U0200. 1013/:)0. 
1955 2200&. M&lO. 132430. IHIJSO. 
195& 20432 • Itl8'i40. 200050. 168330. 
1957 'S0347~ 102120. le5590. 1113b O • 
ulje 51520. CHOeo. le4]30. 127uQn. 
1959 t &79 I; 08910. 143&40. 109180. 
19&0 Iq504. 07010. 139100. \\20]0. 
19&1 18&03: 1139(jO~ 9'5380. 0&951'. 
lQ02 33206: 81.1&7n. 170890. l~e330. 
19&] 20aa5~ &41150. 145Q20. 12t'5ao. 
1964 25620. 7375n. 159200. tCi3 t1 30 • 
U05 33807 ~ 1135QO. 230190. ?,0772n. 
19&0 2205«1. 82320 ~ \534eo. tJ385n. 
1967 3&205: 101(')30. 1895&0. tS9 Q70. 
1968 112344~ 8537n. 17200n • t759UII. 
19&9 481!!e: 951'50. 180240. tllHsn. 
1910 347QO: 80590. 177910. 140Q]I). 
lq71 29]0(1: 161470. 2951eo. 18181n. 
19U I'HCi5: 17151n~ 275540. t70Seo. 
19'7] 49759~ 107seo. 160570. t5395n. 
19'74 28120. \20780: 22&270. 17blbn. 
1975 2851111. 110650. 219540. 1Qlj7'50. 
1970 18('123: in5010. 1921&0. 131':11'50. 
1977 Il080~ 511'~0. 87270. 'i8'52n. 
I'!J_~ ___ !,~97~ __ 801150. 1 7710n. \bPHO I 

di scussed in Chapter 5, and values of Tare 
presented for various values of A (see Table 
5.1). The selected transformation is better 
at representing skew in the months with low 
skew than in the months with high skew (see 
Figures 5.2 through 5.5). However, it was 
decided to use one value of A for all months 
rather than attempt to use different trans­
formations for each month which might lead 
to inconsistencies in parameter estimation 
for the disaggregation model. The lag-one 
autocorrelation coefficient between monthly 
flows (e.g. between June and July) is con­
s istently high in all months except during 
the spring. The high values occur because of 
the dominant influence of the groundwater 
recession in controlling flows in adjacent 
months. During the spring the influence of 
the groundwatel: recession is less than the 
influence of the snowmelt condition which 
runs from months to months with less serial 
correlation that the groundwater recession. 
Correlations between the monthly and annual 
flow volumes are least in the fall before the 



Table 3.3. Comparison of annual statistics of historic streamflow records. 

Statistic Stream 

Symbol Description Units Beaver Blacksmith Logan Weber 
Fork 

N Length of record yrs 64 65 66 74 

.! Mean ac-ft 36,306 92,659 180,438 158,326 

s Standard deviation ac-ft 12,706 31,402 47,005 46,570 

CV Coefficient of variation 0.35 0.34 0.26 0.29 

g Skew coefficient 0.08 0.50 0.15 0.52 

r(1) Lag-one autocorrelation coefficient 0.24 0.49 0.32 0.26 

H Hurst coefficient2 
0.61 0.74 0.73 0.84 

K Hurst coefficient 3 
0.76 0.76 0.72 0.78 

E(RL) Expected 4 run length yrs 2.43 3.09 2.29 2.60 

E(RS) Expected 4 ac-ft-yrs 23,940 69,189 79,809 run sum 83,632 

1 1978. 2Last year of record used was 
3H estimator based on pox diagram. 
4K estimator given in Equation 2.8. 

Expected run length and run sum are based on a crossing level of the annual mean flow •. 

winter snow influences runoff but increase in 
the spring due to the direct influence of 
snow runoff and are generally maintained at 
the higher levels in the summer due to the 
important indirect influence of the runoff 
from the snowpack in the preceding winter. 

The two cross-correlation matrices 
presented in the lower part of Tables 3.4 
through 3.7 are used to est imate the param­
eter matrices for the. disaggregation models 
described in Chapter 5. .§.yy, the matrix of 
cross correlations between monthly flows in 
the same water year is a symmetric matrix. 
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In general the correlations decrease with 
greater separation between the months, that 
is on diagonals more distant from the leading 
d iagona!. The matr ill. of cross-correlat ions 
between monthly flows in adjacent years, 
SZY, contains the largest values in the 
Tower left hand corner which is the cross­
correlation between flows in the adjacent 
months of September in year t-l and October 
in year t. These cross-correlations decrease 
on diagonals moving toward the top right hand 
corner although the year-to-year serial 
correlation induces an increase in the 
cross.correlations in the last few columns of 
'§'YZ. 
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Figure 3.1. Map of Utah showing location of study streamflow gaging stations. 
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Figure 3.3. Recorded annual streamflow for Blacksmith Fork River. 
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Table 3.4. Monthly statistics for the Beaver River (1915-1978) . 
------------.- ----------_._------

Percentage of Coefficient 
mean annual Standard of varia- Skew 

Month Mean flow in month Deviation tion· coefficient 

y(ac-ft) s(ac-ft) CV g 

0 1,425 3.92 380 0.27 0.56 
N 1,247 3.43 290 0.23· 0.46 
D 1,175 3.24 236 0.20 -0.10 
J 1,101 3.03 227 0.21 0.30 
F 1,049 2.89 2.02 0.19 0.35 
M 1,350 3.72 335 0.25 1.65 
A 3,173 8.74 1,402 0.44 0.76 
M 10,332 28.46 5,466 0.53 0.69 
J 8,387 23.10 5,086 0.61 0.92 
J 3,560 9.81 1,791 0.50 0.31 
A 2,059 5.67 820 0.40 0.44 
S 1,450 3.99 419 0.29 -0.08 

Matrix of cross-correlations between monthly flows in same water year 1 

o 
N 
D 
J 
F 
M 
A 
M 
J 
J 
A 
S 

o 
1.00 

N 
0.93 
1.00 

D 
0.81 
0.86 
1.00 

J 
0.76 
0.81 
0.86 
1.00 

F 
0.81 
0.85 
0.77 
0.80 
1. 00 

M 
0.62 
0.69 
0.60 
0.54 
0.81 
1.00 

A M 
··0:-39--0.-34 
0.42 0.39 
0.43 0.40 
0.33 0.31 
0.47 0.32 
0.53 0.31 
1.00 0.39 

1.00 

Lag-one month 
autocorrelation 

J 
0.06 
0.06 
0.05 
1).11 
0.07 
0.03 

-0.03 
0.57 
1.00 

r(l) 

0.89 
0.93 
0.86 
0.86 
0.80 
0.81 
.0.5.3 
0.39 
0.57 
0.85 
0.86 
0.87 

J 
0.01 
0.03 
0.09 
0.05 
0.02 

-0:01 
0.03 
0.59 
0.85 
1. 00 

Correlation 
between 

monthly and 
annual flows 

A 
0.04 
0.09 
0.13 
0.10 
0.13 
0.18 
0.18 
0.57 
0.77 
0.86 
1.00 

0.33 
0.37 
0.38 
0.34 
0.35 
0.32 
0.35 
0.89 
0.84 
0.82 
0.80 
0.85 

s 
0.27 
0.33 
0.37 
0.30 
0.36 
0.40 
0.32 
0.70 
0.69 
0.76 
0.87 
1.00 

Matrix of cross-correlations between monthly flows in adjacent years, t-l and t, ~ZY' 

1 

o 
N 
D 
J 
F 
M 
A 
M 
J 
J 
A 

-;::-::-O-;--_-::-~N 
0.34 0.40 
0.42 0.47 
0.48 0.53 
0.39 0.49 
0.49 0.55 
0.54 0.54 
0.43 0.37 
0.65 0.66 
0.61 0.58 
0.64 0.57 
0.78 0.70 

~yy is a symmetric matrix. 

D 
0.41 
0.44 
0.49 
0.44 
0.46 
0.41 
0.35 
0.70 
0.62 
0.60 
0.66 

J 
0.28 
0.36 
0.35 
0.33 
0.43 
0.35 
0.28 
0.72 
0.64 
0.59 
0.63 

F 
0.48 
0.55 
0.58 
0.52 
0.60 
0.55 
0.44 
0.63 
0.55 
0.50 
0.60 

M 
0.50 
0.53 
0.56 
0.51 
0.48 
0.38 
0.32 
0.43 
0.36 
0.32 
0.40 
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A 
0.33 
0.35 
0.40 
0.42 
0.34 
0.24 
0.14 
0.21 
0.15 
0.10 
0.22 

M 
0.19 
0.22 
0.18 
0.20 
0.21 
0.30 
0.20 
0.21 
0.18 
0.05 
0.25 

J J A S 
-0.1:-::0----:0. 06--o~OT---o.T3 
-0.12 -0.09 -0.02 0.24 
-0.21 -0.13 -0.05 0.16 
-0.25 -0.19 -0.10 0.12 
-0.09 -0.10 -0.06 0.21 

0.13 0.06 0.06 0.31 
0.04 -0.04 0.03 0.20 
0.06 -0.02 0.03 0.20 
0.04 0.05 0.05 0.13 

-0.07 -0.07 -0.05 0.00 
0.00 0.00 0.00 0.13 



Table 3.5. Monthly statistics for the Blacksmith Fork (1914-1978). 
::::=---.----=====:---------.-=--===---======================== 

Correlation 
Percentage of Coefficient between 

mean annual Standard of varia- Skew Lag-one month monthly and 
MOnth Mean flow in month Deviation tion coefficient autocorrelation annual flows 

51 (ac-ft) s Cac-ft) CV g r(1) 

0 5,678 6.13 1,657 0.29 0.37 0.99 0.56 
N 5,177 5.59 1,337 0.26 0.28 0.99 0.58 
D 5,043 5.44 1,264 0.25 0.24 0.94 0.62 
J 4,810 5.19 1,200 0.25 0.43 0.96 0.69 
F 4,416 4.77 1,031 0.23 0.40 0.90 0.70 
M 6,081 6.56 2,271 0.37 2.28 0.68 0.72 
A 13,040 14.08 6,845 0.52 0.99 0.62 0.77 
M 18,538 20.01 10,310 0.56 0.72 0.63 0.92 
J 10,117 10.92 4,716 0.47 1.08 0.91 0.91 
J 7,464 8.06 2,740 0.37 0.52 0.96 0.98 
A 6,527 7.05 2,260 0.35 0.48 0.99 0.98 
S 5,750 6.21 1,855 0.32 0.45 0.99 0.98 

1 
Matrix of cross-correlations between flows in same water year ~yy' 

o 
N 
D 
J 
F 
M 
A 
M 
J 
J 
A 

o 
1.00 

N 
0.99 
1.00 

D 
0.93 
0.94 
1. 00 

--::-_J:::-::-__ -::-'F::,.., __ --,:-.;:::M':::--_--::--'A"" M J J A S 
0.87 0.80 0.57 0.18-----0-:34--0-.4i-~0~--o-:54----0-.55 

0.88 0.81 0.60 0.21 0.36 0.42 0.53 0.56 0.57 
0.97 0.88 0.62 0.28 0.37 0.44 0.56 0.59 0.60 
1.00 0.90 0.68 0.37 0.45 0.53 0.64 0.67 0.68 

l.00 0.68 0.44 0.45 0.53 0.66 0.69 0.71 
l.00 0.62 0.47 0.52 0.65 0.67 0.67 

1.00 0.63 0.57 0.70 0.70 0.70 
1.00 0.91 0.92 0.91 0.89 

l.00 0.96 0.94 0.93 
1.00 0.99 0.98 

1.00 0.99 

Matrix of cross-correlations between monthly flows in adjacent years, t-l and t, ~Zy' 

0 N D J F M A M J J A S 
0 0.57 0.57 0.55 0.53 0.42 0.26 0.02 ---0.13 0.14 0.22 0.24 ----o.-fl" 
N 0.60 0.59 0.56 0.55 0.43 0.27 0.04 0.16 0.16 0.25 0.26 0.30 
D 0.64 0.63 0.59 0.58 0.48 0.34 0.07 0.17 0.19 0.28 0.30 0.33 
J 0.71 0.71 0.69 0.68 0.60 0.45 0.11 0.21 0.25 0.36 0.37 0.40 
F 0.73 O. 72 0.67 0.66 0.60 0.43 0.13 0.23 0.26 0.36 0.38 0.40 
M 0.68 0.66 0.62 0.57 0.45 0.27 -0.05 0.24 0.32 0.34 0.34 0.37 
A 0.69 0.67 0.60 0.51 0.46 0.22 -0.09 0.14 0.24 0.27 0.26 0.26 
M 0.88 0.89 0.83 0.75 0.68 0.46 0.08 0.32 0.35 0.43 0.45 0.45 
J 0.92 0.93 0.88 0.80 0.75 0.54 0.18 0.29 0.34 0.45 0.48 0.48 
J 0.98 0.97 0.92 0.85 0.78 0.53 0.13 0.29 0.37 0.47 0.49 0.50 
A 0.99 0.98 0.93 0.86 0.79 0.53 0.13 0.31 0.38 0.48 0.50 0.51 
S 0.99 0.98 0.94 0.87 0.80 0.56 0.16 0.34 0.40 0.51 O.:.n __ ...Q.:.~ 

1 
~yy is a symmetric matrix. 
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Table 3.6. Monthly statistics for the Logan River (1915-1978). 
----,----------------------------

Correlation 
Percentage of Coefficient between 

mean annual Standard of varia- Skew Lag-one Month monthly and 
Month Mean flow in month Deviation tion coefficient autocorrelation annual flows 

Y (ac-ft) s (ac-ft) CV g r(l) 
--------------------------

0 9,241 5.12 2,142 0.23 -0.23 0.98 0.34 
N 7,940 4.40 1,636 0.21 -0.19 0.98 0.38 
D 7,330 4.06 1,393 0.19 -0.09 0.94 0.44 
J 6,792 3.76 1,192 0.18 -0.07 0.96 0.55 
F 6,029 3.34 959 0.16 0.26 0.90 0.59 
M 7,452 4.13 1,861 0.25 2.29 0.68 0.60 
A 15,378 8.52 6,083 0.40 0.86 0.55 0.58 
M 37,820 20.96 12,747 0.34 0.18 0.62 0.85 
J 38,526 21. 35 16,323 0.42 0.31 0.67 0.91 
J 20,659 11.45 8,501 0.41 0.95 0.94 0.88 
A 13,055 7.24 3,726 0.29 0.22 0.96 0.96 
s 10,218 5.66 2,587 0.25 0.02 0.99 0.97 

-----------------~--------

Matrix of cross-correlations between flows in same water year 1 

0 N D J F M A M J -1 A S 
0 1.00 0.98 0.93 -O.8i3---0.80---0.55"----o.lT-----o.:fo----o.1T--o.TI---0-:2Y----03C 
N 1.00 0.94 0.90 0.83 0.58 0.17 0.25 0.13 0.15 0.30 0.34 
D 1. 00 0.96 0.87 0.61 0.23 0.32 0.20 0.19 0.35 0.39 
J 1.00 0.90 0.67 0.30 0.38 0.32 0.32 0.46 0.49 
F 1.00 0.68 0.29 0.44 0.36 0.35 0.49 0.54 
M 1.00 0.55 0.46 0.40 0.37 0.48 0.57 
A 1.00 0.62 0.32 0.31 0.40 0.43 
M 1.00 0.67 0.58 0.71 0.75 
J 1.00 0.94 0.95 0.93 
J 1.00 0.96 0.93 
A 1.00 0.99 

Matrix of cross-correlations between monthly flows in adjacent years, t-1 and t, ~ZY' 

o 
N 
D 
-1 
F 
M 
A 
M 
J 
J 
A 

o 
0.34 
0.38 
0.43 
0.53 
0.58 
0.55 
0.50 
0.77 
0.90 
0.90 
0.97 

N 
0.35 
0.37 
0.42 
0.53 
0.57 
0.53 
0.45 
0.75 
0.90 
0.88 
0.95 

D 
0.35 
0.37 
0.41 
0.50 
0.52 
0.49 
0.37 
0.68 
0.87 
0.86 
0.92 

a symmetric matrix. 

J 
0.36 
0.38 
0.42 
0.52 
0.52 
0.45 
0.30 
0.63 
0.81 
0.80 
0.86 

F 
0.24 
0.26 
0.29 
0.40 
0.43 
0.33 
0.28 
0.53 
0.75 
0.75 
O. 78 

M 
0.18 
0.23 
0.23 
0.36 
0.37 
0.21 
0.15 
0.23 
0.53 
0.55 
0.55 

30 

A M 
--0-:05-- 0.04-
-0.07 0.05 
-0.09 0.07 
-0.03 0.09 
-0.,04 0.13 
-0.18 0.05 
-0.19 -0.04 
-0.14 0.09 

0.12 0.21 
0.14 0.20 
0.12 0.21 

J 
-0.05 
-0.02 
-0.01 
0.03 
0.04 
0.05 

-0.05 
0.13 
0.19 
0.17 
0.15 

J 
-0.02 

0.01 
-0.00 

0.04 
0.05 
0.11 

-0.01 
0.12 
0.19 
0.17 
0.16 

A S 
if:oi----O:-06 
0.05 0.10 
0.05 0.09 
0.10 0.14 
0.12 0.17 
0.14 0.17 
0.02 0.03 
0.22 0.24 
0.31 0.33 
0.30 0.32 
0.30 0.33 



Table 3.7. Monthly statistics for the Weber River (1905-1978). 

Correlation 
Percentage of Coefficient between 

mean annual Standard 
Month Mean flow in month deviation 

of varia- Skew Lag-one month monthly and 
tion coefficient autocorrelation annual flows 

y Cac-ft) s Cac-ft) CV g r(I) 
---~--.------- .~ .. -------------

0 4,817 3.02 1,385 0.29 0.69 0.68 0.38 
N 4,163 2.61 997 0.24 0.83 0.84 0.46 
D 3,743 2.35 808 0.22 0.45 0.84 0.49 
J 3,468 2.18 677 0.20 0.67 0.79 0.48 
F 3,174 1. 99 604 0.19 0.59 0.88 0.47 
M 4,060 2.55 1,243 0.31 3.11 0.64 0.37 
A 10,530 6.61 5,060 0.48 1.33 0.64 0.28 
M 42,379 26.59 13,867 0.33 0.36 0.39 0.50 
J 55,171 34.61 26,012 0.47 0.52 0.13 0.87 
J 16,354 10.26 12,967 0.79 3.71 0.66 0.75 
A 6,785 4.26 2,430 0.36 0.88 0.79 0.84 
s 4,757 2.98 1,458 0.31 0.98 0.86 0.70 

-------------------------- -----------------.---------------------------
1 Matrix of cross-correlations between flows in same water year ~yy' 

o 
o 1.00 
N 
D 
J 
F 
M 
A 
M 
J 
J 
A 
S 

N 
0.84 
1. 00 

D 
0.68 
0.84 
1.00 

J 
0.59 
O. 74 
0.79 
1. 00 

F 
0.58 
0.68 
0.73 
0.88 
1.00 

M A M J J A S 
0.49 - ---0-.25--- -o.-f3---O:-ig-- --o.13--o.-i"9---o.Ts-
0.68 0.37 0.43 0.24 0.12 0.22 0.31 
0.67 0.41 0.37 0.27 0.22 0.28 0.31 
0.69 0.42 0.41 0.28 0.15 0.25 0.27 
0.64 0.34 0.36 0.31 0.18 0.22 0.26 
1.00 0.64 0.39 0.12 0.08 0.04 0.06 

1.00 0.39 0.03 0.05 0.04 0.02 
1.00 0.13 0.07 0.26 0.25 

1.00 0.66 0.76 0.62 
1.00 0.79 0.59 

1.00 0.86 
________ . ___________ . _____ J.OO 

Matrix of cross-correlations between monthly flows in adjacent years, t-1 and t, ~ZY' 

o ---------o 0.33 
N 0.45 
D 0.49 
J 0.44 
F 0.46 
M 0.29 
A 0.14 
M 0.19 
J 0.43 
J 0.34 
A 0.54 
S 0.68 

~N~-~-D~---~J~-~~F~-~.M 
0.37 0.37 0.49 0.52 0.43 
0.45 0.45 0.50 0.54 0.37 
0.46 0.45 0.43 0.46 0.33 
0.46 0.49 0.50 0.57 0.39 
0.50 0.53 0.47 0.57 0.34 
0.25 0.30 0.31 0.45 0.12 
0.04 0.10 0.09 0.20 -0.04 
0.23 0.23 0.30 0.35 0.15 
0.52 0.55 0.49 0.43 0.44 
0.36 0.44 0.38 0.26 0.25 
0.56 0.56 0.54 0.38 0.43 
0.71 0.64 0.62 0.51 0.60 

1 
~yy is a symmetric matrix. 
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A 
0.09 
0.08 
0.02 
0.11 
0.04 

-0.11 
-0.13 
-0.16 

0.18 
0.11 
0.29 
0.44 

M J J A S 
- 0.08--0.:U- . 0.09 0.06 ---0.17 

0.15 0.21 0.09 0.09 0.20 
0.10 0.22 0.06 0.07 0.15 
0.12 0.18 0.00 0.08 0.17 
0.14 0.17 -0.07 0.02 0.14 

-0.01 0.18 0.07 0.01 0.05 
-0.18 0.10 0.08 0.00 -0.02 

0.02 0.15 0.14 0.14 0.12 
0.12 0.13 0.13 0.19 0.21 

-0.02 0.07 0.12 0.20 0.14 
0.19 0.04 0.16 0.24 0.20 
0.36 ___ O.-.JlL __ 0.1't. ___ ~_~ _____ 0_.J]_ 



CHAPTER 4 

MODELING THE ANNUAL STREAMFLOW TIME SERIES 

Introduction 

This chapter describes the structure, 
cali bration, and generation procedures for 
each of the five annual stochastic streamflow 
models used in this study. In the previous 
chapter the results of analyzing the stream­
flow time series were presented. According 
to the systematic modeling procedure given in 
Figure 1.1 the next step would be the choice 
of model type, but this step was omitted so 
that the performance of all five models could 
be evaluated and a model choice strategy 
recommended. The next steps in the system­
atic modeling procedure are step 3, model 
form identification, and step 4, parameter 
estimation. These steps can be described as 
the model calibration procedure. 

The annual streamflow models described 
in this chapter are: the second order 
autoregressive model (AR2) , the autoregres­
sive moving-average model of the first order 
for each term (ARMA(I,l) denoted ARM A in this 
report), the ARMA-Markov model (AMAK), the 
fast fractional Gaussian noise mod.el (FFGN) 
and the broken line model (BKL). The struc­
ture, calibration, and generation procedure 
for each model are presented starting with the 
simplest (AR2) and proceeding in order of 
increasing complexity. 

Second-order Autoregressive Model 

Model structure 

I f the streamflow time series exhibits 
an autocorrelation structure which decays 
approximately expontentially the time series 
can be modeled by an autoregressive model. 
If the autoregressive order, p, is one, then 
the autoregressive model of Thomas and 
Fiering (1962) is the simplest and most 
widely known model for simulating synthetic 
streamflows, the model which is defined by 
Equation 2.12. The autocorrelation term can 
be expanded to as many lags as needed. 

The second order autoregressive (AR2) 
Markov model was used in this study because 
all the study streamflows were found to be at 
least first order autoregressive and one time 
series, Blacksmith Fork, appeared to be 
second order autoregressive. By modeling all 
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the streams with the same order autoregres­
sive model, an equivalent comparison among 
streams could be made for the autoregressive 
model. The AR2 model is defined as follows: 

(4.1 ) 

in which 

Xt = streamflow volume during time 
period t 

jl mean streamflow volume 

mode 1 par ameter 

model parameter 

error term in time period t, dis­
tributed normally and independently 
with zero mean and variance, Of:,z 

Kendall and Stuart (1968) and Jenkins 
and Watts (1968) have described the parameter 
estimation procedure for the AR2 model as 
follows: 

Al p(l) (1 - A
2

) • 

p(2) - p(l)2 A = -"--'.::.L_~~ 
2 I-p(l/ 

2 
u£ = {I - Al p(l) - A2 p(2)} 

in which 

(4.2) 

(4.3) 

(4.4 ) 

p(l) lag-one autocorrelation of 
streamflow X 

p(l) "" lag-two autocorrelation of 
streamflow X 

Table 4.1 contains the AR2 model param­
eters and a comparison of the historical and 
ge'nerated statistics for the four study 
streams. The generated statistics are 
ensemble averages based on 50 synthetic 
streamflow sequences. Each sequence was 



Table 4.1. AR2 model parameters and comparison of historical and generated statistics for 
study streams. 

Sequence Length of Number Model Type record of traces Parameters Statistics 
Stream (yrs) 

NR NS Al A2 
-~---.----

Beaver Historical 64 I 0.35 0.24 0.76 
Generated 64 50 0.27 -0.11 0.35 0.19 0.09 0.66 0.06 

Blacksmith Fork Historical 65 1 0.34 0.49 0.77 
Generated 65 50 -0.03 0.51 0.34 0.43 0.11 0.74 0.07 

-----
Logan Historical 66 1 0.26 0.32 0.72 

Generated 66 50 -0.05 0.34 0.26 0.26 0.11 0.68 0.07 

Weber Historical 74 1 0.29 0.27 0.76 
Generated 74 50 0.03 0.26 0.29 0.22 0.10 0.69 0.07 

~Coefficient of variation 
3Average lag-one autocorrelation coefficient 
4Standard deviation of lag-one autocorrelation coefficient 
5Average Hurst coefficient 
Standard deviation of Hurst coefficient 

equal in length with the historic record used 
in this study. These results will be dis­
cussed in Chapter 7. 

Generation procedure 

The standardized form of the generation 
equation for the AR2 model is: 

Zt = A1Zt _ 1 + A2Zt _2 + Tta€ 

in which 

(Xt - ll)/cr 

(4.5) 

cr standard deviation of streamflows 

Tt normally distributed random variate 
with zero mean and unit variance 

The steps used to generate a synthetic 
streamflow sequence using the AR2 model are 
described below. 

1) Input the historic statistics (ll, cr, 
p(l), p(2» and the length of the sequence to 
be generated, N. 

2) Generate NT = (N + 10) standard 
normal random variates, Tt (t=l, NT). 

3) Compute A2, Al and cr; using 
Equations 4.2, 4.3, and 4.4. 

4) Initialize the first two generated 
values, ZI and Z2, to Tl and T2. 

5) Generate standardized streamflows, 
Zt, t = 3, NT, using Equation 4.5 and dis­
card the first 10 generated values in order 
to eliminate influence of ZI and Z2 being 
assigned independently when they should be 
related through Equation 4.5. 

34 

6) Estimate mean, Z, and standard 
deviation, Z, of the synthetic sequence. 
~ote these will be approximately 0 and 1 
respect i vely. 

7) Standardize the synthetic sequence 
to force it to be exactly zero mean and unit 
standard deviation as follows: 

Z' 
t 

Z - z 
z (4.6) 

8) Rescale the standardized synthetic 
time series to the mean and standard devia­
tion of the historic time series as follows: 

(4.7) 

The purpose of steps 6 and 7 is to ensure 
that the synthetic sequence preserves exactly 
the historic mean and variance. At this 
stage in the generation procedure the syn­
thethic sequence is in standardized form and 
therefore, it should have zero mean and unit 
standard deviation. The actual mean and 
standard deviation, i and Z deviate from 0 
and 1, respectively, due to sample error. 
Application of Equation 4.6 will ensure that 
Z and Z are exactly 0 and 1 and Equation 4.7 
converts the standardized sequence to a 
sequence of synthetic streamflows wi 2h 
the historic mean and variance, II and cr , 
respectively. 

ARMA (1,1) Model 

Model structure 

O'Connell (1974) evaluated the auto­
regressive moving average (ARMA) family of 
models proposed by Box and Jenkins (1970) for 
their suitability for approximating fraction­
al Gaussian noise (FGN); and recommended the 



use of the ARMA (1,1) model, which has first 
order autoregressive and moving average 
terms, to preserve long-term persistence as 
represented by the Hurst effect. To accomp­
lish this, the AR parameter (Ij» must have a 
value close to unity, so that the autocorre­
lation function (ACF) of the process will 
attenuate slowly and hence approximate the 
theoretical ACF (TACF) of FGN. 

The autocorrelation function of the ARMA 
(1,1) process at lag-one is defined by the 
autoregressive and moving average parameters, 
Ij) and 0, respectively as follows: 

_ ($ - 0) (l - p 0) 
PAM - 2 

(4.8) 

in which 

1+0 -20$ 

lag-one autocorrelation coefficient 
of ARMA (1,1) process which is used 
to preserve the value of p(l) esti­
mated from the historic record 

$ the first-order autoregressive 
parameter 

e the first-order moving average 
parameter 

At higher lags, ~, the autocorrelation 
function depends only on autoregressive 
parameter $ as follows: 

p(t)=$p(t-l) t > 2 (4.9) 

The ARM A (1,1) model is defined as follows: 

O'Connell (1974) found that the values 
of $ and e that are used for modeling stream­
flow time series are in the range where both 
parameters are positive and $ is greater than 
e. The relationship ($ - e) determines the 
sign of the lag-one autocorrelation, PAM, and 
for this range of values PAM is always 
positive, a limiting hydrologic character­
istic. When $=e the process degenerates into 
a white noise or completely random process. 

O'Connell (1974) also found the follow­
ing interesting parameter characteristics: 

1) If Ij) is held constant, as e de­
creases PAM increases. 

2) If e is constant, as $ increases the 
Hurst coefficient increases. 

3) A high $ and e gives a low PAM' 

4) As e approaches zero, PAM ap­
proaches $ and the ARMA (1,1) process ap­
proaches an ARMA (1,0 or AR(l) process. 

5) As ¢ decreases, emphasis on low 
frequencies switches to high frequencies 
i.e., the Hurst coefficient and PAM in­
creases. 
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6) Ij) must be greater than ~M' 

7) The range of PAM that can be modeled 
decreases as $aecreases. 

8) The quality of the approximation 
decreases as $ exceeds 0.95 particularly for 
large values of PAM' 

9) For ¢ = 0.92 and e = 0.82 the Hurst 
estimator K was unbiased at 0.7. 

10) There is an envelope of feasible 
Hurst estimates, H or K, and p(1) combina­
t ions that can be modeled by all fractional 
Gaussian noise models and their approxima­
tions, (shown in Figure 4.1) which was 
derived experimentally by 0 'Connell (1974). 
The p(l)-K values for the four study streams 
are plotted on Figure 4.1 and it will be 
observed that all these points fall within 
the feasible region for the ARM A (1,1) 
model. 

The parameters of the ARMA model rP and 
o which preserve both P(l) and the Hurst 
coefficient were derived by O'Connell on the 
basis of a large number of Monte Carlo 
experiments. Thus, the appropriate values 
for ~ and e can be obtained from tables given 
by 0 Connell (1974) based on the estimated 
values of p(l) and the Hurst coefficient. 

Calibration procedure 

The calibration procedure involves 
interpolating values of $ and 0 from Tables 
3.2 through 3.7 of O'Connell (1974). These 
tables do not apply to the same length of 
synthetic sequences as was used in this 
study. Therefore, it was necessary to refine 
the interpolated values of $ and e by Monte 
Carlo generation based on a sequence length 
equal to the historic record and on the 
criterion of preserving p(l) and the K 
estimate of the Hurst coefficient. Both 
pel) and K were calculated as ensemble 
averages. Table 4.2 contains a comparison 
of historical and generated statistics for 
several alternative sets of ARMA model 
parameters. The model parameter values 
selected for use in this study are labeled 
"generated 1". The p(l)-K values preserved 
by this model and the historical values are 
plotted on Figure 4.1 for each stream. 

Generation procedure 

The standardized form of the generating 
equation for the ARMA (1,1) model is: 

(4.11) 

in which 

( ~ - $~ ) (J 

o - 20$ 

(4.12) 



Table 4.2. ARMA(l,l) model parameters and comparison of historical and generated statistics 
for study streams. 

Type and Length of Number Model 
Run No.6 record of traces Parameters Stream (yrs) 

NR NS <jl 0 

Beaver Historical 64 1 
Generated 1 64 50 0.96 0.76 

2 64 10 0.75 0.50 

Blacksmith Fork Historical 65 1 
Generated 1 65 50 0.92 0.52 

2 65 50 0.88 0.52 
3 65 10 0.88 0.52 
4 65 10 0.92 0.52 

Logan Historical 66 1 
Generated 1 66 50 0.75 0.45 

2 66 50 0.92 0.64 
3 66 50 0.92 0.64 
4 66 10 0.88 0.60 

Weber Historical 1 
Generated 1 74 50 0.96 0.72 

2 74 10 0.96 0.72 

~Coefficient of variation 
3Average lag-one correlation coefficient 

coefficient 4Standard deviation of lag-one correlation 
5Average Hurst coefficient 
6Standard deviation of Hurst coefficient 

Run 1 is the final calibrated model used for generation 

1.0 

0.8 

0.6 

----Q.... 

0.4 

0.2 

Statistics 

-;;1 p(l)2 p(1)3 

0.35 0.24 
0.35 0.20 0.15 
0.35 0.22 0.12 

0.34 0.49 
0.34 0.49 0.16 
0.34 0.41 0.16 
0.34 0.38 0.13 
0.34 0.46 0.14 

0.26 0.32 
0.26 0.28 0.13 
0.26 0.33 0.16 
0.26 0.29 0.14 
0.26 0.28 0.13 

0.29 O. 
0.29 0.30 0.16 
0.29 0.25 0.15 

.70 

KEY 

• Historic pOl - K 

• Generated p (I)- K 
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Figure 4.1. Feasible range of 
1975). 

p(l)-K for ARMA(1,l) models (after Burges and Lettenmaier 
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The procedure for generating the ARM A 
(1,1) process once the parameters 1I, a, cP, 
o are estimated are summarized below: 

1) Input the historic statistics and 
model parameters (11, a, cP, 0,) and the length 
of sequence to be generated, N. 

2) Generate NT (= N + 10) standard 
normal random numbers, T. 

2 3) Compute a e using Equation 4.12. 

4) Initialize the first generated 
value, ZI, to Tl 

5) Generate standardized streamflows, 
Zt, t 2, NT, using Equation 4.11 and 
discard the first 10 generated values. 

6) Estimate mean, Z, and standard 
deviation, Z, of the synthetic sequence. 
Note these will be approximately 0 and 1 
respectively. 

7) Standardize the synthetic sequence 
to force it to be exactly zero mean and unit 
standard deviation using Equation 4.6. 

8) Rescale the standard ized synthet ic 
time series to the mean and standard devia­
tion of the historic time series using 
Equation 4.7. 

ARMA-M.arkov Model 

Model structure 

The ARMA-Markov Model (AMAK) was devel­
oped by Lettenmaier and Burges (1977) as an 
a Iternat ive approximat ion for fract ional 
Gaussian noise. It is a combination of the 
ARMA (1,1) model used by O'Connell (1974) and 
the Markov or first order autoregressive 
model. The AMAK model attempts to satisfy 
the requirements for modeling both high and 
low frequency persistence as well as being 
economical to use in terms of computer time. 
An advantage of the AMAK model is that the 
Hurst coefficient, h, is an explicit param­
eter as it is for FGN models. 

The ARMA (1,1) process has the advantage 
that the decay rate of the autocorrelation 
function is not dependent on the lag one 
autocorrelation coefficient. Lettenmaier 
and Burges (1977) used this feature in the 
AMAK model to maintain long ter.m persistence 
at high lags by adjusting the parameters in 
their model to fit the theoretical autocorre­
lation function (ACF) of FGN at three arbi­
t rar ily selected lags. The theoret ical ACF 
for FGN is: 

Pf(R"h) = O.5C(H1)2h - 2R.2h + (R._l)2h] • (4.13) 

in which 
t 

h 

Pf 

lag 

Hurst coefficient 

theoretical autocorrelation func­
tion for FGN 
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At large lags the theoretical ACF for FGN can 
be approximated by: 

Pf(R.,h) = h(2h_l)R.2h- 2 (4.14) 

The AMAK model is defined as follows: 

(AM) _ ElE: (AM) 
€:t t-l 

(4.15) 

in which 

label for Markov terms 

label for ARMA(I,l) terms 

and e~AM) are independent processes 
having the following variances: 

i(M) = C (1 _ p2) (4.16) 
€: 1 M 

i(AM) €: 
C (1 - !2) 

2(1 + r} - 2<P0) 
(4.17) 

in which 

Cl fraction of variance exp lained by 
Markov component 

C2 fraction of variance explained by 
ARMA (1,1) component 

Calibration to study streams 

Three alternative methods of parameter 
estimation for the AMAK model were used in 
the study. Each method is described below 
and is denoted by the name of its originator. 
The first two methods are designed to fit the 
autocorrelation function of the AMAK model to 
the theoretical autocorrelation function of 
FGN (see Equations 4.13 and 4.14). The third 
method, which is proposed herein, attempts to 
preserve only 0(1) and the Hurst coefficient. 
The parameters to be estimated are Cl, 
C2, PM, PAM and cP and each is correlated 
to lie between 0 and 1. 

Lettenmaier and Burges' method. The LB 
method was proposed by the originators of the 
AMAK model (Lettenmaier and Burges 1977) and 
is based on fitting the TACF of FGN at 3 
arbitrary lags R.t' R.2 and R. 3• Lettenmaier 
and Burges found It convenient to use lags of 
N/8, N/2,and N where N is the length of the 
sequence being generated. Parameter estima­
tion by the LB method requires the solution 
of the five simultaneous equations 

(4.18) 

(4.19) 

(4.20) 



(4.21) 

(4.22) 

e, the moving average parameter in the ARMA 
(1,1) process, is obtained from Equation 4.8 
using the estimated values of <p and PA.J,f' 
Equations 4.18 through 4.22 are solved 
simultaneously using Newton's method to give 
parameter estimates based on the values of 
p(l) and h estimated from the historic 
record. 

Kottegoda's method. The second par am­
eter estimation procedure for the AMAK model 
was recommended by Kottegoda (1980). The 
method is based on a least squares fitting of 
the first nine lags of the TACF of FGN to the 
ACF of the AMAK model. The Kottegoda (K) 
method was implemented as follows: 

1) Select <p and cl values. 

2) Vary PM and PAM values over range of 
feasible values. 

3) Calculate theoretical autocorrela­
tion function of AMAK model at first nine 
lags, as follows: 

(.0 1£.1 1£.1-1 _ (\ 
PAMAK C1PM + CZPAM rp , £. - 1.~ (4.23) 

4) By least squares comparison of TACF 
of AMAK with TACF of FGN and select best 
values of PM and PAM for given <p and C1 
values. 

5) Repeat steps 1 through 4 for other 
combinations of cfi and C1 values and select 
best parameter set for fitting TACF of FGN. 
Calculate C2 using Equation 4.1B. This 
trial and error method is not as costly as 
the first method in terms of computer time 
but requires more user time. The fitting of 
the AMAK TACF to the FGN TACF could be 
automated using a curve fitting procedure. 

James' method. The third method of 
parameter estimation procedure is proposed 
herein. It involves the following steps: 

1) Set PM equal to p(1). 

2) Select ¢ and 0 using O'Connell's 
(1974) parameter estimation procedure for the 
ARMA (1,1) model which is based on preserving 
p(l) and K estimated from the historic 
record. 

3) Set Cl by trial and error fitting 
of p(l) and K based on analysis of the values 
of p(1) and K preserved in generated se­
quences. Note that C2 is given by Equation 
4.1B. 

A comparison of the results of the three 
parameter estimation procedures is given in 
Table 4.3. For each generated case the 
method of parameter estimation is indicated 
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in the last column. In several cases the 
James method was initialized using parameter 
estimates from one of the other methods 
(denoted by LB+J or K+J). 

Comparison of the three parameter 
estimation methods indicates that the James' 
method generally provides parameter estimates 
which lead to a better preservation of p(1) 
and K values. Experience demonstrated that 
the James' method was the easiest to apply. 
The LB method appeared to preserve lower 
values of p(1) and in several cases it gave 
very little weight to the Markov component 
because of the small values of C1. The 
values of p(1) and K preserved in the 
generated sequences are not very sensitive to 
the values assigned to C land C2: for 
example compare runs 4 and 5 for Blacksmith 
Fork. Figure 4.2 gives the feasible region 
for the AMAK model in terms of p(l) and K and 
also shows the historic p(1)-K values for 
the study streams. From this figure it will 
be seen that the generated persistence 
statistics are generally ~ery close to their 
historic values. 

Generation procedure 

The Markov and ARMA (1,1) components of 
the AMAK inodel must be generated separately 
because the lag~ed error terms for the ARMA 
(1,1) model, t.:eA1!) , must be kept separate 
from the Markov error term. Thus, the 
generation equations for the AMAK model, 
written in their standard form, are given as 
follows: 

z~M) '" PM z~~i + T~M)O'~M) (4.24) 

Z(AM) = rp z(AM) + T(AM) (AM) _ ElT(AM)O'(AM): (4.25) 
t t-l t 0' e: t £ 

and the standardized generated streamflows 
are obtained by summing these two components, 
as follows: 

z(AMAK) = Z(M) + z(AM) 
t t t 

(4.26) 

The generating process for the AMAK model is 
described in the follOWing steps: 

1) Input the parameters ).I, 0, Cl, C2, 
PM' ¢ and 8 and the length of sequence to be 
generated, N. 

2) G~nerate standard normal random 
variates, T~M) , T ~AM) (t=l, NT) (NT = N+10). 

?( .. 3) Compute the error variances, ot(l1) and 
o£ AM) using Equations 4.16 and 4.17. 

4) Initialize the first generated 
values Zl(M) and Zl (AM) to T 1 (M) and Tt'AM) 
respectively. 

5) Generate NT standardized Markov 
variables using Equation 4.24 and discard the 
first 10 generated values in order to elimi-
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Table 4.3. AMAK model parameters and comparison of historical and generated statistics for study streams. 

Length of Number Model Parameters Statistics 
Type and record of traces Parameter Stream Run No.7 (yrs) 

NR NS Cl C2 <P 89 Cv1 p(1)2 15(1) 3 i(5 

Beaver Historical 64 1 0.35 0.24 0.76 
Generated 1 64 50 0.40 0.60 0.24 0.43 0.96 0.76 0.35 0.23 0.15 0.73 0.08 J 

2 64 10 0.38 0.62 0.24 0.17 0.67 0.47 0.35 0.23 0.11 0.69 0.08 LB + J 
3 65 10 0.02 0.98 0.98 0.23 0.67 0.47 0.35 0.19 0.11 0.71 0.09 LB 

Blacksmith Fork Historical 65 1 0.34 0.49 0.77 
Generated 1 65 50 0.40 0.60 0.49 0.43 0.92 0.52 0.34 0.46 0.12 0.80 0.07 J 

2 65 10 0.38 0.62 0.49 0.40 0.96 0.56 0.34 0.52 0.12 0.80 0.08 K 
3 65 10 0.38 0.62 0.49 0.40 0.92 0.52 0.34 0.50 0.12 0.80 0.08 K + J 
4 65 10 0.38 0.62 0.49 0.40 0.88 0.52 0.34 0.46 0.13 0.77 0.08 K + J 
5 65 10 0.62 0.38 0.49 0.40 0.88 0.52 0.34 0.47 0.11 0.76 0.08 K + J 
6 65 10 0.80 0.20 0.49 0.40 0.88 0.52 0.34 0.47 0.09 0.74 0.09 K + J 
7 65 10 0.38 0.32 0.49 0.37 0.96 0.56 0.34 0.51 0.12 0.78 0.09 K + J 
8 65 10 0.08 0.92 0.99 0.44 0.73 0.36 0.34 0.38 0.14 0.75 0.09 
9 65 10 0.42 0.58 0.73 0.16 0.98 0.59 0.34 0.65 0.11 0.81 0.09 

Logan Historical 66 1 0.26 0.32 0.72 0 
Generated 1 66 50 0.40 0.60 0.32 0.36 0.75 0.45 0.26 0.30 0.12 0.72 0.06 J 

2 65 10 0.38 0.62 0.31 0.32 0.91 0.72 0.26 0.27 0.13 0.73 0.09 K 
w 3 65 10 0.07 0.92 0.99 0.24 0.78 0.59 0.26 0.19 0.13 0.72 0.09 LB 
-0 

Weber Historical 74 1 0.29 0.27 0.79 
Generated 1 74 50 0.40 0.60 0.26 0.47 0.96 0.72 0.29 0.27 0.12 0.77 0.06 J 

2 65 10 0.23 0.77 0.99 0.29 0.86 0.66 0.29 0.22 0.16 0.74 0.09 LB 
3 65 10 0.38 0.62 0.26 0.60 0.86 0.66 0.29 0.25 0.12 0.71 0.08 LB + J 

~Coefficient of variation 
3Average lag one autocorrelation coefficient 
4Standard deviation of lag one autocorrelation coefficient 
sAverage Hurst coefficient 
6Standard deviation of Hurst coefficient 

James' method 7Parameter estimation: LB = Lettenmaier and Burges' method, K = Kottegoda's method, J 
8Run 1 is the final calibrated model used for generation 
9Parameters from Table lc in Lettenmaier and Burges (1977) 
Obtained from PAM and <p using Equation 4.8 
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Figure 4.2. Feas ible range of p (1) -K values for an ARMA-Markov (AMAK) model wi th tl 5, 
t2 = 20, t3 = 40 (after Lettenmaier and Burges 1977). 

nate influence of Zl and Z2 being assigned 
independently when they should De related 
through Equation 4.24. 

6) Generate NT standardized ARMA (1,1) 
v.riates using Equation 4.25 and discard the 
first 10 generated values in order to elimi­
nate influence of Zl and Z2 being assigned 
independently when they should be related 
through Equation 4.25 

7) Combine the Markov and ARMA se­
quences using Equation 4.26. 

8) Es~imate mean, Z, and standard 
deviation, Z, of the synthetic sequence. 
Note these will be approximately 0 and 1 
respectively. 

9) Standardize the synthetic sequence 
to force it to be exactly zero mean and unit 
standard deviation using Equation 4.6. 

10) Rescale the standardized synthetic 
time series to the mean and standard devia­
tion of the historic time series using 
Equation 4.7. 

lIQ 

Fast Fractional Gaussian Noise Model 

Model structure 

A concise history of the development of 
fractional Gaussian noise models can be found 
in O'Connell (1974). Fractional Gaussian 
noise is defined as the smoothed derivative 
of fraction Brownian motion. A Brownian 
motion process is a stochastic pro~ess, B(t), 
defined in continuous time, such that its 
increments B(t+u) - B(t) are Gaussian with 
zero mean and variance u and are independent 
for nonoverlapping time intervals. A frac­
tional Brownian motion can be defined as the 
moving average of the incremental continuous 
time process dB(t) = B(t+dt) - B(t) in which 
past increments of B(t), dB(s), are weighted 
by (t-s)h-0.5; where h is the Hurst coeffi­
cient, (Lawrance and Kottegoda, 1977). 
Mandelbrot and VanNess (1968) define frac­
tional Brownian motion (fBm), Bh(t), as a 
function of B(t) as follows: 

-Ih + 0.5 



(4.27) 

in which dB(u) is an infinitesimal increment 
of ordinary Brownian motion. Each increment 
of fractional Brownian motion is a weighted 
average of all past increments of a Brownian 
motion process. The weighting function 
(t-u)h-O.5 is a function of the time in­
crement and the Hurst coefficient which 
results in the present increment exerting a 
nonnegligible influence on all future 
increments, a property which is called 
infinite memory. Another important property 
of the fractional Brownian motion process is 
that the increments are self-similar, that 
is, the process over two intervals are 
generated by the same probabilistic mecha­
nism. The self-similarity of the increment 
requi res that the expected values of the 
Hurst coefficient be constant over all inter­
vals. The increments are also Gaussian and 
independent (Le. white noise) with zero 
mean and variance equal to the increment 
length. The discrete time fractional 
Gaussian noise (dfGN) models were developed 
by Mandelbrot and Wallis (1968) but were 
quite cumbersome and expensive to operate. 
Mandelbrot (1971) developed an approximation 
to the dFGN model by using the 'approximation 
to the autocorrelation function of the dFGN 
(Equations 4.13 and 4.14), and called it fast 
fractional Gaussian noise, FFGN. The model 
is essentially a sum of high and low fre­
quency terms, the high frequency represented 
by a lag-one Markov process and the low 
frequency represented by a weigh.ted sum of 
several lag-one Markov processes specified by 
a choice of two parameters called the base B 
and the number of low frequency terms L. 

The FFGN model is defined by the follow­
ing equations: 

X(HF) = ~ + p(l) (HF) (X(HF) 
t t 

~) + 

T~HF) (1 _ p (1) (HF) 2) J.:; (4.28) 

L 
~ + l: Wi (c (x(LF) ~) + Ti(L,F

t
) (1 - C;) J.:; ) 

i=l i i,t-l • 

(4.29) 

x
t 

II + a(HF) (X~HF) - ll) + (X~LF) - ll) • (4.30) 

in which 

HF label for high frequency terms 

LF label for low frequency terms 

L number of low frequency terms 

Wi weight for ith low frequency 
term or contribution of vari-

B 

ance of ith low frequency 
term to unit variance of 
FFGN process, X 

(
h(2h-l) (B 1- h _ Bh- 1)B2(h-l)i ) J.:; 

r(3 - 2h) 
(4.31) 

(HF) 

base 

gamma function 

lag-one autocorrelation coeffi­
cient of high frequency term 

L 
l: W2 

i=l i 

(4.32) 

lag-one autocorrelation coeffi­
cient of ith low f~equency term 

(4.33) 

residual variance of hi~h fre­
quency component 

B(h-l)h(2h -h) 
1 - r (3 - 2h) 

(4.34) 

The quality factor of the FFGN model, Q, 
is a function of L, B, and N as follows: 

L ,. IIIOro~Q;N) II (4.35) 

in which 

II xII denotes the smallest integer above 
X 

N length of generated sequence 

Q quality factor 

Calibration to study streams 

Parameter estimation procedures for the 
FFGN model are fairly simple and begin with 
estimation of J.l, a, P(l), and the Hurst 
coefficient from the historical record. The 
parameters to be estimated are Band L. Q 
is not estimated since it is uniquely deter­
mined by L using Equation 4.35 when Nand B 
are specified. Mandelbrot (1971) recommends 
us a value of B in the range 2, 3, or 4, 
whi Chi, Neal, and Young (1973) suggest 
setting B in the range 2 to 3 and L equal to 
20. In both cases the authors generated a 
sequence of length N equal to 10,000 to 
achieve a Type A resemblance. In our study 
the object is Type B (not to be confused with 
the base parameter, B) resemblance to p re­
serve ensemble average persistence statistics 
and the errors in approximation addressed by 
Mandelbrot and Chi, ~eal, and Young are not 
applicable here. Also Lettenmaier and Burges 



(1977) showed that the maximum error in the 
ACF for FFGN varied over various L, Band h 
values and that increasing L from 10 to 20 
was only advantageous for h greater than 
0.85. The value of B used in this study 
was read from Figure 2 of Chi, Neal, and 
Young (1973) which indicates that, for L = 
20, B 2 to be best for H = 0.7 and B = 3 
for H = 0.8. Chi, Neal, and Young (1973) did 
not obtain much improvement in accuracy in 
resemblance with L greater than 20. Letten­
maier and Burges (1977) found that for high 
values of H, a decrease in L from 20 to 10 
can increase accuracy and reduce computer 
costs. For the study streams the parameters 
and a comparison of histor ic and generated 
statistics are given in Table 4.4. To be 
consistent with the other annual models the 
K, rather than the H, estimator was used for 
the application of the FFGN model. A value 
of L = 10 was used for the Weber streamflows 
with the following results: 

1) As indicated by Lettenmaier and 
Burges (1977) the approximation for the 
lag-one autocorrelation was improved by 
decreasing L from 20 to 10 for the higher 
Hurst coefficients, noting Table 4.4, run 5 
compared with runs 3 or 7, the Hurst coeffi­
cient generated was closer to the historic 
estimate, K = 0.79, for L = 10 than L = 20. 

2) The lag-one autocorrelation and 
Hurst coefficient were found to be fairly 
insensitive to the value of B, compare runs 5 
to 6 and 3 to 9. 

The high frequency lag-one autocorre­
lation coefficient, p(l){HF), is usually 
computed using Equation 4.32. If the calcu­
lated value of p(l)(HF) is outsid~ the feasi­
ble region, 0 < p(1)(HF) < 1.0, then the 
value of B should be adjusted to bring 
p(l)(HF) into the feasible region (Chi, 
Neal, and Young 1973). In this study it was 
found that by setting p (1) (HF) equal to the 
historic estimate of p(l) the resemblance of 
p (1) and K was generally improved. Only in 
the last numbered run for each stream (see 
Table 4.4) was p(l)(HF) assigned using 
Equation 4.32; in all other runs, including 
the final calibration run in the historic 
estimate of pel) was used. 

The calibration results for the study 
streams show that the following parameter 
assignments were made: B = 2.0, L = 10, 
and p(1)(HF) equal to the historic estimate 
of p(l). The feasible region for the FFGN 
model defined in terms of p(l) and K for 
given values of Land B is shown in Figure 
4.3. The higher the value of K the higher 
the minimum feasible value of p(l). Figure 
4.3 shows that two of the study streams, 
Beaver and Weber, fall outside the feasible 
region. The generated P(1)-K points tend to 
be grouped close to the theoretical auto­
correlation function. 

Generation procedure 

The standardized form of the generation 
equations for the FFGN model are given as 
follows: 

42 

(4.36) 

Z{LF) 
L 
l: Wi (C

1 
Z ~LF) 1 + T

1
(LF) (1 - Ci)!a) 

i=1 1,t- ,t 

(4.37) 

(4.38) 

The generation process for the FFGN model 
comprises the following steps: 

1) Input the parameters ]1, [J, L, p(l), 
K and the length of sequence to be ?enerated, 
N. 

2) Generate NT( 
normal random variates, 

~ +)10) standard 
\HF , t = 1, NT. 

3) Initiatize the first generated value 
Z(HF) to T(HF) 

t t' 

4) Generate NT standardized high 
frequency FFGN var iates us fng Equat ion 4.36 
and discard the first 10 generated values in 
order to eliminate influence of Zi HF ) and 
Z(HF) being assigned independently when 
tfiey should be related through Equation 
4.36. 

5) Generate L x NT standard normal 
variates, T(LF), t = 1, NT, i=l, L. 

~.t 

6) Compute Wi and Ci using Equations 
4.31 and 4.33, respectively. 

7) Generate NT low frequency standard­
ized FFGN variates using Equation 4.37 and 
discard the first 10 generated values in 
order to eliminate influence of ZfLF) and 
Z!LF) being assigned independently when 
ttey should be related through Equation 
4.37. 

8) Compute residual variance of high 
frequency component us ing Equat ion 4.34. 

9) Combine the low and high frequency 
components into the standardized FFGN process 
using Equation 4.38. 

10) Estimate mean, i, and standard 
deviation, Z, of the synthetic sequence. 
Note these will be approximately 0 and 1 
resp ect i vely. 

11) Standardize the synthetic sequence 
to force it to be exactly zero mean and unit 
standard deviation using Equation 4.6. 

12) Rescale the standard ized synthetic 
time series to the mean and standard devia­
tion of the historic time series using 
Equation 4.7. 
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Table 4.4. FFGN model p~rameters and comparison of historical and generated statistics for 

s streams. 

Type and Length of Number 

Stream 
Run No.1 record of traces Model Parameters (yrs) Statistics 

NR NS B L p(l) h 
~-- ----- ---- --,- --- -- ---- -- ----.- ---- ------.-.---- - -------- -- ------- ----- ------ - - --- - --- -- - - - -- -,-- ----- ----_. 
Beaver Historical 64 1 0.35 0.24 0.76 

Generated 1 64 50 2.0 10 0.24 0.76 0.35 0.33 0.13 0.75 0.07 
2 64 50 2.0 20 0.24 0.76 0.35 0.34 0.11 0.74 0.06 
3 64 lO 2.0 10 0.24 0.76 0.35 0.30 0.08 0.74 0.05 
4 65 10 2.0 20 0.24 0.72 0.35 0.32 _7 0.70 _7 

5 65 10 2.0 20 0.24 0.76 0.35 0.33 0.12 0.70 0.08 
6 64 50 2.0 10 0.22 0.76 0.35 0.32 0.13 0.74 0.07 

--.----- -.----------.-----
Blacksmith Fork Historical 65 1 0.34 0.49 0.77 

Generated 1 65 50 2.0 10 0.49 0.76 0.34 0.44 0.10 0.78 0.06 
2 65 50 2.0 10 0.49 0.74 0.34 0.44 0.10 0.77 0.06 
3 65 50 2.0 10 0.49 0.72 0.34 0.43 0.10 0.76 0.06 
4 65 10 2.0 20 0.49 0.74 0.34 0.46 J 0.74 _7 

5 65 10 2.0 20 0.49 0.76 0.34 0.46 0.11 0.73 0.08 
6 65 50 2.0 10 0.23 0.77 0.34 0.30 0.12 0.75 0.06 

------- --~---------------------- - .... ----- ------..,...~----~---~--... ----------- --.--
Logan Historical 66 1 0.26 0.32 0.72 

Generated 1 66 50 2.0 10 0.32 0.72 0.26 0.34 0.15 0.74 0.07 
2 65 lO 2.0 20 0.31 0.73 0.26 0.36 _7 0.71 _7 

3 65 10 2.0 20 0.31 0.72 0.26 0.36 0.11 0.71 0.07 
4 66 50 2.0 lO 0.18 0.72 0.26 0.26 0.15 0.73 0.08 

---------~------.----------------------------
Weber Historical 74 1 0.29 0.27 0.79 

Generated 1 74 50 2.0 10 0.27 0.78 0.29 0.33. 0.12 0.74 0.09 
2 74 50 2.0 lO 0.26 0.78 0.29 0.33 0.12 0.74 0.07 
3 65 lO 3 .. 3 20 0.26 0.84 0.29 0.35 7 0.71 _7 

4 65 10 2.0 5 0.26 0.84 0.29 0.30 0.14 0.74 0.07 
5 65 10 2.0 lO 0.26 0.84 0.29 0.36 0.14 0.77 0.06 
6 65 10 3.0 10 0.26 0.84 0.29 0.37 0.17 0.78 0.09 
7 65 10 3.0 20 0.30 0.84 0.29 0.37 0.13 0.71 0.08 
8 65 lO 3.0 20 0.15 0.84 0.29 0.31 0.13 0.70 0.08 
9 65 10 4.0 20 0.26 0.84 0.29 0.35 0.13 0.71 0.07 

10 65 10 2.0 20 0.10 0.84 0.29 0.32 0.13 0.72 0.08 
11 74 50 2.0 10 0.25 0.79 0.29 0.33 0.12 0.74 0.07 

----_._------------ -----.-
~Run 1 is the final calibrated model used ·for generation 
3Coefficient of variation 
4Average lag-one autocorrelation coefficient 
5Standard deviation of lag-one autocorrelation coefficient 
6Average Hurst coefficient 
7Standard deviation of Hurst coefficient 
These statistics are not available 

Broken Line Model in which 

Model structure 

The general broken line (BKL) flow 
generating process developed by Mejia, 
Rodriquez-Iturbe, and Dawdy (1972) is the sum 
of NL+l simple broken line processes. The 
simple broken line process, which is illus­
trated in Figure 4.4, is derived from linear 
interpolation between uniformly spaced 
independent Gaussian variates and is defined 
as follows (Curry and Bras 1978): 

Nf 

YA(t-R-a) ~ J.=l:
o 

(e j + (e j +1-e j ) (t-J"a) I (t) ) (ja, (j+l)a) 

a 

(4.39) 
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YA ~ simple standardized broken line time 
series 

j 

identically independent distributed 
random variables with zero mean and 
variance, s2 

random variable uniformly distributed 
over the interval (0,1) at the or in 
of time for first spacing interval 
to provide stationarity 

number of intervals in the time 
series 

a = time interval between the random 
variables ej 



Figure 4.3. 
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Figure 4.4. A schematic representation of a simple Broken Line process (adapted from O'Con­
nell 1974). 
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N' number of time intervals needed to 
cover required length of synthetic 
sequence 

N+~. rounded up to the nearest integer 
a 

I (ja, (j+l)a) (t) indicator function 
which keeps the linear 
interpolation within 
the correct interval 

{: for ja < t ~ (j+l)a 

otherwise 

The sum of the simple broken line 
processes is performed vertically and alge­
braically to produce the general broken line 
process, 

NL 
X =Jl+1:: YA.(t)W

i t i=1 ~ 
(4.40) 

in which 

i index for simple broken line process 

NL number of simple broken lines to be 
summed 

Wi ~ process weighting function 

2(h-I)BB(B(h-l) _ B(l-h» B2(h-l) (i-I) ) ~ 

W = 
_0 

a 

B 

the time 
variables 

base 

(4.41) 

(4.42) 

interval between random 
ej for the first line 

aa = h(2h-l) (2h-2) (2h-3) (2h-4) (2h-5) 
6(23-2h _ 1) 

(4.43) 

There are two restrictions imposed upon 
the processes by Mejia, Rodriguez-Iturbe, and 
Dawdy (1972) in order to reduce the large 
number of parameters required in the summa­
t ion: 

(4.44) 

(4.45) 

in which 

si = standard deviation of one of the 
simple broken line processes. Substituting 
Equation 4.44 into Equation 4.45, si is given 
by: 

lI5 

(4.46 ) 

. By varying NL, the number of simple 
broken lines, and Wi the weighting of the 
individual lines, it is possible to generate 
a process that has as many degrees of freedom 
as desired. Thus, it is possible to preserve 
a memory of the historic hydrologic time 
series that reproduces the historical corre­
lation structure and Hurst effect (Curry and 
Bras 1978). The memory of the broken line 
process is equal to the time lag at which the 
autocorrelation function becomes zero and 
is equal to 2an which is controlled by £ and 
NL. The high frequency properties of the 
BKL model are a function of the short simple 
broken lines and the low frequency properties 
are a function of the long simple broken 
lines. The parameter al is used to fit the 
correlation function of the broken line 
process to the historical lag-one corre­
lation coefficient, p(l). 

The simple broken line proces.s YA has a 
mean of zero and a var i ance = 1. s2 and a 
function defined as follows: 3 

in which 
(4.47) 

correlation of the broken line 
process at lag k and time 
interval ai 

Calibration to the study streams 

When fitting the BKL model to the 
lag-one autocorrelation coefficient several 
modifications to Equation 4.47 are in order 
according to Curry and Bras (1978). First, 
the lag-one autocorrelation function for a 
single broken line with parameter ai is given 
by 

o 

a. > 
~-

0.5 < a
i 

< I 

a. < 0.5 
~-

(4.48) 



A high frequency simple broken line with 
parameter ao is added to minimize the effect 
on the Hurst phenomenon caused by the low 
frequency terms, the high ai's. The p(l) 
of the new simple broken line process is 
given by 

2h-2 
a l h-l 1-h NL-l 

p(l) = 2(h-1) BB(B - B ) L 
i=O 

(4.49) 

The value of ao will determine what range 
of p(l) can be satisfied by varying tIle 
parameter al. The behavior of Equat ion 
4.49 has been shown by Curry and Bras (1978) 
to have the following characteristics: 

1) The lag-one autocorrelation of a 
single broken line (Equation 4.48) increases 
as parameter ai increases. However, the 
lag-one autocorrelation of the BKL model, 
which is derived from Equation 4.49 with 
aO :s. 0.5, decreases as al increases due 
to the rapidly decreasing weighting of the 
simple broken lines with parameters al. 
alB, ••• a lBNL-l. The value of p(l) given 
by Equation 4.49 will approach p (l,ao) as 
al increases for any value of ao. 

2) 
p(l) can 
or equal 
and Bras 

To insure that an arbitrarily small 
be preserved, aO must be less than 
to 0.5 so that p (1. ao) = 0, Curry 
(1978) recommend setting ao = 0.49. 

Parameter estimation for the .BKL model 
requires fitting the historic lag-one auto­
correlation and Hurst coefficients to the 
BKL lag-one autocorrelation coefficient. An 
alternative fitting procedure is to preserve 
the p"(O) , the second derivative of the 
lag-zero autocorrelation coefficient at the 
origin instead of the Hurst coefficient. 
However, since this derivative does not exist 
for discrete series, such as annual stream­
flow volumes, this procedure was not fol­
lowed. The following equation for the BKL 
lag-one autocorrelation coefficient is solved 
for by trial-and-error to derive the param­
eter al: 

[

1 (2h-2) h-1 1-h NL-l{C 3 1 2 
PI = (2h-l) (B - B ) BB i:O 1 - "4 (alBi) 

________ Term 1 _-=-______ _ 

(2 - ~)J II (alB
i

) + 
alB 
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+ (I_BBa l B ) (1 _1 (_1_) 
2-2h 4 a 2 

1 
~ 

(2h-2) (I-h) { , 

1 13 ~ , J + -, (2 - -) I (a ) 
4 a l 2 1 Term 2 

----------------~ 

(4.50) 

in which 

G 
if X > 1 

Il(X) 
otherwise 

G 
ifO.5<X < I 

I2(X) = 
otberwise 

An explanation of the derivation of 
Equation 4.50 can be found in Curry and Bras 
(p. 37,1978) along with a discussion of 
the behavior of the parameters al and a2. 
Essentially the first term in Equation 4.50 
results from substituting Equation 4.48 into 
Equation 4.49 and the second term represents 
the effect of adding a high frequency broken 
line with al = ao. Figures 4.5 through 
4.7 contain solutions for al obtained from 
Equation 4.50 for specified values of p(l), 
NL, Band h. For a small .number of broken 
lines (e.g. NL = 4) the value for the Hurst 
coefficient, h, is less important in deter­
~ining the parameter al at a given value of 
the lag-one autocorrelation coefficient. 
The discontinuity that appears in the func­
tion moves to the right (Le. higher p(l) 
values), when the Hurst coefficient is 
increased. Increasing the value of NL also 
moves the discontinuity to the right. 
Equation 4.50 for estimating al from a 
given NL, B, hand p(l) is programmed and 
contained in Appendix C. Table 4 •. 5 contains 
the BKL model parameters and a comparison of 
the historical and generated persistence 
statis~ics for each study stream. Only two 
parameters, NL and al were found to have 
much effect on the persistence statistics, 
p (1) and K, of the generated sequences. 
The procedure to calibrate the model param­
eters for replication of the historic lag-one 
autocorrelation and Hurst coefficients is as 
follows: 

1) Referring to Figures 4.6 through 4.7 
find the value of NL that gives a value of 
al approximately equal to one and preferably 
less than two. 

2) Using the NL value determined from 
step 1 and using the estimated p(l) and K 
values. compute the exact value for the al 
parameter using Equation 4.50. 

3) Evaluate term 1 of Equation 4.50 at 
the value of al obtained in the previous 
step to obtain the theoretical maximum value 
fo~ p(l) that can be generated with this BKL 
model. If the historic estimate of p(l) 
exceeds this theoretical maximum value then 
set ao equal to al rather than 0.49. 
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Figure 4.S. Solutions for broken line parameter al using Equation 4.S0 for NL 4, B S. 

4) Generate ensemble of sequences (at 
least 10 and preferably SO or more) with the 
BKL model and compute the ensemble averages 
for p(l) and K and compare with historic. 

S) If the resemblance is poor, try 
another NL and ai combination. 

An alternative calibration procedure is 
to start out with the lowest NL value of 4 
and obtain al from Equation 4.S0 and then 
generate sequences for comparison of the 
persistence statistics. If the resemblance 
is poor then try the next higher NL value, 
until a good resemblance is obtained. How­
ever, increasing the value of NL does not 
necessarily mean an increase in accuracy of 
preserving p(l) and K. Referring to Table 
4.S increasing NL, from 4 to 8 provided a 
better preservation of p(l) for the Logan 
River (see runs 2 and 1 respectively, how­
ever, increasing NL from 4 to 6 did not 
improve the preservation of p(l) and K for 
the Weber River (see runs 1 and 3 respec­
t ively). Experience gained in calibrating 
the study streams indicated that using a 
value of NL which maintained the parameter 
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al between 1 and 2 usually lead to a more 
accurate preservation of the persistence 
statistics. The BKL was not capable of 
preserving the high lag-one autocorrelat ion 
coefficient of 0.49 for Blacksmith Fork, 
unless ao was set equal to a1 (see step 3 
of the calibration procedure); since the 
.historic estimate of p(l) for Blacksmith Fork 
exceeds the theoretical maximum value of p(l) 
with the BKL model being used (see run 10, 
Table 4. S) • 

Generation procedure 

The standardized forms of the generation 
equations for the BKL model are as follows: 

Nt 
YAi(t - tiai ) = E S 

j=O 
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0-
o 
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Figure 4.6. Solutions for broken line parameter a1 using Equation 4.50 for NL ... 5, B '" 3. 

NL 
Z .. 1: YAt(t)W

i 
(4.52) 

t i-O 
The generation procedure for the BKL model is 
summarized in the following steps: 

1) Input historic statistics and model 
parameters (Il, cr, K, B, Nt, and a1) and the 
length of sequence to be generated, N. 

2) Compute BB using Equation 4.43. 

3) Compute weighting function Wi 
using Equation 4.41 and Wo using Equation 
4.42. 

4) Set the initial time interval ao '" 
0.49, the second time interval equal to the 
input value aI, and the succeeding intervals, 
ai, using Equation 4.44. 

5) Generate NL + 1 uniform random 
variates, Ut, i • 0, Nt and set origin of 
each simple broken line at t ~ -siUi. 
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6) Generate Ni (NL + 1) standard 
normal random variates, Tid' j ... 1, Ni, 
i • I, NL + 1. 

7) Genera te NL + 1 s imp Ie br oken line 
processes using Equation 4.51. 

8) Sum the NL + 1 simp Ie broken lines 
into a general BKL sequence using the weight­
ing ,function, Wi following Equation 4.52. 

9) Estimate mean, !, and standard 
deviat ion, !, of the synthetic sequence. 
~ote these will be approximately 0 and 1 
respectively. 

10) Standardize the synthetic sequence 
to force it to be exactly zero mean and unit 
standard deviation using Equation 4.6. 

11) Rescale the standardized synthetic 
time series to the mean and standard devia­
tion of the historic time series using 
Eq uetion 4.1. 
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Figure 4.7. Solutions for broken line parameter al using Equation 4.50 for NL 8, B 3. 
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Table 4.5. Broken line model parameters and comparison of historical and generated statist ics 
for study streams. 

Length of Number 
Type and record of traces Model Parameters Statistics 

Stream Run No.1 (yrs) --------------
cv2 --

NR NS B NL al h p(1) 
-----.------------------~----

Beaver Historical 64 1 0.35 0.24 0.76 
Generated 1 64 50 3.0 4 0.86 0.76 0.35 0.24 0.11 0.72 0.08 

2 64 50 3.0 5 3.89 0.76 0.35 0.16 0.12 0.72 0.06 

Blacksmith Fork Historical 65 1 0.34 0.49 0.77 
Generated 1 65 50 3.0 5 1.16 0.77 0.34 0.48 0.12 0.76 0.07 

2 65 50 3.0 5 1. 18 0.74 0.34 0.27 0.13 0.72 0.07 
3 65 50 3.0 5 1. 20 0.72 0.34 0.28 0.12 0.74 0.07 
4 65 50 3.0 8 1. 02 0.76 0.34 0.22 0.13 0.72 0.08 
5 65 50 3.0 5 2.00 0.76 0.34 0.28 0.14 0.74 0.07 
6 65 10 3.0 5 1.18 0.74 0.34 0.27 0.13 0.74 0.08 
7 65 10 3.0 4 1.26 0.74 0.34 0.24 0.12 0.72 0.06 
8 65 10 3.0 8 1.07 0.74 0.34 0.26 0.11 0.72 0.08 
9 65 50 3.0 5 0.89 0.77 0.34 0.27 0.13 0.73 0.07 

10 65 50 3.0 5 1.16 0.76 0.34 0.29 0.14 0.73 0.08 
--.-------

Logan Historical 66 0.26 0.32 0.72 
Generated 1 66 50 3.0 8 1.77 0.72 0.26 0.24 0.13 0.72 0.07 

2 66 50 3.0 4 0.98 0.72 0.26 0.21 0.15 0.72 0.06 
3 65 10 3.0 8 1. 94 0.73 0.26 0.24 0.11 0.73 0.07 
4 65 10 3.0 8 0.98 0.73 0.26 0.28 0.10 0.75 0.08 

Weber Historical 74 1 0.29 0.27 0.79 
Generated 1 74 50 3.0 4 0.88 0.78 0.29 0.28 0.13 0.75 0.07 

2 74 50 3.0 5 3.87 0.78 0.29 0.19 0.17 0.75 0.07 
3 74 50 3.0 6 5.26 0.78 0.29 0.17 0.16 0.74 0.08 
4 65 10 3.0 4 0.88 0.84 0.29 0.31 0.12 0.75 0.05 

calibrated model used for generation 
of variation 

lag one autocorrelation coeffic~ent 
deviation of lag one autocorrelation coefficient 

of Hurst coefficient 
deviation of Hurst coefficient 
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CHAPTER 5 

MODELING THE MONTHLY STREAMFLOW TIME SERIES 

Introduction 

This chapter describes the structure, 
calibration, and generation procedures for 
the disaggregation models used in this study. 
The function of a disaggregation model is to 
divide a generated sequence of annual Hows 
into seasonal flows while preserving some of 
the important correlation relationships 
between seasonal flow volumes and with the 
annual flow volume. In this study the 
seasonal level of disaggregation used was a 
month. Two types of disaggregation models 
were used and are described in the first 
section. The next section describes the 
parameter estimation procedure, calibration 
experience with the study streams and the 
calibration results. As with the annual 
models, calibration includes the model fO.rm 
identification and parameter estimation 
(steps 3 and 4) of the systematic modeling 
procedure (Figure 1.1). The final sect ion 
summarizes the generation procedure for 
disaggregation. 

Model Structure 

Two alternative seasonal disaggrega­
tion models were used in this study: the 
Valencia-Schaake (VS) model (Valencia and 
Schaake 1973) and the Mejia-Rousselle (MR) 
model (Mejia and Rousselle 1976). Properties 
of each model were compared in the literature 
review presented in Chapter 2. The equations 
for each model are repeated in this section 
with the seasonal level being months. The VS 
model is written as follows: 

in which 

Y 

x 

V 

AX + BV 
- t -t (5.1) 

n-vector of disaggregated standard­
ized monthly flow volumes 

standardized annual flow volume 

n vector of random elements with 
zero mean and unit variance 

A n-vector of model parameters 

B nxn matrix of model parameters 

n = number of months in a year (i.e. 12) 
,.: 
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The MR model is similar to the VS model 
except. that it includes an additional term 
(QZt) to preserve some of the serial corre­
lations between adjacent months in successive 
water years. The equat ion for the MR model 
if' as follows: 

y = 
-t 

in which 

~t 

C 

D 

E 

m 

+ +~ (5.2) 

m-vector of standard i zed flow 
volumes for the last m months of 
the previous year 

n-vector of model parameters 

nxw matrix of model parameters 

nxn matrix of model parameters 

number of months in (t-l)st year 
which are included in ~t 

If the preservation of the serial correla­
t ions between ad jacent months in success i ve 
water years is not important in a particular 
application then the VS model should be used. 
However, if these serial correlations are 
important in terms of the simulation and 
design for which the disaggregated flows are 
to be used then the MR model should be used 
and the extra model parameters in D then must 
be estimated. -

Calibration Procedure 

In this section the equations for 
estimating the parameter matrices of the VS 
and MR models are first presented. In this 
study we first attempted to apply the MR 
model to all four study streams but encoun­
tered some difficulties which are described 
together with the procedure for resolving 
these difficulties. In the final sub­
section a comparison of the historic and 
disaggregated monthly flow statistics is 
presented and discussed. 

The A and B parameters of the VS model 
are estimated as-follows: 



in which 

~Yx 

~YX ~XY 

(5.3) 

(5.4) 

E(YXT), the nxl cross-correlation 
matrix of monthly and annual flow 
volumes 

~yy E(yyT). the nxn cross-correlation 
matrix of monthly flow volumes 

• 
The f. Q, and ~ parameters of the MR 

model are estimated as follows: 
-1 -1-1 

.£ = (~YX = ~YZ ~zz ~zx) (1 - ~xz ~zz ~zx) 

-1 
Q = ~YZ - CSxz} ~zz 

(5.5) 

(5.6) 

in which 

~YZ 

~zx 

(5.7) 

E(XZT). the nxm cross-correlation 
matrix of monthly flow volumes in 
the tth and (t-l)st years 

E(ZZT), the mxm cross-correlation 
matrix of monthly flow volumes in 
the (t-l)st year 

E(ZXT). the mxl cross-cor'relation 
matrix of monthly flow volumes in 
the (t-l)st year and the annual 
flow volume 

In the case of the MR model the user must 
specify m, the number of months in the 
previous year which are included in Zt. 
Transformation of the data to represent skew 
in either the annual or monthly streamflows 
should be performed before cross-correlation 
matrices are calculated and the parameter 
estimation equations applied. Equations 
5.4 and 5.7 for ~ and ~, respectively, may be 
solved using either the principal components 
method or Young's lower triangular method 
which are described in the literature review. 
As a necessary condition for obtaining a 
real-valued solution, both methods req~ire 
that the matrix BBT (or EET) must be positive 
semidefinite (psd), that is all of its eigen 
values must be positive. 

Calibration to study streams 

When parameter estimation for the MR 
model applied to the four study streams was 
attempted it was found that for some streams 
solutions for E could not be obtained because 
EET was non-psd. After some investigation 
of this problem it was discovered that 
several factors affected the degree to which 
EET was non-psd or psd as measured by the 
smallest eigen value of EET. These factors 
are: 
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1) The Box-Cox transformation param­
eter, A. 

2) The starting year (or more generally 
the interval) of the historical record used 
to estimate the parameter matrices. 

3) The number of months in the (t-l)st 
year which are included in ~t, m. 

Prior to discovering this influence of 
these factors on parameter estimation for the 
disaggregation model, each had been estab­
lished independently. The value of A was 
selected such that it gave the best overall 
representation of skew for all 12 calendar 
months although it was possible to find 
different values of A that represented the 
skew better for individual months. The 
starting year used for parameter estimation 
was the first year of the historical record 
so that the maximum length of record could be 
used. A value for m was based on inspection 
of the ~Zy matrix. m was set equal to 5 
because the cross-correlations appear to drop 
off after the first five columns in the SZy 
matrices (see Tables 3.4-3.7), and therefore 
are less important to preserve. 

To resolve this difficulty in parameter 
estimation a procedure was devised to examine 
the influence of the three factors named 
above on obtaining a solution for EET. The 
procedure is represented schematr.:ally by 
Figure 5.1. Essentially it involved at­
tempting to obtain real-valued solutions for 
E with various combinations of values for 
-X and m. The degree of success in obtaining 
a real-valued solution for E was measured by 
the magnitude of the smallest eigen value of 
EET: only if the smallest eigen value is 
positive will a real-valued solution be 
obtained. If it was not possible to obtain a 
real-valued solution for E of the MR model 
then the feasibility of a- real-valued solu­
tion for B of the VS model was examined. 
If real-vaTued solutions for neither E or B 
could be obtained then a new starting year ot 
record ,was used. 

Table 5.1 contains a summary of some of 
the attempts to obtain real-valued parameters 
for the disaggregation models. Many more 
cases were examined but those shown in Table 
5.1 illustrate the trends and include the 
cases selected for use. Reductions in the 
size of A decreased the size of the smallest 
eigen value but never resulted in a change in 
sign. Increases in m reduced the magnitude 
of the smallest eigen value and eventually 
resulted in a negative value. The largest 
values of m that resulted in real-valued 
solutions for, E were: 3 for the Beaver, 0 
for ,the Blacksmith Fork, 2 for the Logan, 
and 2 for the Weber. The value of m-O for 
Blacksmith Fork indicates that in no case was 
parameter estimation successful for the MR 
model and therefore the VS model was used. 
Parameter estimation for Logan was successful 
only after the starting year was changed from 
1901 to 1913 to avoid the early period of 



TRANSFORM MONTHLY 
FLOWS USING BOX­
COX TRANSFORMATION 
(EQUATION 2. 5) 

CALCULATE GOODNESS­
OF-FIT STATISTIC, 
Ti (EQUATION 2.6) 

CALCULATE 
.--__ --p.j MR MODEL TO 
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FLOWS 
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N 
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~ 
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Figure 5.1. Procedure for examInIng the influence of several factors on parameter estimation 
for disaggregation models. 

high flows (see Chapter 3). Parameter 
matrices for the selected disaggregation 
models for each study stream are contained in 
Tables 5.2 through 5.5. 

Examination of Table 5.1 indicates 
several successful cases of parameter esti­
mation for each stream. The caseS selected 
for use are labeled by footnote d. 'These 
cases were selected to keep the same value of 
A for all streams for comparative purposes, 
to keep m as high as possible to give the 
best preservation of over-the-year serial 
correlations, and to make use of the longest 
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length of homogeneous historical record to 
improve parameter estimates. 

Comparison of historic and 
disaggregated monthly statistics 

Figures 5.2 through 5.5 contain graphi­
cal comparisons of several historic and 
disaggregated monthly statistics .for each of 
the four study streams. The dlsaggregated 
s~atistics are based on applying the dis­
aggregation model selected in Table 5.1 to 
the historical annual flow volumes. The 
monthly statistics presented are the means, 



Table 5.1. Summary of attempts to obtain real-valued parameters for disaggregation models. 

Number of Goodness-of-fit 
(T) months Box-Cox 

Starting in previous Transformation SmaUest Average Average 
Case year Disaggregation year 

Stream 

Blacksmith 
Fork 

Logan 

Weber 

No. 

2d 
3 
4 

1 
2 
3 d 
4 

5 
6 
7 
8 

1 
2d 
3 
4 

5 
6 
7 
8 

9 
10 
11 
12 

1 
2d 
3 

used model a 

1915 MR 
1915 MR 
1915 MR 

1914 MR 
1914 MR 
1914 VS 
1914 VS 

1924 MR 
1924 MR 
1924 MR 
1924 MR 

1913 MR 
1913 MR 
1913 MR 
1913 VS 

1923 MR 
1923 MR 
1923 MR 
1923 HR 

1924 MR 
1924 MR 
1924 MR. 
1924 MR 

1905 MR. 
1905 MR 
1905 MR 

(m) 

2 
3 
4 

1 
1 

1 
2 
3 

1 
2 

1 
2 
2 
3 

1 
2 
3 

aVS ~ Valencia-Schaake, MR ~ Mejia-Rousselle. 
bEigen value for EET for MR model and for BBT VS model. 
e - -
dNO transformation used for this case. 

This is the case selected for use. 

standard deviations, skew coefficients, 
lag-one autocorrelation coefficients between 
monthly flows (e.g. between June and July) 
rO) and the correlation coefficients 
between monthly and annual flow volumes, 
SYX' These statistics are presented for 
each of the 12 calendar months. 

For all four study streams the dis­
aggregated means and standard deviations are 
very close approximations to the historical 
va lues in all months. D isaggregated v.alues 
of the skew coefficient do not close~y 
approximate the historical values for all 
months because the same value of A used for 
all 12 calendar months was not the best 
value for every month, although it did 
minimize the average monthly goodness-of-fit 
statistics, over the year T (see Table 5.1). 
In general months with lower skew coefficient 
were modeled better than months with higher 
skew coefficients. Monthly values of Syx 
are quite well preserved for all streams as 
would be expected since this parameter is 

Param'6ter Eigen Year growing 
(A) Value season 

0.333 0.185 -0.040 -0.006 
0.333 0.054 -0.040 -0.006 
0.333 -0.181 -0.040 -0.006 

0.200 -0.113 -0.014 -0.007 
0.150 -0.048 -0.022 -0.018 

-c 0.001 0.122 0.157 
0.333 0.102 0.010 0.022 

0.333 -0:507 0.010 0.022 
0.200 -0.044 -0.014 -0.007 
0.150 -0.017 -0.022 -0.018 
0.100 -0.007 -0.031 -0.028 

0.333 0.103 -0.041 -0.078 
0.333 0.108 -0.041 -0.078 
0.333 -0.238 -0.041 -0.078 
0.333 0.163 -0.041 -0.078 

0.333 -0.141 -0.041 -0.078 
0.333 -0.469 -0.041 -0.078 
0.250 -0.033 -0.052 -0.092 
0.200 -0.014 -0.059 -0.101 

0.200 0.010 -0.059 -0.101 
0.200 0.009 -0.059 -0.101 
0.333 0.099 -0.041 -0.078 
0.333 -29.330 -0.041 -0.078 

0.333 0.774 0.018 -0.033 
0.333 0.478 0.018 -0.033 
0.333 -0.663 0.018 -0.033 

explicitly incorporated into the parameter 
estimation for both the MR and VS models. 

The lag-one serial correlation between 
months, r(l), is not explicitly incorporated 
into the parameter estimation for the MR 
model and consequent ly the d i saggregated 
values closely resemble the historic values. 
However, as would be expected due to its lack 
of capability for preserving over-the-year. 
serial correlations disaggregated flows from 
the VS model do not resemble the historic 
value of r(l) at the beginning of the water 
year. This characteristic can be seen most 
clearly in Figure 5.2 for the Beaver in which 
the disaggregated values of r(l) are shown 
for both the VS model (equivalent to MR 
model with m=O) and the MR model with m=l, 2, 
and 3. Results from these four models of the 
Beaver were analyzed to invest igate the 
influence of different values of m on pre­
serving ~ZY, the matrix of serial correla­
tions between months in successive water 
years. The absolute values of the differ-
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Table 5.2. Parameter matrices for MR (m=3) disaggregation model of Beaver. 

0.03 -0.00 -0.02 0.76 
0.02 -0.11 0.06 0.75 
0.03 -0.11 0.02 0.66 
0.04 0.10 -0.11 0.39 
0.03 0.03 -0.07 0.42 

C 
0.04 

D 
0.01 -0.08 0.47 

0.15 -0.25 0.24 0.62 
0.83 -0.43 0.51 0.38 
1.01 0.31 -0.10 -1.35 
0.64 0.14 -0.03 -0.80 
0.40 0.16 -0.32 -0.13 
0.25 0.04 -0.19 0.15 

-0.06 -0.16 -0.17 -0.34 -0.59 -0.49 0.10 -0.55 0.67 0.54 
0.13 0.36 0.13 -0.22 -0.20 -0.16 0.09 -0.31 0.73 0.35 
0.12 -0.20 -0.31 0.13 0.18 0.31 0.49 -0.43 0.69 0.08 

-0.13 0.16 0.02 -0.11 0.23 0.49 0.67 -0.43 0.68 0.43 
0.03 -0.26 0.47 -0.21 0.04 0.30 -0.19 -0.17 0.74 0.38 

E 
-0.03 0.07 -0.23 -0.01 0.13 0.27 -0.96 0.31 1.21 0.45 

= 0.01 0.01 -0.03 -0.09 -0.16 0.24 0.03 -0.07 -0.98 -0.02 
0.01 0.01 -0.06 -0.28 -0.26 0.47 -0.08 0.09 -0.35 -0.41 
0.02 0.00 -0.08 -0.22 -0.30 0.50 -0.06 0.28 -0.80 1.49 

-0.01 0.03 -0.01 -0.06 -0.14 0.27 -0.33 -1.12 -0.13 -2 •. 20 
0.01 -0.03 -0.07 -0.51 1.14 -0.05 0.28 1. 20 0.37 -1.53 

-0.01 0.01 0.08 0.49 -0.66 0.27 0.23 0.70 0.74 -0.66 

Table 5.3. Parameter matrices for VS disaggregation model of Blacksmith Fork. 

A = 

0.17 -0.12 0.02 -0.18 -0.20 
-0.21 0.16 -0.06 0.04 -'0.22 

0.07 0.01 -0.08 0.50 -0.20 
-0.04 0.02 -0.00 -0.41 -0.20 
-0.01 -0.00 0.04 0.00 -0.28 

0.02 -0.00 -0.01 0.01 -0.19 
B 0.01 0.01 -0.04 -0.02 -0.39 

0.01 0.01 -0.04 -0.02 -0.44 
0.03 0.06 -0.11 -0.01 -0.58 

-0.10 -0.23 0.31 0.09 -0.18 
0.10 0.25 0.18 -0.04 0.14 

-0.02 -0.11 -0.44 -0.05 0.20 

0.19 
0.17 
0.17 
0.18 
0.17 
0.19 
0.64 
0.91 
0.60 
0.46 
0.42 
0.37 

0.03 
-0.05 
-0.33 
-0.40 

0.49 
-0.09 
-0.17 
-0.23 

0.19 
-0.44 
-0.54 
-0.44 
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0.28 
0.25 

-0.37 
-0.60 

0.68 
0.08 
0.10 
0.17 

-0.19 
0.22 
0.50 
0.51 

-0.81 -0.17 -0.88 
-0.69 -0.21 -0.70 

0.36 -0.29 -0.47 
0.70 -0.26 -0.16 
1.14 -0.39 -0.04 

-0.02 2.27 1.49 
-0.19 -0.65 -0.43 

0.24 1.18 -1. 55 
-0.33 -0.81 1.87 
-0.07 -0.42 0.73 

0.08 -0.34 0.56 
0.16 -0.32 0.55 

0.23 0.38 
0.26 0.25 
0.22 0.19 
0.22 0.20 
0.44 0.39 
0.71 0.93 

-3.16 4.52 
-3.25 3.37 

0.46 -4.52 
0.55 -2.54 
0.84 -1.03 
0.37 -0.13 

-0.44 -4.15 
-0.25 -3.49 

0.09 -3.27 
0.17 -2.85 
0.40 -2.23 
2.21 -2.11 
6.07 3.25 

-3.12 4.02 
-2.55 1. 27 
-0.83 0.34 
-0.61 0.09 
-0.45 -0.11 



Table 5.4. Parameter matrices for MR (m=2) disaggregat·ion model of Logan. 

-0.00 -0.20 1. 14 
0.01 0.16 0.53 
0.03 0.26 0.28 
0.06 0.07 0.39 
0.07 -0.08 0.44 

C 
0.14 

D = -0.09 0.41 
0.39 0.60 -0.88 
0.72 0.35 -0.69 
1.00 -0.11 -0.43 
0.72 -0.31 0.03 
0.45 -0.06 0.01 
0.37 -0.23 0.25 

-0.08 -0.32 0.17 0.08 -0.05 0.10 -0.40 -0.20 0.16 -0.01 0.08 0.21 
-0.09 0.05 -0.24 0.48 -0.09 0.03 -0.25 -0.26 0.24 -0.15 0.05 0.31 
-0.14 -0.02 -0.19 -0.30 -0.01 0.42 0.15 -0.82 0.22 -0.51 -0.01 0.43 

0.16 0.04 0.17 0.18 0.01 0.41 0.21 -0.96 0.38 -0.52 -0.20 0.34 
0.00 0.05 0.05 -0.11 -0.35 -0.62 -0.27 -0.93 0.36 -0.45 -0.20 0.52 

E = 
0.01 0.01 0.01 -0.04 -0.05 0.07 -0.19 0.80 1.27 -1.98 1.14 1.47 
0.02 0.02 -0.00 -0.02 -0.19 0.15 -0.19 0.08 -0.84 0.53 -2.99 6.95 
0.03 0.03 0.00 -0.04 -0.32 0.20 -0.22 0.27 -0.01 0.12 4.31 3.60 
0.02 0.01 -0.01 -0.01 -0.29 0.17 -0.28 0.12 -1.69 -1.09 -0.38 -4.83 
0.03 -0.02 -0.04 -0.03 -0.50 0.19 0.13 0.28 1.07 1. 24 -1.30 -3.65 

-0.12 0.20 0.21 -0.04 0.13 0.21 -0.66 -0.04 0.34 0.58 -0.27 -1. 53 
0.17 -0.05 -0.21 -0.11 0.23 0.04 -0.75 -0.17 0.27 0.39 -0.09 -0.92 

Table 5.5. Parameter matrices for MR (m=2) disaggregation model of Weber. 

0.04 -0.12 0.80 
0.06 0.15 0.32 
0.07 0.05 0.31 
0.06 0.05 0.24 
0.06 -0.05 0.29 

C = 0.06 
D= 

-0.21 0.66 
0.10 -0.46 1.17 
0.36 -0.59 1.10 
1.16 0.15 -1.04 
0.85 0.55 -1.04 
0.37 0.28 -0.39 
0.24 0.32 -0.45 

-0.23 0.13 -0.34 -0.28 0.02 -0.00 1.95 0.62 2.25 -0.49 0.40 0.11 
0.50 -0.20 -0.15 0.63 -0.41 0.06 0.41 0.46 1. 70 -0.76 0.10 0.66 

-0.27 0.03 0.52 0.93 0.30 0.76 -0.48 0.46 1.58 -0.41 -0.23 0.53 
0.20 0.61 -0.14 -0.47 0.07 0.84 -0.88 0.17 1.06 -0.66 -0.21 0.59 

-0.07 -0.58 -0.21 -0.71 -0.01 0.81 -0.83 0.12 1.30 -0.54 -0.16 0.45 
-0.18 0.08 -0.49 0.23 -0.39 -1.11 -1.32 -0.40 1.64 -0.85 -1.16 1.46 

E '" -0.03 -0.00 -0.09 0.05 -0.24 0.33 0.38 0.46 -0.94 0.07 -6.66 5.81 
-0.11 0.04 -0.23 0.19 -0.66 0.49 0.03 -0.13 -0.96 0.73 4.20 8.25 
-0.12 0.03 -0.22 0.20 -0.72 0.50 0.07 0.21 -1.24 -4.63 -0.23 -6.62 
-0.06 0.04 -0.14 0.13 -0.63 0.44 0.02 -0.75 0.41 5.88 -1.01 -5.35 
-0.01 -0.03 -0.81 0.40 0.66 0.16 -0.32 1.87 -1.05 1.54 0.49 -1. 54 
-0.02 0.03 0.48 -0.34 -0.58 -0.43 -0.36 2.84 0.89 1.14 0.48 -0.54 

56 



J 

12,000 J 1.0 

,.... 9,000 1\ 0.8 -.... 
<J ., 
; 6,000 J I \ 0.6 
ct 

~ ~oo: J ,~ ~ 
--.. 

0.4 

0.2 ~ I 
I I I I 
0 N 0 J F M A M J J A S I 

MONTH 0.0 

q N D J F M A M J J A S 

I MONTH 
-0.2 .J 

6,000 
.--.... VI o <J 

-..l 

~ 2 4 ,000 
Oz \\ 1.0 
Zo 
ct-
t-t-
en ~ 2,000 l b \ 0.6 

IIJ 
0 

0 I I I I I I I 0.6 
0 N 0 J F M A M J J A S X 

MONTH >-
II) 

20

1 04~ ~ 
Historic 

t- MRModel (m=3) Z 
W MR Model (m = 2) 
U 1.0 ~ 0.2 

'-.. ........ ~ .'V" 

MR Model (m = I) 
u.. I \ 

u.. I \ VS Model 
IIJ 
0 
t) 

00 I i .... ,-"'W"'" ,= < '\ 0.0 ., , 
3: 6 N 0 J F M A M J J A S ° N D J F M A M J J A S W 
~ MONTH MONTH en 

-1.0 

Figure 5.2. Comparison of historic ~nd disaggregated monthly statistics for Beaver. 



J 

20,000

1 
1.0 

A , 

15,000 0.8 I -- , ... 
f .... 

u 
c , 

10,000 0.6 I z 
< , 
I.i.I -- I :E ~ 

5,000 0.4 

0 0.2 

0 N 0 J F M A M J J A s 
MONTH 

0.0 
10,000 -, 

0 N 0 J F M A M J J A s 
MONTH 

-- 7,500 -..... o u 
0:::2 
<z 5,000 0 0 z_ 

V1 <I-
O? 1-<[ 

CI)-
2,500 > 

I.i.I I / ---- 1.0 0 

0 0.8 
0 N 0 J F M A M J J A s 

MONTH 

( .. J ~--3.0 -I 1\ / 

----,---- Historic 

0.4 VS Model 
\ 

I- 2.0 
z 

0.2 I.i.I 
<3 
~ 1.0 
~ 
I.i.I 

~ / ~ 0.0 
0 
0 0 N D J F M A M J J A S 

== 
0.0 

MONTH 
I.i.I 0 N 0 J F M A M J J A S :s: MONTH V> 

-1.0 

Fil"ure 5.3. Comparison of historic and disaggregated monthly statistjcs for Blacksmith Fork. 



J 

40,000 ., 1.0 ..-, 
-~ ,; 

.- 30,000-' JI .~ 0.8 
.... .... 
u 
0 

~ 20,000 J \ 0.6 

< 
lIJ 

10,00: J -----I '~ --::ii: ... 
0.4 

::=" I " 

0.2 
i , 

a N D J F M A M J J A • MONTH 0.0 20,000., 
0 N D J F M A M J J A s 

MONTH 
.-.... 15,000 .... 

Q u 
0::2 
<z 0 0 10,000 z_ 

\J'I ~I-\0 en~ 
> 
lIJ 5,00: I 0 

-----J '" 
1.0 

i i i i 1 i 0.8 
0 N D J F M A M J J A S 

MONTH 
0.6 

2'°1 /\ 
x /_-_// r Historic 

l- I/) 

Z 0.4 
MR Model (m=2) 

lIJ 
C3 1.0 i:i: I ~)" /\ 

----' 
11.. 

0.2 lIJ 
0 
U 0.0 

,. .... -'" 
~ J F M A M J J A S LIJ 0.0 
~ MONTH en 0 N D J F M A M J J A S 

-1.0 MONTH 

Figure 5.4. Comparison of historic and disaggregated monthly statistics for Logan. 



J 

60.000 ] 1.0 

45,000 /\ 0.8 
~ .... .... 
() 
0 

30,000 -I 0.6 
Z 
« 

IMo:1 d ~ 
--W ... 

~ 
0.4 

0.2 
I I 

0 N 0 J F M A M J J A S 
MONTH 

0.0 
28,000, 

° N 0 J F M A M J J A s 
MONTH 

.-
::: 21,000 
() 

00 
0::--
«Z 
~Q 14,000 
«I-
1-« 

C1' (/» 
0 W 

0 7.0] 
~i'-'--'/ \~ 1.0 

0.8 
0 N 0 J F M A M J J A s 

MONTH 
4.0 , 0.6 

P 0.4l 
1---------......... 

~ 
30

1 A /\ ~(I Historic 
I \ I MR Model (m=2) I . \ 

I 
I 

u:: 2.0 
0.2 

u. w 

~IO~ ,/\) 
l- 0.0 

0 N D J F M A M J J A S 

!-' "'-, 
MONTH 

(/) ,;' ....... _- ..... ..,J 

0.0 ---" 

0 N D J F M A M J J A s 
MONTH 

-1.0 

Figure 5.5. Comparison of historic and disaggregated monthly statistics for Weber. 



ences between the disaggregated and historic 
valueR of each element of SZX were calculated 
and averaged for all pairs of months in 
successive water yeats which are separated 
by a J month lag as follows: 

1 J ISDISAG (12 - J + j, j) _ 
e = - 1: YZ 

J J j=1 

in Ivhich 

J 

j 

SYZ 

12-J+j,j)l. (5.8) 

average absolute error between 
the disaggregated and historical 
values of elements of SZY which 
are separated by a J month lag 

lag between pairs of months in 
successive water years (e.g. for 
J=3: July and October, August and 
November, and Sep tember and 
December, where the first month is 
in year t-l and the second in year 
t) 

index 

element of SYZ 
gation (DISAG) 
(HIST) cases 

for disaggre­
or historical 

Figure 5.6 contains plots of eJ vs J for the 
four disaggregation models applied to the 
Beaver and for lags up to J ~ 12. This 
figure shows that, as would be expected, the 
errors in preserving the across-the-year 
serial correlations are much smaller for the 
MR model than for the VS model. Values of 
eJ increase with increasing J for the 
MR model indicating that serial correlations 
with lower lags are better preserved. A 
decrease in the values of eJ with increasing 
J for the VS model can probably be attributed 
to the indirect preservation of these serial 
correlations via the autocorrelation struc­
t ure at the annual level and the cross­
correlation between annual and monthly flows 
~YX, which are preserved by the VS model. 
The very high values of eJ for the VS model 
at low lags indicate that there is no pre­
servation of ~Zy close to the boundary be­
tween water years. As m increases the 
magnitude of eJ tends to decrease demon­
strating that a higher order ~ matrix does 
improve the preservation of ~Zy, as would 
be expected. However, the magnitUde of 
changes in eJ is small. This can be clearly 
seen by summing the 12 values of eJ for each 
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model: 7.97,1.19, 1.09, 0.99 for m = 0 (VS 
model), 1, 2, and 3 respectively. Fi~ure 5.6 
shows no detectable improvement in the 
preservation of elements of ~ZY when J < m 
as might be expected. 

When the comparison of historic and 
disaggregated statistics is restricted to the 
growing season, which is the last five months 
of the year (May through September), the 
resemblance is a little better than for the 
entire year. As will be explained in the 
following chapter the only monthly flows used 
in this study were those in the growing 
season. 

Generation Procedure 

The procedure for generating a monthly 
streamflow sequence from an annual sequence 
using a seasonal disaggregation model for 
which the parameter matrices have been 
estimated is summarized below: 

1) Input the transformation used in the 
parameter estimation procedure, A; the 
generated annual streamflow sequence; Xt, m 
monthly s.treamflows from the year before the 
starting year, ~t, (for MR model only); the 
number of years to be disaggregated, N; and 
parameter matrices (!:. and ~ for VS model or 
f, Q and! for MR model). 

2) Transform X and Zt using the Box 
Cox transformation with the parameter A in­

. put. 

3) Subtract the corresponding trans­
formed mean from the annual and monthly 
transformed inputs. . 

4) Generate 12 standard normal random 
numbers, Yt, for each of the N years. 

5) Using either Equation 5.1 for the 
VS model or Equation 5.2 for the MR model 
disaggregate the annual streamflow, Xt , to 
the monthly streamflow Xt. 

6) For the MR model save the last m 
d isaggregated monthly streamflows in ~t, 
for the next year's disaggregation. 

7) Rescale the standardized generated 
monthly streamflows by adding the transformed 
monthly means. 

8) Inverse transform the rescaled 
generated monthly streamflows, Xt. 
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Figure 5.6. Average absolute errors in elements of ~YZ which are separated by a J month lag. 
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CHAPTER 6 

MODELING THE AGRICULTURAL ECONOMIC 
LOSSES FROM DROUGHT 

Introduction 

Different patterns of water supply 
shortfall cause different amounts of economic 
loss. In agriculture the most critical 
period of water supply for grain corn is the 
pollination growth stage since soil moisture 
deficit at this stage will result in the most 
significant impact on crop yield, and there­
fore agricultural benefits. Most of the 
previous evaluations of stochastic streamflow 
models have emphasized the preservation of 
statistics of the streamflow time series and 
comparison of reservoir capacities based on 
the use of different models. In this study 
model performance was also compared based on 
the economic regret, measured in terms of the 
losses in the value of agricultural pro­
duction, associated with choosing a particu­
lar model. A diversion rule was applied to 
the generated monthly streamflows to calcu­
late monthly diversions available for irriga­
t ion. The quantity of water available for 
diversion and the irrigation water ire­
ment were used as inputs to a mode for 
estimating crop yield and hence the decrease 
in the value of agricultural production 
dur water short years was estimated. The 
rema nder of this chapter is divided into 
four sections describing the crop yield 
model, the calculation of irrigation diver­
sions, the calculation of irrigation water 
requirements, and the procedure for calcu­
lating economic regret. 

Crop Yield Model 

The work on production functions re­
ported by Stewart et al. (1977) and spe­
cifically the corn production function model 
developed by Hanks (1974) and statistically 
analyzed by Gowon, Anderson, and Biswas 
(1978), was selected as a basis for the 
agricultural loss function used in this 
study. The model was chosen because of its 
s licity. Many such models require daily 
input of several meteorologic variables in 
addition to soil moisture or water supply 
and this level of detail was not practical in 
this study. The model relates the yield of 

ain corn to the ratio of actual to poten­
ial evapotranspiration in three growth 

stages, as follows: 

C (ETA) Al (ETA) A2 (ETA) A3 (6.1) 
ETP ETP ETP v p m 
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in which 

Y yield of harvested ~rain corn 
(bushels/acre) 

yp 

ETA 

ETP 

C 

potential yield based on the 
highest measured yield for corn 
at the study location (bushels/ 
acre) 

actual evapotranspiration 

potential evapotranspiration 

constant coefficient 

exponential coefficients for three 
growth stages 

v subscript denoting vegetative 
growth stage of corn 

p subscript denoting pollination 
growth stage of corn 

m subscript denoting maturation 
growth stage of corn 

Gowon, Anderson, and Biswas (1978) applied a 
logarithmic transformation to Equation 6.1 
and estimated the coefficients C and 1i by 
linear regression based on data collected at 
Logan, Utah, during a two year period, 
1974-1975. The resulting equation is: 

Y = 0.97 RO. 347 R 0.574 RO. 330 Y 
v p m P 

(6.2) 

in which 

R ratio of actual to potential evapo-
t ransp i r at ion 

ETA is calculated based on an irrigation 
diversion rule applied to the monthly gener­
ated streamflows. Values of ETP for each 
growth stage are calculated using the modi­
fied Blaney-Criddle method for estimating 
consumptive use. Calculations for both ETP 
and ETA are reported in the following sec­
tibns of the chapter. 

The three growth stages were defined as 
follows: 



1. Vegetative - time from planting. to 
appearance of first tassle. 

2. Pollination - time from appearance 
of first tassleto blister kernal. 

3. Maturation time from blister 
kernal to physiological mat~rity. 

Average durations of these three periods at 
Logan were found to be 63, 26, and 43.5 days 
respectively. The pollination growth stage 
for grain corn is the most critical in terms 
of water deficit as cah be seen from the high 
value of 1.2 in Equation 6.2. At Logan, Utah, 
the frost free growing season generally lasts 
from May to September. Irrigation diversions 
were generated on a monthly basis using the· 
disaggregation models described in Chapter 5. 
Theref.ore, the three growth stages wer.e 
approximated as follows: 

1. vegetative - May and June 

2. pollination - July 

3. maturation - August" and September 

The potential· yield, YP, for grain corn was 
taken to be 86.63 bushels/acre based on data 
contained in the Utah Agricultural Statistics 
(1978) for the years 1970-1977. 

Grain corn was chosen because it is a 
highly drought sensitive crop. In contrast 
silage corn is less sensitive because its 
most critical growth stage is the vegetative 
stage when water supply is more plentiful and 
Stewart et al. (1977) found that stress at 
this early stage can actually condition the 
crop to water shortages later and result in 
increases in yield. No attempt was made in 
this study to represent these conditioning 
effects and thus the effect on crop yield of 
the evapotranspiration ratio in each season 
was considered independently of the other 
seasons. 

Irrigation Diversion Rule 

To calculate the quantity of irrigation 
water diverted, an irrigation diversion rule 
was applied to the generated monthly stream­
flow volumes. The rule was based on the 
Kimball Decree, established in 1923, which 
defines water rights on the Logan River 
including the diversion of water to the 
Logan, Hyde Park, and Smithfield Canal. The 
decree defines the diversion in cfs as a 
function of the Logan River streamflow in 
cfs. For study purposes this diversion rule 
was converted to acre-feet/month and is 
represented graphically in Figure 6.1. 

Irrigation Diverson Reguirements 

Monthly irrigation requirements for corn 
were estimated using the Blaney-Criddle 
method as modified by the Soil Conservation 
Service (1970). Consumptive use is calcu­
lated as follows: 
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in 

·U c k k t 
t c P 

(6.3) 

which. . 

U 

kt 

kc 

t 

p 

consumptive use (in.) 

temperature coefficient 

0.0173t - 0.314 

monthly crop coefficient for corn 

average daily temperature for month 
(OF) 

fraction of total daylight hours in 
year which occur in month 

Table 6.1 contains the calculation of 
consumptive use and monthly irrigation 
diversion requirements expressed in feet of 
water at the point of diversion. The follow­
ing assumptions were made in applying the 
Blaney-Criddle method: 

1. All inputs are obtained for Logan, 
Utah (latitude: 45°45' N), and no 
attempt was made to adjust inputs to 
the location of the other study 
streams. 

2. Water availability is assumed to be 
not limiting for the calculation of 
U. 

3. Values of kc are taken from Soil 
Conservation Service (1970). 

rhe monthly irrigation requirement was 
calculated by subtracting the average monthly 
precipitation from the consumptive use. 
Based on these calculations no irrigation is 
needed in May because there is adequate 
p recip i ta.t ion. An i 1'1' igat ion conveyance 
efficiency of 50 percent was assumed in order 
to calculate the irrigation diversion re­
quirement. 

Table 6.2 contains the calculation to 
convert the irrigation diversion requirement 
in feet to acre-feet based on an irrigated 
area which varies from stream to stream. In 
order to provide an adequate test of the 
ability of the model to preserve drought 
properties under extreme conditions it was 
cons idered necessary to base the i 1'1' iga t ion 
diversion requirements on larger irrigated 
areas than actually exist currently. The 
diversion at the mean monthly flow minus one 
standard deviation was calculated for ea'ch 
month of the irrigation season (June-Septem­
ber) and for each stream using Figure 6.1. 
The irrigated area was then fixed for each 
stream such that the monthly irrigation 
diversion requirements exceeded the diversion 
at the mean monthly flow minus one standard 
deviation in July through September (see 
Table 6.2). The irrigated areas associated 
with the study streams are 500, 1500, 5000, 
and 2000 acres for the Beaver, Blacksmith 
Fork, Logan, and Weber respectively. 
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Figure 6.1. Irrigation diversion rule. 

Table 6.1. Calculation of monthly unit irrigation diversion requirements for corn at Logan, 
Utah (Latitude: 41°45' N). 

Variable 

Crop coefficient 

Average temperature 

Daylight hours 

Consumptive use 

Average precipitation 

Unit irrigation requirement 

Unit irrigation diversion 
requirement 

Symbol Units 

t 

p % 

u in 

R in 

U-R in 

ft 

Month Irrigation 
------------------------- Season 

May June July August September Total 

0.53 0.82 1.05· LOO 0.88 

56.3 63.1 72.9 71.4 62.0 

10.10 10.20 10.32 9.60 8.40 

1.81 4.10 7.48 6.31 3.48 23.18 

1. 86 1. 78 0.34 0.87 0.94 5.79 

o 2.32 7.14 5.44 2.54 17.44 

o 0.39 1.19 0.91 0.42 2.91 

aMonth1y unit irrigation diversion requirement is given in ft and is based on an irrigation efficiency 
of 50 percent. Thus ETR = (U-R)K12x 0.50) in which 12 converts (U-R) in inches to feet. 
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Table 6.2. Comparison of monthly irrigation requirements and range of irrigation diversion 
based on historic streamflows inac. ft. 

Stream Month June July August September Irrigation 
Season 

Phenological Vegetative Pollination Maturation Total 
stage 

-----------------
Beaver Diversion at mean monthly 

flow1 1,746 679 347 213 2,985 

Diversion at mean monthly 
flow minus one standard 
deviation 1 622 283 166 120 1,191 

Monthly irrigation diver-
sion requirements based 
on 500 ac 2 195 595 455 210 1,455 

-----
Blacksmith Fork Diversion at mean monthly 

flow 1 2,128 1,542 1,335 1,163 6,168 

Diversion at mean monthly 
flow minus one standard 
deviation 1 1,056 936 835 753 3,580 

Monthly irrigation diver-
sion requirements based 
on 1500 ac 585 1,785 1,365 630 4,365 

Diversion at mean monthly 
flow 1 7,010 5,399 2,784 2,154 17,347 

Logan 

Diversion at mean monthly 
flow minus one standard 
deviation 1 7,017 2,555 1,956 1,579 12,107 

Monthly irrigation diver-
sion requirements based 
on 5000 ac 1,950 5,950 4,550 2,100 14,550 

-----------
Diversion at mean mOQ,thly 
flow 1 7,010 3,506 1,392 943 12,851 

Weber 

Diversion at mean monthly 
flow minus one standard 
deviation1 7,010 641 855 621 9,127 

Monthly irrigation diver-
sion requirements based 
on 2000 ac 780 2,380 1,820 840 5,820 

-------------------_. 

Column No. (1) (2) (3) (4) (5) 
-------------------------------_. __ ._------_.------

1Diversions are calculated using the rule in Figure 6.1 and the monthly streamflow statistics presented in 
Table 3. • For example: Beaver in July, mean flow minus one standard deviation = 3560 - 1791 = 1769 ac ft, 

2diversion = -107.836 + 0.221 x 1769 • 283 ac ft. 
Monthly irrigation requirements are obtained in Table 6.1 by the irrigation area. For example: Beaver in 
June, monthly irrigation requirement =. 0.~9 x 500 = 195 ac ft. 
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The monthly irrigation diversion re­
quirements are a measure of the agricultural 
demand. Thus if the actual diversions based 
on the rule in Figure 6.1 fall below these 
requirements ETA will fall below ETP and some 
reduction in yield can be expected based on 
Equation 6.2. The monthly irrigation diver­
sion requirement can be considered to define 
a crossing level below which drought condi­
tions are defined for irrigated agriculture. 

Calculation of Economic Regret 

Generated monthly streamflow volumes are 
used to calculate irrigation diversions (see 
Figure 6.1) and hence the ratio R = ETA! 
ETP which makes possible an estimate of 
annual crop yield using Equation 6.2. The 
average annual economic benefit or value of 
the crop is estimated as follows: 

1 N 
Bo = - E Y P A 

J N t=l t 
(6.4) 

in which 

Bj = average annual economic benefit 
based on streamflows generated by 
model j 

N 

t 

P 

A 

lenbth of generated streamflow 
sequence 

year index 

crop yield for tth year 

price of grain corn 

irrigated area 
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Thus, different values of Bj were calcu­
lated using sequences gene.rated by each of 
the five annual streamflow models and in 
a.dditio.n using the historic streamflow 
sequence. T.he price of grain corn was $2.45 
per bushel which is the 1977 price reported 
by Utah AgTicultural Statistics (l~78). 

Economic regret is the difference in the 
value of Bj based on streamflows generated 
wi th model j if model i is the true model. 
Thus economic regret is defined as follows: 

(6.5) 

in which aij = economic regret in dollars for 
model i given that model j is true. Since in 
practice we do not know which model is true, 
or perhaps more accurately, the best repre­
sentation of the annual streamflows, it is 
useful to calculate a total economic regret 
by assuming that each alternative model and 
the historic sequence is true, as follows: 

m 
L (B 0 B

Jo
) 

j=l 1. 

(6.6) 

in which 

Ri '" total economic regret for model i 
in dollars 

m number of alternative models 
including the historic sequence 

The Dij are summed algebraically and thus 
Ri can be positive or negative. It follows 
that the most desirable model, based on this 
criterion, is the one that minimizes the 
value of Ri. 



CHAPTER 7 

MODEL CHOICE FOR STUDY STREAMS 

Introduction 

In following the systematic modeling 
approach outlined in Figure 1.1 the second 
step, choice of model type, was omitted so 
that the performance of each model could be 
evaluated as a basis for develop ing a model 
choice strategy. Therefore, all five annual 
models (AR2, ARMA, AMAK, FFGN, and BKL) were 
calibrated to the four study streams (Beaver, 
Blacksmith Fork, Logan, and Weber). This 
chapter contains an evaluation of the perfor­
man~e of the annual models and a proposed 
model choice strategy. For each study 
stream, the performance of the annual models 
is evaluated in terms of the following: the 
preservation of the persistence statistics 
(p (1) and K) for annual streamflows; the 
preservation of seasonal crossing properties; 
the cost and ease of model use; a comparison 
of reservoir capacity and cri tical drought 
design parameters; and minimizing economic 
regret associated with drought-related 
agricultural losses. A propQsed model 
choice strategy is given for the annual 
models based on the p (1) and K values esti­
mated from the historic streamflow record. 

Evaluation of Annual Performance 

The calibration of each annual model to 
the four streams was described in Chapter 4 
along with a comparison of the historic and 
generated values of the persistence statis­
tics p(l) and K. In Chapter 4 the presenta­
t ion was ordered by model type. In this 
section the ability of the five models to 
preserve the annual streamflow statistics 
will be ordered by study stream. A summary 
comparison of the historic and generated 
annual statistics is included in Table 
7.1. The match between historical and 
generated ser ies was comp ared by Type B 
resemblance, wherein the models were used to 
generate 50 series of N years length which is 
equal to that of the historical record. The 
lag-one serial correlation and Hurst coeffi­
cients were calculated for each series. Then 
the mean and standard deviations of both 
coefficients over the 50 series were calcu­
lated. The means are shown in column 2 and 
4, and the standard deviations are shown in 
columns 3 and 5 of Table 7.1. From column 1 
of Table 1.1 it will be observed that the 
coefficient of variation of the annual 
streamflows was preserved exactly in every 
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case as would be expected with the generation 
procedures described in Chapter 4. 

Beaver River 

A comparison of the p(1)-K persistence 
statistics preserved by the annual models of 
the Beaver streamflows is shown in Figure 7.1 
along with the boundaries of the feasible 
regions for the ARMA, AMAK and FFGN models. 
The unbiased p(1) is included for a compari­
son with the generated p(1) statistics which 
in some cases provided a closer fit to the 
unbiased estimate. For the Beaver River the 
unbiased p(l)-K point lies just outside the 
feasible region for the AMAK model and both 
the biased and unbiased p(l) -K pOints are 
outside t'he FFGN feasible region (see Figure 
7 • 1) • As w 0 u Id . bee x pee ted the p ( 1 ) - K 
values preserved by each model lie within the 
feasible region for that model. The ARMA, 
AMAK, and BKL models grouped fairly closely 
around the historic estimates. The FFGN 
model was the only one to overestimate ~1) 
while the ARMA model was the only one to 
overestimate the Hurst coefficient although 
not by much. It also underestimated p(l) 
because fit of p(l) was sacrificed to improve 
fit of K (see Figure 7.1). As would be 
expected the AR2 model underest imated K. 
Therefore, the best fitting models of the 
Beaver based on the minimum total deviation 
of the values of p(l) and K preserved from 
their historic 'values are first the ARMA 
model with the AMAK ranked second. The 
ranking of the models in terms of preserving 
the persistence .statistics using the criteri­
on given in Equation 2.18 is: FFGN and then 
ARMA, see Table 7.2. 

Blacksmith Fork 

Figure 7.2 shows that the historic 
p(l)-K value is within the feasible region 
for all models. All models fit the persis­
tence statistics quite well. The closest 
model to the historic persistence statistics 
is the AMAK model with equal weighting and 
the FFGN model based on the unequal weighting 
based on Equation 2.18; the second closest 
model is the BKL for both the equal weighting 
and unequal weighting cases. The historic 
Hurst coefficient was well preserved by the 
AR2 model probably because of the high value 
of p(l). This relationship was described by 
O'Connell (1974) for the AR1 model and can be 
expected to be similar for AR2. 
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Table 7.1. Overall summary of model results. 

Stream 

Beaver 

Blacksmith 
Fork 

Logan 

Weber 

Column No. 

Model' 

Historical 
AR2 
ARMA 
AMAK 
FFGN 
BKL 

Historical 
AR2 
ARMA 
AMAK 
FFGN 
BKL 

Historical 
AR2 
ARMA 
AMAK 
FFGN 
BKL 

Historical 
AR2 
ARMA 
AMAK 
FFGN 
BKL 

ctT l 

0.35 
0.35 
0.35 
0.35 
0.35 
0.35 

0.34 
0.34 
0.34 
0.34 
0.34 
0.34 

0.26 
0.26 
0.26 
0.26 
0.26 
0.26 

0.29 
0.29 
0.29 
0.29 
0.29 
0.29 

(1) 

Annual Statistics 

p(I)2 P(I)3 R4 

0.24 
,0.19 

0.20 
0.23 
0.33 
0.24 

0.49 
0.43 
0.49 
0.46 
0.44 
0.48 

0.32 
0.26 
0.28 
0.30 
0.34 
0.24 

0.27 
0.22 
0.30 
0.27 
0.33 
0.28 

(2) 

0.09 
0.15 
0.15 
0.13 
0.11 

0.11 
0.16 
0.12 
0.10 
0.12 

0.1I 
0.13 
0.12 
0.15 
0.13 

0.10 
0.16 
0.12 
0.12 
0.13 

(3) 

0.76 
0.66 
0.78 
0.73 
0.75 
0.72 

0.77 
0.74 
0.84 
0.80 
0.78 
0.76 

0.72 
0.68 
0.74 
0.72 
0.74 
0.72 

0.78 
0.69 
0.80 
0.77 
0.74 
0.75 

(4) 

R5 

0.06 
0.07 
0.08 
0.07 
0.08 

0.07 
0.06 
0.07 
0.06 
0.07 

0.07 
0.07 
0.06 
0.07 
0.07 

0.07 
0.07 
0.06 
0.07 
0.06 

(5) 

Demand 

D*6 

0.49 
0.49 
0.49 
0.49 
0.49 
0.49 

0.71 
0.71 
0.71 
0.71 
0.71 
0.71 

0.84 
0.84 
0.84 
0.84 
0.84 
0.84 

0.45 
0.45 
0.45 
0.45 
0.45 
0.45 

(6) 

Irrigation Season 
Statistics 

48 
46.68 
46.48 
46.64 
47.06 
46.22 

46 
41.86 
41.52 
42.20 
41.82 
42.30 

59 
61.10 
61.28 
61.26 
60.84 
60.78 

60 
58.48 

, 57.78 
57.94 
57.50 
58.38 

(7) 

E(RL)8 E(RS)9 

2.15 
2.33 
2.35 
2.35 
2.32 
2.32 

2.02 
2.02 
2.03 
2.02 
2.01 
2.01 

2.17 
2.13 
2.13 
2.17 
2.16 
2.18 

2.08 
1.94 
1.96 
1. 94 
1. 95 
1. 95 

(8) 

0.14 
0.14 
0.14 
0.14 
0.13 
0.13 

0.14 
0.15 
0.15 
0.15 
0.15 
0.15 

0.22 
0.21 
0.21 
0.21 
0.21 
0.21 

0.08 
0.09 
0.09 
0.09 
0.09 
0.09 

(9) 

~Expected value of coefficient of variation of annual streamflow volumes 
3Expected value of annual lag-one autocorrelation coefficient 
4Standard deviation of lag-one autocorrelation coefficient 
5Expected value of Hurst coefficient 
6Standard deviation of Hurst coefficient 

Design Parameters 

Reliabil­
ity of 

Reservoir Historic 
Ttl design I' storage Critical 

E
o a. capacity - estimate drought 13 

conorru8 12 
Regret 1 S* 

5,100 
-4,500 

-900 
6,900 

-8,100 

-17,700 
-15,900 

13,500 
-1,500 

-900 

-35,000 
-41,000 

31,000 
-11,000 

7,000 

-52,000 
-64,000 
-70,000 

-100,000 
-46,000 

(10) 

(0.58) (0.36) 
1.08 45 0.97 
1.24 41 0.98 
1.17 50 0.96 
1.15 48 0.86 
1.05 49 0.89 

(0.59) 
2.16 
2.79 
2.36 
2.04 
1. 93 

(0.60) 
1. 29 
1.46 
1.60 
1. 31 
1.46 

(0.30) 
0.53 
0.53 
0.51 
0.49 
0.49 

(1 I) 

14 
13 
13 
19 
14 

12 
13 
16 
20 
15 

17 
14 
14 
14 
16 

(12) 

(0.38) 
1.19 
1. 57 
1.31 
1. 15 
1.08 

(0.55) 
0.85 
0.88 
1. 02 
0.81 
0.83 

(0.30) 
0.48 
0.49 
0.49 
0.49 
0.49 

(13) 

Probability 
of non­

exceedance 
of historic 

critical 
drought 

7 
12 
16 

6 
9 

15 
20 
23 
17 
14 

24 
14 
27 
29 
22 

9 
10 
13 
19 
17 

(14) 

7Seasonal demand divided by mean seasonal diversions (see Table 6.2) (James, Bowles, and Kottegoda 1980) 
Expected number of down crossings or droughts in the synthetic sequences with length equal to the historic record at seasonal demand level 

8in column 6 
9Expected, seasonal negative run lengths with ,respect to demand level in column 6 

Expected seasonal negative run sum divided by mean seasonal diversion with respect to demand level in column 6 
f~EconOmiC regret calculation in Table 7.3 (James, Bowles, and Kottegoda 1980) 

Reservoir design capacity divided by average seasonal diversion at 98 percent reliability for each model. Note that for historic case 
12reservoir storage is based on streamflow record and with estimates of its reliability given in column 12 
13Percent reliability of reservoir estimated from historic record 

Critical drought (maximum negative run sum) based on 98% probability of nonexceedance divided by average seasonal diversion for each model. 
14Note that for historic case critical drought is based on streamflow record and with estimates of its reliability given in COlU~l 13 

Probability of nonexceedance of historic critical drought (maximum nellative run sum) 
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Figure 7.1. Comparison of historic and generated p(1)-K values for Beaver River. 

Logan River 

Referring to Figure 7.3, the historic 
lag-one autocorrelation and Hurst coeffi­
cients are within the feasible region for all 
the models. The Hurst coefficient for the 
Logan streamflows is 0.72, which is the 
average value found by Hurst. At this value 
both the Hand K estimation of h are approxi­
mately unbiased (Wallis and Matalas 1970). 
Results for all the models grouped closely 
around the historic values. Based on equal 
weighting the ARMA model is closest, because 
the overestimate in K offset the underesti­
mate inp(l), and for unequal weighting, 
Equation 2.18, the AMAK model is closest. 
The second closest models are AMAK for equal 
weighting and the BKL for unequal weighting, 
although it should be noted that the BKL 
preserved the worst lag-one autocorrelation 
coefficient fit, but this was discounted 
by the unequal weighting. 

Weber River 

Referring to Figure 7.4, the Weber 
histotic lag-one autocorrelation' and Hurst 
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coefficients are outside the feasible region 
for the FFGN model in the biased case and 
outside the feasible region for the AMAK 
model in the unbiased case. The closest 
fitting model in terms of p(1)-K preservation 
is the AMAK regardless of the weight ing 
factor, while the second closest model is the 
FFGN for equal weighting and the ARMA for 
unequal weighting. 

Summary 

Figures 7.5 and 7.6, which provide a 
graphical comparison of the preservation of 
the lag-one autocorrelation and Hurst coeffi­
cients for each stream, show that the preser­
vation was generally good for the FFGN mocrel 
or the FGN approximations (i.e. ARMA, AMAK, 
BKL) but poor for the AR2 model. The models 
tended to underestimate the biased lag-one 
autocorrelation (see Figure 7.5), possibly 
due to the small number of traces (O'Connell 
1974). For the Hurst coefficient (see Figure 
7.,6) all models except ARMA underestimated K 
for the Beaver and Weber streamflows, because 
the p(l)-K points for these two streams were 
outside of the feasible region. For the 



Table 7.2. Ranking of models by alternative model choice criteria. 

Stream Criterion for ranking 

Persistence Statistics: p{l) - K Total 
Economic 

Regret 

Equal weighting Unequal weighting Minimum Min (~p(l) + ~K) Min (0.15 ~p(l) + bK) 

~ 

1st ARMA 

2nd AMAK 

Blacksmith Fork 

1st AMAK 

2nd BKL 

Logan 

1st ARMA 

2nd AMAK 

~ 

1st AMAK 

2nd FFGN 

Blacksmith and Logan the generatep values of 
the Hurst coefficient were distributed 
above and below the historic values. In all 
cases the ARMA model gives the highest 
average estimate for the Hurst cOl'lfficient, 
providing the closest fit for Beaver and 
Weber. The lower lag-one autocorrelation 
coefficients for Beaver and Blacksmith were 
generally preserved better than the higher 
values. For the Hurst coefficient the best 
fit was for Logan which has an historic Hurst 
coefficient of 0.72 which is in the known 
unbiased range. As would be expected the 
AR2 model did poorly in preserving the Hurst 
coefficient. The BKL model consistently 
underestimated the Hurst coefficient for all 
the streams except Logan, but the historic 
value of the Hurst coefficient was always 
within one standard deviation of the average 
generated value. With the exception of the 
BKL model for the Beaver and Weber the AR2 
and BKL models underestimated the lag-one 
autocorrelation coefficient. In most cases 
the models preserved the lag-one auto­
correlation and Hurst coefficients within one 
standard deviation (see Table 7.1 for values 
of p(l) and K). The exceptions were: the 
AR2 Hurst coefficient for the Beaver, the 
ARMA Hurst coefficient for the Blacksmith 
Fork, and the AR2 Hurst coefficient for the 
Weber. However, for all of these exceptions 
the generated values were within two standard 
deviations of the historic values. 
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FFGN AMAK 

ARMA ARMA 

FFGN EKL 

BKL FFGN 

AMAK BKL 

BKL FFGN 

AMAK BKL 

ARMA AR2 

The foregoing discussion has related to 
model performance with respect to preserving 
either p(1) or K separately. In Table 7.2 
the ranking of models by the persistence 
statistics criterion provides a means of 
evaluating the model performance with respect 
to preserving p(l) and K simultaneously. In 
neither the equal or unequal weighting 
case is any model consistently ranked first 
or second for all four study streams. 
However, the AMAK model is ranked either 
first or second for all but one of the two 
weighting cases for the three streams, and 
therefore the AMAK models is judged the 
overall best based on its ability to preserve 
p(l) and K. The ARM A model is judged the 
second best overall model. Several limita­
tions should be borne in mind with regard to 
the generality of this assessment of the 
performance of the AMAK and ARMA models. It 
cannot be concluded that they are the best 
models for any stream as can be seen from the 
fact that AMAK i~ ranked first in only 50 
percent of the study cases and ARMA in 
only 25 percent of the cases. The general 
applicability of these models to a wide range 
of streamflow sequences has not been demon­
strated in this study or elsewhere at this 
time. It should also be noted that there is 
a . subjective element in the calibration of 
the AMAK and ARMA models, and this study has 
nO.t addressed the influence of this sub­
jective element on the high ranking of the 
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Figure 7.2. Comparison of historic and generated p(l)-K values for Blacksmith Fork River. 

AMAK and ARMA models. The five annual models 
were not evaluated based on their preserva­
tion of serial correlations greater than 
lag-one and therefore no conclusions can be 
made with regard to their ability to preserve 
the general autocorrelation structure of the 
historic streamflow time series. 

Evaluation of Seasonal Performance 

A summary of the historic and generated 
irrigation season statistics is included in 
Tab1e 7.1. The irrigation season statistics 
are'? E (NO), the expected number of down 
crossings or droughts in the ~Jyear synthetic 
sequences, E(RL) , the expected negative run 
length or drought duration in months and 
E(RS), the expected negative run sum or 
drought severity and they are contained in 
columns 7, 8, and 9 respectively. These 
statistics are drought crossing properties 
wi til respect to a crossing level defined by 
the agricultural demand (see column 6, Table 
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7.1) or irrigation requirements (see Table 
6.2) which is assumed to be during the 
irrigation season. There is very little 
varL'8tion in the generated values of the 
three irrigation season statistics between 
models for the same study stream. For all 
streams except Logan the E(ND) are slightly 
less than the historic number of droughts. 
The E(RL) for the Beaver "are a little greater 
than historic RL, for the Blacksmith and 
Logan the E(ND) are approximately equal to 
their respective historic RL values, and for 
Weber E(ND) are a little less than the 
historic RL. The E(RS) for the Beaver are 
approximately equal to historic, for the 
Blacksmith and Weber the E(RS) are slightly 
greater than historic, and for the Logan the 
E(RS) are slightly less than historic. Thus 
the drought crossing properties do not appear 
to be very sensitive to either the choice of 
the annual model or the values of the lag-one 
autocorrelation and Hurst coefficients which 
are preserved. 
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Figure 7.3. Comparison of historic and generated p(l)-K values for Logan River. 

Evaluation by Cost and Ease of Use 

In addition to the adequacy of the 
performance of the annual models the cost and 
ease of their use must be considered when 
selecting a model. Table 7.3 contains a 
comparison of several measures of the cost 
and ease of use of the five annual models. 
The AR2, ARMA, and AMAK models are the least 
expensive to run and the FFGN is the most 
expensive, costing almost six times as much 
as the AR2. The level of effort required for 
parameter estimation varies from model 
to model and was described in Chapter 4. 
Most time consuming in this regard are the 
BKL model and AMAK models which require the 
use of separate programs for the estimation 
of model-specific parameters beyond the usual 
statistical moments and Hurst coefficient. 
Parameter estimation for the ARMA model can 
also require a moderate level of effort 
if values for cP and 0 interpolated from 
O'Connell's (1974) tables are refined through 
Monte Carlo simulation for the sequence 
length and number of traces to be used in a 
particular application. 
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Comparison of Design Parameters 

Two design parameters have been calcu­
lated based on the monthly flow volumes 
obtained by disaggregating the annual syn­
thetic streamflow sequences generated by the 
five annual models. These parameters are a 
reservoir design capacity and a critical 
drought volume. 

The reservoir design capacity associated 
with a particular reliability of supply is 
obtained from a probability distribution 
of reservoir storage volumes which are 
required to completely satisfy the irrigation 
water requirements for a hypothetical agri­
cultural system described in Chapter 6. The 
reservoir storage volumes are obtained from 
applying the sequent peak algorithm to each 
of the 50 synthetic sequences. Burges and 
Linsley (Y971) showed that reservoi r storage 
volumes obtained from the sequent peak 
aigorithm applied to a large number of 
streamflow sequences generated by a first­
order autoregressive model approximately 
follow an extreme value type I (or Gumbel) 
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Figure 7.4. Comparison of historic and generated p(l)-K values for Weber River. 

probability distribution. Therefore, the 
reservoir storage volumes obtained in this 
study have been fitted to the Gumbel distri­
bution. Burges and Lettenmaier (1977) have 
suggested that a safe practical design level 
of reservoir reliability is 98 percent; or 
equivalently a 2 percent or 1 in 50 year 
chance that the reservoir will fail to supply 
the required water. The 98 percent level of 
reliability has also been adopted in this 
study although it is recognized that differ­
ent levels of reliability might be justified 
for different types of water use. For 
example, the 98 percent reliability may be 
too low for a cooling water supply for a 
nuclear reactor, but it might be unjusti­
fiably high for water used exclusively for 
recreational purposes. 

Distributions of reservoir storage 
volumes for the study streams are presented 
in Figures 7.7-7.10. The plotted values of 
storage are denoted S* and are dimension­
less storage ratios obtained by dividing 
the storage volumes by the mean irrigation 
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season diversion for each stream given in 
Table 6.2 (column 5). 

To obtain the critical drought volume a 
probability distribution of the largest 
negative run-sums from each of the 50 syn­
thetic traces is plotted. The negative 
run-sums or drought deficits are calculated 
with respect to the monthly irrigation 
requirements given in Table 6.2 for each 
study stream. The critical drought volume, 
C098 is read from the distribution at the 
98 percent probability of nonexceedance. 
Adoption of a 98 percent probability of 
nonexceedance was arbitrary in this case. It 
was found that the run-sums approximately 
followed the extreme value type I distribu­
tion which is not surprising because of 
the close relation of these negative run-sums 
and the reservoir storage volumes; both are 
range statistics. The distributions of the 
largest negative run-sums or largest drought 
deficits are presented in Figures 7.7-7.10. 
Plotted values of the drought deficits are 
denoted CO* and are dimensionless drought 
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Table 7.3. Comparison of cost and ease of use of annual streamflow models. 

Model 

AR2 ARMA AMAK FFGN BKL 

Lines of programming 38 40 42 114 115 

Core storage (words) 8,568 8,554 8,724 14,106 11,028 

Typical run time (sees) 18 19 27 105 45 

Typical run $0.90 $0.95 $1.35 $5.25 $2.25 

Level of effort in Minimal to 
parameter estimation Minimal Minimal Moderate Minimal Moderate 

run cost for generating 50 synthetic sequences approximately 65 years long. 
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Figure 7.7. Distribution of design parameters S* and CD* for Beaver River. 

ratios obtained by dividing the drought 
deficits by the mean irrigation season 
dIversion for each stream given in Table 6.2 
(column 5). 

The plotted distributions of S* and CD* 
were obtained by the frequency factor ap­
proach of Chow (1951). This approach to 
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fitting the extreme value distribution to S* 
and CD* is considered preferable to the 
probability plotting approach because it 
eliminates the need for individual judgment 
and the possibility of personal bias. But 
this advantage can also be described as a 
disadvantage because the frequency factor 
procedure incorporates all data whereas the 
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plotting approach allows the analyst to 
ignore obvious outliers in order to get a 
better fitting curve. 

Values of S§8 and CD~8 obtained from 
Figures 7.7-7.10 are given in Table 7.1, 
columns 11 and 13, respectively. An examina­
tion of the ranking of these values reveals a 
fairly consistent trend which is similar for 
both design parameters in all study streams. 
The ARMA and AMAK models give the largest or 
most conservative values, the FFGN and BKL 
models the smallest or least conservative 
values, and the AR2 model generally gives 
values which lie in between those from the 
other models. It is interesting to note that 
since the ARMA and AMAK models were judged 
overall best in preserving the persistence 
statistics, the conservative estimates of the 
design parameters might be the ones that 
should be considered the most reliable. 

Also presented in Table 7.1 in the rows 
labeled "Historical" are the reservoir 
design capacity and largest negative run-sum 
obtained from the historical streamflow 
records (columns 11 and 13, respectively). 
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Comparison of these values with the values 
obtained from the synthetic sequences indi­
cates that the historical values are much 
smaller in all cases This result refutes 
the results of some earlier workers in 
operational hydrology who were unable to 
generate more severe deficits than those 
obtained historically (e.g. Askew, Yeh, and 
Hall 1971). Another way of illustrating this 
same point is by obtaining the probability of 
nonexceedance (reliability for S*) for S* 
and CD* from Figures 7.7-7.10. These prob­
abilities are given for each stream in 
columns 12 and 14 of Table 7.1 based on each 
model. In all cases the probabilities are 
much less than the 98 percent values of the 
design parameters. In all cases the historic 
values of the design parameter are less than 
the mean of the distributions of these 
parameters obtained from the stochastic 
generation. 

The values of reservoir storage, S*, 
must be greater than or equal the values of 
drought deficit, CD*, so that the drought 
deficit can be met from storage. The degree 
to which S* exceeded CD* varies from stream 
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to stream as can be seen by comparing the 
difference in location of the distributions 
of the two distributions in Figures 7.7-7.10. 
For the Blacksmith Fork and Logan Rivers 
which have the largest values of the dimen­
sionless demand, 0* (mean seasonal demand 
divided by mean seasonal diversion) the 
difference is greatest since there is a 
greater tendency to need carry-over storage 
after a drought to satisfy a shortage in the 
following year. The difference in the 
distributions of S* and CO* is also affected 
by the level of persistence in the stream­
flows. Hence, Logan, which has lower values 
of p(l) and K has smaller differences between 
the distributions of S* and CO* than does 
Blacksmith Fork which has higher values of 
p(l) and K. The effect of the lower persis­
tence statistics for the Logan appears to 
of Eset the affect of its slightly higher 0* 
in this case. Beaver and Weber Rivers have 
lower values of 0* and hence the distri­
butions of S* and CO* are closer together 
and are almost identical for the Weber which 
has the lowest value of 0* and a low p(l). 

Evaluation by Economic Regret 

The average annual economic benefit from 
the annual series of crop yields was computed 
with each model for each stream using the 
crop production function described in Chapter 
6. The crop production function was most 
sensitive to streamflow shortages during 
the critical pollination growth stage in that 
any water deficiency during the critical 
period resulted in a lower yield. For grain 
corn the critical month is July. Thus, 
prolonged low flows generated by the sto­
chastic models would result in a lower crop 
yield as well as longer run lengths and 
larger run sums. 

The estimate of the average annual 
economic benefit from crop yield was the 
basis for the calculation of economic regret. 
The total economic regret associated with the 
selection of each model was calculated USing 
Equation 6.5. Table 7.4 contains the calcu­
lation of total economic regret for each 
model applied to the four study streams. 

Table 7.4. Economic regreta in dollars per year for the study streams. 

Stream 

Beaver 

Blacksmith Fork 

Logan 

Weber 

Model 
assumed to 

be true 

Historic 
AR2 
ARMA 
AMAK 
FFGN 
BKL 

Total regret 

Historic 
AR2 
ARMA 
AMAK 
FFGN 
BRL 

Total regret 

Historic 
AR2 
ARMA 
AMAK 
FFGN 
BKL 

Total regret 

Historic 
AR2 
ARMA 
AMAK 
FFGN 
BRL 

Total regret 

AR2 

-2,800 
o 

-100 
-700 

-2,000 
500 

5,100 

-6,400 
o 

-300 
-5,200 
-2,700 
-3,100 

-17,700 

-14,000 
o 

1,000 
11,000 
4,000 

-7,000 

-35,000 

-64,000 
o 

2,000 
3,000 
8,000 

-1,000 

-52,000 

aEconomic regret calculated using Equation 6.5. 
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Model used to calculate benefits. 

ARMA 

-2,700 
100 

o 
-600 

-1,900 
600 

-4,500 

-6,100 
300 

o 
-4,900 
-2,400 
-2,800 

-15,900 

-15,000 
-1,000 

o 
-12,000 
-5,000 
-8,000 

-41,000 

-66,000 
-2,000 

o 
1,000 
6,000 

-3,000 

-64,000 

AMAK 

-2,100 
700 
600 

o 
-1,300 

1,200 

-900 

-1,200 
5,200 
4,900 

o 
2,500 
2,100 

13,500 

-3,000 
11,000 
12,000 

o 
7,000 
4,000 

31,000 

-67,000 
-3,000 
-1,000 

o 
5,000 

-4,000 

-70,000 

FFGN 

-800 
2,000 
1,900 
1,300 

o 
2,500 

6,900 

-3,700 
2,700 
2,400 

-2,500 
o 

-400 

-1,500 

-10,000 
4,000 
5,000 

-7,000 
o 

-3,000 

-11,000 

-72,000 
-8,000 
-6,000 
-5,000 

o 
-9,000 

-100,000 

BKL 

-3,300 
500 

-600 
-1,200 
-2,500 

o 

-8,100 

-3,300 
3,100 
2,800 

-2,100 
400 

o 

-900 

-7,000 
7,000 
8,000 

-4,000 
3,000 

o 

7,000 

-63,000 
1,000 
3,000 
4,000 
9,000 

o 

-46,000 



For each stream the two models with the 
lowest total economic regret are listed in 
Table 7.2 together with the two models which 
result in the smallest deviations between the 
h istor ic and generated values of p(l) and K 
based on equal and unequal weighting of the 
deviations. The BKL model minimizes economic 
regret for all streams except the Beaver and 
is clearly the overall best model with 
respect to the regret criterion. The FFGN 
model appears to be the overall second best 
model. It is observed that for the Beaver 
the ARMA model was ranked first or second by 
all three criteria and for Blacksmith 
Fork the FFGN model was similarly placed. 
Also for three out of four of the study 
streams the same model is ranked first or 
second by the economic regret and by at least 
one of the persistence statistics criteria. 
Although the BKL model is ranked first for 
three out of four of the study streams based 
on economic regret it appears only once in 
second place based on the persistence statis­
tics criterion. In fact the economic regret 
and persistence statistics criteria did 
not select any of the same overall best 
models. This implies that the objective of 
preserving the persistence statistics is not 
compatible with the objective of minimizing 
economic regret for the study streams. 
I t should be noted that this conclusion is 
subject to the saine limitations with respect 
to its generality as were discussed in the 
summary of the section on "Evaluation 0,£ 
Annual Performance." The low estimates of 
regret obtained from the BKL and FFGN models 
result from the tendency of these models to 
generate droughts with severities of magni­
tudes inbetween those generated by the 
other models. It should be noted that this 
property does not conflict with the fact that 
the BKL and FFGN models gave the smallest 
values of S98 and CD98 since these are 
extreme value statistics and economic regret 
is not. 

A Model Choice Strategy 

A decision regarding which stochastic 
streamflow model to choose for data genera­
t ion should consider the following factors: 

1) Ability to preserve relevant statis­
tical characteristics of the histor­
ic streamflow time series. 

2) Cost of USing the technique measured 
in terms of computer costs and labor 
costs for calibration. 

3) Economic regret resulting from the 
use of inaccurate design parameters 
obtained. 

The work completed in this study has con­
s idered each of the above factors but only 
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for a very limited sample of four Utah 
streams. Thus, it is not possible to formu­
late a very generalized model choice strategy 
based only on this study. In addition, 
economic regret will vary so much for differ­
ent uses of synthetic sequences that it is 
not possible to include it in a generalized 
mo del c ho ice s t I' ate g y • The I' e for e, the 
proposed model choice strategy will consider 
only the first two factors and is also based 
on the work of other researchers in order to 
broaden its applicability. To the extent 
that the proposed model choice strategy is 
based on work reported herein it assumes that 
preservation of p(l) and K, and not the 
entire autocorrelation structure, is the 
goal of the analyst. 

The proposed model choice strategy is 
limi ted to the selection of a univariate 
annual stochastic streamflow model. For 
annual models the model choice is based on 
the p(l)-K values estimated from the historic 
record and the feasible regions for each of 
the five models considered in this study. 
Figure 7.11 contains the recommended initial 
model choice for each p(l)-K combination and 
covers the usual range of values for these 
persistence statistics. Where feasible 
regions for different models overlap, selec­
t ion of the recommended model was based on 
the ranking with respect to the preservation 
of persistence statistics a'nd the cost and 
ease of use. 

Hoshi, Burges, and Yamaoka (1978) showed 
that there was little advantage to using a 
long-term persistence model (Le. ARMA, Af'lAK, 
FFGN, or BKL) if the value of K is less than 
0.7. This result applies throughout the 
usual range of p(l) values found in stream­
flows, that is p(l) less than 0.6, and 
therefore the AR2 model is recommended for 
K less than 0.7 (see Figure 7.11). The 
feasible range of the FFGN model for K 
greater than 0.7 is completely covered by 
either the AMAK or ARMA models. Since these 
models are less expensive to run and were 
shown in this study to be more effective at 
preserving p(l) and K than FFGN, the FFGN 
model is not included as a recommended model 
in Figure 7.11. The AMAK model is recom­
mended over the ARMA model because of its 
superior performance in preserving the 
persistence statistics. Since there are no 
other choices below the lower boundary 
of that ARMA feasible region the BKL model is 
recommended in the region. 

Based on Figure 7.11 the AMAK model 
would be selected for all the study streams. 
Since the AMAK model is ranked first or 
second in Table 7.2 in all but one of the 
cases using the persistence statistics 
criteria, this would be an acceptable choice. 
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CHAPTER 8 

SUI'IMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Summary 

The purpose of this study was to perform 
'n operational comparison of five annual 
~tocrastic streamflow models and to develop a 
strategy for model selection. Each stochas­
tie model was applied to four Utah streams 
which were selected at locations above which 
little development has taken place. The 
annual models used were: second order 
autoregressive (AR2) , autoregressive moving­
average (AkI'JA), ARMA-Markov (AMAK), fast 
(ractional Gaussian noise (FFGN), and broken 
line (HKL). In applying these models to the 
study streams a systematic modeling procedure 
was utilized, comprising the following five 
steps: 1) identification of water resource 
system and model composition, 2) choice of 
model type, 3) identification of model form, 
4) parameter estimation, and 5) model perfor­
mance evaluation (see Figure 1.1). Step 1 
typically involves decisions about the 
structure of a water resources simulation 
model, its inputs, state variables, outputs, 
temporal ana spatial resolution, etc., 
needed to provide the required information 
for problem resolution. In this study step 1 
i nvol ved a statement of the research objec­
tive in Chapter 1, a brief description of the 
four streamflow gaging sites in Chapter 3, 
and the recognition of the need for uni­
variate model structure with disaggregation 
to monthly flows ,to. be generated during the 
irrigation season. The second step, model 
choice, was omi tted so that all five annual 
models could be applied to all streams and 
operational comparisons made. Based on these 
comparisons a strategy for model choice was 
recommended at the end of Chapter 7. Identi­
fication of model form (step 3) and parameter 
estimation (step 4) are described for the 
annual models in Chapter 4 and for the 
disaggregation models in Chapter 5. One of 
two types of disaggregation models was 
used to divide the generated annual flows 
into monthly flows. These models are the 
Valencia-Shaake (VS) and Mejia-Rousselle (MR) 
models. Step 5. model performance evaluation 
is described in Chapter 7. This step com­
prised an evaluation of the preservation of 
annual persistence statistics and seasonal 
crossing properties, the cost and ease of 
model use, and the magnitude of the economic 
regret associated with drought related 
all-r icultural losses, and a comparison of 
reservoir capacity and critical drought 
design parameters. Agricultural losses 
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were estimated using a crop yield model which 
is described in Chapter 6 together with the 
procedure for calculating economic 
The model choice strategy recommended 
end of Chap ter 7 is based on the p( 1) and K 
values estimated [rom the historic record. 

The following conclusions have been 
developed from the results and experience 
gained during this study: 

1. The AMAK and ARMA models were judged 
best in terms of preserving the lag one 
autocorrelation and Hurst coefficients, which 
are measures of the short and long term 
persistence of the streamflow sequences. 

2. The BKL model is judged the overall 
best model in terms of minimizing the econom­
ic regret. However, the BKL model performed 
poorly with reHpect to preserving the persis 
tence statistics and appears to have under­
estimated the design parameters. 

3. As would be expected the AR2 m6del 
does not adequately preserve the'Hurst 
coefficient based on O'Connell (1974) except 
when the lag-one autocorrelation coefficient 
is quite large (e.g. 0.49, see Blacksmith 
Fork) • 

4. All five stochastic models generate 
average design parameters which are greater 
than the values based on historic record. 
The AMAK and ARMA models consistently gave 
the largest values of the design parameters, 
reservoir storage capacity and critical 
drought based on 98 percent probability of 
nonexceedance. 

S. The seasonal cross properties do 
not appear to be very sensi ive to either 
_model choice or the magn i tude of p(l) and 
K. 

6. Comparisons of computer operating 
costs for the five models show that the FFGN 
model is the most expensive to run costing 
approximately six times as much as the AR2 
model. Parameter estimation for the BKL and 
AMAK models requires the most effort by the 
analyst. 

7. The Valencia and Schaake (VS) 
disaggregation model preserves the monthly 



cross-correlations and lag-one autocorrela­
tions as well as the Mejia and Rousselle (MR) 
model. The only justification for using 
the more complicated MR model is to preserve 
lhe over-the-year monthly correlations. In 
many studies the timing of the end of the 
water year can be arranged to fall at a time 
when these serial correlations between months 
in adjacent years are not important opera­
tionally and therefore the VS model is 
suitable for many applications. 

8, The posi tive semidefinite property 
of. the BBT (or EET) matrix for seasonal 
d isaggregat ion model paramete.rs was found to 
be sensitive to the transformation selected 
to remove skew from the historic streamflows, 
nonhomogeneities in the streamflow record, 
and the order m, of ~t for the MR model. 
It was found that different choice of trans­
formation or a slightly changed starting year 
o historic record could change BBl (or 

) from negative to positive semidefinite. 

9, A model choice strategy for se­
lecting an annual stochastic streamflow model 
t,ased on the values of p(l) and K estimated 
from the historic streamflow record. This 
procedure does not necessarily select the 
best model for a particular stream but it 
does select one of the better models and will 
avoid the use of an unnecessarily complex 
model. 

10. An alternative parameter estimation 
procedure for the AMAK model led to parameter 
values which preserved the persistence sta­
t istics better than the Burges and Letten­
maier (1977) method which is based on fitting 
the theoretical autocorrelation fwnction for 
fractional Gaussian noise at three arbitrary 
lags. The alternative procedure was to use 
parameters for the ARMA part of the AMAK 
model which were estimated from O'Connell 
(1974), to use p(l) for the Markov parameter, 
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and to estimate Cl and C2 by trial and error 
subject to the constraint that Cl + C2 = L 

11. An alternative procedure for 
assigning the value of the lag-one auto­
correlation coefficient of the high frequency 
component, p(l)(HF), of the FFGN model was 
found to give better preservation of P(l), 
The alternative procedure was to set p(I)(HF) 
equal to the historic estimate of p(l) 
instead of the conventional procedure of 
calculating it with Equation 4.32. 

Recommendations 

The following recommendations for 
further research are based on the experience 
gained during this study: 

1. The alternative AMAK parameter 
estimation procedure used in the study should 
be compared with the procedure proposed by 
Burges and Lettenmaier (1977) to compare the 
effect of using each procedure on the design 
parameters. 

2. The v.alues of design parameters did 
not appear to be very sensitive to the model 
choice or the magnitudes of the persistence 
statistics for the four study streams. It is 
recommended that the sensitivity of these 
design parameters to a wide range p(l) and K 
values be explored for each model. A sensi-
tivity study of the effects of different 
values of the persistence statistics on the 
model regret should also be conducted. These 
sensitivity studies might provide information 
for improved model choice decisions near the 
boundaries of the feasible regions where the 
choice is between a complicated and a simple 
model because it might be possible to predict 
the effects of preserving slightly changed 
values of the persistence statistics by 
using the simpler model. 
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APPENDIX A 

LISTING OF MONTHLY STREAMFLOW DATA 

Table A.I. Monthly streamflow data for Beaver River (ae. ft.) • 

Year Month 
0 N D J F M A M J J A S 

1915 2550 1130 1630 11+30 1260 1670 I+ho 10800 111+00 1+310 22&0 1780 
Ho 1700 1580 1390 1010 1510 2760 6250 13800 9100 1+500 3390 221+0 
17 2~80 1930 1190 1190 11+70 Hol0 ?lno ('760 11600 3970 181J0 1560 
18 1520 12~O 1270 1260 1080 11+~0 '1180 8 .. 20 5680 3230 19:>0 1'170 
19 1730 1500 UOO 1190 972 1360 !'i5~0 U~OO 3810 2150 1530 1 .. 50 
20 1HO 11+10 1190 981+ 886 1010 1690 20000 12700 4390 2560 1710 
21 1780 1510 1090 1250 12"0 2150 2"'0 Ul900 18600 l+a90 2880 2180 
22 1790 1560 11+70 1280 1150 1 .... 0 2180 20800 17300 .. 630 2880 19"0 
23 1630 1520 1520 11+70 1270 1510 3180 19200 10500 5200 26(,0 1810 
21f 1730 1510 1390 1360 1370 1450 "~60 8300 31+60 1680 1220 lOaD 
25 1070 1050 1110 965 972 U .. O :'1810 1:1700 58"0 3890 2300 171+0 
26 191+0 1&90 1520 1290 1220 1730 !'I270 17200 6'+30 2670 1910 1'+90 
27 1'+"0 1280 1320 1320 131+0 1500 3370 10900 5950 3310 2390 1910 
28 1880 2000 1610 1650 15'+0 2180 3550 12900 6 .. 30 3280 2200 1670 
29 1730 1550 1230 1230 1290 1750 2960 11&00 8150 3810 23,+0 2130 
30 1620 1 .. 90 H2O 1230 1090 1'+30 5810 10000 &310 2560 2020 1650 
31 1000 1210 1170 1110 1160 1320 2510 3&20 2080 1260 953 732 
32 1020 809 79' 738 920 1150 3nO 12900 8690 "~60 1750 121f0 
33 1360 1110 1230 15"0 1000 935 1300 5510 13000 3370 1890 1390 
31+ 1380 1250 980 861 980 ll+lO :lSIO 3000 1'+30 111+0 867 1062 
35 825 8157 922 981+ 1000 1190 ~760 71'0 15'+10 3660 1870 1370 
36 1230 1180 1100 1210 1100 uOO ~OOO U230 U360 56'0 3810 2170 
37 1790 1'+'0 1350 1230 1110 1'+60 4920 236"0 lQl5"O '+780 2360 1680 
38 11+50 1380 U50 1120 1010 n20 ,+590 13010 10740 1+200 1990 1"60 
39 1650 1320 1360 1320 11,.0 1750 3720 5680 2790 1730 1330 1340 
'+0 11+30 1100 1010 964 1060 1 .. 80 !'i050 14780 5360 2020 1550 1550 
"1 1 .. 70 1200 1170 1200 1120 1290 1560 207"0 21220 60'+0 3090 2010 
'+2 2110 1920 1710 1660 1380 Hl80 4800 15030 9820 3570 2190 1520 
"3 1500 1350 1260 1210 1300 1680 (;970 ~890 ~820 2280 2200 1"30 .... 1550 1310 1220 1170 1110 1320 2310 11+,00 17010 56'+0 2380 1790 
.. 5 1580 11+80 1310 1310 1200 lIt'+O '''70 12910 9610 5050 2610 1780 
.. 6 1'90 11+70 11+50 U80 12"0 n80 ~220 7'+20 5010 1970 1710 1270 
1+7 1550 1390 1320 '1120 1110 1810 ,+290 la820 9210 ,.590 3240 1980 
'+8 1830 1380 1~00 1180 1090 1250 M30 U230 65"0 2710 1760 1300 
"9 1250 1190 1200 1110 1030 13~0 .... 80 1:13'0 131+50 ,.990 2250 1520 
50 1120 1390 1210 1200 1210 1"10 3030 51+50 3650 1910 1170 95,. 
51 978 10'+0 1010 '891 825 1130 2080 57~0 5280 2070 Ui50 1200 
52 1160 1070 1050 922 952 1220 1+910 2:»'+10 17970 6680 3220 20'+0 
53 1610 1350 1330 1~30 1210 1500 2010 33~0 4940 1920 1560 988 
5 .. 1100 10~0 956 950 940 1110 3~00 ('300 3760 1570 1270 1070 
55 1020 9'+8 922 889 807 1040 1850 5500 4570 2000 1 .. 90 1030 
56 9"~ 902 956 996 91+ .. 1320 2300 7000 5550 3010 1510 1000 
57 1010 950 93B ,ea 891 1080 ~200 7080 22900 7380 33 .. 0 1650 
58 1710 1'+10 1'+50 12'+0 1170 1510 54'+0 17150 12130 6'+50 2200 1860 
59 1520 1380 1190 1160 10"0 1270 :;1030 ~590 1780 101+0 990 801 
60 895 799 121 893 789 1100 $I~30 5820 3000 1210 81+7 900 
61 962 932 873 7'+0 716 1020 2200 4870 2810 1080 1160 U40 
62 10'0 921+ 9'+0 853 833 966 !l070 7880 7030 .. ,+80 1971) 1260 
U 1250 1050 960 807 978 1030 '''00 15710 31+50 1350 1690 1,070 
64 948 954 1167 803 713 835 \700 7530 5~10 3'+50 1560 1050 
65 952 9"'+ 9~0 906 799 916 1850 5~80 9190 6000 3900 1930 
66 1520 1230 11"0 982 890 1220 2810 1.530 26110 1260 911" 893 
67 936 8615 1300 833 801 1090 1380 S200 10920 6640 3160 2080 
68 1550 1210 1160 1010 98 .. lr.!50 ~250 ln410 121+30 52~0 3260 1~90 

69 11+80 1190 1130 1140 9'+B 1170 4120 1&~40 10020 5730 3030 1UO 
70 1670 13'+0 1230 1190 1030 1200 1560 7750 B800 5030 23:>0 a70 
71 11+00 1280 1230 1070 1120 1270 p720 1;220 6360 341+0 1870 132G 
72 1270 111+0 1110 958 895 11+70 1~90 P400 1830 972 773 a .. 7 
73 1190 1040 9'+6 904 789 950 ,070 1!'1480 1If~60 7,80 2B91) 1360 
7'+ 1270 1100 11'+0 11"0 1060 1600 2'+70 R600 5950 1770 1080 '31+0 
75 931+ 1000 921+ n5 827 95,. 1UO !'ill0 91+30 '+360 1760 1230 
76 11~0 962 990 911 873 95&. t~90 5520 2'+90 1210 90& 764 
77 823 758 612 lilS 6n 791 \960 1580 16060 916 72.$ &3b 
78 B17 691+ 623 710 736 1190 '990 9670 15800 .. 360 37~0 1620 
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Table A.2. Monthly streamflow data for Blacksmith Fork River (ac. ft.). 

&150 5~70 4890 5270 4530 7'20 21100 23700 12600 9590 8850 6210 
15 6700 6070 6520 5740 5200 5&50 1>130 1!'o210 5800 50~0 "350 4550 
1& 4970 4760 ~370 4210 42&0 '0800 2'7000 2'800 11500 9350 7<;;30 7390 
17 69!>0 5820 51460 5080 .... 50 5010 13600 41900 25900 14000 11100 9280 
IB 81+80 7500 7010 6270 5780 9840 1,,600 16300 8930 8300 7560 6250 
19 6090 ~1f80 5310 ~880 4520 6030 99~0 10200 6660 5230 1+890 ~750 
2U 4850 ~350 ~130 ~270 3930 4730 9560 35200 13900 9~10 811'.0 7320 
21 7010 6600 6150 5710 5510 11500 17400 41900 20300 12200 10500 92130 
22 B670 7620 7320 6890 ~830 h~O 14000 37900 16400 10600 9780 8~!>0 
23 7870 6960 6950 &640 5180 5850 h900 3A800 14900 11400 9900 8330 
24 81.180 7260 6580 &270 55BO 5B20 12700 14700 7bBO 66~0 5670 5500 
25 55BO 50~0 5070 ~4~0 ~O&O 5960 13400 15700 8930 7070 5510 5&50 
2& 5490 ~880 5070 4840 3B80 5010 10200 7870 5380 5140 ~960 4HO 
27 44&0· 4390 4250 4210 3870 ~'40 12500 20200 10100 6950 64e.0 571+0 
28 5710 5.390 5080 4630 4490 7320 12000 19700 771J0 7010 t:.I+OO 5510 
29 5600 5330 4610 4300 3920 5~90 10~00 20100 9820 7010 6210 5730 
.30 5550 5210 5010 3900 ~220 5020 8570 7870 5860 5320 5~40 ~&70 
31 45~0 3900 3650 3580 3050 3680 3800 ~~80 3500 3070 3090 2B60 
32 2970 3000 3070 3010 2990 ~670 17'00 31900 12000 6360 721!'o0 5730 
33 5590 ~960 ~350 '+050 3530 ~270 726.0 13800 10300 6460 5380 ~720 
314 4590 4250 4030 3730 3260 3820 )11840 3610 2970 2780 2110 2570 
35 2670 27~0 2770 2660 2590 3230 7600 10500 0250 4260 3720 3291) 
3& 3360 3310 3nO 3100 29&0 1+330 2c.170 3~810 10940 7860 6590 5&20 
37 5~70 5220 ~660 ~250 3720 50·60 9590 21910 9470 6920 5730 ·~9&0 
36 50&0 4170 4670 .. 310 3800 6260 15670 16270 1:1910 7020 6140 51400 
39 53~0 5070 ~900 ~280 3600 il~O 9050 7530 5230 14370 3920 3&50 
40 3720 3510 3500 3~90 3220 4HO !\520 !'I~"O 3770 3280 3000 2860 
~1 3020 2680 2910 28~0 2740 3160 )118&0 5130 3430 2970 2820 2590 
'+2 2870 2760 2830 2730 21420 2910 *,750 ~170 ~990 4090 31+20 3160 
43 3200 3270 3370 3530 3380 6030 20690 1~~80 1:1730 6900 6100 5130 
~~ 5060 14540 4330 4080 35150 31560 5530 9190 &530 5340 ~b30 4030 
11-5 4240 4110 3710 3560 3700 4330 5570 11810 12310 7060 61AO 5320 
14& 5240 5060 5060 5000 ~090 8130 33680 22600 12270 9211-0 7960 66"0 
~7 6890 6160 5740 5160 ~700 6~80 CJ360 12540 7280 6330 S7~0 5120 
~8 5270 4790 1+600 ~280 4100 ~a50 12660 2 1!'o87 0 12050 8500 7300 6170 
~9 6090 5720 5250 ~89G 4690 7090 16850 16500 9710 81~0 7~20 6320 
50 6~30 55~0 5330 5970 5~10 7710 2,,760 30760 18770 11770 10100 8'.130 
51 8320 7690 7460 6460 6710 7050 24010 2"060 13990 10920 9810 8390 
52 8020 6950 6630 6050 5330 00&0 24350 37160 16~10 12110 10230 852(1 
53 8150 7150 6670 6510 5510 0~30 AnO 11260 11040 7~70 640U 563U 
514 5~90 5210 5170 5050 II-~OO 5&30 10280 8560 5870 5160 ~720 ~290 
55 '+240 ~010 3910 4070 3610 ~030 7720 151~0 74~0 5710 5160 4590 
56 11-660 "330 6830 7080 5380 7600 20380 lCJ290 10770 8580 73~0 6300 
57 6100 5650. 5460 50~0 5380 6690 ltl~90 20580 13111-0 9100 7730 6760 
51:1 6810 6070 5980 511-80 5320 6200 11120 20760 9211-0 7500 6720 5880 
59 6050 5610 5260 5020 11-390 5650 8650 7890 5850 5070 ~900 4570 
60 147~0 14290 ~060 ~390 3800 6180 10160 CJ680 6260 5110 141450 3890 
61 ~OOO 3900 11-050 3740 3350· 3630 c.360 4610 3500 3130 2870 2800 
62 3240 3050 30~0 3000 ~500 ~130 21930 1!'i820 8350 6520 SSM 5210 
63 14890 ~~60 ~160 3810 5190 ~720 7090 10900 &060 4770 4260 3840 
614 3970 3910 35~0 3580 3090 3110 sOOO 17930 ::1520 6&50 56PO ~a30 
65 4~30 '1150 5530 ~880 5611-0 567.0 19-960 2411-00 13620 9590 8220 7500 
66 69$0 6210 5590 ~980 1I-~!50 6690 1'810 11200 7120 6170 5330 4860 
67 11-920 1+510 4550 '+~30 3870 5750 9850 2~630 1!:>030 92~0 752Q 6730 
68 6810 5780 5660 5230 5060 6110 7960 13880 '3,590 70'+0 6520 5930 
69 6130 5550 53~0 5160 H2O 5640 17160 16260 9160 7760 6bM 5790 
70 5'90 5320 5250 5160 '+600 5200 ~210 1<;170 9030 6920 6200 55~0 
71 5~80 5310 57'+0 7100 6850 9590 2;,550 37730 21060 1MOO 11950 1031(, 
72 9820 8300 797 0 7980 7020 ,6730 27~50 33430 18020 13580 11&10 9&00 
73 9150 78~0 7~'0 6870 5650 6910 1071t0 1961t0 10~10 8500 7500 6880 
7~ 6200 5800 5790 5760 5050 105150 11'1660 27350 H370 10810 S950 7510 
75 7310 6600 6350 5900 ~680 6660 8590 2o;l~0 16111-0 10870 9050 7360 
76 7830 66~0 6080 5830 5520 6830 l!'.24 0 20800 9730 7960 682U 5730 
77 5800 4990 ~910 ~570 3990 4220 4390 ,+690 ~060 3~60 3130 2980 
78 3380 3510 3650 3'+60 3310 7460 16690 17680 9220 6611-0 57BO 5570 
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Table A.3. Monthly streamflow data for Logan River (ae. ft.). 

Year 

1901 
2 
3 
'+ 
5 
6 
7 
8 
9 

10 
11 
12 
13 
1'+ 
15 
16 
11 
16 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
31f 
35 
36 
37 
38 
39 
If 0 
H 
'+2 
!f3 
'+If 
1f5 
'+6 
'+7 
'+8 
'+9 
SO 
:'1 
52 
53 
51f 
S5 
56 
57 
58 
59 
60 
61 
62 
&3 
64 
65 
fol> 
67 
68 
69 
70 
71 
12 
73 
74 
75 
76 
77 
18 

o N D J 

13530.11906.10950.1052 n. 
13340.11480.11060. 7690. 
12300.11070.11060.10660. 
11070.10890. 8600. 5200. 
13890.11'+30.10760. 9650. 
103UO. 8870. 8370. 7470. 

8610. 7450. 8670. 7720. 
16700.13900.12000.10900. 

9530. 7320. 6280. 8880. 
10900.12100. 9220. 7870. 
12800.10100. 8980. 8300. 
11300. 9100. 7070. 6950. 
11800. 9520. 8710. 6210. 
10200. 884 0. 8040. 7730. 
11600. 9620. 7930. 6970. 

8130. 7150. 6470. 6320. 
11300. 9230. 8520. 7290. 
12400. 971f0. 9760. 8100. 
10200. 8640. 8030. 1020. 

8030. 6990. 6670. 61f40. 
11000. 9920. 8510. 7810. 
13200.101f00.l0500. 901>0. 
11800. 9760. 9230. 8900. 
12600.10900. 9360. 8280. 

8140. 7200. 6670. 6190. 
8100. 7690. 7180. 6590. 
7300. 6620. 6220. 6060. 

10600.10200. 8750. 8070. 
9870. 8400. 7530. 7230. 
9990. 8410. 7670. 7020. 
7920. 6570. 6420. 6050. 
4920. 4570. 1f720. 1f670. 

10800. 8960. 7700. 7280. 
6390. 7130. 6660. 5980. 
4560. 41f60. 1f470. 4360. 
7060. 6150. 5480. 5130. 

10430. 8640. 7720. 6740. 
8780. 7700. 7200. 6730. 
9030. 7930. 7400. 6650. 
7030. 5970. 5860. 5'630. 
6060. 5300. 4810. 4590. 
5780. 5210. 5100. 4870. 
6520. 5910. 5510. 542n. 

10160. 8280. 7320. 656n. 
7450. 6500. 5720. 5580. 
9580. 8510. 7790. 7i90. 

101f30. 8870. 8130. 7050. 
8890. 7630. 7070. 651n. 
9860. 8480. 7700. 6990. 

10480. 8060. 7450. 7660. 
1256U.ll0'+0. 9880. 8570. 
11560. 9720. 8710. 7900. 
10580. 8980. 8280. 7830. 

9160. 811f0. 7260. 6830. 
6640. 6000. 5460. 5320. 
7370. 61f90. 8860. 8010. 
8870. 161f0. 7130. 6530. 
9740. 8260. 7630. 6730. 
8580. 7690. 7060. 6270. 
81f50. 7030. 6360. 5910. 
711f0. 6580. 5930. 5580. 
5350. 4900. 1f780. ~580. 
9080. 7640. 6620. 5820. 
7600. 6710. 6000. 5510. 
8600. 7480. 8100. 7550. 

11660. 9650. 8510. 7610. 
71f20. 6740. 6370. 6320. 

10300. 8750. 7690. 6960. 
9720. 8600. 7960. 7670. 
8850. 7330. 6820. 6680. 
8800. 8600. 8170. 9150. 

13930.11380. 9870. 9390. 
12560.10630. 93~0. 8220. 

821f0. 7610. 7050. 6710. 
10350. 81f90. 71f'0. 6930. 
11450. 9480. 8730. 7730. 
9600. 7'80. 7000. 6520. 
41~0. 4460. 4730. ~450. 

Month 
F M A M J J AS 

9280.10330.15230.57860. lf l090.22190.17830.11f690 
7770. 8610.11900.36360.57910.191f50.151 3 0.12380 
9590.10760.15030.31820.51f680.2A060.1894C.15000 
9200.18750.22020.561~0.57180.34010.21210.1b320 
8110. 9770.11420.24170.33970.19860.15430.11780 
6260. 6850.16400.47200.51f000.29300.16~00.10800 
9400.15900.39600.721f00.96500.5R100.29400.19800 
9030. 901f0.11f900.21f500.44100.25000.14500. 9520 
5970. 7390.24700.63600. 98300.00500.28900.15100 
5400.17900.41300.73800.47200. 24100.18100.13000 
931f0.l0700.22800.63500.77100.32100.16900.121QO 
7310, 8790.16000.54600.91f900.46500.19600.11f900 
7420. 9800.21400.378GO.28500.18100.13400.11100 
6680. 9250.23000.573UO.481f00.23800.15300.1260U 
6200, 1160.15100.20200.21100.12500. 9650. 81f40 
6290.12000.25800.1f61UO.1f8400.29600.16500.12200 
6160. 6850.11900.37200.59900._0 500.20200.14900 
7020.10900.17300.31f900.lfl100.18700.13600.10600 
6340. 7450.12700.39000.24100.12700. 9830. 8040 
6180. 6690.10900.53200.60400.26300.16000.12600 
6960.10800.19600.58800.71f900.35900.20700.15300' 
7710. 91f~O.13600.51100.60300.27000.17800.14500 
6830. 7360.16200.59900.50600.27800.17600.13800 
7490. 7380.19400.1f1500.21400.13800.10600. 8840 
5660. 7210.15800.42100.30500.18600.12600.10200 
5880. 7960.17700.28700,17100.1160Q. 9060. 7720 
5380. 6720.13900.35aDO.47600.25000.11f900.11500 
6860. 9680.13'00.5~lDO.3520Q.lql00.13400.10600 
6060. 71f60.11200.37400.Q0300.22200.13700.11100 
6150. 6780.16200.25200.25100.13900.10500. 6~80 
5100. 5740. 7640.16800.11700. 7400. 6260. 5260 
1f250. 5700.15200.53900.57500.50600.16600.12500 
5860. 6520,10100.24400.48500.18600.12500. 97~0 
5260. 6870.12790.130'+0. 8370. 631f0. 5420. 1f750 
1f21f0. 5000.11200.29410,37510.16~10.10980. 8280 
1f940. 5820.24360.72950.515'0.23720.15590.1177~ 
5870. 6520.10010.36410.31260.17900.12290. 91f90 
5700. 7330.19650.1f3450.1f0540.1Q620.13570.10240 
5760. 7840.16890.286~0.18260.11990. 9240. 7460 
5240. 6~20, 991f0.26550.15980.10150. 7800, 651f0 
4350. 5280. 7070.210aO.15740. 9800. 7350. 5850 
4290. 491f0.13390.20230.25430'157~0. 9550. 71f20 
5150. 7030.29360.456DO.1f64~0.26090.15050.11330 
5630~ 5720. 8760.266'0.27360.1~a80.10670. 817a 
511f0. 5580. 7280.27920.38920.23580.11f290.11020 
60~0. 8910.33360.48000.39200.21850.11f730,11310 
61f00. 8450.12770.435;0.30270.17320.12450. 9760 
5860. 1>000.131f30.1f6860.46150.21040.13980.10860 
6020. 7670.18610.~2900.33130.1~350.13020.108IfO 
6670. 8610.21820.49110.68780.40020.19790.14330 
8090. 8800.27260,517~0.46150.24790.16140.12380 
671f0. 7080.2001f0.53190.1f5960.22500.15130.11800 
61f50. 71f50.11660.216~0.41880.21980.13500.10170· 
5760. 6800.12530.28260.17430.12140. 8800. 7090 
4610. 5090. 8040.29690.28500.15090.10220. 7780 
6300. 8200.22630.49230.1f1860.18920.1256o. 9620 
5990. 7230.11020,33790.~9690.23570.13720.10410 
6210. 6990.12800.1f7220.38940.17630.12370. 9cil0 
5560. 6510.12600.257DO.2"'O.14910.101f20. 8400 
5290. 7510.16150.10120.22580.12600. 9330 •. 7770 
1f880. 51f30. 7360.180~0.14510. 8160. '.30. 5440 
5700. 5650.25910.41400.32520.18020.11920.1 0160 
6890. 61f60. 9530.519'0.29060.11f340.10030. 81f90 
4970. 5200. 9000.30110.5.160.22080.12,10. 9930 
7540. 7510.17'00.1f05'O~61'00.32a70.17520.13560 
6380, 8590.18030.53210.19860.12500. 9540. 7900 
5220. 6520. 9570.33280.52620.28350.15~20.11730 
6690. 7720.10460.280iO.3'II0.208 30.13990.10140 
6~30. 7120.19840.~'5iO.2e320.1R450.12110. '660 
5710. 6230. '1170.33550.48600.22450.13360. '980 
8520.102_0.i5280.53~'O.80'50.43750.22350.16190 
7990.16350.24500.55520.63270.30390.1885 0.11f300 
6720. 7220. "~OO.336JO.30190.16980.1191f0. 9bOO 
57~0. 8710.16970.506'0.58070.27030.16600.12850 
5860. 6820. 7780.284'0.59290.44750.19650.15640 
7030. 7960.1'860.~3710.55700.20~10.1B580.11120 
5420. 5780. 7780.101'0. 9670. 6770. 571f0. 1f870 
1f170. 7810.18510.55600.1f8960.24260.11110. 9130 
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Table A.4. Monthly streamflow data for Weber River (ac. ft.). 

1905 
6 
7 
I) 

9 
10 
11 
12 
13 
U 
15 
16 
17 
18 
19 
20 
21 
22 
23 
2'+ 
25 
26 
27 
28 
29 
50 
31 
32 
33 
34 
3!i 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
6'+ 
65 
,I. 
67 
68 

" 70 
71 
72 
73 

4 
75 
7fo 
77 
78 

4190 
4'+90 
4600 
5260 

·7870 
7010 
4940 
5240 
8120 
8670 
7380 
5060 
7560 
4170 
6270 
5620 
6460 
6100 
4580 
6700 
3420 
6520 
3590 
5770 
3970 
4GOO 
6520 
2430 
3'+60 
2810 
2230 
3110 
4250 
4390 
4740 
3lf40 
4610 
41150 
3lf80 
4520 
4200 
4490 
4460 
'+630 
3240 
50S0 
5100 
6600 
5350 
3lf90 
3150 
3550 
3760 
4500 
3070 
6120 
2910 
5040 
3700 
3710 
3620 
6560 
5070 
4880 
5lf90 
4150 
4120 
4910 
5860 
5550 
4080 
5600 
3560 
3170 

4220 
3560 
3770 
4260 
5220 
6660 
4060 
4550. 
7260 
6430 
5230 
5430 
5690 
4460 
38tO 
4520 
6"30 
5350 
4550 
4620 
3420 
.. 550 
3310 
5900 
3920 
3760 
3390 
2130 
3nO 
2620 
2560 
30S0 
3870 
4460 
4830 
2920 
3400 
4610 
3250 
4100 
4040 
'+8'+0 
4180 
4220 
33,0 
4410 
5070 
4600 
3790 
3290 
3000 
3410 
3170 
3720 
3120 
'+'+80 
2980 
3910 
3000 
3460 
3'+ftO 
5150 
U90 
UIII 
4580 
3830 
'+220 
4650 
5050 
4500 
3650 
5110 
2960 
2240 

3690 
2790 
3970 
4560 
4270 
5840 
3580 
4610 
.. 790 
4980 
4610 
5570 
6080 
4060 
'+000 
3430 
4610 
.. 770 
"430 
3820 
3 .... 0 
'+1'0 
3390 
4160 
3690 
5690 
3070 
3070 
2870 
2580 
2770 
3070 
3380 
3690 
"390 
2440 
3200 
3900 
3:1.50 
3350 
3670 
3990 
40"0 
4090 
3'+'+0 
3908 
458. 
3930 
3070 
3070 
2770 
.... 10 
2'+60 
nlO 
3200 
30'0 
2600 
3070 
2900 
3010 
3590 
.. 610 
3730 
1870 
'+220 
3380 
"''+0 
4170 
.. 620 
3510 
3'+'+0 
.. 550 
lite 
1170 

3380 
2640 
4060 
3570 
4060 
5230· 
.. 610 
.. 000 
4300 
5300 
'+920 
.. 000 
3010 
4060 
3070 
3460 
4300 
4300 
.. 430 
3690 
3 litO 
3070 
3380 
3690 
3310 
3070 
3380 
3070 
2770 
26"'0 
2770 
3070 
3070 
3380 
3690 
23'+0 
3070 
3480 
28S0 
2910 
3530 
3650 
3380 
3940 
3440 
3570 
'+110 
3"'0 
3180 
3UO 
2770 
U60 
2570 
3100 
2."0 
2810 
2&80 
2770 
2770 
2610 
3200 
"UO 
3500 
3'00 
nOll 
3~40 
4900 
'+110 
3940 
301'0 
3080 
4180 
2300 
2380 

2940 3950 7580 "8100 9590 
2220 3020 10800 46700 68400 25800 
3720 5610 2nloo 4A900 93700 91400 
3000 3210 ~120 25500 59300 24500 
3220 5570 a870 45800110000 40500 
4160 11100 30~00 58500 36200 8670 
4720 '+320 11200 4'100 78000 17600 
4310 4220 ~930 3 ... 800 95000 22400 
3890 5170 13600 5il00 40500 14300 
4 .. 90 5810 17200 78700 76200 19600 
.. 780 5050 1~400 27000 46500 11900 
3980 6270 17'00 44aOG 78000 17200 
3330 "360 8$50 33500103000 47100 
5440 4850 7970 3,500 '6600 9040 
3130 3710 9750 .. 8600 2~800 6010 
357& 4000 fi410 59100 79100 16800 
4160 6700 13200 6~100127000 28600 
3690 4240 7440 5a~0010'000 17300 
4230 5140 4I19JI 65800 69000 27700 
3820 '+590 "ao 41400 19300 5900 
3040 4!110 12400 4'9100 34000 11500 
3430 4930 lsaOO •• aoo 27600 7320 
10SO 1600 8110 4_500 66600 14600 
1160 1129 8690 71~00 39900 11000 
3130 '.901 ~.'O ."00 71400 18600 
3850 ~300 14900 3,,00 42200 9530 
3050 1060 5590 2~ioo 15900 4250 
3160 1740 q$80 54400 75000 15600 
2500 2820 4960 1~400 78600 9720 
2380 1 .. 80 10550 17540 4820 2560 
2500 307.0 75e0 25090 7, .. 060 11280 
2880 3380 U.S30 75600.40550 12660 
2780 3380 88'0 56840 2'+450 8750 
3050 3720 137io 43490 53280 11170 
3330 4590 13500 37200 18710 7010 
2300 3230 a090 390S0 13750 5380 
2610 3420 54~0 36530 38830 9630 
3110 1680 16050 12060 55050 11080 
2580 3550 20800 42700 46080 13780 
2780 3100 4920 44960 62900 16110 
3200 1720 ~060 338ftO 41730 15100 
3090 4600 22670 42660 36960 9'+20 
3190 4280 Ql90 53580 44000 14030 
3570 .. 290 8100 53690 37180 9420 
3000 3830 14590 "4010 54800 13320 
3250 3660 13620 45970 77580 23640 
3960 4080 12700 43880 58020 18120 
2880 3440 ls470 69160 73080 19100 
2850 374D7fi1,eB 18710 65280 13400 
2980 3070 1~T50 3'930 17060 8320 
2500 2460 5020 40690 33750 8690 
2990 4560 14870 556'+0 5'+270 10270 
2710 3220 5290 29860 78690 25430 
3240 1520 6,.0 ~250 35480 7660 
2488 5270 7,ao a;S80 42500 9860 
14&0 4010 1116' 3~'+30 32090 7560 
2300 2890 46$021710 12360 4260 
3240 3570 11610 39490 61110 18230 
3070 2920 54eo 356~0 '+2230 10320 
2010 2270 4600 44120 56'+50 19190 
3030 2710 8660 40260 78860 38040 
1260'+720 U'IO IUl180 24880 8350 
2930 3910 5140 15390 75860 34510 
1110 Itl0 AOIO 1'100 77810 19880 
Ia'o 3794 15110 71500 42200 15600 
3120 3330 4440 37690 57100 1'+940 
.000 4.40 '1,.to a"'o 72120 18690 
a670 "70 i.-,o 47160 60150 10990 
3300 3560 5410 44670 48730 14140 
2820 5470 9110 54720 58660 12820 
2710 ilao 18ao a~uo 7745.0 52790 
3480 '+140 10350 44980 34610 9840. 
2060 l218 .... 10 1"'0 1"50 '+8J0 
2168 lUI lUl0 3HU ,14610. 15770 

92 

4UO 
9'+10 

15900 
9840 

14300 
4970 
5590 

10100 
7500 
8550 
4610 
7620 
83('0 
4&10 
3980 
1380 
9840 
8850 
8180 
38 .. 0 
5940 
4930 
6820 
5700 
8550 
7620 
2670 
59&0 
4800 
2110 
5680 
9520 
5170 
6100 
4150 
1270 
6300 
5780 
6000 
6840 
8420 
5610 
6920 
5640 
6640 
8130 
8920 
9330 
7720 
4530 
5650 
5990 
8630 
4880 
4660· 
3640 
2950 
6600 
5220 
7310 

i3040 
5000 
9840 
9910 
7170 
6670 
7560 
6140 
8010 
65'0 
9990 
5620 
3'+70 
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