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ASSESSMENT OF CONTROL ALTERNATIVES FOR THE GREAT SALT LAKE 

L. Douglas James, Director 
David S. Bowles, Professor 

Utah Water Research Laboratory 
Utah State University, Logan, Utah 

INTRODUCTION 

Over the last few years, the rising level of the Great Salt 

Lake has changed Utah. It has inundated vast waterfowl feeding 

areas, crippled the salt industry. required raising transcon-

tinental freeways and railroads, threatened metropolitan waste 

treatment plants, caused a major ~lectrical outage, and damaged 

many properties. If nothing is done, approximately $3.6 billion 

of damages in 1985 dollars can be expected by 2050 (James et 

al. 1985, p. 4). This threat led the State Legislature to set 

aside $100 million (an amount approximating the damages that had 

then occurred) in January 1985 to identify, select, and implement 

remedial measures. The rise has slowed. However, the lake 

entered February 1986 at its highest level since 1877, and a large 

storm of tropical origins brought a record one-month rise, tying 

the high of the previous spring at 4209.95, with heavy snowpacks 

in the mountains and at least three months of precipitation left 

before the normal date of the annual peak. Nevertheless, the 

legislature is diverting some of the funds to other purposes. 



. 
Figure 1. Plotted series of Great Salt Lake levels and 
salinities, 1851-19811: Adapted by Arnow (19811) from Currey 
(1980) • 

As shown in Figure 2, the rise has greatly enlarged the 

surface area of a shallow water body. Table 1 shows how the 

historic variation has increased the lake surface area from 

587,000 to 1,556,000 acres, a range that varies normal annual 
, 
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evaporation from 1 ,1l70,OOO to 1l,800,000 acre feet. The lake will 

rise as long as inflows exceed actual evaporation. Total inflows 

were 5,300,000 acre feet in 1983, 6,200,000 acre feet in 19811, and 

3,800,000 acre feet in 1985. The rise continued in 1985 because 

of abnormally low evaporation. 

PROPOSED CONTROL MEASURES 

Causeway Breaching: The lake was divided into north and south 

arms (Figure 3) by construction in 1959 of a railroad causeway. 

The rivers flow into the south arm while the north arm accounts 
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Figure 2. Map Outline of the West Desert Pumping Scheme. Source: Eckhoff, Watson, and 
Preator Engineering, 1983. 
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What can be done about a rising terminal lake? Serious 

proposals include shoreline levees to protect areas with high 

damage potential, island-connecting levees that partition the lake 

so that separated levels can be varied, upstream projects to 

increase the consumptive use of fresh water in the tributary 

basin, pumping excess water to the West Desert for controlled 

storage and added evaporative surface, and flow diversions to 

adjacent basins. This paper describes how one can estimate 
, 

meaningful hydrologic probabilities, use them to assess the risk 

of economic loss, and assess the proposals. This background will 

then be used to discuss the principles of lake level control that 

can be used over the long run at the Great Salt Lake and 

elsewhere. 

LAKE LEVEL HISTORY 

As shown in Figure 1 the lake stood at about 4200 feet msl 

when Utah was settled in 1847. In 1862, it began a rapid rise to 

4211.6 feet msl in 1873. This historic peak was followed by a 

downward trend to a low of 4191.35 feet msl in 1963. Many took 

the 90-year drop as a sign that increasing consumptive use in the 

tributary basin would cause the lake to go dry. and development 

that profited from the Lake drew closer to it. However, the level 

instead rose to about 4200 in 1982 and to almost 4210 in 1985. 

---=---
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Table 1. Physical Data for the Great Salt Lake. 

------------------------
----

Surface Surface Storage Lake Mean Salt 
Elevation Area Volume Evaporation Concentration 
(feet)a (1000 acres) ( 1000AF) (1000AF/year)b (percent) 

------------------ ........ _----- -----
4191.35-L 581 8.510 l lnO 21.5 
11200 1019 15.310 2908 22.5 
11205 1251 21,211 3648 16.3 
4211.60-H 1556 30,057 11800 11. 4 
4216 2221 38,611 6900 8.9 

aL - historic low - 1963; H - historic high - 1813. 
bEvaporation that would occur during an average evaporation year and an 

index of the inflow required to maintain the given water surface elevation. 

Table 1. Physical Data for the Gr;eat Salt Lake. 

for about a third of the evaporation. The head required for flow 

into the north arm through small culverts and by seepage causes a 

level difference that reached almost 4 feet during the rapid rise 

of 1984. The first action to slow the rise was to breach the 

causeway with a 300-foot opening in August 1984. The head 

difference required for the enlarged opening is about 0.8 foot. 

and the south arm has been lowered by about 1.5 feet. 

Shoreline Levees: Levees are a viable method for protecting 

areas with high damage potential. The property types shown on 

Table 2 parameter values by are protected by levees as shown on 

Table 3. About half of the damages would be prevented by the 19 

shoreline levees shown on Figure 3. Of these, 12 were classified 

as high priority based on a criterion of protecting the~ublic 
~ 

5 
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Figure 3. Site map with levee locations. 
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health and safety specified by Governor Matheson, and 8 are shown 

to be potentially economically feasible on Table 3. 

In-Lake Levees: Two in-lake levee configurations have been 

proposed and gained some political popularity. The Farmington Bay 

enclosure would connect Antelope Island to the mainland with 

levees at its north and south ends (Fb on Figure 3). The West Bay 

Table 2. Property Types Near the Lake. 

Property Type . 
A Mineral Extraction Companies 
B Main-route Railroads 
C Spur Railroads 
D Interstate Highways 
E Other Roads 
F Waterfowl Refuges 
G Recreation Areas 
H Agricultural Lands 
I Residential Buildings 
J Industry 
K Wastewater Treatment Lagoons 
L Wastewater Treatment Plants 
M Utilities 
N Airports 

enclosure (Wb) would connect the north end of Antelope Island 

Promontory Point. The Farmington Bay scheme costs about $80 

million (design elevation of 4212) compared with $28 million for 

shore line levees of the same height. The present worth of the 

benefits to the additional recreation and waterfowl facilities 

that would be protected is only about $1.2 million (James et 

al. 1985). 
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Table 3. Summary Data on Control Measures. 

-- - _._----- _._---- - - - ... - ..... --------------------------
---- _ ... ~ --------------~- -----

Property Types Levees at 1I211 
Measure Pr A B C D E F G H I J K L M N Value B/Cb 

L1-Corinne H X X X X 173~ 0.39 
L2-Perry Lg H X 1I217 0.32 
L3-Perry L X X X 6580 0.96 
L.!l-Wlllard Lg L X 300 0.53 
L5-UPRR-Weber H X X X X X X 65222 0.72 
L6-LMtn Lg H X 300 0.23 
L7-LHountain L X X .!l0000 - 1.30 
L8-WWarren L X x· X 1993 1.65 
L9-Taylr-Hpr L X X X .!l802 0.29 
L10-NDavis H X 38000 8.35 
L11-WKaysvl H X X X 13925 0.30 
L12-WhlrFarm L X X 5138 0.60 
L13-Cntrvl H X X X X * X 21916 2.35 
L 1 .!l-SDvsGrp . H X X X': X X X 25159 . 0.3.!l 
L15-JordanR H X X X X X X 589000 20.21 
L16-Airport H X 25159 1.33 
L 17-IndPark L X '1700 O. , 3 
L18-SShore H X X X X X 9860Q 2.05 
L19-TooeleCo H X X X X X X X X 5112000 5.51 
Unprotected X X X X X X X 36350 
FarmngtnBay nOe 1.28 
WestDesPump 1865c 111.31 

aEstimated value of property protected In-$1000: 
bBenefit-cost ratio for the one-percent simulated sequence sorted damage wIse. 
cRounded in $ million. 
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Additional benefits would accrue from a shorter levee highway 

route from Ogden to Tooele and from greater recreation 

opportunities on Antelope Island; but these are far too small to 

make up the difference. In addition, inflows are instlfficient to 

maintain fresh water in Farmington Bay ,'and past municipal waste 

deposits may cause a significant odor or health hazard (Israelsen 

et ala 1985). These problems would be less with the West Bay 

enclosure because of the larger inflows from the Bear River, but 
. 

the cost of the scheme would also be much greater. 

Water Development: Reservoir~ constructed and operated to 

supply water for consumptive use would reduce inflows to the 

lake. Reasonable projects could reduce flows into the lake by 

300,000 acre-feet annually. A possible storage variation would 

be to manage groundwater in the tributary basin so as to draw 

levels down by pumping for beneficial use during dry periods for 

recharge during wet periods (Jenab et ala 1985). Difficulties 

with the water development approach are: 

1. The large amount of storage required to lower so large a 

lake gives low benefits per unit of water consumed (about $1.30 

per acre foot (James et ala 198q)). 

2. The reservoirs could not be completed until after 1995 

whereas the benefits are much larger now when the lake is high. 
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3. Individuals dependent on the water supply lack flexibility 

to reduce their use during dry periods, and this would accentuate 

the problems caused by falling lake levels during dry cycles. 

West Desert Pu~ping: Excess water within the lake can be 

pumped (average lift of 10 to 20 feet)' into proposed Western 

Desert evaporation ponds configured as shown in Figure 2 (Eckhoff, 

Watson, and Preator Engineering 1983). The ponds would cover 

about 450,000 acres to a design depth of a little over 3 feet and 

would provide an estimated 1,100,000 acre feet of annual 

evaporative outflow capacity. Costs are about $40 million for 

constructing and $4.2 million annually for maintenance and energy. 

Issues to be resolved before implementing this scheme include: 

1. The military uses the West Desert as a bombing range, and 

a substantial share of the cost of the scheme is for internal 

diking to keep water out of their area. Even with such dikes, the 

military is concerned that fog caused by the added water surface 

will interfer with their operations. 

2. The West Desert evaporation will add humidity to the air 

passing over the lake and may substantially reduce evaporation. 

The effect of storage in the West Desert alone can achieve about 3 

inches of level reduction whereas the full evaporation could 

increase the amount to about 4 feet for future rises. Negative 

evaporative feedback would reduce this larger amount. ~ 
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3. The entire operation would be drowned out at very high 

lake levels. Operations for the Q220 range should be carefully 

examined. 

4. The west desert already serves as an evaporat4ve sump for 

a drainage area about the size of the basin tributary to the Great 

Salt Lake. The volumes of water involved and the effects of 

mixing the ponds with the natural processes during the extremely 

wet years of particular concern are unknown. 

5. The benefits from the scheme could be increased by jOint 

use for salt management in mineral extraction or by energy gener-

ation in salt-gradient solar ponds. 

Diversio~~: Proposals have been made to convey excess water 

from the Bear River in a canal for discharge down the Portneuf 

River and hence down the Snake and Columbia Rivers, to pump excess 
, 

water from Utah Lake for use in desert basins ~o its south and 

west, or to build a canal along the north slope of the Uintah 

Mountains for discharge to the Colorado River. All three 

alternatives are costly, and the additional flow in the Portneuf 

River may cause flooding and erosion problems. 

Storages: Several sites exist immediately to the south and 

west of the Great Salt Lake where water could be pumped, 

temporarily stored for lake level control, and used to generate 

electricity within a pumped storage operation to partially pay for 
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the cost. Utah Water Research Laboratory (1984) performed a 

reconnaissance of the Puddle Valley site, the most promising one, 

and found that the scheme would not be cost effective. 

SIMULATION MODELS 

Planning lake level control require's 1) statistical 

representation of the correlation and year-to-year relationships 

found in lake inflow and outflow, 2) stochastic generation of a 

large number of sequences of lake level fluctuation, and 3) 

estimators of damages wrought by 'rises and falls and the benefits 

from control measures. The inter~ctions among climatic, 

topographic, and economic factors create a complicated joint 

probability situation that is best analyzed by simulation. 

The large storage volume to inflow ratio of the Great Salt 

Lake makes the risk of inundation highly dependent on the current 
, 

level. The point is illustrated with Figure 4~ The top portion 

shows flood frequency curves for riverine stages to remain 

uniform. The lower portion shows how, given an initial stage, the 

frequency distribution for lake levels starts with a relatively 

narrow band for the following year, expands over time, and 

requires many years (presently about 35 for the Great Salt Lake) 

to stablilize. Furthermore, these lake distributions cannot be 

directly used to estimate damages as can the single riverine 

distribution. The initial distribution indicates what one can 
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expect during the coming year, and the range shows extremes that 

might be reached during a rise or fall. However, the lake 

distribution do not show the year-to-year sequence of level 

changes necessary for estimating damages in a situati~n where a 

lake rise measured in years gives the th'reatened parties damage-

reduction opportunities that are not available in riverine 

situations. The damage is highly dependent on the rate of rise 

RIVERS 

~------------~~--__ ----____ --------------~------ 90% 

~~i---------~~~~------~--------------~~~-- ~O% 

rr---------------f.,~-------~---------&'_---- 10-1. 

TIWE 

LAKES 

,......-------::::=::::t:::::-----AU.cled by Iflilial ~. 
'-ditio... \ I 

~-----+---- 90"1. 

-------------f;;+---- ~O '1. 

-------------t---- 10'1. 

TIME 

Figure 4. Time changes in flood frequency relationships, river v. 
lakes. 
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and exhibits a large hysteresis between rising and falling 

periods. These interactive hydrologic and economic factors were 

jointly assessed through a series of four simulation models: 

hydrologic, lake level, damages, and benefits. 

Hydrologic Seq~?ces: A trivariate first order autore-

gressive model was used to generate 1000/50-year sequences of 

annual gaged surface inflows, precipitations, and evaporations 

(Bowles et al. 1985). The model was calibrated, with good 

results, to match: 

a. Mean, variance, skew, and probability distributions for 

all three data series as reconstructed for the total 

historical period beginning in 1851 and modified to represent 

present since 1961 land use in the tributary basin. 

b. Serial correlations in each of these three series. 

c. Cross correlations among the three series, both for the 

current year and for one-year lags. 

Lake_~.~vel Sequen~E!s: The 1000 sequences were input to a 

lake water balance model beginning at the level of the current 

year and incorporating information on: 

a. The surface area, storage volume, and salt content of the 

lake by water surface elevation, 

b. The variation of lake evaporation with salt content, 
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c. The variation of precipitation on the lake as rising 

levels inundate areas with different average precipitation. 

d. Estimates of ungaged stream and ground water inflows made 

by calibration to improve the match of simulated-with 

historical lake levels. 

Damrtge Sequenc~~: A property owner can respond to rising 

lake levels by doing nothing and being inundated, evacuating, or 

investing in protective measures. Three response phases can be 

identified: 

Self-Protection. As the lake rises, higher groundwater and 

storm waves cause increasing damage. When feasible, a manager 

will pump to hold down the water table and build levees as 

protection against rising water. The costs are losses that 

increase with lake level. At some level, the expense forces the 

owner to abandon the site. This wipeout is simulated when the 

lake either reaches a specified elevation or remains above a lower 

specified elevation for a specified duration. Managers are 

assumed to be willing to spend more for self-protection for a year 

than over extended periods. 

Aba~~9nment. After wipeout, the loss is the reduction in 

income to the property owner. If restoration is prevented (e.g., 

zoning prevents residential owners from returning). a cutoff date 
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was employed to prevent continuing losses from justifying delayed 

alternatives. 

Restoration. As the lake falls, the manager has increasing 

incentive to return. He is unlikely to return as sOQQ,as the lake 

drops below the abandonment level because a reversal could cause 

another wipeout. Consequently, restoration is specified at a lake 

level lower than wipeout and requires that the lake remain that 

low for a specified period of years. Reinstatement cost is 
, 

considered a loss. During a subsequent rise the owner would 

return to the self-protection mad~. 

Benefit Seq~~nces: The benefit an~lysis introduced 

algorithms depicting how control measures would alter the level 

sequences and repeated the damage simulation for the ~ur most 

promising measures. Specifically, 
I 

Shoreline Levees. The simulation neglected the slight levee 

effect on the stage-area curve and assumed that the levees 

prevented all the damages up to their design level and no damages 

after overtopping. Costs were est,imated for wave damage durirll 

storm periods. 

In-Lake Levees. When the lake was divided into two parts, the 

levels was kept lower in the part near the major damage centers. 

The maximum head difference across the levee was limited to five 

feet to avoid foundation failure. 
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Water D_~y.elopment. The lake inflows were decreased by the 

projected consumptive use. 
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West Desert Pumping. Rules were devised for turning the 

pumps on and off. The pumped water was routed through. storage in 

the West Desert, either to flow back to the lake or to evaporate. 

After the pumps are turned off, the desert storage drains back 

into the lake within the water year. 

HYDROLOGIC RESULTS 

The simulated level probabilities given the initial 

conditions for the current water rear are in Table~. The 

precipitation to March exceeded the 25 level and indicates a 1986 

peak higher than last year, as has already occurred. 

ECONOMIC RESULTS 

The economic assessment of the control alternatives (Table 

3) shows some of the levees highly beneficial. The West Desert 

pumping scheme is the only other measure close to justification. 

Since about 80 percent of its benefits are to the private sector 

and most of these are to be a few large industries, charging the 

beneficiaries is recommended. Payment of 25 cents per dollar of 

damage prevented would cover the cost. 
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Table 4. Probability distributions of annual high levels of the 
Great Salt Lake given 1851-1984 data. adjusted to reflect 
1965 land use, assuming no predictable cyclic weather 
patterns, and using a vater balance analysis. October 1985 
Initial Conditions 

Year 

1985 
1986 
1987 
1988 
1989 
1990 
1995 
2000 
2010 
2020 
2030 
2040 
2050 

Probabilities of 
Exceeding 

0.01 0.10 

4209.9 
4211. 2 
4213.0 
4214.1 
4214.7 
4215.3 
4214.9 
4214.6 
4214.5 
4213.7 
4212.5 
4213.0 
4213.3 

4209.9 
4210.4 
4211. 2 
4211.6 
4211.6 
4211.4 
4210.0 
4207.8 
4206.6 
4206.1 
4206.2 
4206.5 
4206.0 

0.25 

4209.9 
4210.0 
4210.1 
4210.0 
4209.7 
4209.0 
4206.2 
4204.1 
4202.7 
4202.5 
4202.3 
4202.4 
4202.5 

He an 

4209.9 
4209.6 
4209.1 
4208.3 
4207.4 
4206.5 
4203.2 
4200.9 
'4199.5 
4199.4 
4199.2 
4)99.3 
4199.4 

ISSUES 

Probabilities of 
Dropping Below 

0.25 0....l0 0.01 

4209.9 
4209.2 
4208.1 
4206.9 
4205.7 
4204.6 
4200.3 
4197.9 
4196.5 
4196.1 
4196.3 
4196.2 
4196.6 

4209.9 
4209.0 
4207.3 
4205.8 
4204.4 
4202.9 
4197.9 
4195.4 
4194.0 
4193.3 
4193.0 
4193.3 
4193.8 

4209.9 
4208.6 
4206.4 
4204.2 
4202.1 
4200.5 
4194.0 
4191 .1 
4187.6 
4186.3 
4185.3 
4184.4 
4186.8 

A number of issues deserve further study. Research should be 

continued to provide answers and save costs as control options are 

selected and implemented. 

Hydrologic Issues 

1. Conceptual adequacy of flow generation as an approach to 

estimating lake level probabilities. Do statistics computed from 

an historical record provide a reasonable basis for estimating the 
1- ().;!\7 

~~IV~ magnitude of rare events? Arid climates have a particular problem 
JJ ~I)'" f:'" 
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Given this problem, what statistics should be preserved, and what 

approach should be used in their preservation? For example, is 

it better 1)to generate a multivariate series that preserves only 

one year's lag or 2)to generate a single variate serie.s that 

preserves two years of lag and then use correlation to generate 

the other variables? This was done in a study for the Southern 

Pacific Railroad (Adams et al. 1985)1 The first option was chosen 

here because it does a better job of preserving cross correlations 

in the secondary variates, and cross correlations are particularly 

important to linkage wi th a water ':balance model. ARMA models are 

available to preserve 2-year lags with cross correlations among 

three variables, but the greater number of parameters makes 

calibration less reliable. 

2. Reliability of the reconstructed data. The data series 

for streamflow, precipitation, and evaporation were reconstructed 

back to 1851 from fragmentary records in order to cover the wet 

years from 1862 through 1872. The principal reliability issues 

are: 

a. Increasingly greater approximation as one goes back past 

1938 when Jordan River gaging began, 1890 when Bear River 

gaging began, and 1875 when systematic precipitation 

measurement began. 
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b. Uncertainty in estimating lake evaporation because of poor 

information on the effects of humidity from upwind 

evaporation and on the spacial variability of salinity and 

temperature mixing. 

c. Possibility of major surface and- groundwater flows 

entering the lake from the West Desert during prolonged wet 

periods. 

One alternate to using a reconstructed historic series would be to 

infer probabilities from geologic deposits. For the Great Salt 

Lake, the two methods give similar results. 

3. Physical causes of climatic anomalies. Climatic 

disruptions might be caused by atmospheric darkening from volcanic 

emissions, anthropogenic pollutants, solar weather, and planetary 

tides. Warnings occur in upwind temperature, wind, and ocean 

current patterns (the anamolies of "El Nino") or movements of the 

jet stream. 

4. Evaporation-Streamflow Feedback. Evaporation from the 

Great Salt Lake may increase downwind snowfall enough to add 

significant persistance to flows into the lake. 

Water Balance Issues 

1. Amounts of ungaged surface and subsurface flows into the 

lake. 
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2. Lake precipitation and evaporation are averaged over the 

lake surface when in fact they vary in ways that could affect the 

water balance calculations. 

3. Significant water transpires from vegetation around the 

shores of the lake. 

Damage Issues 

1. The short and long term impacts of drowning the waterfowl 

areas may have important environmental implications. 
, 

2. A number of the damage estimates were based on the least 

alternative cost concept. Engine~ring designs should be made of 

pumping. relocation. or flood proofing costs for such major 

affected properties as the airport, highways. railroads. waste 

treatment plants. power lines to refine the present gross 

approximations. 

3. High lake levels cause upstream backwater in both surface 

stream and groundwater gradients that can increase damages. 

Benefit Issues 

1. Development of operational procedures for joint lake 

management for level control and developing salt as a resource of 

value. 

2. Negotiating equitable arrangements for cost sharing in 

lake level control between the public and private sectors? 
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SHORT-TERM ASSESSMENT 

1. Maj or damages have already occurred. The qui ckest and 

most cost effective way to prevent additional damages is by the 

selective use of shoreline levees to protect valuable-properties. 

Levee designs should provide wave protection and local pumping for 

surface and subsurface drainage. 

2. The quickest and most cost effective way to achieve 

positive lake level control is by pumping into the West Desert. 

However, the achievable degree of control depends.on, the effects 

of upwind ponding on downwind lak~ evaporation and on the 

constraints imposed by the military on the lake level at which 

pumping can begin. 

3. Financial planning is an important component. The lake 

will rise substantially sometime, and it could be soon. The slow 
, 

institutional response to the 1983-4 rise demonstrates interacting 

state and federal agencies have difficulty in acting in the lake 

rise time frame. Investment in disaster mitigation should not be 

considered as money wasted should a major event not occur 

immediately. 

4. The worst possible disaster would be to construct levees 

and experience failure. When levees are raised rising lake 

levels, foundation failures from excessive weight likely. The 

levees are in an earthquake zone, and the foundation m~terials are 
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subject to liquefaction. Levees should not be built on 

foundations that cannot support raising to at least a crest 

elevation having one chance in 100 of occurring, 4221 (4218 with 

the control provided by the West Desert pumping scheme). 

LONG-TERM ASSESSMENT 

Planning for the long term should develop the Great Salt Lake 

as a resource of great environmental, wildlife, recreational, 

mineral, and energy values. Facility designs and operating rules 

should maximize total values tot~led over all uses. Water storage 

and use within the tributary basin and land use in areas subject 

to lake flooding should be managed in coordination with lake level 

control. The levees that are being built along the southeastern 

shores should be made both functional and aesthetic as they create 

a stable shoreline between the lake and the urban areas. Downwind 

fog is already having a major impact on local winter weather and 

should be given special attention in the operation of lake level 

control facilities. 
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