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ABSTRACT 

The techniques of operational hydrology, employing an autoregres­
s ive movIng average (ARMA (1,0) model were used to replicate histori­
cal patterns of streamflow into, precipitation on,' and evaporation 
from the Great Salt Lake. The results were combined with a lake water 
balance model to simulate lake stage sequences beginning with known 
initial conditions and extending up to 125 years into the future and 
used to generate probability distributions for future lake stages. 
Starting with a spring 1980 high stage of 4200.45 ft msl, the best 
estimate is that the 1981 spring high will be 4200.19, but there is 
one chance in four that it will reach 4200.74 and one in ten that it 
will reach 4201.24. Over the long run, an average spring high of 
4195.20 is forecast with one year in a hundred reaching as high 
as 4205.21 and one year in a hundred with a spring high of only 
4185.19 and dropping as low as 4183.5. Followup annual forecast 
updates will be published about each July 1. 
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Update on Estimation of Water Surface Elevation Probabilities 
For the Great Salt Lake 

INTRODUCTION 

Industries, railroad companies, highway 
agencies, and natural resource user groups 
suffer when water surface levels in the Great 
Salt Lake rise higher or fall lower than 
their customary range. High water can flood 
the ponds and plants of lakeshore mineral 
industries, close recreation facilities and 
reduce visitation to shoreline areas, in­
undate feeding and nesting areas for migra­
tory waterfowl with salt brine that over time 
destroYs marsh productivity, and erode 
embankments and eventually close shoreline or 
causewEY crossing railroads and highways. 
Low water increases the cost to the mineral 
industry of pumping lake brines to evapor­
ationponds and leaves wide unsightly beaches 
that reduce recreation visitation and require 
moving facilities toward the receded shore­
line. 

While slow rates of rise and fall 
provide preparation time to reduce sudden 
unexpected damages, the managers of the above 
facilities could do a better job of maxi­
mizing the economic advantage of lake­
shore locations and minimizing losses from 
lake level change with better information on 
the probabilities of lake levels rising or 
falling to their levels of concern within 
their planning horizons. In order to deter­
mine whether any governmental act ion is 
warranted and better plan justified measures, 
public agencies could also profit frolll lake 
level forecasts. 

Standard methods (U. S. Water Resources 
Council 1976) for estimating probabilities 
for riverine flood stages are not appropriate 
for terminal lakes because they do not 
account for the dependence of lake levels on 
the levels of immediately previous years. 
Great Salt Lake levels vary over many feet, 
rising over series of years when cumulative 
inflows exceed cumulative evaporation and 
falling when opposite conditions prevail. 
These cycles last decades and make the 
level during the previous year the major 
parameter in estimating the level for the 
following year. 

The methods of operational hydrology, 
originally applied to storage in water supply 
reservoirs, provide a tool that can be used 
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to derive terminal lake level probability 
distributions. The method calculates ob­
served historical relationships among inflow 
(surface, subsurface, and precipitation) and 
outflow (evaporation) and of the patterns in 
all these time series. Estimation of the 
parameters of these relationships requires 
time ser ies that are homogeneous over 
time. 

The primary homogeneity problem on the 
Great Salt Lake is that land use changes and 
water supply development since 1847 have 
substantially reduced streamflow. Streamflow 
data series have been compiled on two bases. 
One, "natural streamflows," est imates annual 
flows such as would occur from natural 
water sheds. The other, "present mod if ied 
streamflows," estimates annual flows such as 
would occur from watersheds with 1965 prac­
tices of land and water use (Utah Division of 
Water Resources 1977). The hydrologic effect 
of these practices has not changed much in 
the years since. 

James et al. (1979) found "present 
modified streamflows" to provide the more 
satisfactory data base for stochastic genera­
tion of flow sequences. Natural flow se­
quences were less satisfactory because of 
higher cross correlations and the lack of a 
reliable relationship for conyerting gener­
ated natural flows into the flows which now 
actually occur and govern lake levels. These 
"present modified flows" for the Bear, Weber, 
and Jordan Rivers into the Great Salt Lake 
provide three of the needed five homogeneous 
data series. For the other two, average 
precipitation on the lake was estimated 
from seven gages around the lake (James et 
a1.1979, p. 38); and a time series of 
freshwater equivalent lake evaporations was 
constructed from available pan data (p. 40). 
The period beginning with water year 1937 was 
selected for the data base because 1) it 
utilizes the full length of evaporation 
record (the shortest series duration and 
largest flow quantity involved) and 2) the 
streamflow and precipitation data for the 
period have statistical characteristics 
representative of those measured over the 
period of record beginning in 1890 and of 
those estimated from tree-ring data beginning 
in 1700 (p. 51). 



Autoregressive moving average (ARMA) 
models were applied to replicate the serial 
and cross correlation characteristics of 
these five data series over the 41-year data 
base. 

James et a1. (1979) applied both 5-
variate ARMA(1,l) and ARMA (1,0) models to 
these five series and concluded that with the 
parameter estimating procedures ~vai1able 
that the ARMA (1,0) generation based on 1937-
1977 present modified flows best matched most 
flow statistics. The exception was that this 
model is not able to replicate the signifi­
cant persistence observed in some of the five 
series. Thus, the decision to proceed with 
the ARMA (1,0) model was tempered by a 
feeling that the ARMA (1,1), or perhaps even 
a higher ordered model, should theoretically 
give better results in that it can replicate 
persistence and that the difficulty may be 
overcome by developing improved techniques 
for model parameter estimation. Tr ial of a 
homogeneous ARMA (p,q) model for which the 
method of moments for parameter est imat ion 
could be replaced by the method of maximum 
likelihood was recommended (pp. 65-67). 

For their immediate application, how­
ever, the ARMA (1,0) was used to generate 100 
sets of 125-year streamflow, precipitation, 
and evaporat ion sequences. These became 
inputs to a lake water balance model used to 
generate an equal number of 125-year lake 
stage sequences. These 100 equally probable 
sequences beginning from the known water 
surface elevation of 4198.6 feet msl on 
October 1, 1978, provide a distribution of 
the possible lake levels at the beginning of 
each subsequent water year through 2103. 

The level for October 1978 is a known 
amount. The distribution of possible lake 
levels for October 1979 (as estimated in 
1978) varies over a range, and as uncer­
tainties increase into the future, this range 
becomes progressively larger in subsequent 
years. James et al. (1979) found the distri~ 
bution to stabilize after about 35 years upon 
reaching a pattern that turned out to be 
approximately a normal distribution with a 
mean of 4196.42 feet msl and a standard 
deviation of 4.56 feet. Because the estimate 
of expected lake level is influenced by known 
initial conditions for about 35 years; 
industrial and land use management decisions 
around the lake shore, generally based on a 
10 to 20 year time frame, should vary con­
siderably with current lake levels. 

GOALS OF THIS STUDY 

While the above results provided reason­
able probability distributions for Great Salt 
Lake water surface elevations, they left 
several issues unresolved. The purpose of 
this study was to consider these residual 
problems and refine the lake level estimates 
as necessary. 
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The most challenging possibilities for 
modeling improvement were those of using a 
homogeneous approach to stochastic modeling 
(James et a1. 1979, pp. 65-67) and maximum 
likelihood parameter estimation techniques to 
move from an ARMA (1,0) to a higher order 
model that might do a better job of pre­
serving observed patterns in the historical 
flow sequences. As long as this attempt was 
to be made, several other refinements were 
also included: 

1. The error in using a 1977 Weber 
River flow of 770,580 AF rather than the 
act u a 1 77,58 ° A'F (p . 43) was cor r e C ted. 

2. The precipitation, evaporation, and 
streamflow data series were updated to 
include 1978. 

3. The original time series scaling had 
used a three parameter log normal distribu­
tion (3PLN) for three of the five series and 
a normal distribut ion for the precipitation 
and the Weber River ser ies because of their 
low skew (p. 49). Following the recommenda­
tion of Burges and Hoshi (1978), the 3PLN was 
used for all five cases. 

4. The Box-Jenkins identification 
procedure (Box and Jenkins 1970) was employed 
to determine tr ial values for p and q in 
fitting a general ARMA (p,q) model. In the 
previous study, only ARM A (1,0) and ARMA 
(1,1) models were considered. 

5. The homogeneous modeling method and 
maximum likelihood estimation of model 
parameters were tried in attempts to improve 
upon the ARMA (1,0) match of flow statistics. 

6. The best performing model would be 
used to revise the previously derived prob­
ability distributions of annual peak Great 
Salt Lake levels (James et a1. 1979, Figure 
ll) . 

7. A simple method would be devised for 
annually updating the estimated probability 
distributions. The estimated distribution 
would begin with the recorded spr irigt ime 
annual peak and cover the probabilities for 
the range of possible levels over the subse­
quent 35 years. 

DATA CORRECTION AND UPDATE 

The 1977 Weber River present modified 
flow was corrected, and the 1978 data were 
added to all five present modified sequences. 
The data for the five series from 1890 
through 1976 are recorded in James et al. 
(1979, pp. 42-43); the 1977 and 1978 infor­
mation and revised statIstics for the com­
plete series are on Table 1. In comparison 
with the previously published statistics, the 
mean of the Weber River flows dropped 0.4 
percent, the standard deviation dropped 
by 0.9 percent, and the skew increased by 4.3 



. 
Table 1. Data for complete recorded streamflow, 

Evap. Prec. 
in. in. 

Beginning 1937 1890 

1977 48.7 9.90 

1978 44.3 13.10 
Mean 51.8 9.99 
Std. Dev. 4.2 2.42 
Skew 0.536 0.046 
Hurst 0.68 0.557 
Lag One 0.23 0.176 Coeff. 

percent. Changes for the other four 'ser ies 
were of the same general order of magnitude. 

APPLICATION OF BOX-JENKINS 
IDENTIFICATION PROCEDURE 

The results of the Box-Jenkins identifi­
cation procedure (Box and Jenkins 1970) used 
to select appropriate autoregressive and 
moving average model orders (p and q respec­
tively) for the five time series are shown in 
Table 2. Each box contains parameter esti­
mates at the top and chi-square statistics at 
the bottom. 

The parameters shown are the estimates 
from the Box-Jenkins program for the p 
autoregressive terms and the q moving average 
terms. Therefore, for an ARMA (1,0) model, 
only one parameter is estimated j and for an 
ARMA (2,1), there are two autoregressive 
parameters followed by the one moving average 
parameter. 

Recorded under the parameter estimates 
are the chi-square statistics needed to test 
whether the residuals between the fitted 
model and the original data time series are 
white noise, i.e., a purely random and thus 
serially uncorrelated time series. A numera­
tor smaller than the denominator implies a 
random residual series and thus no need for 
the complexity of a higher order model. 

The chi-square statistic for the resid­
ual time series is calculated from K orders 
of serial correlations of the residuals 
with the formula: 

K 2 
Q = n Z; P

k 
(§) •••••••••••••••••••••••• '. (1) 

k=l 

where Pk(a) is the ser ial correlat ion coeffi­
cient for the series with k lags, K is the 
maximum number of lags used and consequently 
the number of serial correlation coefficients 
calculated, and n is the length of the time 
series. The values of Q approximately follow 
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precipitation and evaporation time series. 

Bear R. Weber R. Jordan R. 
AF AF AF 

1890 1890 1890 

689300 77580 218600 

945100 305100 284720 

1179035 4;52655 275311 

481860 233737 66826 

0.434 0.555 0.533 

0.330 0.748 0.736 

0.622 0.425 0.715 

a chi-square distribution with K-p-q degrees 
of freed£m. According to the test, a Q less 
than X (K-p-q) indicates that the null 
hypothesis of nonsignificant serial correla­
tion cannot be rejected. By implication, 
the ARMA model being examined explains all 
but a white noise component of the data 
series at the chosen significance level. 

The Box-J enk ins mode 1 ident if icat ion 
procedure begins by fitting a model of higher 
order than necessary to the data and proceeds 
by try ing models of lower order to see if the 
residual can still all be explained as white 
noise. The lowest order model (minimum p+q 
with minimum p used in comparing models with 
the same p+q because autoregress ive com­
ponents are easier to apply than are moving 
average components) for which the residuals 
are determined by the above chi-square test 
to be white noise is selected. In a case 
such as this one where several time series 
are involved, the lowest order which reduces 
all the series to white noise should be 
selected to avoid problems caused by using 
different models of different series. 

From the data on Table 2, th is test 
selects the ARMA (1,0) model. This first 
order autoregressive model is also suggested 
by a part ial autocorrelat ion funct ion wh ich 
drops below a 95 percent significance level 
after the first lag for the three streamflow 
series. The evaporation and precipitation 
data have serial correlation coefficients 
which are just st·atistically significant 
at the 95 percent level for the first lag. 
These results ver ify use of the ARMA (1,0) 
model, but it should be remembered that none 
of ,these tests deal explicitly with persis­
tence stat ist ics, the property ini t ially 
suggesting investigation of the higher ord,er 
models. 

ARMA (1,0) MODEL RESULTS 

In a separate evaluation of model 
alternat ives, James et al. (1979) compared 
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Table 2. Parameter estimates for Box-Jenkins ARMA (p,q) models. 

GSL 
EVAP. 
1937- GSL EVAP. PHF BEAR RIVER PMF WEBER RIVER PMF JORDAN RIVER 

MODEL 1978 1875-1978 1937-1978 1890-1978 1937-1978 1890-1978 1937-1978 1890-1978 1937-1978 

K = 10 25 10 22 10 22 10 22 10 
ARl1A(l,O) 0.245 0.025 0.611 0.623 0.419 0.561 0.703 0.701 

25.8/35.2 12.0/15.5 26.9/31/4 4.3/15.5 15.5/31.4 7.7/15.5 15.7/31.4 8.9/15.5 

ARl1A(2,0) 0.206 0.507 0.587 0.370 0.601 0.531 0.487 
0.164 0.189 0.055 0.127 -0.081 0.254 0.302 

23.7/33.9 23.0/30.1 3.7/14.1 14.4/30.1 7.9/14.1 14.6/30.1 8.4/14.1 

ARl1A(3,0) 0.185,0.111 0.486,0.117 0.349,0.053 0.555,0.322 
0.233 0.124 0.l75 -0.115 

18.3/32.7 22.7/28.9 12.0/28.9 14.6/28.9 

ARl1A(4, 0) 0.49,0.12 0.3,0.4 
0.16,-0.06 0.1,0.2 
21. 6/27.6 13.6/27.6 

ARl1A(5,0) 0.5,0.1,0.17 0.3,0.2.0.12 
.p. -0.15,0.09 0.1,0 . 

15.3/26.3 10.6/26.3 

ARl1A(O,l) -0.167 -0.2 -0.019 
29.1/35.2* 

-0.145 
8.1/ 25.3/35.2 12.2/15.5 
15.5 

ARl1A(0,2) -0.074* 0.040 
-0.142 -0.199 

22.9/30.1 9.6/14.1 

ARl1A(O, 3) * -0.099,-0.096 0.007,-0.113 
-0.229 -0.116 

20.7/28.9 10.1/12.6 

ARl1A(l,l) 0.934 0.791 0.674 0.853 0.498 0.828 0.851 
0.783 0.307 0.085 0.607 -0.094 0.261 0.306 

18.1/33.9 21.6/30.1 3.8/14.1 12.2/30.1 7.7/14.1 14.1/30.1 7.7/14.1 

ARl1A(2,1) -0.125,0.766 
-0.642 

8.3/12.6 

*Test run with 1890-1978 data, K - 22. 2 
Chi squared goodness of fit test on residuals of each model compared at 95 percent confidence level; Q/X .95) to not 
being significantly different from white noise. 



statistics from the present modified series 
with those from set~ of 20 125-year flow 
series generated with various models, and 
found the ARMA (1,0) to give the most satis­
factory match for the Great Salt Lake data 
(p. 61). After revising the 1977 data 
and adding the 1978 data shown on Table 1, 
the comparative statistics were recompiled 
and are shown on Table 3. 

Comparison of these results with those 
previously obtained show the generation with 
20 125-year sequences to have a somewhat 
poorer match. A second comparison, with 40 
42-year sequences, was somewhat better, 
particularly as seen in the ratios of the 
differences to the values of the four means 
and in the MO matrix. The Ml and M2 matrices 
are less sat isfactory, but an ARMA (l,0) 
model would not be expected .. to perform very 
well· in preserving the Ml matrix and would 
not be expected to preserve M2 at all. The 
two comparisons also suggest that validity 
checks require more than 20 generated se­
quences to determine how well a model is 
really doing. 

The comparison of 20 125-year sequences 
and 40 42-year sequences encompasses the 
effects of both 1) longer versus shorter 
sequences and 2) more versus fewer sequences. 
Preserving series statistical properties as 
the sequence becomes longer is called Type A 
resemblance while preserving the property as 

the number of sequences becomes more is 
called Type B resemblance. The usual appli­
cat ion of synthet ic hyd rology is concerned 
with Type B resemblance because the sequence 
length is fixed at the economic life of the 
project. For comparing datil and generated 
sequences, it makes sense to use the same 
period so that any biases which depend on 
sequence length are equivalent for both 
series; and the period of record is the most 
convenient for the data.series because it 
provides the best estimate of the statistics. 

RESULTS WITH HIGHER ORDER MODELS 

The studies with higher order models 
i nv·olved est imat ion of parameters f or a 
homogeneous model of the multivariate, 
multilag system and .Monte Carlo testing of 
the sensitivity of the.model to nonhomoge­
neous data. They are reported in Appendix A. 

The conclusion with respect to the 
immediate Great Salt Lake application was to 
continue with the ARMA (1,0) model for 
generating flows for estimating lake stage 
probability distributions. The fundamental 
problem in applying higher order multivariate 
models to the Great Salt Lake data is that 
the high cross correlations in the lagged 
data among the historical time series vio­
lated the assllmpt ions of the homogeneous 
model. 

Table 3. Com~arison of generated with original data correlation. matrices 
senes (see also James et .al. (1970), Table 30). 

for 1937-1978 

Model ARMA(l,O) APJ-f.A( 1,0) 

Data type Pres. Mod. F. Pres. Mod. F. 
Number of series 20 40 
Length of series (years) 125 42 
Hean lIO/O 0.00 0.00 
Bean M/a 0.06 0.02 
Mean lI1)(l)/1)(l) 0.08 0.03 
Hean lIn/n 0.05 0.06 

HO MATRIX 
within 0.250 3 8 
0.25 to 0.50 3 2 
0.5 to 0.750 2 0 
0.75 to 1. 00 2 0 

Ml HATRIX 
within 1.00 1 4 
0.1 to 0.150 2 7 
0.15 to 0.250 1 5 
0.25 to 0.50 10 7 
0.5 to 1.00 11 2 

M2 MATRIX 
within 0.50 10 11 
0.5 to 1.00 9 5 
1.0 to 1.50 4 5 
1.5 to 2.00 2 2 
over 2.00 0 2 
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GENERATED FLOW STATISTICS 

The means, standard deviations, lag-one 
autocorrelation coefficients, and Hurst 
coefficients for the 1937-1978 flow sequences 
are given on Table 4 along with transformed 
statistics for the 3PLN distribution and 
three correlation matr ices. The MO corre­
lat ion matr ix shows the cross correlat ions 
between pairs of simultaneous values for the 
various combinations of the five series and 
is symmetrica1. The Ml matrix shows the 
correlations for the column data lagged 1 
year behind the row data. The M2 matrix 

shows correlations for a 2-year lag. Coeffi­
cients in the correlation matrices are 
significantly different than zero (5 percent 
level) when they exceed 0.320 (James et al., 
p. 50). Thus 8 of the 10 cross correlation 
coefficients are statistically signif~cant, 
12 of the 25 lag-one coefficients, and 
6 of the 25 lag-two coefficients. 

The ARMA (1,0) model was used to 
generate 40 sequence sets for the five 
variables of length 42 years and also to 
generate 20 sets of length 125 years. These 
results with the 40 sequence sets are sum­
marized on Table 5 in a format that can 

Table 4. Parameters and correlation matrices for present modified flows (1937-1978). 

Variable ,Hean correlation Hurst 

11 (J p(l) h 

Evap. 51. 82 4.20 0.244 0.68 
Precip. 10.91 2.20 0.025 0.71 
Bear 1023690 440990 0.623 0.53 
Weber 340210 167270 0.561 0.72 
Jordan 266430 79530 0.703 0.66 

Transformed 3PLN Statistics for Stochastic Generation 

Evap. 3.33 0.07 0.34 
Precip. -4.55 1. 70 0.03 
Bear 0.19 -0.38 0.50 
Weber -1. 58 0.63 0.08 
Jordan 0.06 -1. 75 0.38 

Correlation riatrix 

Evap. Precip. Bear Heber Jordan 

Evap. 1.0 -0.466 -0.335 0.098 -0.074 
Precip. 1.0 0.391 0.378 0.385 
Bear 1.0 0.756 0.690 
Weber 1.0 0.515 
Jordan 1.0 

Correlation Matrix 

Evap. Precip. Bear Weber Jordan 

Evap. 0.234 0.228 -0.176 0.025 -0.099 
Precip. 0.185 Q.025 0.195 0.090 0.269 
Bear -0.480 0.482 0.652 0.493 0.497 
Weber -0.210 0.474 0.441 0.562 0.250 
Jordan -0.198 0.600 0.557 0.476 0.718 

Correlation 11atrix 

Evap. Precip. Bear Heber Jordan 

Evap. 0.243 -0.044 -0.082 0.080 -0.196 
Precip. 0.122 0.178 0.154 -0.020 0.335 
Bear -0.163 0.128 0.452 0.299 0.516 
Iveber -0.081 0.241 0.299 0.268 0.291 
Jordan 0.006 0.368 0.554 0.312 0.664 
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easily be compared with Table 4. The mean 
values for the generated sequences (marked Mn 
on Table 5) can be compared directly with the 
values on Table 4; the standard deviations 
(marked SO on Table 5) indicate the variabil­
ity in results among the sequence sets. The 
results with the 20 long sequence sets are 
summar ized on Table 6. As was seen from 
Table 3, the match using fewer but longer 
sets of generated sequences was generally not 
so good. 

A comparison of Tables 4 and 5 shows 
that the correlation coefficients for the 
generated sequences run smaller than those 
for the "present modified" data. In the MO 
matrix, three of the eight coefficients 
significant in the data a're not significant 
in the generated sequences. For the M1 
matrix, the same 12 lag-one coefficients were 
still significant even though all 12 were 
reduced by an average of 13.5 percent. For 

the M2 matrix, five of the six coefficients 
larger than 0.32 in the data dropped below 
that figure with the average reduction being 
49.7 percent. The ARM A (1,0) model, as would 
be expected, does not preserve these lagged 
statistics, and this is the primary reason 
for cont inu ing to explore methods using the 
higher order models. 

LAKE STAGE PROBABILITIES 
FROM SIMULATED DATA 

The multivariate ARMA (1,0) model 
calibrated to match present modified flows 
for the period of 1937 to 1978 was used to 
generate 100 125-year sets of the five 
sequences. These intermediate data were 
then used to generate 100 125-year lake stage 
sequences beginning from 1978 conditions. 
This initial condition was a lake stage of 
4198.60 ft ms 1 on October 1, 1978, after 

Table 5. Means and standard deviations of the values for the parameters and correlation 
matrices computed for the 40 42-year present modified flow sequences generated 
using an ARMA (1,0) model. 

Variable 

Evap. 
Precip. 
Bear 
Weber 
Jordan 

Evap. 
Precip. 
Bear 
Weber 
Jordan 

Evap. 
Precip. 
Bear, 
Weber 
Jordan 

Evap. 
Precip. 
Bear 
Ttleber 
Jordan 

Mean 
Standard 
Deviation 

Lag One 
Autocorrelation 

MIl 
51. 29 
10.86 

1,042,400 
334,810 
265,350 

Evap. 
MIl 

1. 00 

Evap. 

0.174 
0.285 

:'0.456 
-0.163 
-0.165 

Evap. 
Mn 

0.286 
-0.049 
-0.188 

0.036 
0.047 

SD 
0.98 
0.44 

130,020 
26,700 
22,940 

MIl 
3.98 
2.10 

400,950 
165,450 

69,590 

MO 

Precip. 
SD MIl SD 
0.00 -0.486 0.134 

1. 00 0.00 

M1 

Precip. 

0.158 0.281 0.153 
0.162 -0.091 0.146 
0.164 0.429 0.101 
0.152 0.462 0.111 
0.210 0.544 0.099 

M2 

Precip. 
SD Mn SD 

0.157 -0.058 0.182 
0.187 0.160 0.153 
0.206 0.182 0.150 
0.162 0.119 0.156 
0.226 0.280 0.158 

SD 
0.71 
0.24 

129,260 
30,130 
17,790 

Correlation 

B (1) 

MIl 
0.174 

-0.091 
0.528 
0.515 
0.599 

:t>f.atrix 

SD 
0.158 
0.146 
0.136 
0.111 . 
0.152 

Bear lveber 
MIl SD MIl SD 

-0.229 0.190 . -0.018 0.167 
0.273 0.137 0.323 0.141 
1. 00 0.00 0.733 0.108 

l. 00 0.00 

,Correlation Matrix 

Bear Heber 

-0.108 0.214 0.098 0.177 
0.125 0.168 0.030 0.162 
0.528 0.136 0.416 0.149 
0.357 0.166' 0.515 0.111 
0.438 0.186 0.411 0.211 

Correlation Matrix 

Bear t-leber 
Mn SD 1m SD 

-0.087 0.184 -0.020 0.162 
0.060 0.174 0.028 0.177 
0.245 0.179 0.162 0.202 
0.124 0.181 0.132 0.169 
0.235 0.23.9 0.214 0.269 

7 

Hurst 
h 

1m 
0.56 
0.49 
0.69 
0.69 
0.63 

Jordan 
MIl 

-0.009 
0.254 
0.625 
0.478 
1. 00 

Jordan 

-0.080 
0.174 
0.397 
0.167 
0.599 

Jordan 
MIl 

-0.094 
0.095 
0.254 
0.030 
0.329 

SD 
0.08 
0.13 
0.14 
0.15 
0.13 

SD 
0.205 
0.137 
0.130 
0.182 
0.00 

0.222 
0.137 
0.173 
0.225 
0.152 

SD 
0.213 
0.159 
0.205 
0.242 
0.208 



receding from a high of 4200.25 ft msl on the 
previous June 1. Points on the probability 
distributions for selected years of the 
annual peak lake stages are shown on Table 
7. Annual lows occur about October 1 of each 
year and average 1.70 feet below the peaks. 

Three plots of this probability data 
were developed from these generated sequences 

. to meet various user needs. First, Figure 1 
provides curves from which one can read lake 
stage probabilities as estimated in 1978 for 
any desired calendar year from 1979 through 
2030. The solid lines crossing any year 
define the distribution for the high stages 
for the year. The dashed lines define the 
lower end of the distribution of low stages 
for the year. The probabilities are labeled 
to indicate chance of rising that high (for 
points higher than the mean) or dropping that 

low (for points below the mean) rather than 
as a cumulative probability distribution. 

Figure 1 shows a mean long term ei­
pected lake level of 4196.0 feet ms1 and is 
drawn to smooth out the noise in the simu­
lated estimates for individual years. It 
also assumes no signficant increase in 
consumptive wa~er use in the basin from 1965 
amounts, and thus the estimated levels would 
need to be adjusted should significant 
changes in water use practice occur. 

The long-term future mean annual peak 
lake level estimate reported in Table 7 of 
4195.2 ft msl is 2.49 feet lower than the 
4197.69 average annual peak over the last 20 
years (1961-1980) and 1.22 feet lower than 
the estimate reported by James et al. (1979). 
High recent lake levels seem to be associated 

Table 6. Means and standard deviations of the values for the parameters and correlation 
matrices computed for the 21 125-year present modified flow sequences generated 
using an ARMA (1,0) model. 

Variable 

Evap. 
Precip. 
Bear 
Weber 
Jordan 

Evap. 
Precip. 
Bear 
.Weber 
Jordan 

Evap. 
Precip. 
Bear 
Weber 
Jordan 

Evap. 
Precip. 
Bear 
l-leber 
Jordan 

Mean 
Standard 
Deviation 

Lag One 
Autocorrelation 

Mn 
51. 80 
10.91 

1,031,410 
336,190 
269,990 

p 

SD 
0.53 
0.31 

88,280 
28,080 
17,440 

MIl 
4.14 
2.14 

427,490 
168,100 

76,050 

Evap. Precip. 

Mn 
1. 00 

SD 
0.00 

Mn 
-0.494 
1. 00 

SD 
0.083 
0.00 
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SD 
0.40 
0.11 

59,470 
11,180 

9,740 

p (1) 

Mn 
0.210 

-0.012 
0.619 
0.556 
0.681 

Correlation Matrix 

110 
-0.284 

0.381 
1. 00 

Bear 

SD 
0.120 
0.091 
0.00 

Weber 

Un 
-0.077 
0.374 
0.750 
1. 00 

M1 Correlation Matrix 

Evap. 

Mn 
0.210 
0.208 

-0.466 
-0.177 
-0.219 

SD 
0.121 
0.110 
0.109 
0.118 
0.105 

Evap. 

MIl 
0.277 

-0.053 
-0.227 

0.014 
-0.040 

SD 
0.110 
0.067 
0.129 
0.106 
0.120 

Precip. 

Mn 
0.242 

-0.012 
0.487 
0.468 
0.593 

SD 
0.113 
0.137 
0.077 
0.068 
0.058 

Mn 
-0.095 

0.172 
0.619 
0.416 
0.561 

Bear 

SD 
0.130 
0.092 
0.068 
0.087 
0.09l 

Y.Jeber 

Mn 
0.073 
0.068 
0.482 
0.556 
0.497 

Precip. 

M2 Correlation Matrix 

Bear l-leber 

Mn 
-0.032 

0.188 
0.207 
0.148 
0.329 

SD 
0.090 
0.072 
0.093 
0.078 
0.095 

Mn 
-0.098 
0.151 
0.369 
0.197 
0.388 
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SD 
0.107 
0.105 
0.114 
0.110 
0.130 

Mn 
-0.045 

0.122 
0.278 
0.237 
0.330 

SD 
0.121 
0.137 
0.068 
0.066 
0.069 

SD 
0.114 
0.092 
0.063 
0.00 

SD 
0.104 
0.098 
0.076 
0.066 
0.103 

SD 
0.097 
0.098 
0.108 
0.102 
0.110 

Hurst 

Mn 
0.50 
0.51 
0.69 
0.69 
0.66 

h 

Jordan 

Mn 
-0.065 

0.340 
0.705 
0.522 
1. 00 

Jordan 

Mn 
-0.084 

0.231 
0.435 
0.234 
0.681 

Jordan 

Mn 
-0.087 

0.176 
0.328 
0.101 
0.442 

SD 
0.05 
0.07 
0.07 
0.08 
0.08 

SD 
0.118 
0.112 
0.076 
0.113 
0.00 

SD 
0.120 
0.083 
0.092 
0.124 
0 .. 069 

SD 
0.108 
0.101 
0.126 
0.123 
0.109 



with the relatively wet period from 1971 
through 1976 in which Bear River flows 
averaged 33 percent and the Jordan 51 percent 
above normal, and evaporation was about 2 
percent below normal. 

through 2030. For example, the s imulat ions 
indicate a 24 percent chance of a level 
reaching 4202 sometime before 1990 and a 48 
percent chance of reaching that level by 
2030. ' 

Figure 2 presents the results of the 
100 generated lake stage sequences in terms 
of the probabilities of the lake level rising 
to elevations 4201, 4202, 4203, 4204, and 
4205 feet msl at least once by various dates 

Figure 3 presents analogous information 
on the probabilities of the lake dropping to 
low levels of 4198, 4196, 4194, 4192, 4190, 
and 4188 feet msl. For example, the simula­
t ions indicate an 11 percent chaQce of the 

Table 7. Statistics of the distributions of peak lake stages simulated for various years 
(1937-1978 data, 100 generated sequences). 

Lowest Lowest Highest Highest Standard 
Year percentile decile Mean decile percentile deviation 

1978 4200.25 0.00 
1983 4193.46 4195.85 4198.91 4202.73 4207.68 2.56 
1988 4188.45 4193.14 4197.31 4201.64 4204.84 3.09 
1983 4187.86 4192.17 4196.49 4201. 05 4205.95 3.65 
2003 4183.18 4188.81 4194.75 4199;97 4203.13 3.96 
2013 4184.11 4188.34 4194.35 4199.56 4205.10 4.18 

Long term* 4185.19 4189.69 4195.20 4200.71 4205.21 4.30 

* . EstLmated by averaging means and standard deviations for levels generated for years 2014 
through 2028 and noting a mean skew of close to zero. The percentile and decile values are 
computed assuming a normal distribution. 
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Figure 2. Probabilities of lake rising to various levels by date, given initial conditions as 
of October 1, 1979. 
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level dropping to 4192 at least once on or 
before 1990 and a 75 percent chance of 
dropping to that level once by 2030. 

UPDATING PROBABILITY CURVES 

Every year, a new set of streamflow, 
precipitation, and evaporation data is 
recorded, and the new information could be 
used to reestimate the distributions used to 
estimate future lake stage probabilities. 

. Also, every year the lake has a new annual 
peak and hence a new starting point along the 
vertical axis on probability curves having 
the form of Figure 1. Adjustments for the 
first sort of change are complex because they 
require recalculation of the statistics for 
the five series, refitting of the ARMA model 

. parameters (includ ing the poss ibi lity of 
changing the order for the model), and 
regenerating and reanalyzing lake stage 
sequences. Adjustments for the change in 
initial lake stage alone can be approximated 
much more simply by curve fitting to the data 
on Table 7. 

Since the process of updating the flow 
series data is costly and unlikely to have a 
major effect on the r,esults, repeat ing the 
generat ing process should not be necessary 
more often than once every 5 to 10 years 
unless 1) unusually high or low lake inflows 
occur, 2) implemented lake level control 
efforts substant ially alter the lake water 
balance computations or 3) significant 
changes occur in upstream consumptive 
use or transbasin diversions. Since the 
process of updating to account for a new 
initial lake stage can be made relatively 
simple and will have a major effect on lake 
level probabil it ies (part icularly in the 
short term), annual updating is recommended. 
A simple procedure fot doing so is derived 
below and used to update for known 1980 lake 
levels. 

Austin (1979) developed a method of 
fitting exponential curves to the data of 
Figure 1 that could be used for the annual 
updating. An alternate method is to derive 
curves from the complete data abridged 
on Table 7. Both methods could be refined by 
generating stage sequences from other initial 
lake stag~s, but the effort was not con­
sidered to be justified given the cost of 
stage simulation. The computer program 
presented in James et al. (1979) could be 
used for this purpose should that be desired. 

Table 7 shows the means of the probabil­
ity distributions of the lake stages gener­
ated for var ious years to decl ine fairly 
rapidly toward the long term mean in the 
early years and then progress ively more 
slowly. The generated means for years 25, 
30, and 35 dropped below the long term mean, 
taken as the ·average of those means generated 
for years 35, 40, 45, and 50. This drop and 
subsequent rise was not considered to be 
statistically significant. The standard 
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deviations of the distributions increased 
from zero to 4.3, again averaged for years 
35, 40, 45, and 50. The skewness coeffi­
cients did not seem to follow any particular 
pattern but rather to scatter randomly 
wi th small values around zero. Hence, the 
simplified lake stage estimation procedure 
was based on the assumption that the distri­
bution is normal at all dates. 

The simplified estimation procedure uses 
the normalized plots of the Table 7 data on 
Figure 4. The means are plotted as fractions 
of the difference between the long term mean 
and the initial mean generated for the year 
in question. Thus the 4198.91 shown in 
Table 7 for 1983 (year 5) is 73 percent of 
the departure of 5.05 feet of the 1978 (year 
0) from the long term mean. The standard 
deviations are plotted as fractions of the 
long term value. Both curves are fitted by 
eye, and points are listed in Table 8. 

ESTIMATES BASED ON 
1980 INITIAL CONDITIONS 

The 1980 peak lake stage was 4200.45 on 
June 15, and the October 1 level was 4199.10. 
The seasonal decline was thus 1.35 feet to 
October 1, and the lake level dropped another 
0.10 feet. 

Given the 1980 peak and the fractions in 
Table 8, lake level probability estimates 
were made, listed in Table 9, and plotted in 
Figure 5. A summary leaflet of these 
findings for distribution to managers of 
lakeshore property and facilities is pre­
sented in Appendix B. 

All tabulated stages are annual peaks at 
Boat Harbor on the South Arm and generally 
occur in May or June. Annual lows average 
1.7 feet below the peak (James et a1. 1979, 
p. 81) and generally occur in October or 
November. Levels in the North Arm of the 
Great Salt Lake average 1.5 feet below South 
Arm highs and 1.0 feet below South Arm lows. 
The material in Appendix B will be updated 
and disseminated shortly after the annual 
peak or about July 1 of each year beginning 
in 1981. 

FURTHER MODEL DEVELOPMENT 

Three needs stand out as future direc­
t ions for Great Salt Lake levels modeling: 

1. The process of model identification 
and application still falls short of the 
capabilities needs for terminal lake levels 
modeling. Long term pers istence could be a 
major factor for estimating the levels of a 
water surface which fluctuates over a 
large range and over cycles lasting many 
years. Practical methods are needed for 
fitting multivariate stochastic models of 
higher orders. 



Table 8. Variation of the expected means and standard deviations of the Great Salt Lake level 
probability distributions at various numbers of years into the future. 
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Figure 4. Variations of the means and standard deviations of the lake level probability dis­
tributions over the 35-year period in which Great Salt Lake level estimates are in­
fluenced by known initial conditions. 

12 



-
Table 9. Probability distribution of annual high levels given 1937-1978 data adjusted to re-

flect 1965 land use and the 1980 lake level high of 4200.45 feet msl. 

Year Probabilities of Exceeding Mean Probabilities of Dropping Below 

1980 4200.45 
1981 4202.09 4201. 24 4200.74 [f200.19 4199.64 4199.14 4198.29 
1982 4202.87 4201. 52 4200.74 4199.87 4199.00 4198.22 4196.87 
1983 4203.41 4201. 70 4200.71. 4199.61 4198.51 4197.52 4195.81 
1984 4203.70 4201. 72 4200.58 4199.30 4198.02 4196.88 4194·90 
1985 4204.03 4201. 79 4200.48 4.199.03 4197.58 4196.27 4194.03 
1987 4204.30 4201. 65 4200.11 4198.40 4196.69 4195.15 4192.50 
1990 4204.41 4201. 27 4199.44 4197.41 4195:38 4193.55 4190.41 
1995 4204.62 4200.93 4198.79 4196.41 4194.03 4191. 99 4188.20 
2000 4204.79 4200.72 4198.39 4195.78 4193.17 4190.82 4186.77 
2005 4204.97 4200.70 4198.22 4195.46 4192.70 419.0.22 4185.95 
2010 4205.06 4200.65 4198.19 4195.25 4192.41 4189.85 4185.44 
2015+ 4205.21 4200.71 4198.10 4195.20 4192.30 4189.69 4185.19 

All elevations in feet, mean sea level 
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Figure 5. Probability curves of annual Great Salt Lake level highs given 1980 high of 4200.45 
feet msl. 
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2. New hydrologic data (additional 
years of record) and hydrologic change (major 
urbanization, water project development, 
lake level control efforts, etc.) will change 
the model used here for lake level probabil­
ity estimation. At about every 10 years, 
the new data should be collected, checked for 
homogeneity with the old; and the stochastic 
lake level generating model should be re­
cali brated accordingly. Thereafter, the 
recalibrated model should be< used for esti­
mating lake level probabilities. 

3. Appendix B provides basic lake level 
forecasting information. As user needs 
become better understood, it will be possible 
to change the content and form of the pres'en­
tation to satis<fy user needs more effi­
ciently. 
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APPENDIX A 

HOMOGENEOUS MULTIVARIATE ARMA PROCESSES 

by 

R. V. Canfield, C. H. Tseng, W. R. James 

Univariate time series have been found 
useful in hydrologic modeling. However, 
modeling of water systems requires multi­
variate (MV) methods whicb brings additional 
complexity to an already difficult problem. 
Interpretation of the model in terms of 
physical phenomena is often intractable. 
However, if a method works, it is hard to 
avoid its use, even if no physical interpre­
tation exists. Thus, analysts are accused of 
"black box hydrology." 

As more complex models become available 
to the analyst, the need for some direction 
in. choice increases. This direction can only 
come from an understanding of the relation­
ships between and within the physical system 
and the mathemat.ical model. Box-Jenk ins 
identification procedures (1970) aid in the 
univariate case, but as wiU be seen, this 
procedure is of little or no use with 
general multivariate (MV) systems. 

In this paper. the general MV ARMA(p,q) 
process is viewed in light of some reasonable 
assumptions with respect to many water 
systems. The resulting mathematical model is 
considerably Simpler as compared with the 
general case. This simplification permits 
estimation in cases previously impractical. 

The simplified model is denoted a 
"homogeneous model" for reasons which will be 
apparent. Its simplicity suggests that it 
hMS undoubtedly been used before (e.g. Nelson 
1976). The primary contribution here lies 
not in the model. but in the hypotheses and 
their interpretation with respect to physical 
systems. 

The general MV ARMA(p ,q) process is 
reviewed and critically examined. The 
problems of estimation are considered. The 
homogeneous process is defined heuristically 
and then ~he analytical description is 
derived. Estimation is considered next, and 
the results of application to real and Monte 
Carlo data are giveh in the last section. 

General MV ARMA(p.g) Processes 

The model for the general ARMA(p,q) 
processes may be written 
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Z =A1Z l+A~ 2+ ... +A Z +E -t --t- "t- p-t-p --t 

- ••• -B !i; 
q t-q 

• • • • • • • . . .• (1) 

where ~t-i is an n component random vector 
with unit variances and zero means. The 
error vector ,S;t-l is assumed to be indepen­
dent in time, have zero means and variance­
covariance matrix L The Ai,i=;2,3 ..... P. 
and Bi.j=1,2 .... ,q are n x n matrix param­
eters. Tne value p represents the order 
of the autoregress ive port ion of the model 
and q the order of the moving average part. 
The number of individual parameters of this 
model is n2(p+l+i)+~' 

In the application of muitivariate time 
series models to real problems. a major 
obstacle seems to be estimation of parameters 
from data. Two methods have been used, the 
method of moments (O'Connell 1974) and the 
maximum likelihood method (Ledolter 1978). 
The method of moments has two difficulties. 
First. it is restricted to multivariate ARMA 
models with p=l and q=l. Second, matr ix 
equations necessary to estimate parameters 
may not have real solutions. 

Lack of a real solution may denote an 
improper choice of model. However. Monte 
Carlo experience in which an ARMA (1.0) model 
was used to generate 100 data sets provides 
an insight into the problem. In 7 of the 100 
data sets. the method of moments failed to 
provide solutions (James et al. 1979). This 
experiment indicates that the problem is at 
least occasional. 

The method of moments for univariate 
series has one feature which can be impor­
tant. It permits the inclusion of the Hurst 
coefficient as a parameter. This feature is 
not available with maximum likelihood esti­
mation. 

Maximum likelihood estimation is shown 
to be more efficient than the method of 
moments for ARMA parameters (Ledolter 1978). 
However, a solution re~uires numerical 
optimization routines on n (p+q) parameters. 
Consider for example a five component ARMA 
0.1) model. Estimation requires simul-



taneousoptimization of 50 parameters. 
Even if a solution could be guaranteed, the 
computer bill could be very high. It seems 
that neither method of estimation is sat is­
factory. 

There is an inconsistency of multi­
variate ARMA models noted by Ledolter (1978). 
He has shown ~hat it is not necessary to have 
the individual series in a multivariate 
autoregressive process follow the univariate 
process of the same order. Isolating a 
single component of (1) easily shows that the 
univariate model has no ARMA representation 
in the classical form (e.g. Box and Jenkins 
1970). There is a natural tendency to build 
or generalize from the simple to the complex 
multivaria~e system. It seems logical 
to examine the simpler univariate components 
first (e.g., Parzen 1969, Haugh 1972). This 
procedure is apparently invalid for general 
ARMA processes. 

1n the riext section the conditions which 
insure that the characteristics of the 
individual univariate processes (or any 
subset of the components) are preserved in 
the multivariate framework are defined. ARMA 
models which satisfy this condition have been 
termed homogeneous. 

Homogeneous ARMA Processes 

As noted in the previous section, 
univariate components of multivariate ARMA 
models are not necessarily univariate ARMA 
processes. In this section, a special case 
of the ARMA(p,q) model is defined which 
possesses the property of preserving the ARMA 
order of every subset of components of the 
system. Estimation of parameters for this 
homogeneous model is then discussed. 

Because it is possible that the com­
ponents of a system may not all be of the 
same order in p and q, there may be some 
ambiguity in the order of the mult ivariate 
model. 

The order of a homogeneous ARMA model is 
defined as follows. Let Pi and qi i=I,2, 
. ~.,n be the order in AR and MA parts respec­
t ively of the i th component of the system. 
The AR order of the system is defined as 
p=max{Pi,i=I,2, ... ,n} and the MA order of 

i 
the system is defined as q=max{qi, i=1,2, 
••• ,n}." i 

Mathemat ical def in it ion of the homoge­
neous model is provided in the following 
theorem. 

The theorem states the conditions under 
which an ARMA (p,q) model is homogeneous. 
Note that the conditions are "if and only 
if," i.e., no further simplifications nor 
generalizations can be made and still pre­
serve the homogeneous character of the model. 

Theorem. The ARMA (p,q) model (Equation 
1) is homogeneous if and only if the matrices 
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Ai, i=I,2, ... ,p and Bi, i=I,2, ... ,q are 
diagonal. 

Proof. The "if" portion of the proof is 
immediate. Every vector subset of the 
original variable -has the model formed by 
taking the corresponding subset of the rows 
of the Ai and Bi matrices. Since these 
are diagonal, the subset matrix of the rows 
can be "redefined to be diagonal and the 
E vector shortened to include only those 
elements necessary. 

The "only if" portion of the proof is 
most easily accomplished by assuming that one 
(or more) of the Ai and/or Bi have one 
or more off-diagonal elements that are 
nonzero. If there is one off-diagonal 
element of an Aj that is nonzero, then it 
follows directly from the proof of the 
inconsistency referred to in Ledolter (1978) 
that there exists a marginal univariate model 
with autoregressive order greater than p. 

Suppose there is one nonzero off­
diagonal element of Bi, i=1 ,2 ... ,q. Without 
loss of generality, suppose it is the 1,2 
element of Bl. The first element of ~t 
may be written 

-b' £ - -b' £ -2,1-t-2 ... -q-l-t-q (2) 

where ZI t-i represents the first element of 
~t-i, ai,1 and ~{,lrepresent the first 
row of Ai and Bi respectively and El t the 
first element of E

t
. - , 

Thus, the vector ~i 1 in Equation 2 
results in the inclusio'n of the second 
element of ~t-l into the model for £1 t. 
Since this element cannot be incorporated'in 
the "error" term at time t (i.e., ~t) the 
error structure does not have the unIvariate 
moving average form. 

It has been shown that no off-diagonal 
elements of Ai, i=I,2, ... ,p nor Bi, i=I,2, 
... ,q can be nonzero or the ARMA (p,q) model 
will not preserve at least one univariate 
subset. The theorem is proved. 

Maximum likelihood estimation for the 
nonhomogeneous model inherits an operational 
difficulty. Simultaneous numerical optimiza­
tion is required which involves n2(p+q) 
parameters. Thus, a system with five var i­
ables requires numerical optimization for 50 
parameters. By contrast, the homogeneous 
model involves n(p+q+n) parameters and more 
important, simultaneous numer ical opt imiza­
tion is required on only p+q parameters at a 
time. Thus, the five variable homogeneous 
ARM A (1,1) case requires five separate 
optimizations each with two variables. 

The most notable effect due to the 
diagonal nature of the Ai and Bi matrices 
is. that the historical contributions to 
the present value of a given element of the 



random vector is limited to the historic 
values of th same element. This does 
not at all imply independence because the 
present "error" (Le., .§:.t) can be correlated 
random vector. As time progresses, e.g., as 
time t becomes t+l, the values in ~, ·as they. 
contribute to the then pre&ent values of 
~t, contribute to the new present value 
only as modified by a constant specific to 
each element in Et • For example, suppose the 
homogeneous model were used to model yearly 
volume of several streams in a large basin. 
The restrictions imply that for a given 
stream, the present flow volume is due to the 
present and past "errots" (precipitation) and 
past streamflow in that stream drainage area 
and no other areas. The "errors" may be 
correlated, but what actually happened in the 
past in the given area is what influences 
streamflow in that area. Tliis imp 1 ies that 
if, for example, one stream in the system 
receives considerable recharge from ground­
water or iginat ing in the area of another 
stream in the system, the homogeneous model 
would not be applicable. 

Although maximum likelihood estimation 
is more efficient than the method of moments 
for multivariate models, it is not neces­
sarily best for the univariate case. The 
method of moment!:: with the bias correction 
given by O'Connell (1974) has the distinct 
advantage of preserving observed long term 
pers istence in synthet ic sequences. Th is 
persistence is usually measured by the Hurst 
coefficient.· In O'Connell's formulation, the 
Hurst coefficient is a parameter in the 
un.ivariate case. It is possible using the 
homogeneous model to take advantage of 
O'Connell's method to estimate the n(p+l) 
parameters which are the diagonal elements of 
the Ai, i=1,2, ••• ,p and Bi, i=l ,2, ... ,q. 
Then the cond it ional maximum Ii kelihood 
method, or Equation 4, can be used to esti­
mate the n2 elements of the variance-covari­
ance matrix of the E(t) random variable. 
This estimation technique has the advantage 
of preserving a measured persistence in the 
univariate series and of requiring no 
numerical optimization procedures. However, 
it requires information which may be diffi­
cult to obtain in many cases. O'Connell 
(1974) has prepared tables for the ARMA (1,1) 
case only. 

. Estimation of the parameters of the 
homogeneous model can be based upon standard 
univariate methods. The n x n matrices Ai 
and Bj may be represented, 

Ai~diag {ai l' a. 2'· ... a . } 
t ~t l.."n 

i~I,2 ••••• p 

and 
BJ,=diag{b. I,b j 2'····b. } 

J" J ,n 

j~I, 2, ••• ,«. 
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According to the definitions of p and q it 
follows that ai k=O for i>Pk and Bj k=O 
for j>qk. At le~s~ one value of ap,k'and 
one value of bq k IS greater than zero for 
k=~,2, ... ,n. the ktfi component of (1) is 
wrItten 

Zk, E a, Z +E:k - E bk ,E:k . 
i=I l..k k,t-I ,t j=l ,J ,t-J 

The only dependency between zk t and zk t 
is the result of the dependertcy between 
Ek t and Ek#t where k,,"k'. Thus all of the 
presently available univariate procedures for 
estimating and identifying forms used in the 
estimation of Pb qb ai k and bj k, k=I,2, 
.•• ,n may be used in the homogeneous case. 
There rema ins to est imate the var iance­
covariance matrix of Et, Conditional maximum 
likelihood estimation (Ledolter 1978) may be 
used. 

However, another. more direct method 
which is convenient is demonstrated here for 
the ARMA.O, 1). case. 

It follows from (1) with p=q=l that the 
lag zero .correlat ion matr ix (Mo) can be 
written: 

M =E+(A-B)E(A-B)'+A(A-B)E(A-B)'A'+ A2CA-B)E(A-B)'A,2+ 
o 

Let A 

B 

diag (aI, -2, ... ,an) 

diag(bl,b2,···,bn ) 

(9 ij) 

• • • . • • • • • •• (3) 

Then the ijth element of Mo (moij) may be 
written 

I t follows that, 

_ moij Cl-aiaj ) 

Sij - (I-aibj-ajbi+bibj) 
........... (4) 

The elements of L are estimated by substi­
tuting appropriate estimated values of 
ai,aj,bi,bj and IDoij into (4). 

It is evident that the estimated homoge­
neous model will preserve the characteristics 
of the univariate systems in accordance with 
the method of univariate estimation used. It 



is also evident that the lag zero correlation 
matrix as estimated by Mo is preserved in the 
homogeneous model. 

Monte Carlo Study 

Sensitivity of the homogeneous model to 
data which originate from a nonhomogeneous 
source isin~estigated in this section. The 
method used here to measure the performance 
of a model is to compare the MO, Ml and 
M2 moments (calculated from the est imated 
parameters) with those of the model used to 
generate data. Since it is possible for very 
different appear ing models to have similar 
moments, comparison of estimated parameters 
with the population values is less infor­
mative. However, tabulated results of the 
estimated model parameters are given for 
completeness. 

For simplicity, this study is restricted 
to specific two dimensional multivariate 
ARMA(l,l) models. Thus, it is not possible 
to draw broad inferences. However, the 
gens itivity of the cases studied certainly 
provide ins igpt. 

Two models were used to generate data. 
The first is homogeneous (I.e., diagonal 
parameter matrices). The other model has 
nonzero off-diagonal parameter values which 
represent increasing nonhomogeneity. The 
model parameters, (A, B, E) and the lag 0,1 
and 2 correlation matrices (MO,Ml,M2) for 
the two cases are ~iven in Table A-I. For 
each model, 400 serles each of length 80 were 
generated. Est imates of A, Band 1: were 
computed for each series by maximum likeli­
hood, assuming a homogeneous model. Then 
MO,MI and M2 were computed using the esti­
mates of A, Band 1:. The mean values of 
these parameters and the mean squared error 
(i. e., the mean squared deviat ion of the 
estimated parameter values from the gener­
ating model values) are shown in Table A-2. 
The mean value of the estimate is used to 
judge bias in the method. The MSE measures 
precision of estimation. 

In general, it is evident that MSE of 
the homogeneous model works well if the data 
are from a homogeneous (or nearly homoge­
neous) system. Model 2 seems to show a 
slight increase in MSE for the off-diagonal 
elements of M2. 

The generating models used here were 
only two dimensional ARMA(l,l). Therefore, 
generalization to higher order models is not 
valid from this study. However, univariate 
methods are used in the homogeneous model. 
Since there is a great deal of accumulated 
experience in univariate estima~ion, it seems 
safe to extend these results to the more 
general homogeneous models. 
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Applicat ion 

Data from the three major rivers flowing 
into the Great Salt Lake are used in this 
section to illustrate the method and some of 
its characteristics. Yearly river volume for 
each stream is recorded for the years 1937 to 
1978 and has been adjusted to represent 
present management conditions (Table A-3). 
Data from each stream were subjected to 
standard Box-Jenkins identification and 
estimation procedures. The ARMA(l, 1) model 
was selected in all cases. Estimated A and B 
matrices from this procedure and 1: using (4) 
are shown in Table A-4. 

It is evident from the method of esti­
mation of A and B that the lag 1 and 2 
correlations of the univariate components 
(Le., the diagonal elements of HI and M2) 
should be close to the observed values. It 
also follows from (4) that the observed MO 
will be preserved exactly in the mathematical 
model. The Ml and M2 matr ices as computed 
from the est imated model parameters and as 
observed from the raw data are shown in Table 
A-5. 

As expected, the diagonal elments of the 
Ml and M2 computed from model parameters 
agree closely with the observed va lues with 
the poss ible except ion of the Weber River. 
However, the computed value of the lag 1 
correlation for the Weber River is within a 
95 percent confidence interval for corre­
lation as determined from. the raw data. 

The off diagonal elements of Ml and 
M2 (computed and observed) can be compared 
to evaluate the conformity of the physical 
process to the homogeneous assumption of the 
model. The 95 percent confidence interval 
for the lag 2 cross correlat ion between the 
Bear and Jordan Rivers is approximately -
0.30<P2<O.74. The computed value of 0.291 is 
outs ide of th is range, wh ich ind icates a 
possible violation of the homogeneous assump­
tion. 

The problems of estimation inherent with 
both MLE and the method of moments for the 
general mult ivar iate model make the homoge­
neous model attractive. It appears to be the 
only model that is computationally feasible 
for multivariate, multilag systems. Multiple 
lags are required to reproduce series where 
lag 2 (or higher) correlations exceed lag 1 
correlations because of long aquifer travel 
time or long carryover storage periods in 
large reservoirs. 

The restrictions imposed by the homoge­
neous model can be characterized from two 
viewpoints. Firs t ,what are the physical 



Table A-I. Parameters of models used for 
generating series. 

Model 

Paramet"ers 1 2 

A1 
0.9 0.0 0.9 0.1 

0.0 0.8 0.1 0.8 

B1 
0.4 0.0 0.4 0.1 

0.0 0.2 0.1 0.2 

.432 .232 .432 .232 
t .232 .500 .232 .500 

1.0 .302 1.0 .303 
Mo .302 1.0 .303 1.0 

M1 
.726 .116 .727 .123 

.139 .763 .147 .700 

.654 .105 .669 .181 
M2 .112 .560 .190 .572 

characteristics of a system which is homoge­
neous, and second, what characteristics of a 
nonhomogeneous system are preserved (or not 
preserved) when the homogeneous model is used 
to describe the system. 

In the first case, correlation of stream 
flows are determined only from the yearly 
shocks, Et (e.g., precipitation) and not from 
events 'Or processes which may alter the 
relationships at a later time. 

The second characterization is that the 
lag zero correlation structuie of a non­
homogeneous system is preserved by the 
homogeneous model. In addition, the charac­
terist~cs of the individual univariate 
components of the system are preserved in 
accordance with the method of univariate 
estimation used. 
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MSE MO 
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Table A-3 Flow Data 1937-1978 . 

River 

787800 811800 600200 468800 
524800 707800 875400. 897400 812000 1041400 1070600 . 1167800 

Bear 1020000 1741000 1630200 1686400 1043800 539200 611200 879800 
954400 1058800 802200 589800 405200 874800 629400 816400 

1091000 1154400 1054200 1059200 1215400 875800 2067800 2070600 
1485000 1505000 1457000 1827000 689300 945100 

412200 438400 283100 186800 
180100 411500 436100 344600 370400 483600 322800 447200 

Weber 512600 633400 602000 659100 444300 151600 119200 301300 
327100 425600 112500 112100 80500 210400 145800 312300 
337700 116000 175100 211100 482400 233500 488800 522400 
451000 529800 560000 353546 77580 305100 

218200 236200 239100 225500 
235200 280000 284000 283800 235100 282100 236500 284000 
270300 258100 252600 235200 280000 264500 181400 211700 

Jordan 224000 252200 220800 180800 131800 168100 157800 189400 
239700 231200 240200 . 278100 373400 388200 37:3800 374400 
360000 430400 385000 486411 218600 284720 

table A-4. Estimates of A, Band E. 

Univariate Maximum Likelihood, ARMA(l,l) 

PARAMETER 

A 

B 

E 

RIVER Bear 

Bear .674 

Weber 0 

Jordan 0 

Bear .085 

Weber 0 

Jordan 0 

Bear .611 

Weber .557 

Jordan .394 

Weber 

0 

.498. 

0 

0 

. 094 

0 

. 557 

• 822 

.373 

Jordan 

0 

0 

.851 

0 

0 

.306 

.394 

.373 

.481 

Nelson, C. R. 1976. Gains in efficiency 
from joint est imat ion of systems of 
autoregressive-moving average processes. 
Journal of Econometrics, 4:331-348, Nov. 

O'Connell, P. E. 1974. Stochastic modeling 
of long-term persistence in streamflow 
sequences. Civil Engineering Depart­
ment, Imperial College, London, England . 
p. 309. 
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Table A-S. Computed and observed Ml and M2. 

Computed Observed 

Parameter River Bear Weber Jordon Bear Weber Jordan 

Bear .622 .324 ,467 .652 .493 .497 

M1 Weber .462 .421 .324 .441 .562 .250 

Jordan .432 .221 .704 .557 .467 .718 

Bear .419 .161 .397 .452 .299 .516 

112 Weber .312 .210 .276 .299 .268 .281 

Jordan .291 .110 .599 .559 .312 .664 
I , 
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APPENDIX B 

1980 FORECAST ON GREAT SALT LAKE LEVELS 

Utah Water Research Laboratory 
Utah State University 

Logan, Utah 84322 

Over the years since the first records 
in 1851, the surface level o~ the Great Salt 
Lake has varied from a low of 4191.5 feet msl 
in 1964 to 4211.8 feet msl in 1873. In any 
given year, lake levels rise to a high toward 
the end of the spring snowmelt period and 
then fall an average of about 1.7 feet to 
f all lows. 

The recent South Arm high was 4202.25 
feet msl in the spring of 1976. Since then 
the level dropped to 4200.30 (November 1976), 
rose to 4200.75 (Apr il 1977), dropped to 
4198.60 (December 1977), rose to 4200.25 
(June (1978)" dropped to 4198.40 (November 
1978), rose to 4199.90 (May 1979), dropped to 
4197.50 (October 1979), rose to 4200.45 
(June 1980) i and dropped to 4199.00 (October 
1980). Thus a general downward trend from 
1976 to 1979 was rever~ed with a rising trend 
in 1980. 

Industrial plants processing minerals 
from the lake can use lake level forecasts in 
deciding whether they should be moving 
operations to higher ground, raising pro­
tective levees, continuing present operations 
unchanged, or possibly extending lines to 
collect brines from lower levels. Decisions 
on the operation and maintenance of railroads 
and highways, waterfowl areas, recreation 
facilities, and other properties close to the 
lake would similarly profit from reliable 
forecasts. 

We cannot know the future, but we can 
estimate probable lake levels by date from 
the lake level trends which have occurred in 
the past. The Utah Water Research Labora­
tory, in a project sponsored by the Office of 
Water Research and Technology, employed 
advanced techniques in stochastic hydrology 
to establish probabilities for possible high 
and low lake levels in coming years. We 
cannot forecast an exact level for any date 
in the future, but available models provide 
numerical estimates of what levels are so 
high or so low that they have, for example, 
only one chance in 100 of occurring. 
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These forecas'ts are based on assumptions 
of water use in the tributary drainage basin 
continuing at curtent levels, no major 
clima'tic changes, and no construction of 
levees or pump lng schemes for lake level 
control. Given the June 1980 lake level at 
Boat Harbor near Saltair on' the lake I s south 
end of 4200.45 feet msl, the distribution of 
probable future annual lake level highs 
follows the data or curves on the back of 
this sheet. For an example as to how to read 
this information, there is one chance in 100 
of the lake high in 1985 reaching 4204.03 
feet, the most likely level is 4199.03 
feet, and one chance in 100 exists of the 
lake high being as low as 4194.03 feet. 

These lake levels assume a level water 
surface on the south arm of the lake. Winds 
on the lake induce seiches which can raise 
the level on the downwind shore by 20r 3 
feet. Wind blown waves can cause water to 
splash another 3 or 4 feet higher along 
gr adual shoreline slopes of 1 foot vert lcal 
rise in a horizontal distance of 30 feet. 
Splash levels can exceed 20 feet on the 
causeway or more steeply sloped levees near 
the lake. 

The data on the attached table and 
'figure are annual highs for the south arm of 
the Great Salt Lake. These highs usually 
occur between March and June with the latest 
peaks coming in the wetter years when the 
greater snowpack takes longer to melt and run 
off. The annual lows usually occur between 
September and November and average 1.70 feet 
lower than the tabulated values. Annual 
peaks on the north arm average about 1.50 
feet lower than those, on the south arm, and 
north arm annual lows average 1.00 feet 
lower. 

The probability forecasts for Great Salt 
Lake levels contained herein are based on the 
best data available as of October 1 , 1980. 
About June' 1981, data on another annual high 
will become available, and a revised forecast 
will be issued shortly thereafter. 
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Table 1. Probability distribution of annual high levels given. 1937-1978 data adjusted to 
reflect 1965 land use and the 1980 lake level high of 4200.45 feet ms1. 

~ 

Year Probabilities of Exceeding Mean Probabilities of Dropping Below 
0.01 o.io 0.25 0.25 0.10 0.01 

1980 4200.45 
1981 4202.09 4201.24 4200.74 4200.19 4199.64 4199.14 4198.29 
1982 4202.87 4201. 52 4200.74 4199.87 4199.00 4198.22 4196.87 
1983 .4203.41 4201.70 4200.71 4199.61 4198.51 4197.52 4195.81 
1984 4203.70 4201. 72 4200.58 4199.30 4198.02 4196.88 4194.90 
1985 4204.03 4201. 79 4200.48 4199.Q3 4197.58 4196.27 4194.03 
1987 4204.30 4201. 65 4200.11 4198.40 4196.69 4195.15 4192.50 
1990 4204.41 4201. 27 4199 .. 44 4197.41 4195.38 4193.55 4190.41 
1995 4204.62 4200.93 4198.79 4196.41 4194.03 4191. 99 4188.20 
2000 4204.79 4200.72 4198.39 4195.78 4193 .. 17 4190.82 4186.77 
2005 4204.97 4200.70 4198.22 4195.46 4192.70 4190.22 4185.95 
2010 4205.06 4200.65 4i98.19 4195.25 4192.41 ,4189.85 4185.44 
2015+ 4205.21 4200.71 4i98.10 4195.20 I 4192.,30 4189.69 4185 .. 19 

All elevations in feet. mean sea level 

Figure 1. 
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Probability curves of annual Great Salt Lake level highs given 1980 high of 
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