

13

When we show the data from Figure 8 on a map (see Figure 10), we can see

much more than just some skewed data. In Figure 10 we are able to see strong

grouping among continents and geographical areas. More importantly, we are able to

identify spatial outliers such as South Africa, Saudi Arabia, and Germany that weren’t

previously visible in the histogram. Their CO2 emissions were rather different from

the CO2 emissions of their geographic neighbors, but they weren’t unusual on a global

(non-spatial) scheme. Again the countries possibly identified as outliers are actually

part of a larger spatial pattern when viewed on a map. R code for Figure 9 can be

found in Appendix B.2.1 and R code for Figure 10 can be found in Appendix B.2.

3.2 Google Maps

In this section we looked at displaying data using a different kind of map. Here

we utilized the detail and resourcefulness of a Google map by plotting point data that

have a latitude and longitude associated with them.

3.2.1 Public University Tuition

Moore et al. (2009) asked the students to plot the data from Figure 11 and check

Fig. 10: Choropleth map of the CO2 emissions data (in metric tons per person).

14

Fig. 11: Original data set of in-state undergraduate tuition and fees for 32 universities
between 2000 and 2005 (Moore et al., 2009, p. 595). [From Introduction to the
Practice of Statistics (sixth edn) by D. S. Moore, G. P. McCabe, and B. Craig.
c©2009 by W. H. Freeman and Company. Used with permission.]

whether a linear relationship existed between the two variables. Students also had to

identify outliers, run a simple linear regression, and obtain the residuals.

Fig. 12: Scatterplot of the tuition data.

15

Fig. 13: Google map showing the percent increase of tuition from 2000 to 2005.

We first produced a scatterplot (Figure 12) of the data in Figure 11 and fitted the

following linear regression model: Ŷ r2005 = 1059 + (1.4) ∗ Y r2000. Figure 12 suggests

a strong linear relationship and possibly a few outliers.

Using the internet, we were able to obtain the latitude and longitude for each

of the universities and plotted them on a Google map of the United States. To

represent the difference of tuition and fees between the two years, we thought it made

more sense to look at the percent increase for each university from 2000 to 2005. In

Figure 13, the dark red colors represent the highest percent increase of tuition and

fees as seen in Texas, Kansas, and Arizona. This map also shows some strong spatial

grouping in different areas of the country and again some spatial outliers.

Adding a ray-glyph plot (Carr et al. (1992)) to the map allows us to look at

multiple variables on one map. In Figure 14, the green lines represent the tuition for

2000 and 2005 respectively, with a line pointing down representing the lowest tuition

and a line pointing up representing the highest tuition in that year. Universities

whose lines are quite asymmetric are representing outliers. As such, it appears that

16

Fig. 14: Google map adding ray-glyph lines to the percent increase dots of the previous
map (Figure 13).

Universities in Buffalo, Ohio, and Texas are outliers. A residual plot as in Figure 15,

confirms that Buffalo, Ohio, and Texas are outliers as they have they highest/lowest

residuals. R code for Figures 12 and 15 can be found in Appendix B.3.1 and R code

2000 3000 4000 5000 6000 7000

−
15

00
−

10
00

−
50

0
0

50
0

10
00

Tuition in Year 2000

R
es

id
ua

ls

Kansas

Texas

Arizona

Ohio State

Cal−Davis

Cal−Santa Barbara

Iowa State

Minnesota

UCLA

Iowa

Illinois

Cal−San DiegoVirginia
Cal−Irvine

Colorado

Purdue
Wisconsin

North Carolina

Penn StatePittsburgh

Indiana
Cal−Berkeley

Nebraska
Missouri

Maryland

Michigan State

Washington
Oregon

Rutgers

Michigan

Florida

Buffalo

Fig. 15: Residual plot of tuition data.

17

Fig. 16: Original data set of franchise value and 2006 revenues for each of the 30
major league baseball (MLB) teams as reported by Forbes magazine and Forbes.com.
(Bowerman et al., 2009, p. 67). [From Essentials of Business Statistics (third edn)
by B. L. Bowerman, R. T. OConnell, J. B. Orris, and E. S. Murphree. c©2009 by
McGraw-Hill/Irwin. Used with permission.]

for Figures 13 and 14 can be found in Appendix B.3.

3.2.2 Major League Baseball Team Valuations and Revenue

From the data in Figure 16, the Bowerman et al. (2009) book gives us another

beneficial use of a Google map to display data. Here the students are asked to develop

several types of histograms and to describe the distribution of team values.

We produced just one histogram as seen in Figure 17. The data appears to be

right-skewed and there is a possibility of an outlier. The color scheme seen here is the

same as in Figure 18 and represents the distribution of team values by its saturation.

Using the internet, we were again able to obtain the latitude and longitude for

each of the baseball teams and plotted them on a Google map of the United States.

In Figure 18, the dark red colors represent the teams with relatively high value.

There are a high number of lower valued teams and there appears to be some spatial

18

Fig. 17: Histogram of the MLB data.

Fig. 18: Google map with ray-glyph lines showing Major League Baseball team rev-
enues and values. Teams that were located in close proximity were manually moved
to fix over-plotting.

19

patterns. The highest valued teams are in the Northeast United States. Areas that

have two teams in close proximity to each other such as Los Angeles, San Francisco,

Maryland, and Chicago seem to compete with each other resulting in one team having

less value. There are other groupings in the Mid-east and Florida. The darkest red

team is the New York Yankees and is a possible outlier.

The ray-glyph lines (Carr et al. (1992)) in this map gives us additional informa-

tion a histogram can’t. Again teams whose lines are asymmetric represent outliers.

In this ray-glyph plot, it appears the Washington Nationals is an obvious outlier, with

the LA Dodgers, Chicago White Sox, Chicago Cubs, Atlanta Braves, Boston Red Sox,

Seattle Mariners, and Houston Astros as possible outliers. R code for Figure 17 can

be found in Appendix B.4.1 and R code for Figure 18 can be found in Appendix B.4.

A ray-glyph map (see Figure 14 and Figure 18) allows us to display multiple

variables at one time. It also allows us to identify the location of universities/teams

that are not so well known. Finally, this kind of map allows us to combine a variable

like percent increase by using a color scheme with the ray-glyph lines that represent

actual tuition data for two years, all within a single map.

3.3 Micromaps

In this section, we worked with another type of map that also allowed us to

view actual data values on a map. It is essentially a combination of multiple choro-

pleth maps and a dot plot that is commonly called a linked micromap plot or just a

micromap (Carr et al. (1998)).

3.3.1 Damage Due to Tornadoes

Our first example of a micromap comes from the data set in Figure 19. Moore

et al. (2009) asked the students to identify the top five and bottom five states, make

20

Fig. 19: Original data set of average property damage due to tornadoes from 1950
to 1999, adjusted for inflation (Moore et al., 2009, p. 25). [From Introduction to
the Practice of Statistics (sixth edn) by D. S. Moore, G. P. McCabe, and B. Craig.
c©2009 by W. H. Freeman and Company. Used with permission.]

a histogram using software, compare it with a histogram with classes in increments

of 10, and to identify outliers. This histogram in Figure 20 tells us that the data are

right-skewed and that there are possibly three outliers.

Fig. 20: Histogram of the tornado data.

21

●

●

●

●

●

Texas

Minnesota

Oklahoma

Missouri

Illinois

●

●

●

●

●

●

●

●

●

●

Indiana

Alabama

Georgia

Iowa

Kansas

●

●

●

●

●

●

●

●

●

●

Ohio

Mississippi

Arkansas

Florida

Wisconsin

●

●

●

●

●

●

●

●

●

●

Nebraska

Michigan

Louisiana

Kentucky

Tennessee

●

●

●

●

●

●

●

●

●

South Carolina

Pennsylvania

New York

North Carolina

●

●

●

●

●

●

●

●

North Dakota

South Dakota

Virginia

Oregon

●

●

●

●

●

●

●

●

●

Colorado

Massachusetts

California

Utah

Arizona

●

●

●

●

●

●

●

●

●

●

New Jersey

Washington

Maryland

Montana

Connecticut

●

●

●

●

●

●

●

●

●

●

West Virginia

Wyoming

New Mexico

New Hampshire

Maine

●

●

●

●

●

●

●

●

●

●

Delaware

Idaho

Vermont

Nevada

Rhode Island

0 20 40 60 80

●

●

●

●

●

Property Damage Due to
Tornadoes in Millions of Dollars

Fig. 21: Micromap of the tornado data. This map is for the continental U.S. only
and does not show data for Hawaii, Alaska, and Puerto Rico. The right column gives
us a color-coded dot plot that corresponds to a state in the middle column that is
plotted on a map in the column on the left. States with an average property damage
above the median are shaded grey in the five small maps above the separating line
while states with an average property damage below the median are shaded in grey
in the five small maps below the separating line.

22

As we follow the map in Figure 21 down from the top, we are able to visually see

where and how the data are distributed. It appears that property damage is highest

in the central United States (U.S.) and spreads out to the eastern and western coasts.

Spatial outliers are visible and we are able to identify the top and bottom five states

and see where they are located. The benefits of such maps are that they minimize

loss of information by eliminating the need for breaks, provide better use of color

in small regions, provide a better way to observe a continuous variable, and provide

another way to show more than one variable on a choropleth map as demonstrated in

the next section. R code for Figure 20 can be found in Appendix B.5.1 and R code

for Figure 21 can be found in Appendix B.5.

We note that some ratio of property damage per square mile or property damage

per inhabitant would be beneficial here as it is likely that large states will have higher

total damage.

3.3.2 Fruit and Vegetable Consumption and Smoking

Our second example of a micromap is based on data that was collected by the

Center for Disease Control (CDC) and the Behavioral Risk Factor Surveillance System

(BRFSS). A link to the website housing the data in Figure 22 was found in the

Moore et al. (2009), Appendix N-4, 53. Data were collected for 29 demographic

characteristics and risk factors for each state (risk factors are listed in Appendix D-1

in the book). For the authors’ purpose, only two risk factors were chosen: Fruits

and Vegetables is the percent of adults in the state who reported eating at least five

servings of fruits and vegetables per day. Smoking is the percent who smoked every

day.

Moore et al. (2009) included the scatterplot shown in Figure 23 and asked the

students to describe the relationship between the two variables and to identify certain

23

Fig. 22: Original data set of fruit and vegetable consumption and daily smoking for
all 50 states (Moore et al., 2009, p. 161-162). [From Introduction to the Practice of
Statistics (sixth edn) by D. S. Moore, G. P. McCabe, and B. Craig. c©2009 by W. H.
Freeman and Company. Used with permission.]

points on the plot. Utah is the furthest to the left and California the second furthest.

Both of these states have less than average smoking values, but California has an

above average fruit and vegetable consumption. The plot shows a negative linear

association; as fruit and vegetable consumption decreases, smoking increases.

Fig. 23: Scatterplot and regression line related to the fruit and vegetable and smoking
data set (Moore et al., 2009, p. 162).

24

In Figure 24, we applied a more advanced micromap design that is able to include

Hawaii and Alaska (and even Washington D.C. if needed) on the fruit and vegetable

and smoking data set. This micromap enlarges the smaller states on the eastern coast

and gives better dimensions to the rest of the states. If we look at California and Utah

on the micromap we see two different stories. California is an obvious spatial outlier

with respect to fruit and vegetable consumption, but it is not dramatically different

from the other data points in the dot plot. Utah on the other hand is not a spatial

outlier, but its smoking pattern is dramatically different from the other points in the

dot plot. This tells us something might be different about Utah, possibly due to the

high percentage of its religious population who don’t smoke. We refer to Gebreab

et al. (2008) for a detailed discussion on how to interpret a micromap similar to the

one shown in Figure 21. R code for Figure 24 can be found in Appendix B.6.

25

Above Median States
Micromaps

Below Median States

Median

States

●● D.C.
●● Vermont
●● New Hampshire
●● California
●● Maryland

●● Maine
●● Massachusetts
●● Connecticut
●● Rhode Island
●● Tennessee

●● Virginia
●● Florida
●● New York
●● Oregon
●● New Jersey

●● Washington
●● Alaska
●● Montana
●● Minnesota
●● Hawaii

●● Colorado
●● Illinois
●● Pennsylvania
●● Arizona
●● Idaho

●● Georgia

●● Michigan
●● Texas
●● Ohio
●● Missouri
●● North Carolina

●● Nevada
●● Wisconsin
●● Utah
●● Indiana
●● Wyoming

●● North Dakota
●● New Mexico
●● Delaware
●● South Carolina
●● Arkansas

●● South Dakota
●● Nebraska
●● Louisiana
●● Alabama
●● West Virginia

●● Kansas
●● Iowa
●● Kentucky
●● Mississippi
●● Oklahoma

(at least 5 times a day)
Fruit and Vegs Consumption

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

15 20 25 30
Percent

●●

●●

●●

●●

●●

Smoking
Daily

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

10 15 20
Percent

●●

●●

●●

●●

●●

Fruit and Vegetable Consumption and Smoking Statistics By State

Fig. 24: Micromap of fruit and vegetable consumption and smoking data.

26

CHAPTER 4

DISCUSSION

Displaying spatial data via maps enriches understanding. We are surrounded by

data. Collecting is only part of the battle. Displaying all components of a data set

allows us to explore and discover valuable information that is otherwise lost when only

sets of the data are displayed. Through displaying data with a spatial component via

maps, many outliers or otherwise hard-to-interpret features evident in other plotting

mechanisms can be explained by spatial context.

It makes sense to display data sets with a spatial component in a spatial frame-

work such as a map. Maps allow us to better understand the data when interpreted

in its geographic context. Also, maps can reveal spatial outliers that aren’t readily

visible in the data. Much of the information obtained from other plotting techniques

can be extended by using maps. This can give us better insights in how to treat a

particular location or try to identify its peculiarity.

We clearly do not expect from textbook authors to make major changes to their

existing textbooks. However, we would strongly encourage textbook authors to add

question parts that ask students to create a map or interpret a given map in the

book. Many textbooks already include sections to challenge the students and have

a platform to introduce advanced subjects. Textbooks could simply suggest the use

of a map to plot the data and provide some examples so that students know the

importance of using maps. After all, we are confronted with statistical maps almost

on a daily basis; the best known example is the weather map that can be found on

many newspapers, TV, and on the web.

27

REFERENCES

Anscombe, F. J. (1973), Graphs in Statistical Analysis, The American Statistician,

27 (1), 17–21.

Bowerman, B. L., R. T. O’Connell, J. B. Orris, and E. Murphree (2009), Essentials

of Business Statistics, third ed., McGraw-Hill/Irwin, New York.

Carr, D. B., A. R. Olsen, and D. White (1992), Hexagon Mosaic Maps for Displays

of Univariate and Bivariate Geographical Data, Cartography and Geographic Infor-

mation Systems, 19 (4), 228–236, 271.

Carr, D. B., A. R. Olsen, J. P. Courbois, S. M. Pierson, and D. A. Carr (1998),

Linked Micromap Plots: Named and Described, Statistical Computing and Statis-

tical Graphics Newsletter, 9 (1), 24–32.

Dent, B. D. (1993), Cartography: Thematic Map Design (Third Edition), William C.

Brown, Dubuque, IA.

Freedman, D., D. Pisani, and R. Purves (2007), Statistics, fourth ed., W. W. Norton

& Company, New York.

Gebreab, S. Y., R. R. Gillies, R. G. Munger, and J. Symanzik (2008), Visualiza-

tion and Interpretation of Birth Defects Data Using Linked Micromap Plots, Birth

Defects Research (Part A): Clinical and Molecular Teratology, 82, 110–119.

Harris, R. L. (1999), Information Graphics — A Comprehensive Illustrated Reference,

Oxford University Press, New York, NY.

Hayter, A. (2006), Probablity and Statistics for Engineers and Scientists, third ed.,

Duxbury Press, Belmont, CA.

28

Lewin-Koh, N. J., R. Bivand, contributions by Edzer J. Pebesma, E. Archer, A. Bad-

deley, H.-J. Bibiko, J. Callahan, S. Dray, D. Forrest, M. Friendly, P. Giraudoux,

D. Golicher, V. G. Rubio, P. Hausmann, K. O. Hufthammer, T. Jagger, S. P.

Luque, D. MacQueen, A. Niccolai, T. Short, G. Snow, B. Stabler, and R. Turner

(2012), maptools: Tools for reading and handling spatial objects, r package version

0.8-14.

Loecher, M. (2012), RgoogleMaps: Overlays on Google map tiles in R, Berlin School

of Economics and Law (BSEL), r package version 1.2.0.

Moore, D. S., G. P. McCabe, and B. Craig (2009), Introduction to the Practice of

Statistics, sixth ed., W. H. Freeman, New York.

Moore, D. S., G. P. McCabe, and B. Craig (2012), Introduction to the Practice of

Statistics, seventh ed., W. H. Freeman, New York.

Neuwirth, E. (2011), RColorBrewer: ColorBrewer palettes, r package version 1.0-5.

R Development Core Team (2012), R: A Language and Environment for Statistical

Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-

900051-07-0.

Robinson, A., R. Sale, and J. Morrison (1978), Elements of Cartography (Fourth

Edition), John Wiley and Sons, New York, NY.

Schnute, J. T., N. Boers, R. Haigh, and A. Couture-Beil. (2010), PBSmapping: Map-

ping Fisheries Data and Spatial Analysis Tools, r package version 2.61.9.

29

Symanzik, J., and D. B. Carr (2008), Interactive Linked Micromap Plots for the

Display of Geographically Referenced Statistical Data, in Handbook of Data Visu-

alization, edited by C. Chen, W. Härdle, and A. Unwin, pp. 267–294 & 2 Color

Plates, Springer, Berlin, Heidelberg.

Voge, N. D., and J. Symanzik (2011), Ignoring the Spatial Context in Intro Statis-

tics Classes – And Some Simple Graphical Remedies, in 2011 JSM Proceedings,

American Statistical Association, Alexandria, VA, (CD).

Wainer, H. (1997), Visual Revelations: Graphical Tales of Fate and Deception from-

Napoleon Bonaparte to Ross Perot, Copernicus/Springer, New York, NY.

30

APPENDICES

31

APPENDIX A

ADDITIONAL SPATIAL EXAMPLES FROM TEXTBOOKS

A.1 Introduction to the Practice of Statistics

Table 1: Table from Moore et al. (2009) book containing spatial examples where a
map display seems beneficial, but was not attempted in this report. The parentheses
following its description is the exercise number or example found in the book. (1.28)
refers to chapter one, exercise 28 etc. (Ex. 1.13) refers to Example 1.13. “n” is the
sample size and “p” is the number of variables.

Pg Title n p Description
10 Literacy Rates (per-

cent) in Islamic Na-
tions (Ex. 1.7)

17 2 Compares male and female literacy rates among major Is-
lamic nations in 2002. Countries with population less than
3 million were omitted. Data for some nations weren’t
available. From earthtrends.wri.org.

78 Park Space and
Population (1.152)

12 2 Compares population, and park and open space of several
U.S. cities with high population density. Population is
reported in thousands of people, and open space in acres.
From www.oasisync.net.

98 NBA Teams as
Businesses (2.19)

29 3 Shows the values (in $millions), revenue (in millions of dol-
lars), and income (in millions of dollars) of teams in the
NBA. Forbes, 2004.

Table 2: Table from Moore et al. (2009) book containing spatial examples that are
too small and/or are categorical and would not benefit from a map. See Table 1 for
additional details.

Pg Title n p Description
167 University Degrees

in Asia (2.156)
3 3 Compares university degrees in engineering, natural sci-

ence, and social science among three regions: United
States, Western Europe, and Asia. Data is categorical.

702 The Effects of Peer
Pressure on Math-
ematics Education
(13.12)

3 3 Compares the results of a questionnaire that asked male
and female students to rate how often the fear being called
a nerd or teacher’s pet on a 4-point scale. Countries were
chosen where high achievement is not valued highly. Such
as Germany, Canada, and Isreal. Data is categorical.

32

A.2 Essentials of Business Statistics

Table 3: Table from Bowerman et al. (2009) book containing spatial examples where
a map display seems beneficial, but was not attempted in this paper. See Table 1 for
additional details.

Pg Title n p Description
134 Housing Affordabil-

ity in Texas (3.20)
6 1 Compares the percentage of homes sold during the fourth

quarter of 2006 that a median income household could af-
ford to purchase at the prevailing mortgage interest rate
for six metro areas in Texas.

559 Accounting Rates
(13.67)

54 2 Accounting rates on stocks and market returns for 54 com-
panies.

560 New Jersey Bank
Data (13.68)

21 2 Compares the percent of minority population vs the num-
ber of residents per bank branch.

33

Table 4: Table from Bowerman et al. (2009) book containing spatial examples that
are too small and/or are categorical and would not benefit from a map. See Table 1
for additional details.

Pg Title n p Description
89 J. D. Power Quality

Study of 2006 Auto-
mobiles (2.67 - 2.74)

5 3 Compares 35 automobile manufactures and reports their
manufacturing and design quality and country of origin.
More categorical in nature.

124 Comparing
Lifestyles in US
and Eight Other
Countries (3.9 -
3.13)

9 5 Compares voting percentage, income tax, video rentals,
number of PC’s, and religion. Has too many variables.

150 June 2001 Unem-
ployment Rates
(Section 3.5)

4 2 June 2001 unemployment rates for various regions in the
United States.

153 Unemployment
Rates (3.44)

5 2 Compares the January 2005 civilian labor force sizes and
unemployment rates in five Midwestern states.

205 Airline Delays
(4.67)

5 3 Compares the number of on time, delayed, and total flights
of two airlines in five major airports.

34

A.3 Statistics

Table 5: Table from Freedman et al. (2007) book containing spatial examples where
a map display seems beneficial, but was not attempted in this paper.

Pg Title n p Description
150 Smoking and

Health (Ch. 9, Set
D - 1.)

11 2 Adapted from a 1955 article by Sir Richard Doll on the
relationship between per capita consumption of cigarette
smoking in various countries in 1930 and the death rates
(per million) from lung cancer for men in 1950.

152 Death rates from
breast cancer due to
fat in diet (Ch. 9,
Sec. 5, Ex. 3)

40 2 List of 40 countries that eat a lot of fat.

35

APPENDIX B

R CODE

B.1 Choropleth Map and Stem and Leaf Plot: Mortgage Delinquency

United States Choropleth Map

By Juergen Symanzik (revised for current data by Nathan Voge)

#

#

1 Import functions and data

2 Sort the data and assign colors

3 Draw map, plot data, make titles, and create a legend

1. Import needed functions and data_______________________________________

load required packages

library(RColorBrewer)

library(maps)

read in data

Note, D.C was in our data set, but not on the map we are using

so it is deleted from the data set

State = c("Mississippi","Louisiana","Michigan","Indiana","Georgia",

"West Virginia","Texas","Tennessee","Ohio","Alabama",

"Kentucky","South Carolina","Pennsylvania","North Carolina",

"Arkansas","Missouri","Oklahoma","Illinois","Kansas",

"Rhode Island","Maine","Florida","New York","Nebraska",

"Massachusetts","New Jersey","Delaware","Iowa","New Hampshire",

"Colorado","New Mexico","Connecticut","Maryland","Wisconsin",

"Nevada","Utah","Minnesota","Virginia","Arizona","Vermont",

"Idaho","California","Alaska","Washington","South Dakota",

"Wyoming","Montana","North Dakota","Oregon","Hawaii")

Delinquency = c(10.6,9.1,7.9,7.8,7.5,7.4,7.4,7.3,7.3,7.1,6.3,6.3,6.3,6.1,6.1,

6.1,6.1,5.4,5.1,5,4.9,4.9,4.8,4.7,4.5,4.5,4.5,4.4,4.4,4.4,4.3,

4.3,4.3,4.1,4.1,4,4,3.7,3.5,3.4,3.4,3.3,3.1,2.9,2.9,2.9,2.8,

2.7,2.6,2.4)

mort = cbind(State, Delinquency)

read in data via a file, mort = read.csv("DelinqRate_edit.csv", header=TRUE)

2. Sort the data and assign colors__

set how to divide up the data

breaks = c(2, 5, 8, 11)

apply the breaks to the data set

m.class = cut(as.numeric(mort[, 2]), breaks)

36

pick colors and assign colors to breaks

m.col = brewer.pal(3, "Blues")[m.class]

match states in map to states in the data set

Note, states in the map are "characters, so we must make the

the states in our data set "characters" as well

map.m.col = m.col[match.map("state", as.character(mort[, 1]))]

3. Draw map, plot data, make titles, and create a legend____________________

save map as a .pdf

pdf("Mortagages_18Jul_Map.pdf", width = 11, paper = "USr")

create the map

map("state", fill = T, col = map.m.col)

legend("bottomright", legend = levels(m.class), fill = brewer.pal(3, "Blues"))

optional title: title("Mortgage Delinquency Rates (%) in 2007")

dev.off()

B.2 World Choropleth Map: CO2 Emissions

World Choropleth Map

By Juergen Symanzik (revised for current data by Nathan Voge)

#

#

1 Import functions and data

2 Sort the data and assign colors

3 Draw map, plot data, make titles, and create a legend

1. Import needed functions and data_______________________________________

library(RColorBrewer)

brew.color = brewer.pal(6, "Oranges")

library(maptools)

data(wrld_simpl)

read in data

Country = c("United States","Australia","Canada","Saudi Arabia",

"Russia","Germany","Korea, Republic of","Japan",

"United Kingdom","Korea, Democratic People’s Republic of",

"South Africa","Poland","Ukraine","Italy","Spain","France",

"Venezuela","Uzbekistan","Malaysia","Argentina","Romania","Iran",

"Mexico","Iraq","Turkey","China","Thailand","Algeria","Brazil",

"Egypt","Columbia","Indonesia","Morocco","India","Philippines",

"Peru","Pakistan","Vietnam","Kenya","Nigeria","Bangladesh",

"Ghana","Myanmar","Sudan","Nepal","Tanzania","Congo","Ethiopia")

changed some of the country names in the data set to match the

map. Ex. United States, Russia, Rep. of Korea

CO.2 = c(19.9,17,16,11,10.2,10,9.7,9.1,9,8.8,8.1,8,7.6,7.3,6.8,6.1,5.1,4.8,4.6,

3.9,3.9,3.8,3.7,3.6,2.8,2.5,2.5,2.3,1.8,1.7,1.4,1.2,1,0.9,0.9,0.8,0.7,

0.5,0.3,0.3,0.2,0.2,0.2,0.2,0.1,0.1,0,0)

37

co2.2 = data.frame(Country, CO.2)

read in data via a file, co2 = read.csv("CO2_2.csv", header = TRUE)

extract country names and CO2 values

country.data = (co2.2[, 1]) # countries of data set, 48 here

country.co2 = (co2.2[, 2])

country.map = wrld_simpl$NAME # countries’ names as coded in wrld_simpl data

set, contains 246 countries. Make sure

countries’ names in data sets match (spelled

the same etc.), use: for (i in 1:104)

print(grep(country.data[i],country.map))

n.map = length(country.map)

color.map = numeric(n.map)

2. Sort the data and assign colors__

use "grep" to match country.data with country.map and assign a color level

for (i in 1:length(country.data)){

if (country.co2[i] >= 16)

color.map[grep(country.data[i], country.map)] = 6

else if (country.co2[i] >= 8.8)

color.map[grep(country.data[i], country.map)] = 5

else if (country.co2[i] >= 6.1)

color.map[grep(country.data[i], country.map)] = 4

else if (country.co2[i] >= 2.5)

color.map[grep(country.data[i], country.map)] = 3

else if (country.co2[i] >= 0)

color.map[grep(country.data[i], country.map)] = 2

}

collect countries with actual scores (not equal to zero) as listed in

country.data

collected.countries = (color.map != 0)

color.map2 = color.map

assign colors

color.map2[!collected.countries] = brew.color[1] # use light grey for countries

not listed in country.data

object

color.map2[collected.countries] = brew.color[color.map[collected.countries]]

3. Draw map, plot data, make titles, and create a legend____________________

save it as a .pdf (looks better)

pdf("co2.2_18Jul_Map.pdf", width = 11, paper = "USr")

plot map

plot(wrld_simpl, col = color.map2, axes = FALSE, ylim = c(-55, 90))

create a legend

legend(-180, -15, legend = c("N/A", "[0, 2.5)", "[2.5, 5.5)", "[5.5, 8.5)",

"[8.5, 11.5)", "[11.5, 20]"), fill = brewer.pal(6, "Oranges"), bg = "white")

make a title at the top

par(mar = c(0, 0, 12.5, 0))

title("Carbon Dioxide Emissions (metric tons per person)")

shut down the current graphic device so can save as a pdf

dev.off()

38

B.2.1 Histogram: CO2 Emissions

CO2 Histogram

By Nathan Voge

#

#

1 Import functions and data

2 Draw plots, define colors, create breaks

1. Import needed functions and data_______________________________________

library(grDevices)

library(RColorBrewer)

library(maptools)

data(wrld_simpl)

CO2 = c(19.9,17,16,11,10.2,10,9.7,9.1,9,8.8,8.1,8,7.6,7.3,6.8,6.1,5.1,4.8,4.6,

3.9,3.9,3.8,3.7,3.6,2.8,2.5,2.5,2.3,1.8,1.7,1.4,1.2,1,0.9,0.9,0.8,0.7,

0.5,0.3,0.3,0.2,0.2,0.2,0.2,0.1,0.1,0,0)

co2.2 = as.numeric(CO2)

read in data via a file, co2.2 = read.csv("CO2_2.csv", header = TRUE)

2. Draw plots, define colors, create breaks_____________________________________

brewcol = brewer.pal(6, "Oranges") # define colors

breaks = c(-.5, 2.5, 5.5, 8.5, 11.5, 14.5, 17.5, 20.5)

print(paste("Histogram of World", ~CO[2], "Emissions"))

save it as a .pdf (looks better)

pdf("co2.2_18Jul_hist.pdf", width = 11, paper = "USr")

hist(co2.2, breaks = breaks,

xlab = "Amount of"~CO[2]~"(metric tons per person)", ylim = c(0, 25), xlim = range(breaks),

xaxt = "n", main="")

optional title: ("Histogram of World" ~CO[2]~"Emissions")

axis(1, at = breaks, labels = c("-.5", "2.5", "5.5", "8.5",

"11.5", "14.5", "17.5", "20.5"))

shut down the current graphic device so can save as a pdf

dev.off()

B.3 Rayglyph Googlemap: University Tuition

39

Google Map Featuring Ray-Glyph Lines

By Nathan Voge (based on work by Daniel B. Carr (ray-glyphs) and

Markus Loecher (RgoogleMaps))

#

#

1 Import functions and data

2 Create a Google map

3 Add ray-glyph lines to the map

4 Add colored circles depicting percent increase to the map

5 Create percent increase legend

6 Create ray-glyph legend

7 Plot title

1. Import needed functions and data___

load in required packages

library(RColorBrewer)

library(RgoogleMaps)

library(PBSmapping)

read in data

University = c("Kansas","Texas","Arizona","Ohio State","Cal-Davis",

"Cal-Santa Barbara","Iowa State","Minnesota","UCLA","Iowa",

"Illinois","Cal-San Diego","Virginia","Cal-Irvine","Colorado",

"Purdue","Wisconsin","North Carolina","Penn State","Pittsburgh",

"Indiana","Cal-Berkeley","Nebraska","Missouri","Maryland",

"Michigan State","Washington","Oregon","Rutgers","Michigan",

"Florida","Buffalo")

Year_2000 = c(2725,3575,2348,4383,4072,3832,3132,4877,3698,3204,4994,3848,4335,

3970,3188,3872,3791,2768,7018,7002,4405,4047,3450,4726,5136,5432,

3761,3819,6333,6926,2256,4715)

Year_2005 = c(5413,6972,4498,8082,7457,6997,5634,8622,6504,5612,8634,6685,

7370,6770,5372,6458,6284,4613,11508,11436,7112,6512,5540,7415,

7821,8108,5610,5613,9221,9798,3094,6068)

Latitude = c(38.953611,30.28614,32.231667,40,38.54,34.41254,42.023949,

44.975278,34.072222,41.655833,40.110539,32.881,38.035,33.64535,

40.006667,40.424,43.075,35.908333,40.796036,40.444565,39.1661583,

37.87,40.8175,38.9453,38.9875,42.723387,47.6599,44.044044,

40.741632,42.283,29.64833,42.9286688)

Longitude = c(-95.26,-97.73942,-110.951944,-83.0145,-121.75,-119.84813,

-93.647595,-93.234167,-118.444097,-91.525,-88.228411,-117.238,

-78.505,-117.842642,-105.267222,-86.929,-89.417222,-79.05,

-77.862739,-79.953274,-86.5263857,-122.259,-96.701389,-92.3288,

-76.94,-84.481366,-122.306,-123.075736,-74.17486,-83.735,

-82.34944,-78.8480905)

Percent_Increase = c(0.9864,0.9502,0.9157,0.8439,0.8313,0.8259,0.7989,0.7679,

0.7588,0.7516,0.7289,0.7373,0.7001,0.7053,0.6851,0.6679,

0.6576,0.6665,0.6398,0.6332,0.6145,0.6091,0.6058,0.5690,

0.5228,0.4926,0.4916,0.4698,0.4560,0.4147,0.3715,0.2870)

data = data.frame(University, Year_2000, Year_2005, Latitude, Longitude,

Percent_Increase)

read in data via a file, tuit = read.csv("tuition.csv", header = TRUE)

2. Create a Google map__

Define x and y coordinates on map. In all RgoogleMaps packages, the latitude

is read first followed by the longitude. For our data set, we looked up the

40

latitude and longitude online for each university.

x = data["Latitude"]

y = data["Longitude"]

Define the bounding box (bb) for the map using the latitude and longitude from

our data set.

bb = qbbox(x, y, TYPE = "all", margin = list(m = rep(5, 4),

TYPE = c("perc", "abs")[1]))

Create a Google map by loading a static map from the package and define

some options. bb$lonR, bb$latR are our latitude and longitude from the

previous line of code. We have a few choices on the type of map we want to use

such as "roadmap", "satellite", "terrain", etc. The default is a color map,

here we want it to be gray so we use the "GRAYSCALE" argument. If needed, we

can also use the "zoom" argument. This zooms in/out around the area we

define by using the argument "center".

save it as a .pdf (looks better)

pdf("tuit_18Jul_map.pdf", width = 7, paper = "USr")

MyMap = GetMap.bbox(bb$lonR, bb$latR, maptype = "roadmap", GRAYSCALE = TRUE)

This command plots the map in the graphics window in R

PlotOnStaticMap(MyMap)

Note: Content is added to the static map by using "PlotOnStaticMap".

"PlotOnStaticMap" is repeated for each color/item added to the map. "FUN"

identifies the plotting function, usually points or lines. "pch" and "cex"

normal plotting parameters.

3. Add Ray-glyph lines to the map___

Function to Calculate the Latitude and Longitude for Ray-glyph Lines

It uses the two variables you want to compare (var1, var2), the latitude

and longitude for these variables (lat, lon), and the minimum and maximum

of the two variables (min1, max1, min2, max2) respectively. It returns the

latitude and longitude of the point away from the origin for each variable.

CalcRayGlyphMapLatLon = function(var1, var2, lat, lon, min1, max1, min2,

max2) {

num1 = var1 - min1

ratio1 = num1 / (max1 - min1)

angle1 = 270 - ratio1 * 180

rad1 = angle1 * pi / 180

lon1 = lon + 2 * cos(rad1)

lat1 = lat + 2 * sin(rad1)

num2 = var2 - min2

ratio2 = num2 / (max2 - min2)

angle2 = 270 + ratio2 * 180

rad2 = angle2 * pi / 180

lon2 = lon + 2 * cos(rad2)

lat2 = lat + 2 * sin(rad2)

list = c(lat1 = lat1, lon1 = lon1, lat2 = lat2, lon2 = lon2)

}

Function to Plot Ray-glyph lines.

"variable" is the plotting parameter. "lncolor1" is the color of the left

line. "lncolor2" is the color of the right line. "cexln" is the cex of the

line. "lwdln" is the line width. "ltyln1" and "ltyln2" and the respective

line types.

41

PlotRayGlyphLines = function(data, variable, lncolor1, lncolor2, cexln = 1.5,

lwdln = 2, ltyln1 = 1, ltyln2 = 1) {

colselect = subset(data, select = variable)

for (i in 1:nrow(colselect)) {

loc = data[colselect[i,],] # select each location

PlotOnStaticMap(MyMap,

lat = c(as.numeric(loc[4]),

as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],

min(data[2]), max(data[2]), min(data[3]),

max(data[3]))[1])),

lon = c(as.numeric(loc[5]) - .1,

as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],

min(data[2]), max(data[2]), min(data[3]),

max(data[3]))[2]) - .1),

FUN = lines, col = lncolor1, add = TRUE, pch = 1, cex = cexln,

lwd = lwdln, lty = ltyln1) #Line on left

PlotOnStaticMap(MyMap,

lat = c(as.numeric(loc[4]),

as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],

min(data[2]), max(data[2]), min(data[3]),

max(data[3]))[3])),

lon = c(as.numeric(loc[5]) + .1,

as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],

min(data[2]), max(data[2]), min(data[3]),

max(data[3]))[4]) + .1),

FUN = lines, col = lncolor2, add = TRUE, pch = 1, cex = cexln,

lwd = lwdln, lty = ltyln2) #Line on right

}

}

Define color scheme for ray-glyph lines

palgreen = brewer.pal(9, "Greens")

lncolor1 = palgreen[8]

lncolor2 = palgreen[5]

Run PlotRayGlyphLines function and plot ray-glyph lines. Change plotting

variable. ("University" here)

PlotRayGlyphLines(data = data, variable = "University", lncolor1, lncolor2)

4. Add colored circles depicting percent increase to the map________________

Function to Plot Colored Circles Outlined in Black.

Data*[,4] and data*[,5] contain the latitude and longitude for each

respective level (*), which are our breaks in the data.

After many tries, we found 4 levels most useful

for our data set. "subset" allows us to identify how we want to divide up the

data with "Percent_Increase" being our variable of interest.

Here we put black circles around the colors to make them more visible.

"pch = 1" is a circle. "cexcir" is the cex of the circles. "pchdot" is the pch

of the dot. "pchcir" is the pch of the circle

Note: The data in "Percent_Increase" was not provided by the original data

set.

PlotPoints = function(data, cexcir = 1.5, pchdot = 19, pchcir = 1) {

for (i in 1:4) {

if (i == 1) {

data1 = subset(data, Percent_Increase >= .25 & Percent_Increase < .45)

PlotOnStaticMap(MyMap, data1[, 4], data1[, 5], FUN = points,

col = palcircle[i], add = TRUE, pch = pchdot, cex = cexcir)

PlotOnStaticMap(MyMap, data1[,4], data1[,5], FUN = points,

col = "black", add = TRUE, pch = pchcir, cex = cexcir,

lwd = 1)

42

}

else if (i == 2) {

data2 = subset(data,Percent_Increase>=.45 & Percent_Increase<.65)

PlotOnStaticMap(MyMap, data2[,4], data2[,5], FUN = points,

col = palcircle[i], add = TRUE, pch = pchdot,

cex = cexcir)

PlotOnStaticMap(MyMap, data2[,4], data2[,5], FUN = points,

col = "black", add = TRUE, pch = pchcir, cex = cexcir,

lwd = 1)

}

else if (i == 3) {

data3 = subset(data,Percent_Increase>=.65 & Percent_Increase<.85)

PlotOnStaticMap(MyMap, data3[,4], data3[,5], FUN = points,

col = palcircle[i], add = TRUE, pch = pchdot,

cex = cexcir)

PlotOnStaticMap(MyMap, data3[,4], data3[,5], FUN = points,

col = "black", add = TRUE, pch = pchcir, cex = cexcir,

lwd = 1)

}

else if (i == 4) {

data4 = subset(data,Percent_Increase>=.85 & Percent_Increase<1.0)

PlotOnStaticMap(MyMap, data4[,4], data4[,5], FUN = points,

col = palcircle[i], add = TRUE, pch = pchdot,

cex = cexcir)

PlotOnStaticMap(MyMap, data4[,4], data4[,5], FUN = points,

col = "black", add = TRUE, pch = pchcir, cex = cexcir,

lwd = 1)

}

}

}

Run PlotPoints function and plot dots/circles.

Define color scheme for our circles. We used the website

http://colorbrewer2.org to identify an appropriate color scheme with 4 levels.

palcircle = brewer.pal(4,"OrRd")

cexcir = 1.5

pchdot = 19

pchcir = 1

Run colored circles function

PlotPoints(data, cexcir, pchdot, pchcir)

Note: If data doesn’t have a percent increase variable, use the below code

to plot the circles

PlotOnStaticMap(MyMap, data[,4], data[,5], FUN = points,

col = palcircle[4], add = TRUE, pch = pchdot, cex = cexcir)

PlotOnStaticMap(MyMap, data[,4], data[,5], FUN = points,

col = "black", add = TRUE, pch = pchcir, cex = cexcir,

lwd = 1)

5. Create percent increase legend___

The x and y coordinates of the legend box are based on

the latitude and longitude of the static map from Google. The

function "LatLon2XY.centered" transforms latitude and longitude into x and

y coordinates on the map.

LatLon2XY.centered(MyMap,MyMap$BBOX$ll[1],MyMap$BBOX$ll[2])$newX and

LatLon2XY.centered(MyMap,MyMap$BBOX$ll[1],MyMap$BBOX$ll[2])$newY give the

lower left-corner coordinates of the static map. We use a fraction of

them (.995, .61 respectively) to shift the legend to its default location.

43

Define computed coordinates used on map (not RgoogleMaps/MyMap)

xcoord.max = LatLon2XY.centered(MyMap,MyMap$BBOX$ll[1], MyMap$BBOX$ur[2])$newX

xcoord.min = LatLon2XY.centered(MyMap,MyMap$BBOX$ll[1], MyMap$BBOX$ll[2])$newX

ycoord.max = LatLon2XY.centered(MyMap,MyMap$BBOX$ur[1], MyMap$BBOX$ll[2])$newY

ycoord.min = LatLon2XY.centered(MyMap,MyMap$BBOX$ll[1], MyMap$BBOX$ll[2])$newY

Legend for percent increase

legend(xcoord.min * .995, ycoord.min * .61,

legend = c("[25, 45)","[45,65)", "[65, 85)", "[85, 100)"),

fill = brewer.pal(4, "OrRd"), title = "Percent Increase", cex = .8,

bg = "grey")

Note: To put the legend in the top left corner we need change the Y and use

MyMap$BBOX$ur[1] as the new reference point that gives us the Y coordinate

in the "upper right" corner. But we just want Y (the latitude). So

MyMap$BBOX$ll[2] stays the same. We also change the Y proportion to .995.

legend(xcoord.min*.995, ycoord.max*.995,

legend = c("[25, 45)","[45,65)", "[65, 85)", "[85, 100)"),

fill = brewer.pal(4, "OrRd"), title = "Percent Increase", cex = .7,

bg = "green")

Note: To place the legend in the left-center, do the same, but change the

proportion on the Y coordinate to .15.

legend(xcoord.min*.995, ycoord.max*.15,

legend = c("[25, 45)","[45,65)", "[65, 85)", "[85, 100)"),

fill = brewer.pal(5, "Reds"), title = "Percent Increase", cex = .7,

bg = "blue")

6. Create ray-glyph legend__

Define coordinates of ray-glyph legend box

x.left = xcoord.max*.6

y.bottom = ycoord.min*.961

x.right = xcoord.max*.99

y.top = ycoord.min*.45

Convert rectangle x,y coordinates to latitude and longitude for use with MyMap

lat.bottom = XY2LatLon(MyMap, x.left, y.bottom)[1]

lon.left = XY2LatLon(MyMap, x.left, y.bottom)[2]

lat.top = XY2LatLon(MyMap, x.right , y.top)[1]

lon.right = XY2LatLon(MyMap, x.right , y.top)[2]

Function to draw lines for the ray-glyph legend

CalcRayGlyphLegendLatLon = function(angle1, angle2, lat, lon) {

rad1 = angle1 * pi / 180

lon1 = lon + 2 * cos(rad1)

lat1 = lat + 2 * sin(rad1)

rad2 = angle2 * pi / 180

lon2 = lon + 2 * cos(rad2)

lat2 = lat + 2 * sin(rad2)

list = c(lat1 = lat1, lon1 = lon1, lat2 = lat2, lon2 = lon2)

}

Ray-glyph legend function. "cexln" is the cex of the line. "lwdln" is the

line width. "ltyln1" and "ltyln2" are the respective line types.

PlotRayglyphLegend = function(llabel, rlabel, llevels, rlevels, lncolor1,

44

lncolor2, circolor, title, levelscex = .8,

titlecex = .8, labelscex = .8, circex = cexcir,

lwdln = 2, lncircolor = "black") {

#title

text((x.right + x.left) / 2, y.top * 1.1, labels = title, bg = "gray",

cex = labelscex)

Left side variable

text((x.right + x.left) / 2 * .84, y.bottom * .58, labels = llabel,

cex = labelscex)

Right side variable

text((x.right + x.left) / 2 * 1.14, y.bottom * .58, labels = rlabel,

cex = labelscex)

for (i in 0:4) {

Left lines

PlotOnStaticMap(MyMap,

lat = c(lat.bottom * 1.19 + i * 1.5,

CalcRayGlyphLegendLatLon(270 - i * 45, 270 - i * 45,

lat.bottom * 1.19 + i * 1.5,

(lon.right + lon.left) / 2)[3]),

lon = c((lon.right + lon.left)/2 - .1,

CalcRayGlyphLegendLatLon(270 - i * 45, 270 - i * 45,

lat.bottom * 1.15 + i * 1.5,

(lon.right + lon.left) / 2)[4]),

FUN = lines, col = lncolor1, add = TRUE, pch = pchcir, cex = circex,

lwd = lwdln)

Right lines

PlotOnStaticMap(MyMap,

lat = c(lat.bottom * 1.19 + i * 1.5,

CalcRayGlyphLegendLatLon(270 + i * 45, 270 + i * 45,

lat.bottom * 1.19 + i * 1.5, (lon.right + lon.left) / 2)[3]),

lon = c((lon.right + lon.left) / 2 + .1,

CalcRayGlyphLegendLatLon(270 + i * 45, 270 + i * 45,

lat.bottom * 1.15 + i * 1.5,

(lon.right + lon.left) / 2)[4]),

FUN = lines, col = lncolor2, add = TRUE, pch = pchcir, cex = circex,

lwd = lwdln)

circles

PlotOnStaticMap(MyMap, lat.bottom * 1.19 + i * 1.5,

(lon.right + lon.left) / 2,

FUN = points, col = circolor, add = TRUE, pch = pchdot, cex = circex)

outline circles

PlotOnStaticMap(MyMap, lat.bottom * 1.19 + i * 1.5,

(lon.right + lon.left) / 2,

FUN = points, col = lncircolor, add = TRUE, pch = pchcir, cex = circex)

Left side levels

text((x.right + x.left) / 2 * .84, y.top * 1.95 + i * 20,

labels = llevels[1 + i], cex = labelscex)

Right side levels

text((x.right + x.left) / 2 * 1.16, y.top * 1.95 + i * 20,

labels = rlevels[1 + i], cex = labelscex)

}

}

Rectangle background, with form

rect(x.left, y.bottom, x.right, y.top, col = "grey")

Define values & generic labels

min1 = min(data[2])

max1 = max(data[2])

qtr1 = round((max1 - min1) * .25 + min1)

qtr2 = round((max1 - min1) * .5 + min1)

qtr3 = round((max1 - min1) * .75 + min1)

min2 = min(data[3])

max2 = max(data[3])

qtr21 = round((max2 - min2) * .25 + min2)

45

qtr22 = round((max2 - min2) * .5 + min2)

qtr23 = round((max2 - min2) * .75 + min2)

levelscex = .8

titlecex = .8

labelscex = .8

Run the ray-glyph legend function. Change title and labels.

Note: If labels run outside the bounds of the legend box you will have to

manually adjust the rectangle background above.

PlotRayglyphLegend(llabel = ~underline(2000), rlabel = ~underline(2005),

title = "Tuition Trend from\n 2000 to 2005",

llevels = c(min1, qtr1, qtr2, qtr3, max1),

rlevels = c(min2, qtr21, qtr22, qtr23, max2),

circolor = palcircle[4],

lncolor1 = lncolor1,

lncolor2 = lncolor2

)

7. Plot title___

First shift down the margins so the title appears closer to the top of

United States.

par(mar = c(0, 0, 12.5, 0))

title(main = "Ray-Glyph Plot Showing Cost of Tuition and\n Percent Increase from 2000 to 2005")

\n starts a new line

dev.off()

B.3.1 Scatterplot and Residual Plot: University Tuition

University Tuition Scatterplot and Plot of Residuals

By Nathan Voge

#

#

1 Import functions and data

2 Draw scatterplot

3 Plot residuals

1. Import needed functions and data_______________________________________

library(RColorBrewer)

library(RgoogleMaps)

library(PBSmapping)

University = c("Kansas","Texas","Arizona","Ohio State","Cal-Davis",

"Cal-Santa Barbara","Iowa State","Minnesota","UCLA","Iowa",

"Illinois","Cal-San Diego","Virginia","Cal-Irvine","Colorado",

"Purdue","Wisconsin","North Carolina","Penn State","Pittsburgh",

"Indiana","Cal-Berkeley","Nebraska","Missouri","Maryland",

"Michigan State","Washington","Oregon","Rutgers","Michigan",

"Florida","Buffalo")

Year_2000 = c(2725,3575,2348,4383,4072,3832,3132,4877,3698,3204,4994,3848,4335,

46

3970,3188,3872,3791,2768,7018,7002,4405,4047,3450,4726,5136,5432,

3761,3819,6333,6926,2256,4715)

Year_2005 = c(5413,6972,4498,8082,7457,6997,5634,8622,6504,5612,8634,6685,

7370,6770,5372,6458,6284,4613,11508,11436,7112,6512,5540,7415,

7821,8108,5610,5613,9221,9798,3094,6068)

tuit = data.frame(University, Year_2000, Year_2005)

read in data via a file, tuit = read.csv("tuition.csv", header = TRUE)

2. Draw scatterplot__

save it as a .pdf

pdf("tuit_18Jul_hist.pdf", width = 7)

plot(tuit$Year_2000, tuit$Year_2005, main = "", xlab = "Tuition in Year 2000",

ylab = "Tuition in Year 2005")

dev.off()

Scatterplot with names

plot(tuit[, 2], tuit[, 3], type="n")

text(tuit[, 2], tuit[, 3], tuit[, 1])

3. Plot residuals___

glmdat = glm(tuit$Year_2005 ~ tuit$Year_2000)

glmresid = residuals(glmdat)

glmpred = predict(glmdat)

save it as a .pdf

pdf("tuit_22Jul_resid.pdf", width = 7)

plot(tuit$Year_2000, glmresid, type = "n", xlim = c(2000,7500), xlab = "Tuition in Year 2000",

main = "", ylab = "Residuals", cex.lab = 1)

optional title: Residual plot of Tuition in Year 2000

text(tuit$Year_2000, glmresid, tuit[, 1], cex = .9)

dev.off()

B.4 Rayglyph Googlemap: MLB Value vs Revenue

Google Map Featuring Ray-Glyph Lines

By Nathan Voge (based on work by Daniel B. Carr (ray-glyphs) and

Markus Loecher (RgoogleMaps))

#

#

1 Import functions and data

2 Create a Google map

3 Add ray-glyph lines to the map

4 Add colored circles depicting percent increase to the map

5 Create percent increase legend

6 Create ray-glyph legend

7 Plot title

47

1. Import needed functions and data___

load in required packages

library(RColorBrewer)

library(RgoogleMaps)

library(PBSmapping)

read in data

team = c(’Arizona Diamondbacks’,’Atlanta Braves’,’Baltimore Orioles’,

’Boston Red Sox’,’Chicago Cubs’,’Chicago White Sox’,’Cincinnati Reds’,

’Cleveland Indians’,’Colorado Rockies’,’Detroit Tigers’,

’Florida Marlins’,’Houston Astros’,’Kansas City Royals’,

’Los Angeles Angels’,’Los Angeles Dodgers’,’Milwaukee Brewers’,

’Minnesota Twins’,’New York Mets’,’New York Yankees’,

’Oakland Athletics’,’Philadelphia Phillies’,’Pittsburgh Pirates’,

’San Diego Padres’,’San Francisco Giants’,’Seattle Mariners’,

’St Louis Cardinals’,’Tampa Bay Devil Rays’,’Texas Rangers’,

’Toronto Blue Jays’,’Washington Nationals’)

value = c(305,405,359,617,448,315,274,352,298,292,226,416,239,368,482,235,216,

604,1026,234,424,250,354,410,428,429,209,353,286,440)

revenue = c(145,172,156,206,179,157,137,150,145,146,119,173,117,167,189,131,114,

195,277,134,176,125,158,171,179,165,116,153,136,145)

lat = c(33.445278,33.735278,39.583889,42.346389,42,42.53,39.0975,41.495833,

39.756111,42.339167,25.778056,29.756944,39.051389,35.00278,34.073611,

43.948333,44.981667,40.756944,41.829167,37.951667,39.905833,40.446944,

32.7073,37.778333,47.591389,38.6225,27.768333,32.751389,43.641389,

38.872778)

lon = c(-112.066944,-84.389444,-76.621667,-71.0975,-87.655556,-86.7,-84.506667,

-81.685278,-104.994167,-83.048611,-80.219722,-95.355556,-94.480556,

-119.32778,-119.24,-87.971111,-93.278333,-73.845833,-73.926389,

-121.200556,-75.166389,-80.005833,-117.1566,-122.389444,-122.3325,

-90.193056,-82.653333,-97.082778,-79.389167,-77.0075)

data = data.frame(team, value, revenue, lat, lon)

read in data via a file, data = read.csv("mlb_coordchg.csv", header = TRUE)

2. Create a Google map__

Define x and y coordinates on map. In all RgoogleMaps packages, the latitude

is read first followed by the longitude. For our data set, we looked up the

latitude and longitude online for each university.

x = data["lat"]

y = data["lon"]

Define the bounding box (bb) for the map using the latitude and longitude from

our data set.

bb = qbbox(x, y, TYPE = "all", margin = list(m = rep(5, 4),

TYPE = c("perc", "abs")[1]))

Create a Google map by loading a static map from the package and define

some options. bb$lonR, bb$latR are our latitude and longitude from the

previous line of code. We have a few choices on the type of map we want to use

such as "roadmap", "satellite", "terrain", etc. The default is a color map,

here we want it to be gray so we use the "GRAYSCALE" argument. If needed, we

can also use the "zoom" argument. This zooms in/out around the area we

define by using the argument "center".

save it as a .pdf (looks better)

48

pdf("mlb_18Jul_map.pdf", width = 7, paper = "USr")

MyMap = GetMap.bbox(bb$lonR, bb$latR, maptype = "roadmap", GRAYSCALE = TRUE)

This command plots the map in the graphics window in R

PlotOnStaticMap(MyMap)

Note: Content is added to the static map by using "PlotOnStaticMap".

"PlotOnStaticMap" is repeated for each color/item added to the map. "FUN"

identifies the plotting function, usually points or lines. "pch" and "cex"

normal plotting parameters.

3. Add Ray-glyph lines to the map___

Function to Calculate the Latitude and Longitude for Ray-glyph Lines

It uses the two variables you want to compare (var1, var2), the latitude

and longitude for these variables (lat, lon), and the minimum and maximum

of the two variables (min1, max1, min2, max2) respectively. It returns the

latitude and longitude of the point away from the origin for each variable.

CalcRayGlyphMapLatLon = function(var1, var2, lat, lon, min1, max1, min2,

max2) {

num1 = var1 - min1

ratio1 = num1 / (max1 - min1)

angle1 = 270 - ratio1 * 180

rad1 = angle1 * pi / 180

lon1 = lon + 2 * cos(rad1)

lat1 = lat + 2 * sin(rad1)

num2 = var2 - min2

ratio2 = num2 / (max2 - min2)

angle2 = 270 + ratio2 * 180

rad2 = angle2 * pi / 180

lon2 = lon + 2 * cos(rad2)

lat2 = lat + 2 * sin(rad2)

list = c(lat1 = lat1, lon1 = lon1, lat2 = lat2, lon2 = lon2)

}

Function to Plot Ray-glyph lines.

"variable" is the plotting parameter. "lncolor1" is the color of the left

line. "lncolor2" is the color of the right line. "cexln" is the cex of the

line. "lwdln" is the line width. "ltyln1" and "ltyln2" and the respective

line types.

PlotRayGlyphLines = function(data, variable, lncolor1, lncolor2, cexln = 1.5,

lwdln = 2, ltyln1 = 1, ltyln2 = 1) {

colselect = subset(data, select = variable)

for (i in 1:nrow(colselect)) {

loc = data[colselect[i,],] # select each location

PlotOnStaticMap(MyMap,

lat = c(as.numeric(loc[4]),

as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],

min(data[2]), max(data[2]), min(data[3]),

max(data[3]))[1])),

lon = c(as.numeric(loc[5]) - .1,

as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],

min(data[2]), max(data[2]), min(data[3]),

max(data[3]))[2]) - .1),

FUN = lines, col = lncolor1, add = TRUE, pch = 1, cex = cexln, lwd = lwdln,

lty = ltyln1) #Line on left

PlotOnStaticMap(MyMap,

lat = c(as.numeric(loc[4]),

as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],

49

min(data[2]), max(data[2]), min(data[3]),

max(data[3]))[3])),

lon = c(as.numeric(loc[5]) + .1,

as.numeric(CalcRayGlyphMapLatLon(loc[2], loc[3], loc[4], loc[5],

min(data[2]), max(data[2]), min(data[3]),

max(data[3]))[4]) + .1),

FUN = lines, col = lncolor2, add = TRUE, pch = 1, cex = cexln, lwd = lwdln,

lty = ltyln2) #Line on right

}

}

Define color scheme for ray-glyph lines

palgreen = brewer.pal(9, "Greens")

lncolor1 = palgreen[8]

lncolor2 = palgreen[5]

Run PlotRayGlyphLines function and plot ray-glyph lines. Change plotting

variable. ("team" here)

PlotRayGlyphLines(data = data, variable = "team", lncolor1, lncolor2)

4. Add colored circles depicting percent increase to the map________________

Function to Plot Colored Circles Outlined in Black.

Data*[,4] and data*[,5] contain the latitude and longitude for each

respective level (*), which are our breaks in the data.

After many tries, we found 4 levels most useful

for our data set. "subset" allows us to identify how we want to divide up the

data with "Percent_Increase" being our variable of interest.

Here we put black circles around the colors to make them more visible.

"pch = 1" is a circle. "cexcir" is the cex of the circles. "pchdot" is the pch

of the dot. "pchcir" is the pch of the circle

Note: The data in "Percent_Increase" was not provided by the original data

set.

PlotPoints = function(data, num.breaks, cexcir = 1.5, pchdot = 19, pchcir = 1) {

for (i in 1:num.breaks) {

if (i == 1) {#i=1; variable = "value"

data1 = subset(data, value >= 200 & value < 400)

PlotOnStaticMap(MyMap, data1[, 4], data1[, 5], FUN = points,

col = palcircle[i], add = TRUE, pch = pchdot, cex = cexcir)

PlotOnStaticMap(MyMap, data1[,4], data1[,5], FUN = points, col = "black",

add = TRUE, pch = pchcir, cex = cexcir, lwd = 1)

}

else if (i == 2) {#i=2; variable = "value"

data2 = subset(data, value >= 400 & value < 600)

PlotOnStaticMap(MyMap, data2[,4], data2[,5], FUN = points,

col = palcircle[i], add = TRUE, pch = pchdot, cex = cexcir)

PlotOnStaticMap(MyMap, data2[,4], data2[,5], FUN = points, col = "black",

add = TRUE, pch = pchcir, cex = cexcir, lwd = 1)

}

else if (i == 3) {

data3 = subset(data, value >= 600 & value < 800)

PlotOnStaticMap(MyMap, data3[,4], data3[,5], FUN = points,

col = palcircle[i], add = TRUE, pch = pchdot, cex = cexcir)

PlotOnStaticMap(MyMap, data3[,4], data3[,5], FUN = points, col = "black",

add = TRUE, pch = pchcir, cex = cexcir, lwd = 1)

}

else if (i == 4) {

data4 = subset(data, value >= 800 & value < 1000)

PlotOnStaticMap(MyMap, data4[,4], data4[,5], FUN = points,

50

col = palcircle[i], add = TRUE, pch = pchdot, cex = cexcir)

PlotOnStaticMap(MyMap, data4[,4], data4[,5], FUN = points,

col = "black", add = TRUE, pch = pchcir, cex = cexcir,

lwd = 1)

}

else if (i == 5) {

data5 = subset(data, value >= 1000 & value < 1200)

PlotOnStaticMap(MyMap, data5[,4], data5[,5], FUN = points,

col = palcircle[i], add = TRUE, pch = pchdot, cex = cexcir)

PlotOnStaticMap(MyMap, data5[,4], data5[,5], FUN = points,

col = "black", add = TRUE, pch = pchcir, cex = cexcir,

lwd = 1)

}

}

}

Run PlotPoints function and plot dots/circles.

Define color scheme for our circles. We used the website

http://colorbrewer2.org to identify an appropriate color scheme with 4 levels.

variable = "value"

num.breaks = 5

palcircle = brewer.pal(5, "OrRd")

cexcir = 1.5

pchdot = 19

pchcir = 1

Run colored circles function

PlotPoints(data, num.breaks, cexcir, pchdot, pchcir)

Note: If data doesn’t have a percent increase variable, use the below code

to plot the circles

PlotOnStaticMap(MyMap, data[,4], data[,5], FUN = points,

col = palcircle[4], add = TRUE, pch = pchdot, cex = cexcir)

PlotOnStaticMap(MyMap, data[,4], data[,5], FUN = points,

col = "black", add = TRUE, pch = pchcir, cex = cexcir,

lwd = 1)

5. Create percent increase legend___

The x and y coordinates of the legend box are based on

the latitude and longitude of the static map from Google. The

function "LatLon2XY.centered" transforms latitude and longitude into x and

y coordinates on the map.

LatLon2XY.centered(MyMap,MyMap$BBOX$ll[1],MyMap$BBOX$ll[2])$newX and

LatLon2XY.centered(MyMap,MyMap$BBOX$ll[1],MyMap$BBOX$ll[2])$newY give the

lower left-corner coordinates of the static map. We use a fraction of

them (.995, .61 respectively) to shift the legend to its default location.

Define computed coordinates used on map (not RgoogleMaps/MyMap)

xcoord.max = LatLon2XY.centered(MyMap,MyMap$BBOX$ll[1], MyMap$BBOX$ur[2])$newX

xcoord.min = LatLon2XY.centered(MyMap,MyMap$BBOX$ll[1], MyMap$BBOX$ll[2])$newX

ycoord.max = LatLon2XY.centered(MyMap,MyMap$BBOX$ur[1], MyMap$BBOX$ll[2])$newY

ycoord.min = LatLon2XY.centered(MyMap,MyMap$BBOX$ll[1], MyMap$BBOX$ll[2])$newY

Legend for percent increase

legend(xcoord.min * .995, ycoord.min * .57,

legend = c("[200, 400)", "[400, 600)", "[600, 800)", "[800, 1000)",

"[1000, 1200)"),

fill = palcircle , title = "Value Distribution ($mil)", cex = .9,

bg = "grey")

51

Note: To put the legend in the top left corner we need change the Y and use

MyMap$BBOX$ur[1] as the new reference point that gives us the Y coordinate

in the "upper right" corner. But we just want Y (the latitude). So

MyMap$BBOX$ll[2] stays the same. We also change the Y proportion to .995.

legend(xcoord.min*.995, ycoord.max*.995,

legend = c("[25, 45)","[45,65)", "[65, 85)", "[85, 100)"),

fill = brewer.pal(4, "OrRd"), title = "Percent Increase", cex = .7,

bg = "green")

Note: To place the legend in the left-center, do the same, but change the

proportion on the Y coordinate to .15.

legend(xcoord.min*.995, ycoord.max*.15,

legend = c("[25, 45)","[45,65)", "[65, 85)", "[85, 100)"),

fill = brewer.pal(5, "Reds"), title = "Percent Increase", cex = .7,

bg = "blue")

6. Create ray-glyph legend__

Define coordinates of ray-glyph legend box

x.left = xcoord.max*.6

y.bottom = ycoord.min*.961

x.right = xcoord.max*.99

y.top = ycoord.min*.45

Convert rectangle x,y coordinates to latitude and longitude for use with MyMap

lat.bottom = XY2LatLon(MyMap, x.left, y.bottom)[1]

lon.left = XY2LatLon(MyMap, x.left, y.bottom)[2]

lat.top = XY2LatLon(MyMap, x.right , y.top)[1]

lon.right = XY2LatLon(MyMap, x.right , y.top)[2]

Function to draw lines for the ray-glyph legend

CalcRayGlyphLegendLatLon = function(angle1, angle2, lat, lon) {

rad1 = angle1 * pi / 180

lon1 = lon + 2 * cos(rad1)

lat1 = lat + 2 * sin(rad1)

rad2 = angle2 * pi / 180

lon2 = lon + 2 * cos(rad2)

lat2 = lat + 2 * sin(rad2)

list = c(lat1 = lat1, lon1 = lon1, lat2 = lat2, lon2 = lon2)

}

Ray-glyph legend function. "cexln" is the cex of the line. "lwdln" is the

line width. "ltyln1" and "ltyln2" are the respective line types.

PlotRayglyphLegend = function(llabel, rlabel, llevels, rlevels, lncolor1,

lncolor2, circolor, title, levelscex = .9,

titlecex = .9, labelscex = .9, circex = cexcir,

lwdln = 2, lncircolor = "black") {

#title

text((x.right + x.left) / 2, y.top * 1.1, labels = title, bg = "gray",

cex = labelscex)

Left side variable

text((x.right + x.left) / 2 * .84, y.bottom * .58, labels = llabel,

cex = labelscex)

Right side variable

text((x.right + x.left) / 2 * 1.14, y.bottom * .58, labels = rlabel,

cex = labelscex)

52

for (i in 0:4) {

Left lines

PlotOnStaticMap(MyMap,

lat = c(lat.bottom * 1.19 + i * 1.5,

CalcRayGlyphLegendLatLon(270 - i * 45, 270 - i * 45,

lat.bottom * 1.19 + i * 1.5,

(lon.right + lon.left) / 2)[3]),

lon = c((lon.right + lon.left)/2 - .1,

CalcRayGlyphLegendLatLon(270 - i * 45, 270 - i * 45,

lat.bottom * 1.15 + i * 1.5,

(lon.right + lon.left) / 2)[4]),

FUN = lines, col = lncolor1, add = TRUE, pch = pchcir, cex = circex,

lwd = lwdln)

Right lines

PlotOnStaticMap(MyMap,

lat = c(lat.bottom * 1.19 + i * 1.5,

CalcRayGlyphLegendLatLon(270 + i * 45, 270 + i * 45,

lat.bottom * 1.19 + i * 1.5, (lon.right + lon.left) / 2)[3]),

lon = c((lon.right + lon.left) / 2 + .1,

CalcRayGlyphLegendLatLon(270 + i * 45, 270 + i * 45,

lat.bottom * 1.15 + i * 1.5,

(lon.right + lon.left) / 2)[4]),

FUN = lines, col = lncolor2, add = TRUE, pch = pchcir, cex = circex,

lwd = lwdln)

circles

PlotOnStaticMap(MyMap, lat.bottom * 1.19 + i * 1.5,

(lon.right + lon.left) / 2,

FUN = points, col = circolor, add = TRUE, pch = pchdot, cex = circex)

outline circles

PlotOnStaticMap(MyMap, lat.bottom * 1.19 + i * 1.5,

(lon.right + lon.left) / 2,

FUN = points, col = lncircolor, add = TRUE, pch = pchcir, cex = circex)

Left side levels

text((x.right + x.left) / 2 * .84, y.top * 1.95 + i * 20,

labels = llevels[1 + i], cex = labelscex)

Right side levels

text((x.right + x.left) / 2 * 1.16, y.top * 1.95 + i * 20,

labels = rlevels[1 + i], cex = labelscex)

}

}

Rectangle background, with form

rect(x.left, y.bottom, x.right, y.top-28, col = "grey")

Define values & generic labels

min1 = min(data[2])

max1 = max(data[2])

qtr1 = round((max1 - min1) * .25 + min1)

qtr2 = round((max1 - min1) * .5 + min1)

qtr3 = round((max1 - min1) * .75 + min1)

min2 = min(data[3])

max2 = max(data[3])

qtr21 = round((max2 - min2) * .25 + min2)

qtr22 = round((max2 - min2) * .5 + min2)

qtr23 = round((max2 - min2) * .75 + min2)

Run the ray-glyph legend function. Change title and labels.

Note: If labels run outside the bounds of the legend box you will have to

manually adjust the rectangle background above.

PlotRayglyphLegend(llabel = ~underline(Value), rlabel = ~underline(Revenue),

title = "",

llevels = c(min1, qtr1, qtr2, qtr3, max1),

53

rlevels = c(min2, qtr21, qtr22, qtr23, max2),

circolor = palcircle[4],

lncolor1 = lncolor1,

lncolor2 = lncolor2

)

7. Plot title___

First shift down the margins so the title appears closer to the top of

United States.

par(mar = c(0, 0, 12.5, 0))

title(main = "Ray-Glyph Plot Showing Major League Baseball Valuations \nand

Revenue ($mil) in 2007 (Forbes.com)") # \n starts a new line

dev.off()

B.4.1 Histogram: MLB Value and Revenue

MLB Histogram

By Nathan Voge

#

#

1 Import functions and data

2 Draw plots, define colors, create breaks

1. Import needed functions and data_______________________________________

library(RColorBrewer)

library(RgoogleMaps)

library(PBSmapping)

value = c(305,405,359,617,448,315,274,352,298,292,226,416,239,368,482,235,216,

604,1026,234,424,250,354,410,428,429,209,353,286,440)

revenue = c(145,172,156,206,179,157,137,150,145,146,119,173,117,167,189,131,114,

195,277,134,176,125,158,171,179,165,116,153,136,145)

mlb = data.frame(value, revenue)

read in data via a file, data = read.csv("mlb_coordchg.csv", header = TRUE)

2. Draw plots, define colors, create breaks__________________________________

save it as a .pdf

pdf("mlb_18Jul_valhist.pdf", width = 11, paper = "USr")

value.breaks5 = c(200, 400, 600, 800, 1000, 1200)

pallette5 = brewer.pal(5, "OrRd") # define colors

hist(mlb$value, xlim = c(200, 1200), ylim = c(0, 20), xlab = "Value ($mil)",

main = "", col = pallette5, breaks = value.breaks5)

dev.off()

54

save it as a .pdf

pdf("mlb_18Jul_revhist.pdf", width = 11, paper = "USr")

revenue.breaks5 = seq(100, 300, 40)

hist(mlb$revenue, main = "", col = pallette5, xlab = "Revenue ($mil)",

breaks = revenue.breaks5, ylim = c(0, 20), xlim = range(revenue.breaks5),

xaxt = "n") # xaxt = "n" turns off the numbering for the x-axis

reformat the x-axis with tick marks that fit our breaks

axis(1, at = revenue.breaks5, labels = c("100", "140", "180", "220", "260",

"300"))

dev.off()

Extra histograms

#value.breaks2 = c(200, 350, 500, 650, 800, 950, 1100)

#pallette6 = brewer.pal(7, "OrRd")

#hist(mlb$value, xlim = c(200, 1200), ylim = c(0, 15), xlab = "Value ($mil)",

main = "", col = pallette6, breaks = value.breaks2)

#

#pallette7 = brewer.pal(9, "OrRd")

#hist(mlb$value, xlim = c(200, 1200), ylim = c(0, 12), xlab = "Value ($mil)",

main = "", col = pallette7)

##Revenue

#pallette9 = brewer.pal(9, "OrRd")

#hist(mlb$revenue, main = "", col = pallette9, xlab = "Revenue ($mil)",

xlim = c(100, 300), ylim = c(0, 10))

B.5 One-Panel Linked Micromap: Tornado Damage

Linked micromap plots (one statistical panel)

By Mike Minnotte (revised for current data by Nathan Voge)

#

#

1 Import functions and data

2 Extract state names and sort the data

3 Colors and Graphics Device

1. Import needed functions and data_______________________________________

read in data

web link to data: http://sciencepolicy.colorado.edu/sourcebook/tornadoes.html

State = c("Alabama","Arizona","Arkansas",’California’,’Colorado’,’Connecticut’,

’Delaware’,’Florida’,’Georgia’,’Idaho’,’Illinois’,’Indiana’,’Iowa’,

’Kansas’,’Kentucky’,’Louisiana’,’Maine’,’Maryland’,’Massachusetts’,

’Michigan’,’Minnesota’,’Mississippi’,’Missouri’,’Montana’,’Nebraska’,

’Nevada’,’New Hampshire’,’New Jersey’,’New Mexico’,’New York’,

’North Carolina’,’North Dakota’,’Ohio’,’Oklahoma’,’Oregon’,

’Pennsylvania’,’Rhode Island’,’South Carolina’,’South Dakota’,

’Tennessee’,’Texas’,’Utah’,’Vermont’,’Virginia’,’Washington’,

’West Virginia’,’Wisconsin’,’Wyoming’)

Puerto Rico, Hawaii, Alaska were eliminated from the data set as

55

they aren’t included on the map

Cost = c(51.88,3.469,40.96,3.682,4.623,2.26,0.2744,37.32,51.68,0.2552,62.94,

53.13,49.51,49.28,24.84,27.75,0.5252,2.329,4.418,29.88,84.84,43.62,

68.93,2.266,30.26,0.0953,0.6592,2.94,1.485,15.73,14.9,14.69,44.36,

81.94,5.52,17.11,0.0898,17.19,10.64,23.47,88.6,3.565,0.2416,7.416,

2.374,2.143,31.33,1.779)

torn = data.frame(State, Cost)

read in data via file, torn = read.csv("tornado_alpha.csv", header = TRUE)

library(RColorBrewer)

library(maps) # load map data

data(state) # load state data

2. Extract state names and sort the data (high to low)______________________

tornado = torn[, 2] # extract data

tornado.state = torn[, 1] # get state names

tornado.name <- tornado.state[order(tornado, decreasing = T)]

tornado = sort(tornado, decreasing = TRUE)

3. Start Graphics Device and Define Colors____________________________________

pal = brewer.pal(6, "Set1") # rainbow colors

pal[6] = "#DDDDDD" # gray

save it as a .pdf (looks better)

pdf("Tornado_micromap_18Jul.pdf", width = 7.5, height = 10)

create the layout

layout(matrix(1:36, nrow = 12, byrow = TRUE), widths = c(1, 1, 2),

heights = c(rep(4, 5), 1, rep(4, 5), 3))

visualize the layout: layout.show(36)

loop that draws maps and plot everything

for (i in 1:10) { # start of loop for each of the i panels, ends on line 159

compute colors

par(mex = 0.5, mar = rep(.01, 4))

define colors above/below median to be gray (pal[6])

if (i <= 5)

m.col = c(rep(pal[6], 25), rep(0, 25))

else

m.col = c(rep(0, 25), rep(pal[6], 25))

define other colors on map (column 1)

if (i <= 4)

m.col[(i-1) * 5 + 1:5] = pal[1:5]

else if (i == 5)

m.col[(i-1) * 5 + 1:4] = pal[1:4]

else if (i == 6)

m.col[(i-1) * 5 - 1 + 1:4] = pal[1:4]

else

m.col[(i-1)*5 - 2 + 1:5] = pal[1:5]

map.m.col = m.col[match.map("state", as.character(tornado.name))]

56

plot map

map("state", fill = TRUE, col = map.m.col, border = 1,

xlim = c(-125, -65), ylim = c(25, 50))

plot labels (column 2)

par(mar = rep(.1, 4))

plot(0, 0, xlim = c(0, 1), ylim = c(0, 1), type = "n", bty = "n",

xaxt = "n", yaxt = "n", xlab = "", ylab = "")

if (i <= 4)

points(rep(.1, 5), seq(.9, .1, by = -.2), pch = 21, bg = pal[1:5], cex = 2)

else if (i == 5) # notice in i==5/6, we change seq(...) and pal[...] because

there are only 4 states/dots here. This is repeated below.

points(rep(.1, 4), seq(.8, .2, by = -.2), pch = 21, bg = pal[1:4], cex = 2)

else if (i == 6)

points(rep(.1, 4), seq(.8, .2, by = -.2), pch = 21, bg = pal[1:4], cex = 2)

else

points(rep(.1, 5), seq(.9, .1, by = -.2), pch = 21, bg = pal[1:5], cex = 2)

if (i <= 4)

text(rep(.18, 5), seq(.9, .1, by = -.2), tornado.name[(i-1) * 5 + 1:5],

pos = 4, cex = 1.0)

else if (i == 5)

text(rep(.18, 4), seq(.8, .2, by = -.2), tornado.name[(i-1) * 5 + 1:4],

pos = 4, cex = 1.0)

else if (i == 6)

text(rep(.18, 4), seq(.8, .2, by = -.2), tornado.name[(i-1) * 5 - 1 + 1:4],

pos = 4, cex = 1.0)

else

text(rep(.18, 5), seq(.9, .1, by = -.2), tornado.name[(i-1) * 5 - 2 + 1:5],

pos = 4, cex = 1.0)

plot dotplot of values (column 3)

par(mar = rep(.1, 4))

if (i == 10)

plot(0, 0, xlim = range(tornado), ylim = c(0, 1), type = "n", yaxt = "n",

xlab = "", ylab = "")

else

plot(0, 0, xlim = range(tornado), ylim = c(0, 1), type = "n", xaxt = "n",

yaxt = "n", xlab = "", ylab = "")

if (i <= 4)

abline(h = seq(.9, .1, by = -.2), lty = 3, col = "grey")

else if (i == 5)

abline(h = seq(.8, .2, by = -.2), lty = 3, col = "grey")

else if (i == 6)

abline(h = seq(.8, .2, by = -.2), lty = 3, col = "grey")

else

abline(h = seq(.9, .1, by = -.2), lty = 3, col = "grey")

if (i <= 4)

points(tornado[(i-1) * 5 + 1:5], seq(.9, .1, by = -.2), pch = 21,

bg = pal[1:5], cex = 2)

else if (i == 5)

points(tornado[(i-1) * 5 + 1:4], seq(.8, .2, by = -.2), pch = 21,

bg = pal[1:4], cex = 2)

else if (i == 6)

points(tornado[(i-1) * 5 - 1 + 0:3], seq(.8, .2, by = -.2), pch = 21,

bg = pal[1:4], cex = 2)

else

points(tornado[(i-1) * 5 - 2 - 2 + 1:5], seq(.9, .1, by = -.2), pch = 21,

bg = pal[1:5], cex = 2)

separate states above and below median, j is the columns, i the rows

if (i == 5) {

57

for (j in 1:3){

plot(0, 0, xlim = c(0, 1), ylim = c(0, 1), type = "n", bty = "n",

xaxt = "n", yaxt = "n", xlab = "", ylab = "")

abline(h = .5, lwd = 3, col = pal[6])

}

}

Plot through remaining (empty) cells

if (i == 10)

for (j in 1:3)

plot(0, 0, xlim = c(0, 1), ylim = c(0, 1), type = "n", bty = "n",

xaxt = "n", yaxt = "n", xlab = "", ylab = "")

} # end of loop

Label for dot plots

text(0.5, 0.35, "Property Damage Due to \nTornadoes in Millions of Dollars",

cex = 1.5)

dev.off()

B.5.1 Tornado Histogram

Tornado Damage Histogram

By Nathan Voge

#

#

1 Import functions and data

2 Draw plot

1. Import needed functions and data_______________________________________

State = c("Alabama","Arizona","Arkansas",’California’,’Colorado’,’Connecticut’,

’Delaware’,’Florida’,’Georgia’,’Idaho’,’Illinois’,’Indiana’,’Iowa’,

’Kansas’,’Kentucky’,’Louisiana’,’Maine’,’Maryland’,’Massachusetts’,

’Michigan’,’Minnesota’,’Mississippi’,’Missouri’,’Montana’,’Nebraska’,

’Nevada’,’New Hampshire’,’New Jersey’,’New Mexico’,’New York’,

’North Carolina’,’North Dakota’,’Ohio’,’Oklahoma’,’Oregon’,

’Pennsylvania’,’Rhode Island’,’South Carolina’,’South Dakota’,

’Tennessee’,’Texas’,’Utah’,’Vermont’,’Virginia’,’Washington’,

’West Virginia’,’Wisconsin’,’Wyoming’)

Puerto Rico, Hawaii, and Alaska were eliminated

Cost = c(51.88,3.469,40.96,3.682,4.623,2.26,0.2744,37.32,51.68,0.2552,62.94,

53.13,49.51,49.28,24.84,27.75,0.5252,2.329,4.418,29.88,84.84,43.62,

68.93,2.266,30.26,0.0953,0.6592,2.94,1.485,15.73,14.9,14.69,44.36,

81.94,5.52,17.11,0.0898,17.19,10.64,23.47,88.6,3.565,0.2416,7.416,

2.374,2.143,31.33,1.779)

torn = data.frame(State, Cost)

read in data via a file, torn = read.csv("tornado_alpha.csv", header = TRUE)

2. Draw plot__

save as a .pdf

pdf("torn_18Jul_hist.pdf", width = 11, paper = "USr")

58

hist(torn$Cost, xlim = c(0, 100), ylim = c(0, 25), main = "",

xlab = "Cost (in millions)")

dev.off()

B.6 Two-Panel Linked Micromap: Fruit/Vegetable Consumption and

Smoking

Linked micromap plots (two statistical panels)

By Daniel B. Carr (revised for current data by Nathan Voge)

#

#

1 Import functions and data

2 Sort data and extract abbreviations

3 Colors and Graphics Device

4 Define panel layouts

#

5 Define graphics parameters

6 Set up for processing in loops

7 Draw maps

8 Draw linking dots and state names

#

9 Draw estimates and confidence bounds

10 Draw counts

11 Draw title and legend

12 Outline groups of panels

1. Import needed functions and data_______________________________________

read in data

fvsmk = read.csv("fvsmk_DC.csv", row.names = 1, header = TRUE) # row.names = 1

makes row

numbers go

away

load("Ch9_panelLayout.Rdata") # workspace that has all the panel layout

functions

read in polygon shapes for map

stateVBorders = read.csv("stateVisibilityBorders.txt", row.names = NULL,

header = TRUE) # "st" = state ID’s, "x" and "y" are

polygon coordinates

nationVBorders = read.csv("nationVisibilityBorders.txt",

blank.lines.skip = FALSE, row.names = NULL,

header = TRUE)

get Fips codes which are numbers the government uses to identify states

stateNamesFips = read.csv(’stateNamesFips.txt’, row.names = 1, header = TRUE)

2. Sort the data.frame by fruit and veg consumption (high to low) and

extract the state abbreviations for later use____________________________

ord = rev(order(fvsmk$Fruit_Vegs))

fvsmk = fvsmk[ord,]

59

stateDataId = row.names(fvsmk)

3. Start Graphics Device and Define Colors____________________________________

#windows(width = 7.5,height = 10)

wgray = rgb(.82, .82, .82) #white gray

rgbColors = matrix(c(

1.00, .30, .30,

1.00, .50, .00,

.25,1.00, .25,

.10, .65, 1.00,

.80, .45, 1.00,

.35, .35, .35,

.85, .85, .85,

.50, .50, .50,

1.00, 1.00, .85,

.85, .85, .85), ncol = 3, byrow = TRUE)

hdColors = rgb(rgbColors[, 1], rgbColors[, 2], rgbColors[, 3])

#4. Define panel layouts__

bot = .77

top = .73

left = 0

right = 0

panels = panelLayout(nrow = 11, ncol = 4,

topMar = top, bottomMar = bot,

leftMar = left, rightMar = right,

rowSep = c(0, 0, 0, 0, 0, .07, .07, 0, 0, 0, 0, 0),

rowSize = c(7, 7, 7, 7, 7, 1.5, 7, 7, 7, 7, 7),

colSize = c(2.5, 2.2, 2.90, 2.90),

colSep = c(0, 0, 0, 0, 0))

panelBlock = panelLayout(nrow = 3, ncol = 3,

topMar = top, bottomMar = bot,

leftMar = left, rightMar = right,

rowSep = c(0, .07, .07, 0),

rowSize = c(35, 1.5, 35),

colSize = c(4.7, 2.90, 2.90),

colSep = c(0, 0, 0, 0))

#5. Define graphics parameters___

dcex = .95

tCex = 1.08

cex = .65

fontsize = 12

font = 1

line1 = .2

line2 = 1.0

line3 = .2

ypad = .65

nameShift = .12

60

#6. Set up indices for perceptual groups of states___________________________

iBegin = c(1, 6, 11, 16, 21, 26, 27, 32, 37, 42, 47) # group beg subscript

iEnd = c(5, 10, 15, 20, 25, 26, 31, 36, 41, 46, 51) # group ending subscript

nGroups = length(iEnd)

#7. Plot maps__

range for scale the polygon panels

rxpoly = range(stateVBorders$x, na.rm = TRUE)

rypoly = range(stateVBorders$y, na.rm = TRUE)

polygon ID’s, one per polygon

polygonId = stateVBorders$st[is.na(stateVBorders$x)]

panel titles

panelSelect(panels, 1, 1)

panelScale()

mtext(side = 3, line = line1, ’Above Median States’, cex = cex)

mtext(side = 3, line = line2, ’Micromaps’, cex = cex)

panelSelect(panels, 11, 1)

panelScale()

mtext(side = 1, line = line3, ’Below Median States’, cex = cex)

drawing the maps

for (i in 1:nGroups) {

if (i == 6) { #map not drawn, median state in adjacent panels

panelSelect(panels, 6, 1)

panelScale()

panelFill(col = wgray)

panelOutline(col = "black")

text(.5, .55, ’Median’, cex = cex)

next # ’next’ halts the processing of the current iteration and advances

the looping index.

}

panelSelect(panels, i, 1)

panelScale(rxpoly, rypoly)

gsubs = iBegin[i]:iEnd[i]

if (i == 5)

gsubs = c(gsubs, 26) # median state added here

if (i == 7)

gsubs = c(gsubs, 26) # median state added here

if (i < 6)

cont = stateDataId[1:26]

else

cont = stateDataId[26:51]

cont means above or below median contour

panelNames = stateDataId[gsubs]

plot background (out of contour) states in gray with white outlines

back = is.na(match(stateVBorders$st, cont))

polygon(stateVBorders$x[back], stateVBorders$y[back], col = wgray,

border = FALSE)

polygon(stateVBorders$x[back], stateVBorders$y[back], col = "white",

density = 0)

outline states

plot foreground states for the panel in their special colors pens 1:5

61

and other in contour states in light yellow pen 9

fore = !back

pen = match(polygonId, panelNames, nomatch = 9)[!is.na(match(polygonId, cont))]

polygon(stateVBorders$x[fore], stateVBorders$y[fore], col = hdColors[pen],

border = FALSE) # outline states

polygon(stateVBorders$x[fore], stateVBorders$y[fore], col = "black",

density = 0, lwd = 1) # outline states

outline U.S.

polygon(nationVBorders$x, nationVBorders$y, col = "black", density = 0,

lwd = 1)

outside boundary

}

#8. Plot labels___

get full state names in rate order

ord = match(stateDataId, stateNamesFips$ab) # match state names

stateNames = row.names(stateNamesFips)[ord] # get the full state names except

D.C.

cbind(stateDataId, stateNames) # check that the matching has

worked

title column

panelSelect(panels, 1, 2)

panelScale()

mtext(side = 3, line = line1, ’’, cex = cex)

mtext(side = 3, line = line2, ’States’, cex = cex)

draw state names

for (i in 1:nGroups) {

gsubs = iBegin[i]:iEnd[i]

gnams = stateNames[gsubs]

nsubs = length(gnams)

pen = 1:nsubs

laby = nsubs:1

panelSelect(panels, i, 2)

panelScale(c(0, 1), c(1-ypad, nsubs + ypad))

if (i == 6) {

pen = 6

panelFill(col = wgray)

panelOutline()

}

for (j in 1:length(pen)) {

points(.1,laby[j], pch = 16, col = hdColors[pen[j]], cex = dcex)

points(.1,laby[j], pch = 1, col = "black", cex = dcex)

text(.18, laby[j] + nameShift, gnams[j], cex = cex ,adj = 0,

col = "black", font = font)

}

}

#9 Plot rates with confidence bounds___

countRange1 = range(fvsmk$Fruit_Vegs)

countRange1 = mean(countRange1) + 1.10 * diff(countRange1) * c(-.5, .5)

countGrid1 = panelInbounds(countRange1) # used pretty values that are in bounds

62

panelSelect(panels, 1, 3)

panelScale()

mtext(side = 3, line = line1, ’(at least 5 times a day)’, cex = cex)

mtext(side = 3, line = line2, ’Fruit and Vegs Consumption’, cex = cex)

for (i in 1:nGroups) {

gsubs = iBegin[i]:iEnd[i]

nsubs = length(gsubs)

pen = 1:nsubs

laby = nsubs:1

panelSelect(panels, i, 3)

panelScale(countRange1, c(1-ypad, nsubs + ypad))

panelFill(col = wgray)

panelGrid(x = countGrid1, col = "white", lwd = 1)

panelGrid(x = 5.6, col = "black", lty = 2) # hard code U.S. average

panelOutline(col = "white")

if (i == nGroups) {

axis(side = 1, at = countGrid1, labels = as.character(countGrid1),

col = "black", mgp = c(1, 0, 0), tck = -.04, cex.axis = cex)

mtext(side = 1, line = .7, "Percent", cex = cex)

}

if (i == 6)

pen = 6

lines(fvsmk$Fruit_Vegs[gsubs], laby, col = "black", lwd = 1)

for (j in 1:length(pen)) {

points(fvsmk$Fruit_Vegs[gsubs[j]], laby[j], pch = 16,

cex = dcex, col = hdColors[pen[j]])

points(fvsmk$Fruit_Vegs[gsubs[j]], laby[j], pch = 1,

cex = dcex, col = "black")

}

}

#10. Plot counts__

countRange = range(fvsmk$Smoke)

countRange = mean(countRange) + 1.10 * diff(countRange) * c(-.5, .5)

countGrid = panelInbounds(countRange) # used pretty values that are in bounds

panelSelect(panels, 1, 4)

panelScale()

mtext(side = 3, line = line1, ’Smoking’, cex = cex)

mtext(side = 3, line = line2, ’Daily’, cex = cex)

for (i in 1:nGroups) {

gsubs = iBegin[i]:iEnd[i]

nsubs = length(gsubs)

pen = 1:nsubs

laby = nsubs:1

panelSelect(panels, i, 4)

panelScale(countRange, c(1-ypad,nsubs + ypad))

panelFill(col = wgray)

panelGrid(x = countGrid, col = "white")

panelOutline(col = "white")

if (i == nGroups) {

axis(side = 1, at = countGrid, labels = as.character(countGrid),

col = "black", mgp = c(1, 0, 0), tck = -.04, cex.axis = cex)

mtext(side = 1, line = .7, "Percent", cex = cex)

63

}

if(i == 6)

pen = 6

lines(fvsmk$Smoke[gsubs], laby, col = "black", lwd = 1)

for (j in 1:length(pen)) {

points(fvsmk$Smoke[gsubs[j]], laby[j], pch = 16,

cex = dcex, col = hdColors[pen[j]])

points(fvsmk$Smoke[gsubs[j]], laby[j], pch = 1,

cex = dcex, col = "black")

}

}

#11 Add Title and Legend ___

panelSelect(panels, margin = ’top’)

panelScale()

text(.5, .85, ’Fruit and Vegetable Consumption and Smoking Statistics By State’,

cex = 1)

panelSelect(panels, margin = ’bottom’)

panelScale(inches = TRUE)

xs = 2.8

ys = -.42

text(.01 + xs, .70 + ys, "U.S. Average", cex = cex, adj = 0, font = 1)

lines(c(.78, 1.50) + xs, c(.70, .70) + ys, lty = 2, col = "black")

text(.01 + xs, .53 + ys, "90% Confidence Interval", cex = cex, adj = 0,

font = 1)

lines(c(1.35, 1.61) + xs, c(.53, .53) + ys, lwd = 2, col = hdColors[1])

#12 Outline groups of Panels__

for (i in 1:3) {

for (j in 2:3) {

panelSelect(panelBlock, i, j)

panelScale()

panelOutline(col = "black")

}

}

panelSelect(panelBlock, 2, 1)

panelScale()

panelOutline(col = "black")

