

13

When we show the data from Figure 8 on a map (see Figure 10), we can see
much more than just some skewed data. In Figure 10 we are able to see strong
grouping among continents and geographical areas. More importantly, we are able to
identify spatial outliers such as South Africa, Saudi Arabia, and Germany that weren’t
previously visible in the histogram. Their COy emissions were rather different from
the CO4 emissions of their geographic neighbors, but they weren’t unusual on a global
(non-spatial) scheme. Again the countries possibly identified as outliers are actually
part of a larger spatial pattern when viewed on a map. R code for Figure 9 can be

found in Appendix B.2.1 and R code for Figure 10 can be found in Appendix B.2.

3.2 Google Maps
In this section we looked at displaying data using a different kind of map. Here
we utilized the detail and resourcefulness of a Google map by plotting point data that

have a latitude and longitude associated with them.

3.2.1 Public University Tuition

Moore et al. (2009) asked the students to plot the data from Figure 11 and check

Fig. 10: Choropleth map of the CO5 emissions data (in metric tons per person).

14

TABLE 10.1

In-state tuition and fees (in dollars) for 32 public universities

School 2000 2005 School 2000 2005 School 2000 2005
Penn State 7,018 11,508 Virginia 4,335 7.370 lowa State 3,132 5,634
Pittsburgh 7.002 11,436 Indiana 4,405 7112 Oregon 3,819 5,613
Michigan 6,926 9,798 Cal-Santa Barbara 3,832 6,997 lowa 3,204 5612
Rutgers 6,333 9221 Texas 3,575 6,972 Washington 3,761 5,610
Ilinois 4,994 8,634 Cal-Irvine 3,970 6,770 Nebraska 3,450 5,540
Minnesota 4,877 8,622 Cal-San Diego 3,848 6,685 Kansas 2,725 5413
Michigan State 5432 8,108 Cal-Berkeley 4,047 6,512 Colorado 3,188 5372
Ohio State 4,383 8,082 3,698 6,504 North Carolina 2,768 4,613
Maryland 5.136 7,821 Purdue 3,872 6,458 Arizona 2,348 4,498
Cal-Davis 4,072 7457 Wisconsin 3,791 6,284 Florida 2,256 3,094
Missouri 4,726 7415 Buffalo 4,715 6,068

Fig. 11: Original data set of in-state undergraduate tuition and fees for 32 universities
between 2000 and 2005 (Moore et all 2009, p. 595). [From Introduction to the
Practice of Statistics (sixth edn) by D. S. Moore, G. P. McCabe, and B. Craig.
(©2009 by W. H. Freeman and Company. Used with permission.]

whether a linear relationship existed between the two variables. Students also had to

identify outliers, run a simple linear regression, and obtain the residuals.

&

=)

I's]

= o

o
3 oo
=]
o E - o o
@ o
;3 * o] s} =)
= o O °
o

5 o % o
= 8 [s) o
5 —

o
= ®© o o o5 @

o
o o

o

o

=]

=

o
I I I I I
3000 4000 5000 6000 7000

Tuition in Year 2000

Fig. 12: Scatterplot of the tuition data.

N anEEuver

s Spukar TS
sgle Pk Norts e
M Dakota . Quéty
Washingion antana e 9 i
Portiand \z Morniréal
= Minnegools o e
South Wiscons/n G Olggnea [
© oregon pricn Michiganl) | arsedl =~
Idako Wyoming vagieon@® @Miwe New York ™y
A i@a Chieagn po Jitfai
ak Laks 2 2
':'n"" Nebraska s omang ..-\-veln'i.do F"""""tj"”":"o \\
=, io
Nevada E@w o "":f":‘ “IIM"Q"“ % 1ageIpna v
| Sacpgredto Utah Calorado = @t Lous O West Q \
San o hthen v"]“;"_“; Wissouri Vrginia \\.\ . Con
Frarclsce™e, jifornia il Kentugiy, Virginia {8 e
- iness N@h
Bakersfiefd @ L8 Végas ADwgaere OKRNOMA: s feanasl 002" Cagina \ o el
L Arizona New Atarta o arvian
Ak %w side ©Phasnad Mexica Dailas Mississippi © | South :iat\ri:mf
Tifasn o JUb n Alabama Columkia
o Mexce|] i =
Enseracaie, LS8N O exas Monle 3€0rgia
\ =)
fuctirl Louisiana © Jackaonvit
termsil ~—
e L"'Wi"-lk‘mfara} 2 Hauslon Sando
Gal el o Cudad ° Negms amoric -
Californin:S Obregen ‘\ FInrlMSa
Uentarray. ami
vome® Tomeon® o .o Galf ol <
8RNI) atamars Mexiza
o Lapaz v CUIBGAN Méxise
[25, 45) $ 2
Leonde o Sar Luis
O 145I55) Los Alcama @ Pctosl Mesula Cansin Caba
L] Marelig OP0zs Rce 2
Gusdal e
0 [65, 85) B | O ol HerhicalPlienla e 2MPAEHS i
] [85 100) Colimay, Snded de Zetalote , 3
) ag Nexce el
Acadico & gt |
udla gl
- Guatsrrals
r"l(ijl‘f i d § I[a s, " Carib!
i Tesachiia’. © A d56511 Europa Techiokgies EG!

15

Fig. 13: Google map showing the percent increase of tuition from 2000 to 2005.

We first produced a scatterplot (Figure of the data in Figure and fitted the
following linear regression model: Yr2005 = 1059 + (1.4) % Yrageo. Figure |12 suggests
a strong linear relationship and possibly a few outliers.

Using the internet, we were able to obtain the latitude and longitude for each
of the universities and plotted them on a Google map of the United States. To
represent the difference of tuition and fees between the two years, we thought it made
more sense to look at the percent increase for each university from 2000 to 2005. In
Figure the dark red colors represent the highest percent increase of tuition and
fees as seen in Texas, Kansas, and Arizona. This map also shows some strong spatial

grouping in different areas of the country and again some spatial outliers.

Adding a ray-glyph plot (Carr et al| (1992))) to the map allows us to look at

multiple variables on one map. In Figure the green lines represent the tuition for
2000 and 2005 respectively, with a line pointing down representing the lowest tuition
and a line pointing up representing the highest tuition in that year. Universities

whose lines are quite asymmetric are representing outliers. As such, it appears that

16

South
Dakota

Nebraska e g
Kansas =
Wichita @

OKANOMA 3 oy’
; o Aranta
Mississippi
Sl Avaa

Fig. 14: Google map adding ray-glyph lines to the percent increase dots of the previous

map (Figure .

Universities in Buffalo, Ohio, and Texas are outliers. A residual plot as in Figure [15]
confirms that Buffalo, Ohio, and Texas are outliers as they have they highest /lowest
residuals. R code for Figures [I2 and [15] can be found in Appendix and R code

o
Q
=1
- Texas Ohio State
Cal-Davis Minnesota ﬁ}aﬂ"
— lllinois PR
g | Kansas Cal-Santa Barbara
n
CaiGeth Digeginia
Arizona 'OWa State cai-rvine
lowa
° wiconsih
%) Colorado Indiana
© CaI—BerkeIe”I. .
< . issouri
o North CaroliR@hraska
& o Maryland
& $. Michigan State
Washington Rutgers
Oregon
S Michigan
S 4
-
! Florida
o
=1
B -
i Buffalo
T T T T T T
2000 3000 4000 5000 6000 7000

Tuition in Year 2000

Fig. 15: Residual plot of tuition data.

17

TasLe 2.12 Major League Baseball Team Valuations and Revenues as Given on the Forbes.com Website on
February 25, 2007 (for Exercise 2.24) & MLBTeams

Value Revenues Value Revenues
Rank Team (Smil) (Smil) Rank Team (Smil) ($mil)
1 New York Yankees 1026 277 16 Texas Rangers 353 153
Boston Red Sox 617 206 17 Cleveland Indians 352 150
3 New York Mets 604 195 18 Chicago White Sox 315 157
4 Los Angeles Dodgers 482 189 19 Arizona Diamondbacks 305 145
5 Chicago Cubs 448 179 20 Colorado Rockies 298 145
[Washington Nationals 440 145 21 Detroit Tigers 292 146
rd St Louis Cardinals 429 165 22 Toronto Blue Jays 286 136
8 Seattle Mariners 428 179 23 Cincinnati Reds 274 137
9 Philadelphia Phillies 424 176 24 Pittsburgh Pirates 250 125
10 Houston Astros 416 173 25 Kansas City Royals 239 17
11 San Francisco Giants 410 17 26 Milwaukee Brewers 235 131
12 Atlanta Braves 405 172 27 Oakland Athletics 234 134
13 Los Angeles Angels 28 Florida Marlins 226 19
@ Anaheim 368 167 29 Minnesota Twins 216 114
14 Baltimore Orioles 359 156 30 Tampa Bay Devil Rays 209 116
15 San Diego Padres 354 158
Source: http:/fwww.forbes.com/lists/2006/33/Rank_1.html (accessed February 25, 2007).

Fig. 16: Original data set of franchise value and 2006 revenues for each of the 30
major league baseball (MLB) teams as reported by Forbes magazine and Forbes.com.
(Bowerman et al., 2009, p. 67). [From Essentials of Business Statistics (third edn)
by B. L. Bowerman, R. T. OConnell, J. B. Orris, and E. S. Murphree. (©2009 by
McGraw-Hill/Irwin. Used with permission.]

for Figures [13] and [14] can be found in Appendix

3.2.2 Major League Baseball Team Valuations and Revenue

From the data in Figure [16] the [Bowerman et al] (2009) book gives us another

beneficial use of a Google map to display data. Here the students are asked to develop
several types of histograms and to describe the distribution of team values.

We produced just one histogram as seen in Figure The data appears to be
right-skewed and there is a possibility of an outlier. The color scheme seen here is the
same as in Figure [18 and represents the distribution of team values by its saturation.

Using the internet, we were again able to obtain the latitude and longitude for
each of the baseball teams and plotted them on a Google map of the United States.
In Figure the dark red colors represent the teams with relatively high value.

There are a high number of lower valued teams and there appears to be some spatial

18

20
|

15

Frequency
10

T T T T T 1
200 400 600 800 1000 1200

Value ($mil)

Fig. 17: Histogram of the MLB data.

¥ a ic, {‘\'ﬂ'm! el

g _&h . % towa
&' S Lincaing T

(s {inited States

| :c";lin Kansas

Wichita @' |
= ulsa

Fig. 18: Google map with ray-glyph lines showing Major League Baseball team rev-
enues and values. Teams that were located in close proximity were manually moved
to fix over-plotting.

19

patterns. The highest valued teams are in the Northeast United States. Areas that
have two teams in close proximity to each other such as Los Angeles, San Francisco,
Maryland, and Chicago seem to compete with each other resulting in one team having
less value. There are other groupings in the Mid-east and Florida. The darkest red
team is the New York Yankees and is a possible outlier.

The ray-glyph lines (Carr et al. (1992)) in this map gives us additional informa-
tion a histogram can’t. Again teams whose lines are asymmetric represent outliers.
In this ray-glyph plot, it appears the Washington Nationals is an obvious outlier, with
the LA Dodgers, Chicago White Sox, Chicago Cubs, Atlanta Braves, Boston Red Sox,
Seattle Mariners, and Houston Astros as possible outliers. R code for Figure [17| can
be found in Appendix and R code for Figure [I8| can be found in Appendix [B.4]

A ray-glyph map (see Figure and Figure allows us to display multiple
variables at one time. It also allows us to identify the location of universities/teams
that are not so well known. Finally, this kind of map allows us to combine a variable
like percent increase by using a color scheme with the ray-glyph lines that represent

actual tuition data for two years, all within a single map.

3.3 Micromaps

In this section, we worked with another type of map that also allowed us to
view actual data values on a map. It is essentially a combination of multiple choro-
pleth maps and a dot plot that is commonly called a linked micromap plot or just a

micromap (Carr et al.|(1998)).

3.3.1 Damage Due to Tornadoes
Our first example of a micromap comes from the data set in Figure [19} [Moore

et al.|(2009) asked the students to identify the top five and bottom five states, make

g TABLE 1.5 puum e =
Average property damage per year due to tornadoes
Damage | Damage ‘ Damage

State ($millions) | State ($millions) | State ($millions)
Alabama 51.88 Louisiana 27.75 Ohio 44.36 N
Alaska 0.00 Maine 0.53 Oklahoma 81.94
Arizona 3.47 Maryland 2.33 Oregon 5.52
Arkansas 40.96 Massachusetts 4.42 Pennsylvania 17.11
California 3.68 Michigan 29.88 Puerto Rico 0.05
Colorado 4.62 Minnesota 84.84 Rhode Island 0.09
Connecticut 2.26 Mississippi 43.62 South Carolina 17.19
Delaware 0.27 Missouri 68.93 South Dakota 10.64
Florida 37:32: Montana 2.27 Tennessee 23.47
Georgia 51.68 Nebraska 30.26 Texas 88.60
Hawaii 0.34 Nevada 0.10 ‘ Utah 3.57
Idaho 0.26 New Hampshire 0.66 | Vermont 0.24
1llinois 62.94 New Jersey 2.94 | Virginia 7.42
Indiana 53.13 New Mexico 1.49 Washington 2.37
Towa 4951 New York 15.73 West Virginia 2.14
Kansas 49.28 North Carolina 14.90 Wisconsin 31.23
Kentucky 24.84 North Dakota 14.69 Wyoming 1.78

Fig. 19: Original data set of average property damage due
to 1999, adjusted for inflation (Moore et all 2009, p. 25). [From Introduction to

20

to tornadoes from 1950

the Practice of Statistics (sixth edn) by D. S. Moore, G. P. McCabe, and B. Craig.
(©2009 by W. H. Freeman and Company. Used with permission.]

a histogram using software, compare it with a histogram with classes in increments

of 10, and to identify outliers. This histogram in Figure 20| tells us that the data are

right-skewed and that there are possibly three outliers.

¢ -
3

20
1

Frequency
15

10

—

T
40

T T
60 80

Cost (in millions)

100

Fig. 20: Histogram of the tornado data.

FREEEE.

Texas
Minnesota
Oklahoma
Missouri
lllinois

Indiana
Alabama
Georgia
lowa
Kansas

Ohio
Mississippi
Arkansas
Florida
Wisconsin

Nebraska
Michigan
Louisiana
Kentucky
Tennessee

South Carolina
Pennsylvania
New York
North Carolina

North Dakota
South Dakota
Virginia
Oregon

Colorado
Massachusetts
California

Utah

Arizona

New Jersey
Washington
Maryland
Montana
Connecticut

West Virginia
Wyoming

New Mexico
New Hampshire
Maine

Delaware
Idaho
Vermont
Nevada
Rhode Island

e
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
o
°
°
°
°
°
°
°
°
°
°
°
°
°
o
[} 20 40 60 80

Property Damage Due to
Tornadoes in Millions of Dollars

21

Fig. 21: Micromap of the tornado data. This map is for the continental U.S. only
and does not show data for Hawaii, Alaska, and Puerto Rico. The right column gives
us a color-coded dot plot that corresponds to a state in the middle column that is
plotted on a map in the column on the left. States with an average property damage
above the median are shaded grey in the five small maps above the separating line
while states with an average property damage below the median are shaded in grey
in the five small maps below the separating line.

22

As we follow the map in Figure 21} down from the top, we are able to visually see
where and how the data are distributed. It appears that property damage is highest
in the central United States (U.S.) and spreads out to the eastern and western coasts.
Spatial outliers are visible and we are able to identify the top and bottom five states
and see where they are located. The benefits of such maps are that they minimize
loss of information by eliminating the need for breaks, provide better use of color
in small regions, provide a better way to observe a continuous variable, and provide
another way to show more than one variable on a choropleth map as demonstrated in
the next section. R code for Figure 20| can be found in Appendix and R code
for Figure 21] can be found in Appendix [B.5]

We note that some ratio of property damage per square mile or property damage
per inhabitant would be beneficial here as it is likely that large states will have higher

total damage.

3.3.2 Fruit and Vegetable Consumption and Smoking

Our second example of a micromap is based on data that was collected by the
Center for Disease Control (CDC) and the Behavioral Risk Factor Surveillance System
(BRFSS). A link to the website housing the data in Figure [22| was found in the
Moore et al| (2009), Appendix N-4, 53. Data were collected for 29 demographic
characteristics and risk factors for each state (risk factors are listed in Appendix D-1
in the book). For the authors’ purpose, only two risk factors were chosen: Fruits
and Vegetables is the percent of adults in the state who reported eating at least five
servings of fruits and vegetables per day. Smoking is the percent who smoked every
day.

Moore et al. (2009) included the scatterplot shown in Figure [23| and asked the

students to describe the relationship between the two variables and to identify certain

23

Fruit and vegetable consumption and smoking
Fruits & Vegetables Smoking Fruits & Vegetables Smoking

State (percent) (percent) State (percent) (percent)
Alabama 20.1 18.8 Montana 247 14.5
Alaska 248 18.8 Nebraska 20.2 16.1
Arizona 237 13.7 Nevada 225 16.6
Arkansas 21.0 18.1 New Hampshire 29.1 15.4
California 28.9 9.8 New Jersey 259 12.8
Colorado 24.5 13.5 | New Mexico 218 11.6
Connecticut 274 12.4 | New York 26.0 146
Delaware 21.3 15.5 North Carolina 225 17.1
Florida 26.2 152 North Dakota 21.8 15.0
Georgia 232 16.4 Ohio 226 17.6
Hawaii 245 12.1 Oklahoma 15.7 19.0
Idaho 23.2 13.3 Oregon 259 13.4
Ilinois 24.0 14.2 Pennsylvania 239 17.9
Indiana 22.0 20.8 Rhode Island 26.8 15.3
lowa 19.5 16.1 South Carolina 212 17.0
Kansas 19.9 13.6 South Dakota 20.5 138
Kentucky 168 235 | Tennessee 26.5 20.4
Louisiana 202 16.4 Texas 22.6 13.2
Maine 28.7 15.9 Utah 22.1 8.5
Maryland 28.7 13.4 Vermont 308 14.4
Massachusetts 286 135 | Virginia 262 15.3
Michigan 228 16.7 Washington 25.2 12.5
Minnesota 245 149 West Virginia 20.0 21.3
Mississippi 16.5 18.6 | Wisconsin 222 15.9
Missouri 226 18.5 ‘Wyoming 21.8 163

Fig. 22: Original data set of fruit and vegetable consumption and daily smoking for
all 50 states (Moore et al., 2009, p. 161-162). [From Introduction to the Practice of
Statistics (sixth edn) by D. S. Moore, G. P. McCabe, and B. Craig. (©2009 by W. H.
Freeman and Company. Used with permission.]

points on the plot. Utah is the furthest to the left and California the second furthest.
Both of these states have less than average smoking values, but California has an
above average fruit and vegetable consumption. The plot shows a negative linear

association; as fruit and vegetable consumption decreases, smoking increases.

31 4 .
30 4
29 4 . - ‘e
28 4
27 4
26 4
254
24 4
23 4
22 1
21 4
20 1
19 4
18 4
17 4 .

16 1 .

Fruits & Vegetables

8 91011121314151617 181920 21 2223 24
Smoking

FIGURE 2.29 Fruits & Vegetables versus Smoking with

least-squares regression line, for Exercise 2.136.

Fig. 23: Scatterplot and regression line related to the fruit and vegetable and smoking
data set (Moore et al., 2009, p. 162).

24

In Figure[24] we applied a more advanced micromap design that is able to include
Hawaii and Alaska (and even Washington D.C. if needed) on the fruit and vegetable
and smoking data set. This micromap enlarges the smaller states on the eastern coast
and gives better dimensions to the rest of the states. If we look at California and Utah
on the micromap we see two different stories. California is an obvious spatial outlier
with respect to fruit and vegetable consumption, but it is not dramatically different
from the other data points in the dot plot. Utah on the other hand is not a spatial
outlier, but its smoking pattern is dramatically different from the other points in the
dot plot. This tells us something might be different about Utah, possibly due to the
high percentage of its religious population who don’t smoke. We refer to |Gebreab
et al.| (2008) for a detailed discussion on how to interpret a micromap similar to the

one shown in Figure 21} R code for Figure 24] can be found in Appendix [B.6]

Fruit and Vegetable Consumption and Smoking Statistics By State

Micromaps States Fruit and Vegs Consumption Daily
Above Median States (at least 5 times a day) Smoking
D.C.

Vermont

New Hampshire
California
Maryland

Maine
Massachusetts
Connecticut
Rhode Island
Tennessee
Virginia
Florida

New York
Oregon

New Jersey
Washington
Alaska
Montana
Minnesota
Hawaii
Colorado
lllinois
Pennsylvania
Arizona
Idaho

© 0 000 00000 00000 O000O0CO0 OCOO0O0O0CO

Georgia °

°
Michigan
Texas
Ohio
Missouri
North Carolina
10 15 20

[Median [

Nevada
Wisconsin
Utah

Indiana
Wyoming
North Dakota
New Mexico
Delaware
South Carolina
Arkansas

South Dakota
Nebraska
Louisiana
Alabama

j;l > West Virginia
Kansas

lowa
Kentucky
Mississippi
Oklahoma

© 0 000 00000 000O0CO0 00000 O000O0O0

8 o

Below Median States

15 20 25 30
Percent Percent

Fig. 24: Micromap of fruit and vegetable consumption and smoking data.

25

26

CHAPTER 4
DISCUSSION

Displaying spatial data via maps enriches understanding. We are surrounded by
data. Collecting is only part of the battle. Displaying all components of a data set
allows us to explore and discover valuable information that is otherwise lost when only
sets of the data are displayed. Through displaying data with a spatial component via
maps, many outliers or otherwise hard-to-interpret features evident in other plotting
mechanisms can be explained by spatial context.

It makes sense to display data sets with a spatial component in a spatial frame-
work such as a map. Maps allow us to better understand the data when interpreted
in its geographic context. Also, maps can reveal spatial outliers that aren’t readily
visible in the data. Much of the information obtained from other plotting techniques
can be extended by using maps. This can give us better insights in how to treat a
particular location or try to identify its peculiarity.

We clearly do not expect from textbook authors to make major changes to their
existing textbooks. However, we would strongly encourage textbook authors to add
question parts that ask students to create a map or interpret a given map in the
book. Many textbooks already include sections to challenge the students and have
a platform to introduce advanced subjects. Textbooks could simply suggest the use
of a map to plot the data and provide some examples so that students know the
importance of using maps. After all, we are confronted with statistical maps almost
on a daily basis; the best known example is the weather map that can be found on

many newspapers, TV, and on the web.

27

REFERENCES

Anscombe, F. J. (1973), Graphs in Statistical Analysis, The American Statistician,

27(1), 17-21.

Bowerman, B. L., R. T. O’Connell, J. B. Orris, and E. Murphree (2009), Essentials

of Business Statistics, third ed., McGraw-Hill/Irwin, New York.

Carr, D. B.; A. R. Olsen, and D. White (1992), Hexagon Mosaic Maps for Displays
of Univariate and Bivariate Geographical Data, Cartography and Geographic Infor-
mation Systems, 19(4), 228-236, 271.

Carr, D. B., A. R. Olsen, J. P. Courbois, S. M. Pierson, and D. A. Carr (1998),
Linked Micromap Plots: Named and Described, Statistical Computing and Statis-

tical Graphics Newsletter, 9(1), 24-32.

Dent, B. D. (1993), Cartography: Thematic Map Design (Third Edition), William C.

Brown, Dubuque, TA.

Freedman, D., D. Pisani, and R. Purves (2007), Statistics, fourth ed., W. W. Norton

& Company, New York.

Gebreab, S. Y., R. R. Gillies, R. G. Munger, and J. Symanzik (2008), Visualiza-
tion and Interpretation of Birth Defects Data Using Linked Micromap Plots, Birth

Defects Research (Part A): Clinical and Molecular Teratology, 82, 110-119.

Harris, R. L. (1999), Information Graphics — A Comprehensive Illustrated Reference,

Oxford University Press, New York, NY.

Hayter, A. (2006), Probablity and Statistics for Engineers and Scientists, third ed.,

Duxbury Press, Belmont, CA.

28

Lewin-Koh, N. J., R. Bivand, contributions by Edzer J. Pebesma, E. Archer, A. Bad-
deley, H.-J. Bibiko, J. Callahan, S. Dray, D. Forrest, M. Friendly, P. Giraudoux,
D. Golicher, V. G. Rubio, P. Hausmann, K. O. Hufthammer, T. Jagger, S. P.
Luque, D. MacQueen, A. Niccolai, T. Short, G. Snow, B. Stabler, and R. Turner

(2012), maptools: Tools for reading and handling spatial objects, r package version

0.8-14.

Loecher, M. (2012), RgoogleMaps: Overlays on Google map tiles in R, Berlin School

of Economics and Law (BSEL), r package version 1.2.0.

Moore, D. S.; G. P. McCabe, and B. Craig (2009), Introduction to the Practice of

Statistics, sixth ed., W. H. Freeman, New York.

Moore, D. S., G. P. McCabe, and B. Craig (2012), Introduction to the Practice of

Statistics, seventh ed., W. H. Freeman, New York.
Neuwirth, E. (2011), RColorBrewer: ColorBrewer palettes, r package version 1.0-5.

R Development Core Team (2012), R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-
900051-07-0.

Robinson, A., R. Sale, and J. Morrison (1978), Elements of Cartography (Fourth
Edition), John Wiley and Sons, New York, NY.

Schnute, J. T., N. Boers, R. Haigh, and A. Couture-Beil. (2010), PBSmapping: Map-

ping Fisheries Data and Spatial Analysis Tools, r package version 2.61.9.

29

Symanzik, J., and D. B. Carr (2008), Interactive Linked Micromap Plots for the
Display of Geographically Referenced Statistical Data, in Handbook of Data Visu-
alization, edited by C. Chen, W. Héardle, and A. Unwin, pp. 267-294 & 2 Color

Plates, Springer, Berlin, Heidelberg.

Voge, N. D.; and J. Symanzik (2011), Ignoring the Spatial Context in Intro Statis-
tics Classes — And Some Simple Graphical Remedies, in 2011 JSM Proceedings,

American Statistical Association, Alexandria, VA, (CD).

Wainer, H. (1997), Visual Revelations: Graphical Tales of Fate and Deception from-

Napoleon Bonaparte to Ross Perot, Copernicus/Springer, New York, NY.

APPENDICES

30

31

APPENDIX A

ADDITIONAL SPATTAL EXAMPLES FROM TEXTBOOKS

A.1 Introduction to the Practice of Statistics

Table 1: Table from |Moore et al| (2009) book containing spatial examples where a
map display seems beneficial, but was not attempted in this report. The parentheses
following its description is the exercise number or example found in the book. (1.28)
refers to chapter one, exercise 28 etc. (Ex. 1.13) refers to Example 1.13. “n” is the
sample size and “p” is the number of variables.

Pg | Title n Description
10 | Literacy Rates (per- | 17 Compares male and female literacy rates among major Is-
cent) in Islamic Na- lamic nations in 2002. Countries with population less than
tions (Ex. 1.7) 3 million were omitted. Data for some nations weren’t
available. From earthtrends.wri.org.
78 | Park Space and | 12 Compares population, and park and open space of several
Population (1.152) U.S. cities with high population density. Population is
reported in thousands of people, and open space in acres.
From www.oasisync.net.
98 | NBA Teams as | 29 Shows the values (in $millions), revenue (in millions of dol-
Businesses (2.19) lars), and income (in millions of dollars) of teams in the
NBA. Forbes, 2004.

Table 2: Table from |Moore et al| (2009) book containing spatial examples that are
too small and/or are categorical and would not benefit from a map. See Table (1] for
additional details.

Pressure on Math-
ematics Education
(13.12)

Pg | Title n Description
167 | University Degrees | 3 Compares university degrees in engineering, natural sci-
in Asia (2.156) ence, and social science among three regions: United
States, Western Europe, and Asia. Data is categorical.
702 | The Effects of Peer | 3 Compares the results of a questionnaire that asked male

and female students to rate how often the fear being called
a nerd or teacher’s pet on a 4-point scale. Countries were
chosen where high achievement is not valued highly. Such
as Germany, Canada, and Isreal. Data is categorical.

32

A.2 Essentials of Business Statistics

Table 3: Table from |Bowerman et al. (2009) book containing spatial examples where
a map display seems beneficial, but was not attempted in this paper. See Table [1| for
additional details.

Pg | Title n | p | Description
134 | Housing Affordabil- | 6 | 1 | Compares the percentage of homes sold during the fourth
ity in Texas (3.20) quarter of 2006 that a median income household could af-

ford to purchase at the prevailing mortgage interest rate
for six metro areas in Texas.

559 | Accounting Rates | 54 | 2 | Accounting rates on stocks and market returns for 54 com-
(13.67) panies.

560 | New Jersey Bank | 21 | 2 | Compares the percent of minority population vs the num-
Data (13.68) ber of residents per bank branch.

33

Table 4: Table from |Bowerman et al.| (2009) book containing spatial examples that
are too small and/or are categorical and would not benefit from a map. See Table

for additional details.

Pg | Title Description

89 J. D. Power Quality Compares 35 automobile manufactures and reports their
Study of 2006 Auto- manufacturing and design quality and country of origin.
mobiles (2.67 - 2.74) More categorical in nature.

124 | Comparing Compares voting percentage, income tax, video rentals,
Lifestyles in US number of PC’s, and religion. Has too many variables.
and FEight Other
Countries (3.9 -

3.13)

150 | June 2001 Unem- June 2001 unemployment rates for various regions in the
ployment Rates United States.
(Section 3.5)

153 | Unemployment Compares the January 2005 civilian labor force sizes and
Rates (3.44) unemployment rates in five Midwestern states.

205 | Airline Delays Compares the number of on time, delayed, and total flights
(4.67) of two airlines in five major airports.

34

A.3 Statistics

Table 5: Table from |Freedman et al| (2007) book containing spatial examples where
a map display seems beneficial, but was not attempted in this paper.

Pg | Title n | p | Description

150 | Smoking and | 11 | 2 | Adapted from a 1955 article by Sir Richard Doll on the
Health (Ch. 9, Set relationship between per capita consumption of cigarette
D-1) smoking in various countries in 1930 and the death rates

(per million) from lung cancer for men in 1950.
152 | Death rates from | 40 | 2 | List of 40 countries that eat a lot of fat.

breast cancer due to
fat in diet (Ch. 9,
Sec. 5, Ex. 3)

APPENDIX B
R CODE

B.1 Choropleth Map and Stem and Leaf Plot: Mortgage Delinquency

United States Choropleth Map

By Juergen Symanzik (revised for current data by Nathan Voge)
#

#

1 Import functions and data

2 Sort the data and assign colors

3 Draw map, plot data, make titles, and create a legend

1. Import needed functions and data

load required packages
library (RColorBrewer)
library (maps)

read in data

Note, D.C was in our data set, but not on the map we are using
so it is deleted from the data set

State = c("Mississippi","Louisiana","Michigan","Indiana","Georgia",

"West Virginia","Texas","Tennessee","Ohio","Alabama",
"Kentucky","South Carolina","Pennsylvania","North Carolina",
"Arkansas","Missouri","Oklahoma","Illinois","Kansas",

"Rhode Island","Maine","Florida","New York","Nebraska",
"Massachusetts","New Jersey","Delaware","Iowa","New Hampshire",
"Colorado","New Mexico","Connecticut","Maryland","Wisconsin",
"Nevada","Utah","Minnesota","Virginia","Arizona","Vermont",
"Idaho","California","Alaska","Washington","South Dakota",
"Wyoming","Montana","North Dakota","Oregon","Hawaii")

.3,
mort = cbind(State, Delinquency)
read in data via a file, mort = read.csv("DelinqRate_edit.csv", header=TRUE)

2. Sort the data and assign colors

set how to divide up the data
breaks = c(2, 5, 8, 11)

apply the breaks to the data set
m.class = cut(as.numeric(mort[, 2]), breaks)

35

pick colors and assign colors to breaks
m.col = brewer.pal(3, "Blues")[m.class]

match states in map to states in the data set

Note, states in the map are "characters, so we must make the
the states in our data set "characters" as well

map.m.col

3. Draw map, plot data, make titles, and create a legend

m.col[match.map("state", as.character(mort[, 1]))]

save map as a .pdf
pdf ("Mortagages_18Jul_Map.pdf", width = 11, paper = "USr")

create the map
map("state", fill = T, col = map.m.col)
legend("bottomright", legend = levels(m.class), fill = brewer.pal(3, "Blues"))

optional title: title("Mortgage Delinquency Rates (%) in 2007")

dev.off ()

B.2

y

#
#
#
#
#
#
#

1. Import needed functions and data

World Choropleth Map: CO2 Emissions

World Choropleth Map
B

Juergen Symanzik (revised for current data by Nathan Voge)

1 Import functions and data
2 Sort the data and assign colors
3 Draw map, plot data, make titles, and create a legend

library (RColorBrewer)
brew.color = brewer.pal(6, "Oranges")

library(maptools)
data(wrld_simpl)

read in data

Country = c("United States","Australia","Canada","Saudi Arabia",

C0.2 =

C

(
3
0

1

9
9
5

>

>

"Russia","Germany","Korea, Republic of","Japan",

"United Kingdom","Korea, Democratic People’s Republic of",

"South Africa","Poland","Ukraine","Italy","Spain","France",
"Venezuela","Uzbekistan","Malaysia","Argentina","Romania","Iran",
"Mexico","Iraq","Turkey","China","Thailand","Algeria","Brazil",
"Egypt","Columbia","Indonesia","Morocco","India","Philippines",
"Peru","Pakistan","Vietnam","Kenya","Nigeria","Bangladesh",

"Ghana","Myanmar","Sudan","Nepal","Tanzania","Congo","Ethiopia")

changed some of the country names in the data set to match the
map. Ex. United States, Russia, Rep. of Korea

9,17,16,11,10.2,10,9.7,9.1,9,8.8,8.1,8,7.6,7.3,6.8,6.1,5.1,4.8,4.6,
3.9,3.8,3.7,3.6,2.8,2.5,2.5,2.3,1.8,1.7,1.4,1.2,1,0.9,0.9,0.8,0.7,
0.3,0.3,0.2,0.2,0.2,0.2,0.1,0.1,0,0)

36

co02.2 = data.frame(Country, CO0.2)

read in data via a file, co2 = read.csv("C02_2.csv", header = TRUE)

extract country names and CO2 values

country.data = (co02.2[, 1]) # countries of data set, 48 here
country.co2 = (co2.2[, 2])
country.map = wrld_simpl$NAME # countries’ names as coded in wrld_simpl data
set, contains 246 countries. Make sure

countries’ names in data sets match (spelled
the same etc.), use: for (i in 1:104)

print(grep(country.datali],country.map))
n.map = length(country.map)

color.map = numeric(n.map)

2. Sort the data and assign colors

use "grep" to match country.data with country.map and assign a color level
for (i in 1:length(country.data)){
if (country.co2[i] >= 16)

color.map[grep(country.datal[i], country.map)] = 6
else if (country.co2[i] >= 8.8)
color.map[grep(country.datal[i], country.map)] = 5
else if (country.co2[i] >= 6.1)
color.map[grep(country.datal[i], country.map)] = 4
else if (country.co2[i] >= 2.5)
color.map[grep(country.datal[i], country.map)] = 3
else if (country.co2[i] >= 0)
color.map[grep(country.datal[i], country.map)] = 2

}

collect countries with actual scores (not equal to zero) as listed in
country.data

collected.countries = (color.map != 0)

color.map2 = color.map

assign colors

color.map2[!collected.countries] = brew.color[1] # use light grey for countries

not listed in country.data
object
color.map2[collected.countries] = brew.color[color.map[collected.countries]]

3. Draw map, plot data, make titles, and create a legend

save it as a .pdf (looks better)
pdf("co2.2_18Jul_Map.pdf", width = 11, paper = "USr")

plot map
plot(wrld_simpl, col = color.map2, axes = FALSE, ylim = c(-55, 90))

create a legend
legend(-180, -15, legend = c("N/A", "[0, 2.5)", "[2.5, 5.5)", "[5.5, 8.5)",
"[8.5, 11.5)", "[11.5, 20]1"), fill = brewer.pal(6, "Oranges"), bg = "white")

make a title at the top
par(mar = c(0, 0, 12.5, 0))
title("Carbon Dioxide Emissions (metric tons per person)")

shut down the current graphic device so can save as a pdf
dev.off ()

37

B.2.1 Histogram: CO2 Emissions
C02 Histogram
By Nathan Voge

1 Import functions and data

#
#
#
#
#
2 Draw plots, define colors, create breaks

1. Import needed functions and data

library(grDevices)
library(RColorBrewer)
library(maptools)

data(wrld_simpl)

C02 = ¢(19.9,17,16,11,10.2,1
3.9,3
0.5,0

7,3.6,
2,0.2

9.7
8,2
2,0

>

9.1
5,2
2,0

3

1, 0, s ,9,8
.9,3.9,3.8,3. 2. . .5,2
.5,0.3,0.3,0. 0. . .1,0

> s> 3

co02.2 = as.numeric(C02)

read in data via a file, co02.2 = read.csv("C02_2.csv", header = TRUE)

2. Draw plots, define colors, create breaks

brewcol = brewer.pal(6, "Oranges") # define colors
breaks = c(-.5, 2.5, 5.5, 8.5, 11.5, 14.5, 17.5, 20.5)
print(paste("Histogram of World", ~CO[2], "Emissions"))

save it as a .pdf (looks better)
pdf ("co2.2_18Jul_hist.pdf", width = 11, paper = "USr")

hist(co2.2, breaks = breaks,
xlab = "Amount of"~CO[2]~"(metric tons per person)", ylim = c(0, 25), xlim
xaxt = "n", main="")

optional title: ("Histogram of World" ~CO[2]~"Emissions")

axis(1, at = breaks, labels = c("-.5", "2.5", "5.5", "8.5",
"{1.5" "4 .5" n{7.5" ||20.5n))

shut down the current graphic device so can save as a pdf
dev.off ()

B.3 Rayglyph Googlemap: University Tuition

range (breaks),

38

39

Google Map Featuring Ray-Glyph Lines

By Nathan Voge (based on work by Daniel B. Carr (ray-glyphs) and
Markus Loecher (RgoogleMaps))

#

#

1 Import functions and data

2 Create a Google map

3 Add ray-glyph lines to the map

4 Add colored circles depicting percent increase to the map
5 Create percent increase legend

6 Create ray-glyph legend

7 Plot title

1. Import needed functions and data

load in required packages
library (RColorBrewer)
library(RgoogleMaps)
library(PBSmapping)

read in data

University = c("Kansas","Texas","Arizona","Ohio State","Cal-Davis",
"Cal-Santa Barbara","Iowa State","Minnesota","UCLA","Iowa",
"Illinois","Cal-San Diego","Virginia","Cal-Irvine","Colorado",
"Purdue","Wisconsin","North Carolina","Penn State","Pittsburgh",
"Indiana","Cal-Berkeley","Nebraska","Missouri","Maryland",
"Michigan State","Washington","Oregon","Rutgers",'"Michigan",
"Florida","Buffalo")

Year_2000 = c(2725,3575,2348,4383,4072,3832,3132,4877,3698,3204,4994,3848,4335,
3970,3188,3872,3791,2768,7018,7002,4405,4047,3450,4726,5136,5432,
3761,3819,6333,6926,2256,4715)

Year_2005 = c(5413,6972,4498,8082,7457,6997,5634,8622,6504,5612,8634,6685,
7370,6770,5372,6458,6284,4613,11508,11436,7112,6512,5540,7415,
7821,8108,5610,5613,9221,9798,3094 ,6068)

Latitude = c(38.953611,30.28614,32.231667,40,38.54,34.41254,42.023949,
44.975278,34.072222,41.655833,40.110539,32.881,38.035,33.64535,
40.006667,40.424,43.075,35.908333,40.796036,40.444565,39.1661583,
37.87,40.8175,38.9453,38.9875,42.723387,47.6599,44.044044,
40.741632,42.283,29.64833,42.9286688)

Longitude = c(-95.26,-97.73942,-110.951944,-83.0145,-121.75,-119.84813,
-93.647595,-93.234167,-118.444097,-91.525,-88.228411,-117.238,
-78.505,-117.842642,-105.267222,-86.929,-89.417222,-79.05,
-77.862739,-79.953274,-86.5263857,-122.259,-96. 701389, -92.3288,
-76.94,-84.481366,-122.306,-123.075736,-74.17486,-83.735,
-82.34944,-78.8480905)

Percent_Increase = c(0.9864,0.9502,0.9157,0.8439,0.8313,0.8259,0.7989,0.7679,
0.7588,0.7516,0.7289,0.7373,0.7001,0.7053,0.6851,0.6679,
0.6576,0.6665,0.6398,0.6332,0.6145,0.6091,0.6058,0.5690,
0.5228,0.4926,0.4916,0.4698,0.4560,0.4147,0.3715,0.2870)

data = data.frame(University, Year_2000, Year_2005, Latitude, Longitude,
Percent_Increase)

read in data via a file, tuit = read.csv("tuition.csv", header = TRUE)

2. Create a Google map

Define x and y coordinates on map. In all RgooglelMaps packages, the latitude
is read first followed by the longitude. For our data set, we looked up the

latitude and longitude online for each university.
x = data["Latitude"]
y = data["Longitude"]

Define the bounding box (bb) for the map using the latitude and longitude from
our data set.
bb = gbbox(x, y, TYPE = "all", margin = list(m = rep(5, 4),

TYPE = c("perc", "abs")[1]))

Create a Google map by loading a static map from the package and define

some options. bb$lonR, bb$latR are our latitude and longitude from the
previous line of code. We have a few choices on the type of map we want to use
such as "roadmap", "satellite", "terrain", etc. The default is a color map,
here we want it to be gray so we use the "GRAYSCALE" argument. If needed, we
can also use the "zoom" argument. This zooms in/out around the area we

define by using the argument "center".

H#+ H H HOH H R

save it as a .pdf (looks better)
pdf ("tuit_18Jul_map.pdf", width = 7, paper = "USr")

MyMap = GetMap.bbox(bb$lonR, bb$latR, maptype = "roadmap", GRAYSCALE = TRUE)

This command plots the map in the graphics window in R
PlotOnStaticMap (MyMap)

Note: Content is added to the static map by using "PlotOnStaticMap".

"PlotOnStaticMap" is repeated for each color/item added to the map. "FUN"
identifies the plotting function, usually points or lines. "pch" and "cex"
normal plotting parameters.

3. Add Ray-glyph lines to the map

Function to Calculate the Latitude and Longitude for Ray-glyph Lines

It uses the two variables you want to compare (varl, var2), the latitude
and longitude for these variables (lat, lon), and the minimum and maximum
of the two variables (minl, maxl, min2, max2) respectively. It returns the
latitude and longitude of the point away from the origin for each variable.

H H O B H

CalcRayGlyphMapLatLon = function(varl, var2, lat, lon, minl, maxl, min2,
max2) {
numl = varl - minl
ratiol = numl / (maxl - mini)
anglel = 270 - ratiol * 180
radl = anglel * pi / 180
lonl = lon + 2 * cos(radl)
latl = lat + 2 * sin(radl)

num?2 = var2 - min2

ratio2 = num2 / (max2 - min2)
angle2 = 270 + ratio2 * 180
rad2 = angle2 * pi / 180
lon2 = lon + 2 * cos(rad2)
lat2 = lat + 2 * sin(rad2)

list = c(latl = latl, lonl = lonl, lat2 = lat2, lon2 = lon2)

Function to Plot Ray-glyph lines.

"variable" is the plotting parameter. "lncolorl" is the color of the left
line. "lncolor2" is the color of the right line. "cexln" is the cex of the
line. "lwdln" is the line width. "ltylnl" and "ltyln2" and the respective
line types.

H H O R H

41

PlotRayGlyphLines = function(data, variable, lncolorl, lncolor2, cexln = 1.5,
lwdln = 2, 1ltylnl = 1, 1ltyln2 = 1) {
colselect = subset(data, select = variable)
for (i in 1:nrow(colselect)) {
loc = datal[colselect[i,],] # select each location
PlotOnStaticMap (MyMap,
lat = c(as.numeric(loc[4]),
as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],
min(datal[2]), max(datal[2]), min(datal3]),
max (data[3])) [1])),
lon = c(as.numeric(loc[5]) - .1,
as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],
min(data[2]), max(data[2]), min(datal3]),
max(data[3]))[2]) - .1),
FUN = lines, col = lncolorl, add = TRUE, pch = 1, cex = cexln,
lwd = lwdln, 1ty = 1ltylnl) #Line on left
PlotOnStaticMap (MyMap,
lat = c(as.numeric(loc[4]),
as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],
min(data[2]), max(data[2]), min(datal3]),
max (data[3]1)) [31)),
lon = c(as.numeric(loc[5]) + .1,
as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],
min(data[2]), max(datal[2]), min(datal3]),
max(data[3]))[4]) + .1),
FUN = lines, col = lncolor2, add = TRUE, pch = 1, cex = cexln,
lwd = lwdln, 1ty = ltyln2) #Line on right
}
}

Define color scheme for ray-glyph lines
palgreen = brewer.pal(9, "Greens")
Incolorl = palgreen[8]

lncolor2 = palgreen[5]

Run PlotRayGlyphLines function and plot ray-glyph lines. Change plotting
variable. ("University" here)
PlotRayGlyphLines(data = data, variable = "University", lncolorl, lncolor2)

H#

4. Add colored circles depicting percent increase to the map________________
Function to Plot Colored Circles Outlined in Black.

Data*[,4] and data*[,5] contain the latitude and longitude for each
respective level (*), which are our breaks in the data.

After many tries, we found 4 levels most useful

for our data set. "subset" allows us to identify how we want to divide up the
data with "Percent_Increase" being our variable of interest.

Here we put black circles around the colors to make them more visible.

"pch = 1" is a circle. "cexcir" is the cex of the circles. "pchdot" is the pch
of the dot. "pchcir" is the pch of the circle

H OH H H O H R

Note: The data in "Percent_Increase" was not provided by the original data
set.

PlotPoints = function(data, cexcir = 1.5, pchdot = 19, pchcir = 1) {
for (i in 1:4) {
if (1 ==1) {
datal = subset(data, Percent_Increase >= .25 & Percent_Increase < .45)
PlotOnStaticMap(MyMap, datall, 4], datall, 5], FUN = points,
col = palcircle[i], add = TRUE, pch = pchdot, cex = cexcir)
PlotOnStaticMap(MyMap, datall[,4], datal[,5], FUN = points,
col = "black", add = TRUE, pch = pchcir, cex = cexcir,
lwd = 1)

42

}
else if (i == 2) {
data2 = subset(data,Percent_Increase>=.45 & Percent_Increase<.65)
PlotOnStaticMap(MyMap, data2[,4], data2[,5], FUN = points,
col = palcircle[il, add = TRUE, pch = pchdot,
cex = cexcir)
PlotOnStaticMap(MyMap, data2[,4], data2[,5], FUN = points,
col = "black", add = TRUE, pch = pchcir, cex = cexcir,
lwd = 1)
}
else if (i == 3) {
data3 = subset(data,Percent_Increase>=.65 & Percent_Increase<.85)
PlotOnStaticMap(MyMap, data3[,4], data3[,5], FUN = points,
col = palcirclel[il, add = TRUE, pch = pchdot,
cex = cexcir)
PlotOnStaticMap(MyMap, data3[,4], data3[,5], FUN = points,
col = "black", add = TRUE, pch = pchcir, cex = cexcir,
lwd = 1)

else if (i == 4) {
data4 = subset(data,Percent_Increase>=.85 & Percent_Increase<1.0)
PlotOnStaticMap(MyMap, data4[,4], data4[,5], FUN = points,
col = palcircle[il, add = TRUE, pch = pchdot,
cex = cexcir)
PlotOnStaticMap(MyMap, data4[,4], data4[,5], FUN = points,
col = "black", add = TRUE, pch = pchcir, cex = cexcir,
lwd = 1)

}
}

Run PlotPoints function and plot dots/circles.

Define color scheme for our circles. We used the website

http://colorbrewer2.org to identify an appropriate color scheme with 4 levels.
palcircle = brewer.pal(4,"OrRd")

cexcir = 1.5

pchdot 19

pchcir 1

Run colored circles function
PlotPoints(data, cexcir, pchdot, pchcir)

Note: If data doesn’t have a percent increase variable, use the below code
to plot the circles

PlotOnStaticMap(MyMap, datal,4], datal[,5], FUN = points,

col = palcircle[4], add = TRUE, pch = pchdot, cex = cexcir)
PlotOnStaticMap(MyMap, datal,4], datal[,5], FUN = points,

col = "black", add = TRUE, pch = pchcir, cex = cexcir,

lwd = 1)

**

5. Create percent increase legend

The x and y coordinates of the legend box are based on

the latitude and longitude of the static map from Google. The

function "LatLon2XY.centered" transforms latitude and longitude into x and
y coordinates on the map.

LatLon2XY.centered (MyMap,MyMap$BBOX$11[1] ,MyMap$BBOX$11[2]) $newX and
LatLon2XY.centered (MyMap,MyMap$BBOX$11[1] ,MyMap$BBOX$11[2]) $newY give the
lower left-corner coordinates of the static map. We use a fraction of

them (.995, .61 respectively) to shift the legend to its default location.

H OH O HOHE R H

Define computed coordinates used on map (not RgoogleMaps/MyMap)

xcoord.max = LatLon2XY.centered(MyMap,MyMap$BBOX$11[1], MyMap$BBOX$ur [2])$newX
xcoord.min = LatLon2XY.centered(MyMap,MyMap$BBOX$11[1], MyMap$BBOX$11[2])$newX
ycoord.max = LatLon2XY.centered(MyMap,MyMap$BBOX$ur[1], MyMap$BBOX$11[2])$newY
ycoord.min = LatLon2XY.centered(MyMap,MyMap$BBOX$11[1], MyMap$BBOX$11[2])$newY

Legend for percent increase

legend(xcoord.min * .995, ycoord.min * .61,
legend = c("[25, 45)","[45,65)", "[65, 85)", "[85, 1000"),
fill = brewer.pal(4, "OrRd"), title = "Percent Increase", cex = .8,
bg = "grey")

Note: To put the legend in the top left corner we need change the Y and use
MyMap$BBOX$ur[1] as the new reference point that gives us the Y coordinate
in the "upper right" corner. But we just want Y (the latitude). So

MyMap$BBOX$11[2] stays the same. We also change the Y proportion to .995.

legend(xcoord.min*.995, ycoord.max*.995,

legend = c("[25, 45)","[45,65)", "[65, 85)", "[85, 100)"),

£fill = brewer.pal(4, "OrRd"), title = "Percent Increase", cex = .7,
bg = "green")

Note: To place the legend in the left-center, do the same, but change the
proportion on the Y coordinate to .15.

legend(xcoord.min*.995, ycoord.max*.15,

legend = c("[25, 45)","[45,65)", "[65, 85)", "[85, 100)"),

fill = brewer.pal(5, "Reds"), title = "Percent Increase", cex = .7,
bg = "blue")

H*

6. Create ray-glyph legend

Define coordinates of ray-glyph legend box
.left = xcoord.max*.6

.bottom = ycoord.min*.961

.right = xcoord.max*.99

.top = ycoord.min*.45

<M< X oH

Convert rectangle x,y coordinates to latitude and longitude for use with MyMap

lat.bottom = XY2LatLon(MyMap, x.left, y.bottom)[1]
lon.left = XY2LatLon(MyMap, x.left, y.bottom) [2]
lat.top = XY2LatLon(MyMap, x.right , y.top)[1]
lon.right = XY2LatLon(MyMap, x.right , y.top)[2]

Function to draw lines for the ray-glyph legend
CalcRayGlyphLegendLatLon = function(anglel, angle2, lat, lon) {

radl = anglel * pi / 180
lonl = lon + 2 * cos(radl)
latl = lat + 2 * sin(radl)

rad2 = angle2 * pi / 180
lon2 = lon + 2 * cos(rad2)
lat2 = lat + 2 * sin(rad2)

list = c(latl = latl, lonl = lonl, lat2 = lat2, lon2 = lon2)

Ray-glyph legend function. "cexln" is the cex of the line. "lwdln" is the
line width. "ltylnl" and "ltyln2" are the respective line types.
PlotRayglyphLegend = function(llabel, rlabel, llevels, rlevels, lncolorl,

43

1ncolor2, circolor, title, levelscex = .8,
titlecex = .8, labelscex = .8, circex = cexcir,
lwdln = 2, lncircolor = "black") {
#title
text((x.right + x.left) / 2, y.top * 1.1, labels = title, bg = "gray",
cex = labelscex)
Left side variable
text ((x.right + x.left) / 2 * .84, y.bottom * .58, labels = llabel,
cex = labelscex)
Right side variable
text ((x.right + x.left) / 2 * 1.14, y.bottom * .58, labels = rlabel,
cex = labelscex)
for (i in 0:4) {
Left lines
PlotOnStaticMap (MyMap,
lat = c(lat.bottom * 1.19 + i * 1.5,
CalcRayGlyphLegendLatLon(270 - i * 45, 270 - i * 45,
lat.bottom * 1.19 + i * 1.5,
(lon.right + lon.left) / 2)[3]),
lon = c((lon.right + lon.left)/2 - .1,
CalcRayGlyphLegendLatLon(270 - i * 45, 270 - i * 45,
lat.bottom * 1.15 + i * 1.5,
(lon.right + lon.left) / 2)[4]),
FUN = lines, col = lncolorl, add = TRUE, pch = pchcir, cex = circex,
lwd = lwdln)
Right lines
PlotOnStaticMap (MyMap,
lat = c(lat.bottom * 1.19 + i * 1.5,
CalcRayGlyphLegendLatLon(270 + i * 45, 270 + i * 45,
lat.bottom * 1.19 + i * 1.5, (lon.right + lon.left) / 2)[3]),
lon = c((lon.right + lon.left) / 2 + .1,
CalcRayGlyphLegendLatLon(270 + i * 45, 270 + i * 45,
lat.bottom * 1.15 + i * 1.5,
(lon.right + lon.left) / 2)[4]1),
FUN = lines, col = lncolor2, add = TRUE, pch = pchcir, cex = circex,
lwd = lwdln)
circles
PlotOnStaticMap(MyMap, lat.bottom * 1.19 + i * 1.5,
(lon.right + lon.left) / 2,
FUN = points, col = circolor, add = TRUE, pch = pchdot, cex = circex)
outline circles
PlotOnStaticMap(MyMap, lat.bottom * 1.19 + i * 1.5,
(lon.right + lon.left) / 2,
FUN = points, col = lncircolor, add = TRUE, pch = pchcir, cex = circex)
Left side levels
text((x.right + x.left) / 2 * .84, y.top * 1.95 + i * 20,
labels = llevels[1 + i], cex = labelscex)
Right side levels
text ((x.right + x.left) / 2 * 1.16, y.top * 1.95 + i * 20,
labels = rlevels[1 + i], cex = labelscex)
}
}

Rectangle background, with form
rect(x.left, y.bottom, x.right, y.top, col = "grey")

Define values & generic labels

minl = min(data[2])

maxl = max(data[2])

qtrl = round((maxl - minl) * .25 + minl)
qtr2 = round((maxl - minl) * .5 + minl)
qtr3 = round((maxl - minl) * .75 + minl)
min2 = min(data[3])

max2 = max(data[3])

qtr21 = round((max2 - min2) * .25 + min2)

qtr22 = round((max2 - min2) * .5 + min2)
qtr23 = round((max2 - min2) * .75 + min2)

levelscex = .8
titlecex = .8
labelscex = .8

Run the ray-glyph legend function. Change title and labels.

Note: If labels run outside the bounds of the legend box you will have to
manually adjust the rectangle background above.

PlotRayglyphLegend(llabel = ~“underline(2000), rlabel = “underline(2005),
title = "Tuition Trend from\n 2000 to 2005",
llevels = c(minl, qtrl, qtr2, qtr3, maxl),
rlevels = c(min2, qtr21, qtr22, qtr23, max2),
circolor = palcirclel4],
1ncoloril 1ncoloril,
1ncolor2 = lncolor2

7. Plot title

First shift down the margins so the title appears closer to the top of
United States.

par(mar = c(0, 0, 12.5, 0))
title(main = "Ray-Glyph Plot Showing Cost of Tuition and\n Percent Increase from 2000 to 2005")

\n starts a new line

dev.off ()

B.3.1 Scatterplot and Residual Plot: University Tuition

University Tuition Scatterplot and Plot of Residuals

By Nathan Voge

#

#

1 Import functions and data
2 Draw scatterplot

3 Plot residuals

1. Import needed functions and data

library (RColorBrewer)
library(RgoogleMaps)
library(PBSmapping)

University = c("Kansas","Texas","Arizona","Ohio State","Cal-Davis",
"Cal-Santa Barbara","Iowa State","Minnesota","UCLA","Iowa",
"Illinois","Cal-San Diego","Virginia","Cal-Irvine","Colorado",
"Purdue","Wisconsin","North Carolina","Penn State","Pittsburgh",
"Indiana","Cal-Berkeley","Nebraska","Missouri","Maryland",
"Michigan State","Washington","Oregon","Rutgers","Michigan",
"Florida","Buffalo")

Year_2000 = c(2725,3575,2348,4383,4072,3832,3132,4877,3698,3204,4994,3848,4335,

45

3970,3188,3872,3791,2768,7018,7002,4405,4047,3450,4726,5136,5432,
3761,3819,6333,6926,2256,4715)

Year_2005 = c(5413,6972,4498,8082,7457,6997,5634,8622,6504,5612,8634,6685,
7370,6770,5372,6458,6284,4613,11508,11436,7112,6512,5540,7415,
7821,8108,5610,5613,9221,9798,3094 ,6068)

tuit = data.frame(University, Year_2000, Year_2005)

read in data via a file, tuit = read.csv("tuition.csv", header = TRUE)

2. Draw scatterplot

save it as a .pdf
pdf ("tuit_18Jul_hist.pdf", width = 7)

plot(tuit$Year_2000, tuit$Year_ 2005, main = "", xlab = "Tuition in Year 2000",
ylab = "Tuition in Year 2005")

dev.off ()
Scatterplot with names

plot(tuit[, 2], tuit[, 3], type="n")
text(tuit[, 21, tuitl, 3], tuitl, 11)

3. Plot residuals

glmdat = glm(tuit$Year_2005 ~ tuit$Year_2000)
glmresid = residuals(glmdat)
glmpred = predict(glmdat)

save it as a .pdf
pdf ("tuit_22Jul_resid.pdf", width = 7)

plot(tuit$Year_2000, glmresid, type = "n", xlim = c(2000,7500), xlab = "Tuition in Year 2000",

main = "", ylab = "Residuals", cex.lab = 1)
optional title: Residual plot of Tuition in Year 2000
text (tuit$Year_2000, glmresid, tuit[, 1], cex = .9)

dev.off ()

B.4 Rayglyph Googlemap: MLB Value vs Revenue

oogle Map Featuring Ray-Glyph Lines
y Nathan Voge (based on work by Daniel B. Carr (ray-glyphs) and
Markus Loecher (RgoogleMaps))

G
B

Import functions and data

Create a Google map

Add ray-glyph lines to the map

Add colored circles depicting percent increase to the map
Create percent increase legend

Create ray-glyph legend

#
#
#
#
#
#
#
#
#
#
#
Plot title

N O WwN -

46

47

1. Import needed functions and data

load in required packages
library (RColorBrewer)
library(RgoogleMaps)
library (PBSmapping)

read in data

team = c(’Arizona Diamondbacks’,’Atlanta Braves’,’Baltimore Orioles’,
’Boston Red Sox’,’Chicago Cubs’,’Chicago White Sox’,’Cincinnati Reds’,
’Cleveland Indians’,’Colorado Rockies’,’Detroit Tigers’,
’Florida Marlins’,’Houston Astros’,’Kansas City Royals’,
’Los Angeles Angels’,’Los Angeles Dodgers’,’Milwaukee Brewers’,
’Minnesota Twins’,’New York Mets’,’New York Yankees’,
’Oakland Athletics’,’Philadelphia Phillies’,’Pittsburgh Pirates’,
’San Diego Padres’,’San Francisco Giants’,’Seattle Mariners’,
’St Louis Cardinals’,’Tampa Bay Devil Rays’,’Texas Rangers’,
’Toronto Blue Jays’,’Washington Nationals’)

value = c(305,405,359,617,448,315,274,352,298,292,226,416,239,368,482,235,216,
604,1026,234,424,250,354,410,428,429,209, 353,286, 440)

revenue = c(145,172,1566,206,179,157,137,150,145,146,119,173,117,167,189,131,114,
195,277,134,176,125,1568,171,179,165,116,153,136,145)

lat = c(33.445278,33.735278,39.583889,42.346389,42,42.53,39.0975,41.495833,
39.756111,42.339167,25.778056,29.756944,39.051389,35.00278,34.073611,
43.948333,44.981667,40.756944,41.829167,37.951667,39.905833,40.446944,
32.7073,37.778333,47.591389,38.6225,27.768333,32.751389,43.641389,
38.872778)

c(-112.066944,-84.389444,-76.621667,-71.0975,-87.655556,-86.7,-84.506667,
-81.685278,-104.994167,-83.048611,-80.219722,-95.355556,-94.480556,
-119.32778,-119.24,-87.971111,-93.278333,-73.845833,-73.926389,
-121.200556,-75.166389,-80.005833,-117.1566,-122.389444,-122.3325,
-90.193056,-82.653333,-97.082778,-79.389167,-77.0075)

lon

data = data.frame(team, value, revenue, lat, lon)

read in data via a file, data = read.csv("mlb_coordchg.csv", header = TRUE)

2. Create a Google map

Define x and y coordinates on map. In all RgoogleMaps packages, the latitude
is read first followed by the longitude. For our data set, we looked up the
latitude and longitude online for each university.

x = data["lat"]

y = data["lon"]

Define the bounding box (bb) for the map using the latitude and longitude from
our data set.
bb = gbbox(x, y, TYPE = "all", margin = list(m = rep(5, 4),

TYPE = c("perc", "abs")[1]))

Create a Google map by loading a static map from the package and define

some options. bb$lonR, bb$latR are our latitude and longitude from the
previous line of code. We have a few choices on the type of map we want to use
such as "roadmap", "satellite", "terrain", etc. The default is a color map,
here we want it to be gray so we use the "GRAYSCALE" argument. If needed, we
can also use the "zoom" argument. This zooms in/out around the area we

define by using the argument "center".

H OH B O OH HH

save it as a .pdf (looks better)

pdf ("mlb_18Jul_map.pdf", width = 7, paper = "USr")

MyMap = GetMap.bbox(bb$lonR, bb$latR, maptype =

"roadmap", GRAYSCALE = TRUE)

This command plots the map in the graphics window in R

PlotOnStaticMap (MyMap)

Note: Content is added to the static map by using "PlotOnStaticMap".
"PlotOnStaticMap" is repeated for each color/item added to the map. "FUN"
identifies the plotting function, usually points or lines. "pch" and "cex"

normal plotting parameters.

3. Add Ray-glyph lines to the map

It uses the two variables you want to compare
and longitude for these variables (lat, lom),
of the two variables (minl, maxl, min2, max2)
latitude and longitude of the point away from

H OH H H H

Function to Calculate the Latitude and Longitude for Ray-glyph Lines

(varl, var2), the latitude
and the minimum and maximum
respectively. It returns the
the origin for each variable.

CalcRayGlyphMapLatLon = function(varl, var2, lat, lon, minl, maxl, min2,

max2) {
numl = varl - minl
ratiol = numl / (maxl - minl)
anglel = 270 - ratiol * 180
radl = anglel * pi / 180
lonl = lon + 2 * cos(radl)
latl = lat + 2 * sin(radl)

num2 = var2 - min2

ratio2 = num2 / (max2 - min2)
angle2 = 270 + ratio2 * 180
rad2 = angle2 * pi / 180
lon2 = lon + 2 * cos(rad2)
lat2 = lat + 2 * sin(rad2)

list = c(latl = latl, lonl = lonl, lat2 = lat2, lon2 = lon2)

Function to Plot Ray-glyph lines.

"variable" is the plotting parameter. "lncolorl" is the color of the left
line. "lncolor2" is the color of the right line. "cexln" is the cex of the
line. "lwdln" is the line width. "ltylnl" and "ltyln2" and the respective
line types.

H OH B O

PlotRayGlyphLines = function(data, variable, lncolorl, lncolor2, cexln = 1.5,
lwdln = 2, 1ltylnl = 1, 1ltyln2 = 1) {
colselect = subset(data, select = variable)
for (i in 1:nrow(colselect)) {
loc = datal[colselect[i,],] # select each location
PlotOnStaticMap (MyMap,
lat = c(as.numeric(loc[4]),
as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],
min(data[2]), max(data[2]), min(datal3]),
max(data[3]))[1])),
lon = c(as.numeric(loc[5]) - .1,
as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],
min(data[2]), max(data[2]), min(datal3]),
max(data[3]))[2]) - .1),

FUN = lines, col = lncolorl, add = TRUE, pch = 1, cex = cexln, lwd = lwdln,

1ty = 1tylnl) #Line on left

PlotOnStaticMap (MyMap,

lat = c(as.numeric(loc[4]),
as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],

48

min(data[2]), max(datal[2]), min(datal3]),
max(data[3])) [31)),
lon = c(as.numeric(loc[5]) + .1,
as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],
min(data[2]), max(data[2]), min(data[3]),
max(data[3]))[4]) + .1),
FUN = lines, col = lncolor2, add = TRUE, pch = 1, cex = cexln, lwd = lwdln,
1tyln2) #Line on right

1ty
}
}

Define color scheme for ray-glyph lines
palgreen = brewer.pal(9, "Greens")
lncolorl = palgreen[8]

lncolor2 = palgreen[5]

Run PlotRayGlyphLines function and plot ray-glyph lines. Change plotting
variable. ("team" here)
PlotRayGlyphLines(data = data, variable = "team", lncolorl, lncolor2)

**

4. Add colored circles depicting percent increase to the map________________
Function to Plot Colored Circles Outlined in Black.

Datax[,4] and datax[,5] contain the latitude and longitude for each
respective level (%), which are our breaks in the data.

After many tries, we found 4 levels most useful

for our data set. "subset" allows us to identify how we want to divide up the
data with "Percent_Increase" being our variable of interest.

Here we put black circles around the colors to make them more visible.

"pch = 1" is a circle. "cexcir" is the cex of the circles. "pchdot" is the pch
of the dot. "pchcir" is the pch of the circle

H OH H H O HH H R

Note: The data in "Percent_Increase" was not provided by the original data
set.

PlotPoints = function(data, num.breaks, cexcir = 1.5, pchdot = 19, pchcir = 1) {
for (i in 1:num.breaks) {
if (i == 1) {#i=1; variable = "value"
datal = subset(data, value >= 200 & value < 400)
PlotOnStaticMap(MyMap, datall, 4], datall, 5], FUN = points,
col = palcircle[i], add = TRUE, pch = pchdot, cex = cexcir)
PlotOnStaticMap(MyMap, datall[,4], datal[,5], FUN = points, col = "black",
add = TRUE, pch = pchcir, cex = cexcir, lwd = 1)
}
else if (i == 2) {#i=2; variable = "value"
data2 = subset(data, value >= 400 & value < 600)
PlotOnStaticMap(MyMap, data2[,4], data2[,5], FUN = points,
col = palcircle[i], add = TRUE, pch = pchdot, cex = cexcir)
PlotOnStaticMap(MyMap, data2[,4], data2[,5], FUN = points, col = "black",
add = TRUE, pch = pchcir, cex = cexcir, lwd = 1)
}
else if (i == 3) {
data3 = subset(data, value >= 600 & value < 800)
PlotOnStaticMap(MyMap, data3[,4], data3[,5], FUN
col = palcircle[i], add = TRUE, pc pchdot, cex = cexcir)
PlotOnStaticMap(MyMap, data3[,4], data3[,5], FUN = points, col = "black",
add = TRUE, pch = pchcir, cex = cexcir, lwd = 1)

points,

s

}
else if (i == 4) {
datad4 = subset(data, value >= 800 & value < 1000)
PlotOnStaticMap(MyMap, data4[,4], data4[,5], FUN = points,

49

}
#
#

#
#

col = palcircle[i], add = TRUE, pch = pchdot, cex = cexcir)
PlotOnStaticMap(MyMap, data4[,4], data4[,5], FUN = points,
col = "black", add = TRUE, pch = pchcir, cex = cexcir,
lud = 1)
}
else if (i == 5) {
data5 = subset(data, value >= 1000 & value < 1200)
PlotOnStaticMap(MyMap, datab5[,4], data5[,5], FUN = points,
col = palcircle[il, add = TRUE, pch = pchdot, cex = cexcir)
PlotOnStaticMap(MyMap, datab5[,4], data5[,5], FUN = points,
col = "black", add = TRUE, pch = pchcir, cex = cexcir,
lwd = 1)

Run PlotPoints function and plot dots/circles.

Define color scheme for our circles. We used the website
http://colorbrewer2.org to identify an appropriate color scheme with 4 levels.
variable = "value"

num.breaks = 5
palcircle = brewer.pal(5, "OrRd")
cexcir = 1.5

pchdot = 19
pchcir = 1
Run colored circles function

PlotPoints(data, num.breaks, cexcir, pchdot, pchcir)

Note: If data doesn’t have a percent increase variable, use the below code
to plot the circles

H# H# H O H R

H O H O H O HH

#

PlotOnStaticMap(MyMap, datal,4], datal,5], FUN = points,
col = palcircle[4], add = TRUE, pch = pchdot, cex = cexcir)
PlotOnStaticMap(MyMap, datal,4], datal,5], FUN = points,
col = "black", add = TRUE, pch = pchcir, cex = cexcir,
lwd = 1)

5. Create percent increase legend

The x and y coordinates of the legend box are based on

the latitude and longitude of the static map from Google. The

function "LatLon2XY.centered" transforms latitude and longitude into x and
y coordinates on the map.

LatLon2XY.centered (MyMap,MyMap$BBOX$11[1] ,MyMap$BBOX$11[2]) $newX and
LatLon2XY.centered (MyMap,MyMap$BBOX$11[1] ,MyMap$BBOX$11[2])$newY give the
lower left-corner coordinates of the static map. We use a fraction of

them (.995, .61 respectively) to shift the legend to its default location.

Define computed coordinates used on map (not RgoogleMaps/MyMap)

xcoord.max = LatLon2XY.centered(MyMap,MyMap$BBOX$11[1], MyMap$BBOX$ur[2])$newX
xcoord.min = LatLon2XY.centered(MyMap,MyMap$BBOX$11[1], MyMap$BBOX$11l[2])$newX
ycoord.max = LatLon2XY.centered(MyMap,MyMap$BBOX$ur[1], MyMap$BBOX$11[2])$newY
ycoord.min = LatLon2XY.centered(MyMap,MyMap$BBOX$11[1], MyMap$BBOX$11[2])$newY

#

Legend for percent increase

legend(xcoord.min * .995, ycoord.min * .57,

legend = c("[200, 400)", "[400, 600)", "[600, 800)", "[800, 1000)",
"[1000, 1200)"),

fill = palcircle , title = "Value Distribution ($mil)", cex = .9,

bg = "grey")

50

Note: To put the legend in the top left corner we need change the Y and use
MyMap$BBOX$ur[1] as the new reference point that gives us the Y coordinate
in the "upper right" corner. But we just want Y (the latitude). So

MyMap$BBOX$11[2] stays the same. We also change the Y proportion to .995.

legend(xcoord.min*.995, ycoord.max*.995,

legend = c("[25, 45)","[45,65)", "[65, 85)", "[85, 100)"),

£fill = brewer.pal(4, "OrRd"), title = "Percent Increase", cex = .7,
bg = "green")

Note: To place the legend in the left-center, do the same, but change the
proportion on the Y coordinate to .15.

legend(xcoord.min*.995, ycoord.max*.15,

legend = c("[25, 45)","[45,65)", "[65, 85)", "[85, 100)"),

fill = brewer.pal(5, "Reds"), title = "Percent Increase", cex = .7,
bg = "blue")

H*

6. Create ray-glyph legend

Define coordinates of ray-glyph legend box
.left = xcoord.max*.6

.bottom = ycoord.min*.961

.right = xcoord.max*.99

.top = ycoord.minx.45

<M< MR

Convert rectangle x,y coordinates to latitude and longitude for use with MyMap
lat.bottom = XY2LatLon(MyMap, x.left, y.bottom) [1]

lon.left = XY2LatLon(MyMap, x.left, y.bottom)[2]

lat.top = XY2LatLon(MyMap, x.right , y.top)[1]

lon.right = XY2LatLon(MyMap, x.right , y.top)[2]

Function to draw lines for the ray-glyph legend
CalcRayGlyphLegendLatLon = function(anglel, angle2, lat, lon) {

radl = anglel * pi / 180
lonl = lon + 2 * cos(radl)
latl = lat + 2 * sin(radl)

rad2 = angle2 * pi / 180
lon2 = lon + 2 * cos(rad2)
lat2 = lat + 2 * sin(rad2)

list = c(latl = latl, lonl = lonl, lat2 = lat2, lon2 = lon2)

Ray-glyph legend function. "cexln" is the cex of the line. "lwdln" is the
line width. "ltylnl" and "ltyln2" are the respective line types.
PlotRayglyphLegend = function(llabel, rlabel, llevels, rlevels, lncolorl,
1ncolor2, circolor, title, levelscex = .9,
titlecex = .9, labelscex = .9, circex = cexcir,
lwdln = 2, lncircolor = "black") {
#title
text((x.right + x.left) / 2, y.top * 1.1, labels = title, bg = "gray",
cex = labelscex)
Left side variable
text((x.right + x.left) / 2 * .84, y.bottom * .58, labels = llabel,
cex = labelscex)
Right side variable
text ((x.right + x.left) / 2 * 1.14, y.bottom * .58, labels = rlabel,
cex = labelscex)

52

for (i in 0:4) {
Left lines
PlotOnStaticMap (MyMap,
lat = c(lat.bottom * 1.19 + i * 1.5,
CalcRayGlyphLegendLatLon(270 - i * 45, 270 - i * 45,
lat.bottom * 1.19 + i * 1.5,
(lon.right + lon.left) / 2)[31),
lon = c((lon.right + lon.left)/2 - .1,
CalcRayGlyphLegendLatLon(270 - i * 45, 270 - i * 45,
lat.bottom * 1.15 + i * 1.5,
(lon.right + lon.left) / 2)[4]),
FUN = lines, col = lncolorl, add = TRUE, pch = pchcir, cex = circex,
lwd = lwdln)
Right lines
PlotOnStaticMap (MyMap,
lat = c(lat.bottom * 1.19 + i * 1.5,
CalcRayGlyphLegendLatLon(270 + i * 45, 270 + i * 45,
lat.bottom * 1.19 + i * 1.5, (lon.right + lon.left) / 2)[3]),
lon = c((lon.right + lon.left) / 2 + .1,
CalcRayGlyphLegendLatLon(270 + i * 45, 270 + i * 45,
lat.bottom * 1.15 + i * 1.5,
(lon.right + lon.left) / 2)[4]),
FUN = lines, col = lncolor2, add = TRUE, pch = pchcir, cex = circex,
lwd = lwdln)
circles
PlotOnStaticMap(MyMap, lat.bottom * 1.19 + i % 1.5,
(lon.right + lon.left) / 2,
FUN = points, col = circolor, add = TRUE, pch = pchdot, cex = circex)
outline circles
PlotOnStaticMap(MyMap, lat.bottom * 1.19 + i * 1.5,
(lon.right + lon.left) / 2,
FUN = points, col = lncircolor, add = TRUE, pch = pchcir, cex = circex)
Left side levels
text((x.right + x.left) / 2 * .84, y.top * 1.95 + i * 20,
labels = llevels[1 + i], cex = labelscex)
Right side levels
text ((x.right + x.left) / 2 * 1.16, y.top * 1.95 + i * 20,
labels = rlevels[1 + i], cex = labelscex)
}
}

Rectangle background, with form
rect(x.left, y.bottom, x.right, y.top-28, col = "grey")

Define values & generic labels

minl = min(datal[2])

maxl = max(data[2])

qtrl = round((maxl - mini) * .25 + mini)
qtr2 = round((maxl - minl) * .5 + minl)
qtr3 = round((maxl - minl) * .75 + mini)
min2 = min(data[3])

max2 = max(data[3])

qtr21 = round((max2 - min2) * .25 + min2)
qtr22 = round((max2 - min2) * .5 + min2)
qtr23 = round((max2 - min2) * .75 + min2)

Run the ray-glyph legend function. Change title and labels.

Note: If labels run outside the bounds of the legend box you will have to
manually adjust the rectangle background above.

PlotRayglyphLegend(1llabel = ~“underline(Value), rlabel = ~“underline(Revenue),
title = ",
llevels = c(minl, qtrl, qtr2, qtr3, maxl),

53

rlevels = c(min2, qtr21, qtr22, qtr23, max2),
circolor = palcircle[4],

1ncoloril 1ncoloril,

Incolor2 = 1lncolor2

7. Plot title

H#

First shift down the margins so the title appears closer to the top of
United States.

H*

H*

par(mar = c(0, 0, 12.5, 0))

title(main = "Ray-Glyph Plot Showing Major League Baseball Valuations \nand
Revenue ($mil) in 2007 (Forbes.com)") # \n starts a new line
dev.off ()

B.4.1 Histogram: MLB Value and Revenue

MLB Histogram

By Nathan Voge

#

#

1 Import functions and data

2 Draw plots, define colors, create breaks

1. Import needed functions and data

library (RColorBrewer)
library(RgoogleMaps)
library(PBSmapping)

value = c¢(305,405,359,617,448,315,274,352,298,292,226,416,239,368,482,235,216,
604,1026,234,424,250,354,410,428,429,209,353,286,440)

revenue = c(145,172,1566,206,179,157,137,150,145,146,119,173,117,167,189,131,114,
195,277,134,176,125,158,171,179,165,116,153,136,145)

mlb = data.frame(value, revenue)

read in data via a file, data = read.csv("mlb_coordchg.csv", header = TRUE)

2. Draw plots, define colors, create breaks

save it as a .pdf
pdf ("mlb_18Jul_valhist.pdf", width = 11, paper = "USr")

value.breaks5 = c¢(200, 400, 600, 800, 1000, 1200)

palletteb = brewer.pal(5, "OrRd") # define colors

hist(mlb$value, xlim = c(200, 1200), ylim = c(0, 20), xlab = "Value ($mil)",
main = "", col = palletteb, breaks = value.breaksb)

dev.off ()

save it as a .pdf
pdf ("mlb_18Jul_revhist.pdf", width = 11, paper = "USr")

revenue.breaks5 = seq(100, 300, 40)

hist(mlb$revenue, main = "", col = pallette5, xlab = "Revenue ($mil)",
breaks = revenue.breaks5, ylim = c(0, 20), xlim = range(revenue.breaks5),
xaxt = "n") # xaxt = "n" turns off the numbering for the x-axis

reformat the x-axis with tick marks that fit our breaks
axis(l, at = revenue.breaks5, labels = c("100", "140", "180", "220", "260",
"300"))

dev.off ()

Extra histograms

#value.breaks2 = c(200, 350, 500, 650, 800, 950, 1100)

#pallette6 = brewer.pal(7, "OrRd")

#hist (mlb$value, xlim = c(200, 1200), ylim = c(0, 15), xlab = "Value ($mil)",
main = "", col = pallette6, breaks = value.breaks2)

#

#pallette7 = brewer.pal(9, "OrRd")

#hist (mlb$value, xlim = c(200, 1200), ylim = c(0, 12), xlab = "Value ($mil)",
main = "", col = palletteT7)

##Revenue

#pallette9 = brewer.pal(9, "OrRd")

#hist (mlb$revenue, main = "", col = pallette9, xlab = "Revenue ($mil)",
x1lim = c¢(100, 300), ylim = c(0, 10))

B.5 One-Panel Linked Micromap: Tornado Damage

Linked micromap plots (one statistical panel)
By Mike Minnotte (revised for current data by Nathan Voge)

1 Import functions and data
2 Extract state names and sort the data
3 Colors and Graphics Device

1. Import needed functions and data

read in data
web link to data: http://sciencepolicy.colorado.edu/sourcebook/tornadoes.html

H*

State = c("Alabama","Arizona","Arkansas",’California’,’Colorado’,’Connecticut’,
’Delaware’,’Florida’,’Georgia’,’Idaho’,’Illinois’,’Indiana’,’Iowa’,
’Kansas’, ’Kentucky’,’Louisiana’,’Maine’,’Maryland’, ’Massachusetts’,
’Michigan’,’Minnesota’,’Mississippi’,’Missouri’,’Montana’,’Nebraska’,
’Nevada’,’New Hampshire’,’New Jersey’,’New Mexico’,’New York’,
’North Carolina’,’North Dakota’,’Ohio’,’Oklahoma’,’Oregon’,
’Pennsylvania’,’Rhode Island’,’South Carolina’,’South Dakota’,
’Tennessee’,’Texas’,’Utah’,’Vermont’,’Virginia’,’Washington’,
’West Virginia’,’Wisconsin’,’Wyoming’)
Puerto Rico, Hawaii, Alaska were eliminated from the data set as

95

they aren’t included on the map

Cost = c(51.88,3.469,40.96,3.682,4.623,2.26,0.2744,37.32,51.68,0.2552,62.94,
53.13,49.51,49.28,24.84,27.75,0.5252,2.329,4.418,29.88,84.84,43.62,
68.93,2.266,30.26,0.0953,0.6592,2.94,1.485,15.73,14.9,14.69,44.36,
81.94,5.52,17.11,0.0898,17.19,10.64,23.47,88.6,3.565,0.2416,7.416,
2.374,2.143,31.33,1.779)

torn = data.frame(State, Cost)

read in data via file, torn = read.csv("tornado_alpha.csv", header = TRUE)

library(RColorBrewer)
library(maps) # load map data

data(state) # load state data

2. Extract state names and sort the data (high to low)

tornado = torn[, 2] # extract data

tornado.state = torn[, 1] # get state names

tornado.name <- tornado.state[order(tornado, decreasing = T)]
tornado = sort(tornado, decreasing = TRUE)

3. Start Graphics Device and Define Colors

pal = brewer.pal(6, "Setl") # rainbow colors
pall[6] = "#DDDDDD" # gray

save it as a .pdf (looks better)
pdf ("Tornado_micromap_18Jul.pdf", width = 7.5, height = 10)

create the layout
layout (matrix(1:36, nrow = 12, byrow = TRUE), widths = c(1, 1, 2),
heights = c(rep(4, 5), 1, rep(4, 5), 3))

visualize the layout: layout.show(36)

loop that draws maps and plot everything
for (i in 1:10) { # start of loop for each of the i panels, ends on line 159

compute colors
par(mex = 0.5, mar = rep(.01, 4))

define colors above/below median to be gray (pall6])
if (i <= B)

m.col = c(rep(pall6], 25), rep(0, 25))
else

m.col = c(rep(0, 25), rep(pall6], 25))

define other colors on map (column 1)
if (i <= 4)

m.col[(i-1) * 5 + 1:5] = pal[1:5]
else if (i == 5)

m.col[(i-1) * 5 + 1:4] = pal[1:4]
else if (i == 6)

m.col[(i-1) * 5 - 1 + 1:4] = pal[1:4]
else

m.col[(i-1)*5 - 2 + 1:5] = pall[1:5]

map.m.col = m.col[match.map("state", as.character(tornado.name))]

plot map
map("state", fill = TRUE, col = map.m.col, border = 1,
xlim = c(-125, -65), ylim = c(25, 50))

plot labels (column 2)
par(mar = rep(.1, 4))
plot(0, 0, xlim = c(0, 1), ylim = c(0, 1), type = "n", bty = "n",

xaxt = "n", ant = "p", xlab = "", ylab = un)

if (i <= 4)

points(rep(.1, 5), seq(.9, .1, by = -.2), pch = 21, bg = pal[1:5], cex = 2)
else if (i == 5) # notice in i==5/6, we change seq(...) and pall[...] because

there are only 4 states/dots here. This is repeated below.

points(rep(.1, 4), seq(.8, .2, by = -.2), pch = 21, bg = pal[1:4], cex = 2)
else if (i == 6)

points(rep(.1, 4), seq(.8, .2, by = -.2), pch = 21, bg = pall[l:4], cex = 2)
else

points(rep(.1, 5), seq(.9, .1, by = -.2), pch = 21, bg = pal[1:5], cex = 2)
if (i <= 4)

text(rep(.18, 5), seq(.9, .1, by = -.2), tornado.name[(i-1) * 5 + 1:5],

pos = 4, cex = 1.0)
else if (i == 5)
text(rep(.18, 4), seq(.8, .2, by = -.2), tornado.name[(i-1) * 5 + 1:4],
pos = 4, cex = 1.0)
else if (i == 6)

text(rep(.18, 4), seq(.8, .2, by = -.2), tornado.name[(i-1) * 5 - 1 + 1:4],
pos = 4, cex = 1.0)
else
text(rep(.18, 5), seq(.9, .1, by = -.2), tornado.name[(i-1) * 5 - 2 + 1:5],
pos = 4, cex = 1.0)
plot dotplot of values (column 3)
par(mar = rep(.1, 4))
if (i == 10)
plot(0, 0, xlim = range(tornado), ylim = c(0, 1), type = "n", yaxt = "n",
Xlab = nn . ylab =N ")
else
plot(0, 0, xlim = range(tornado), ylim = c(0, 1), type = "n", xaxt = "n",
yaxt = llnll s xlab = nhn s ylab =" ||)
if (i <= 4)
abline(h = seq(.9, .1, by = -.2), 1ty = 3, col = "grey")
else if (i == 5)
abline(h = seq(.8, .2, by = -.2), 1ty = 3, col = "grey")
else if (i == 6)
abline(h = seq(.8, .2, by = -.2), 1ty = 3, col = "grey")
else
abline(h = seq(.9, .1, by = -.2), 1ty = 3, col = "grey")
if (i <= 4)
points(tornado[(i-1) * 5 + 1:5], seq(.9, .1, by = -.2), pch = 21,

bg = pall[1:5], cex = 2)
else if (i == 5)
points(tornado[(i-1) * 5 + 1:4], seq(.8, .2, by = -.2), pch = 21,
bg = pall1l:4], cex = 2)
else if (i == 6)
points(tornado[(i-1) * 5 - 1 + 0:3], seq(.8, .2, by = -.2), pch = 21,
bg = pall[1:4], cex = 2)
else
points(tornado[(i-1) * 5 - 2 - 2 + 1:5], seq(.9, .1, by = -.2), pch = 21,
bg = pal[1:5], cex = 2)

separate states above and below median, j is the columns, i the rows
if (i ==5) {

o6

for (j in 1:3){
plot(0, 0, xlim = c(0, 1), ylim = c(0, 1), type = "n", bty = "n",
xaxt = "n", yaxt = "n", xlab = "", ylab = "")
abline(h = .5, lwd = 3, col = pall[6])
}
}

Plot through remaining (empty) cells
if (i == 10)
for (j in 1:3)
plot(0, 0, xlim = c(0, 1), ylim = c(0, 1), type = "n", bty = "n",
xaxt = "n", yaxt = "n", xlab = "", ylab = "")
} # end of loop

Label for dot plots
text (0.5, 0.35, "Property Damage Due to \nTornadoes in Millions of Dollars",
cex = 1.5)

dev.off ()

B.5.1 Tornado Histogram

Tornado Damage Histogram
By Nathan Voge

1 Import functions and data

#
#
#
#
#
2 Draw plot

1. Import needed functions and data

State = c("Alabama","Arizona","Arkansas",’California’,’Colorado’,’Connecticut’,
’Delaware’,’Florida’,’Georgia’,’Idaho’,’Illinois’,’Indiana’,’Iowa’,
’Kansas’,’Kentucky’,’Louisiana’,’Maine’,’Maryland’, ’Massachusetts’,
’Michigan’,’Minnesota’,’Mississippi’,’Missouri’,’Montana’,’Nebraska’,
’Nevada’,’New Hampshire’,’New Jersey’,’New Mexico’,’New York’,

’North Carolina’,’North Dakota’,’Ohio’,’Oklahoma’,’Oregon’,
’Pennsylvania’,’Rhode Island’,’South Carolina’,’South Dakota’,
’Tennessee’,’Texas’,’Utah’,’Vermont’,’Virginia’,’Washington’,
’West Virginia’,’Wisconsin’,’Wyoming’)

Puerto Rico, Hawaii, and Alaska were eliminated

Cost = c(51.88,3.469,40.96,3.682,4.623,2.26,0.2744,37.32,51.68,0.2552,62.94,
53.13,49.51,49.28,24.84,27.75,0.5252,2.329,4.418,29.88,84.84,43.62,
68.93,2.266,30.26,0.0953,0.6592,2.94,1.485,15.73,14.9,14.69,44.36,
81.94,5.52,17.11,0.0898,17.19,10.64,23.47,88.6,3.565,0.2416,7.416,
2.374,2.143,31.33,1.779)

torn = data.frame(State, Cost)

read in data via a file, torn = read.csv("tornado_alpha.csv", header = TRUE)

2. Draw plot

save as a .pdf
pdf ("torn_18Jul_hist.pdf", width = 11, paper = "USr")

57

hist(torn$Cost, xlim

= c(0, 100), ylim

xlab = "Cost (in millions)")

dev.off ()

c(0, 25), main = "",

o8

B.6 Two-Panel Linked Micromap: Fruit/Vegetable Consumption and

Smoking

W e

W N o ;o

10
11

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
12

1. Import needed functions and data

read in data

fvsmk = read.csv("fvsmk_DC.csv", row.names

load("Ch9_panellLayout.Rdata")

Import functions and data

Linked micromap plots (two statistical panels)
By Daniel B. Carr (revised for current data by Nathan Voge)

Sort data and extract abbreviations

Colors and Graphics Device

Define panel layouts

Define graphics parameters

Set up for processing in loops

Draw
Draw

Draw
Draw
Draw

maps

linking dots and state names

estimates and confidence bounds

counts
title and legend

Outline groups of panels

read in polygon shapes for map
read.csv("stateVisibilityBorders.txt", row.names = NULL,

stateVBorders =

nationVBorders

header = TRUE)

= 1, header = TRUE)

"st" = state ID’s,

polygon coordinates

= read.csv("nationVisibilityBorders.txt",
blank.lines.skip = FALSE, row.names = NULL,

header = TRUE)

#
#
#
#

workspace that has all the panel
functions

Nt

row.names
makes row
numbers go
away

layout

and "y" ar

get Fips codes which are numbers the government uses to identify states
= read.csv(’stateNamesFips.txt’, row.names = 1, header = TRUE

stateNamesFips

2. Sort the data.frame by fruit and veg consumption (high to low) and
extract the state abbreviations for later use

ord = rev(order(fvsmk$Fruit_Vegs))

fvsmk = fvsmk[ord,]

e

)

1

stateDatald = row.names (fvsmk)

3. Start Graphics Device and Define Colors

#windows (width = 7.5,height = 10)
wgray = rgb(.82, .82, .82) #white gray

rgbColors = matrix(c(
1.00, .30, .30,
1.00, .50, .00,
.25,1.00, .25,
.10, .65, 1.00,
.80, .45, 1.00,

.35, .35, .35,
.85, .85, .85,
.50, .50, .50,

1.00, 1.00, .85,
.85, .85, .85), ncol = 3, byrow = TRUE)
hdColors = rgb(rgbColors[, 1], rgbColors[, 2], rgbColors[, 3])

#4. Define panel layouts

bot 77
top = .73
left = 0
right = 0

panels = panellayout(nrow = 11, ncol = 4,
topMar = top, bottomMar = bot,
leftMar = left, rightMar = right,
rowSep = c(0, 0, 0, 0, 0, .07, .07, O, O, O, O, 0),
rowSize = c(7, 7, 7, 7, 7, 1.5, 7, 7, 7, 7, 7),
colSize = c(2.5, 2.2, 2.90, 2.90),
colSep = c(0, 0, 0, 0, 0))

panelBlock = panelLayout(nrow = 3, ncol = 3,
topMar = top, bottomMar = bot,
leftMar = left, rightMar = right,
rowSep = c(0, .07, .07, 0),
rowSize = c(35, 1.5, 35),
colSize = c(4.7, 2.90, 2.90),
colSep = c(0, 0, 0, 0))

#5. Define graphics parameters

dcex = .95
tCex = 1.08
cex = .65
fontsize = 12
font =1
linel = .2
line2 = 1.0
line3d = .2
ypad = .65

nameShift = .12

#6. Set up indices for perceptual groups of states

iBegin = c(1, 6, 11, 16, 21, 26, 27, 32, 37, 42, 47) # group beg subscript

iEnd
nGroups = length(iEnd)

#7. Plot maps

c(5, 10, 15, 20, 25, 26, 31, 36, 41, 46, 51) # group ending subscript

range for scale the polygon panels
rxpoly = range(stateVBorders$x, na.rm = TRUE)
rypoly = range(stateVBorders$y, na.rm = TRUE)

polygon ID’s, one per polygon
polygonld = stateVBorders$st[is.na(stateVBorders$x)]

panel titles

panelSelect(panels, 1, 1)

panelScale()

mtext(side = 3, line = linel, ’Above Median States’, cex = cex)
mtext(side = 3, line = line2, ’Micromaps’, cex = cex)

panelSelect(panels, 11, 1)
panelScale()
mtext(side = 1, line = line3, ’Below Median States’, cex = cex)

drawing the maps
for (i in 1:nGroups) {

if (i ==6) { #map not drawn, median state in adjacent panels
panelSelect(panels, 6, 1)
panelScale()

panelFill(col = wgray)
panelOutline(col = "black")
text(.5, .55, ’Median’, cex = cex)

next # ’next’ halts the processing of the current iteration and advances

the looping index.
}
panelSelect(panels, i, 1)
panelScale(rxpoly, rypoly)
gsubs = iBegin[i]:iEnd[i]

if (i == 5)

gsubs = c(gsubs, 26) # median state added here
if (1 ==7)

gsubs = c(gsubs, 26) # median state added here
if (i < 6)

cont = stateDatald[1:26]
else

cont = stateDatald[26:51]
cont means above or below median contour
panelNames = stateDatald[gsubs]

plot background (out of contour) states in gray with white outlines
back = is.na(match(stateVBorders$st, cont))
polygon(stateVBorders$x[back], stateVBorders$y[back], col = wgray,

border = FALSE)
polygon(stateVBorders$x[back], stateVBorders$y[back], col = "white",
density = 0)
outline

plot foreground states for the panel in their special colors pens 1:5

states

60

61

and other in contour states in light yellow pen 9
fore = !back
pen = match(polygonIld, panelNames, nomatch = 9)[!is.na(match(polygonId, cont))]
polygon(stateVBorders$x[forel, stateVBorders$y[fore]l, col = hdColors[pen],
border = FALSE) # outline states
polygon(stateVBorders$x[fore], stateVBorders$y[fore], col = "black",
density = 0, lwd = 1) # outline states

outline U.S.
polygon(nationVBorders$x, nationVBorders$y, col = "black", density = O,
lwd = 1)
outside boundary

#8. Plot labels

get full state names in rate order

ord = match(stateDatald, stateNamesFips$ab) # match state names

stateNames = row.names(stateNamesFips) [ord] # get the full state names except
D.C.

cbind(stateDatald, stateNames) # check that the matching has
worked

title column

panelSelect(panels, 1, 2)

panelScale()

mtext(side = 3, line = linel, ’’, cex = cex)

mtext(side = 3, line = line2, ’States’, cex = cex)

draw state names
for (i in 1:nGroups) {
gsubs = iBegin[i]:iEnd[i]
gnams = stateNames [gsubs]
nsubs = length(gnams)
pen = 1l:nsubs
laby = nsubs:1
panelSelect(panels, i, 2)
panelScale(c(0, 1), c(1-ypad, nsubs + ypad))

if (i ==6) {
pen = 6
panelFill(col = wgray)
panelOutline()

}

for (j in 1:length(pen)) {
points(.1,laby[jl, pch = 16, col = hdColors[pen[jl], cex = dcex)
points(.1,laby[j]l, pch = 1, col = "black", cex = dcex)
text (.18, laby[j] + nameShift, gnams[j], cex = cex ,adj = 0,
col = "black", font = font)

#9 Plot rates with confidence bounds

countRangel = range(fvsmk$Fruit_Vegs)
countRangel = mean(countRangel) + 1.10 * diff (countRangel) * c(-.5, .5)
countGridl = panelInbounds(countRangel) # used pretty values that are in bounds

panelSelect(panels, 1, 3)

panelScale()

mtext(side = 3, line linel, ’(at least 5 times a day)’, cex = cex)
mtext(side = 3, line = line2, ’Fruit and Vegs Consumption’, cex = cex)

for (i in 1:nGroups) {
gsubs = iBegin[i]:iEnd[i]
nsubs = length(gsubs)
pen = 1l:nsubs
laby = nsubs:1
panelSelect (panels, i, 3)
panelScale(countRangel, c(l1-ypad, nsubs + ypad))
panelFill(col = wgray)
panelGrid(x = countGridl, col = "white", lwd = 1)
panelGrid(x = 5.6, col = "black", 1ty = 2) # hard code U.S. average
panelOutline(col = "white")

if (i == nGroups) {
axis(side = 1, at = countGridl, labels = as.character(countGridl),

col = "black", mgp = c(1, 0, 0), tck = -.04, cex.axis = cex)
mtext(side = 1, line = .7, "Percent", cex = cex)
}
if (i == 6)
pen = 6

lines(fvsmk$Fruit_Vegs[gsubs], laby, col = "black", lwd = 1)

for (j in 1:length(pen)) {

points (fvsmk$Fruit_Vegs[gsubs[jl]l, laby[jl, pch = 16,
cex = dcex, col = hdColors[pen[jl])
points (fvsmk$Fruit_Vegs[gsubs[jl]l, laby[jl, pch = 1,

cex = dcex, col = "black")

#10. Plot counts

countRange = range(fvsmk$Smoke)
countRange = mean(countRange) + 1.10 * diff(countRange) * c(-.5, .5)
countGrid = panellnbounds(countRange) # used pretty values that are in bounds

panelSelect(panels, 1, 4)

panelScale()

mtext(side = 3, line linel, ’Smoking’, cex = cex)
mtext(side = 3, line = line2, ’Daily’, cex = cex)

for (i in 1:nGroups) {
gsubs = iBegin[i]:iEnd[i]
nsubs = length(gsubs)
pen = 1l:nsubs
laby = nsubs:1
panelSelect(panels, i, 4)
panelScale(countRange, c(1-ypad,nsubs + ypad))
panelFill(col = wgray)
panelGrid(x = countGrid, col = "white")
panelOutline(col = "white")

if (i == nGroups) {
axis(side = 1, at = countGrid, labels = as.character(countGrid),
col = "black", mgp = c(1, 0, 0), tck = -.04, cex.axis = cex)
mtext(side = 1, line = .7, "Percent", cex = cex)

}

if(i == 6)
pen = 6

lines (fvsmk$Smoke [gsubs], laby, col = "black", lwd = 1)

for (j in 1:length(pen)) {
points (fvsmk$Smoke [gsubs[j1], laby[jl, pch = 16,
cex = dcex, col = hdColors[pen[jl])
points (fvsmk$Smoke [gsubs[j1], laby[jl, pch = 1,
cex = dcex, col = "black")

#11 Add Title and Legend

panelSelect (panels, margin = ’top’)

panelScale()

text(.5, .85, ’Fruit and Vegetable Consumption and Smoking Statistics By State’,
cex = 1)

panelSelect(panels, margin = ’bottom’)

panelScale(inches = TRUE)

xs = 2.8

ys = -.42

text(.01 + xs, .70 + ys, "U.S. Average", cex = cex, adj = 0, font = 1)
lines(c(.78, 1.50) + xs, c(.70, .70) + ys, 1ty = 2, col = "black")

text(.01 + xs, .53 + ys, "90% Confidence Interval", cex = cex, adj = 0,
font = 1)

lines(c(1.35, 1.61) + xs, c(.53, .53) + ys, lwd = 2, col = hdColors[1])

#12 Outline groups of Panels

for (i in 1:3) {
for (j in 2:3) {
panelSelect(panelBlock, i, j)
panelScale()
panelOutline(col = "black")
}
}

panelSelect(panelBlock, 2, 1)
panelScale()
panelQOutline(col = "black")

63

