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Abstract--A scatterometer is a satellite-borne instrument 
designed to measure wind over the ocean. Scatterometer 
wind retrieval is based on the relationship between the 
wind over the ocean and the resulting scattering cross 
section of the surface; this relationship, termed the '' geo­
physical model function,'' maps the wind speed, relative 
wind direction (relative to the antenna azimuth angle), an­
tenna incidence angle, polarization and frequency band to 
the scattering cross section. The sea surface temperature, 
salinity, long waves, wind variability within a scatterom­
eter footprint, etc., lend variability to the backscatter. A 
particular observation of the wind-dependent backscatter 
can be viewed as a random variable with mean given 
by the geophysical model function and variability due 
to unmodelled effects and measurement errors. Little is 
known about the variability due to unmodelled effects, or 
the statistics of this variability; this paper presents some 
considerations and simulations to estimate the magnitude 
of the model function error. 

INTRODUCTION 

The geophysical model function relates the wind over the 
ocean surface, along with parameters characterizing the 
way the radar looks at the surface, to the normalized radar 
cross section, u 0

, which is measured by the scatterometer. 
However, there are many unmodelled factors affecting 
the relationship between the wind and the radar cross 
section; these can be viewed as terms causing variability 
in the true value of the backscatter for given wind 
and satellite conditions. For example, CMOD4 doesn't 
account for temperature or salinity [ 1], which [2] suggests 
affect the backscatter. Understanding the magnitude and 
effect of this variability improves our understanding of 
the model function and the scatterometer measurement 
process. 

In this paper, a measurement model is expressed, de­
scribing how the model function value of the backscatter 
is corrupted by thermal noise and unmodelled param­
eters; this leads to an equation for the variance of the 
model function. Then, simulated results demonstrate that 
this technique provides a means to estimate the model 
function error from scatterometer data. Data from the 
ERS-1 satellite is then examined to study the general 
behavior of the model function error. 
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z 

Figure 1: The model for scatterometer measurements. The 
wind is mapped through the model function to the model 
function backscatter; variability is introduced through 
KpM. theeffectofunmodelledparameters. The resulting 
''true'' backscatter is corrupted by communication error 
(i.e., thermal noise) in the measurement process. which 
yields the measured value of the backscatter, z. 

TilE MEASUREMENT MODEL 

Several sources introduce uncertainty into scatterometer 
measurements; in this paper we consider two: the com­
munication error and the modeling error. The communi­
cation error, due to the thermal noise in the measurement 
process itself, is well understood [3]. Other causes of 
variability in the observed backscatter are collectivt?lY 
called ''model function error.'' 

Fig. 1 shows a block diagram of the measurement 
model. The model function maps the surface wind, 
along with the parameters of the scatterometer, to '"the 
model function backscatter, uM-. This value is perturbed 
by unmodelled parameters to yield the true backscatter 
coefficient of the surface, uJ.. The measurement of the 
true backscatter, uJ., is corrupted by thermal noise. The 
actual measurement, z, is modeled as 

where v1 and v2 are assumed to be independent, zero 
mean, unit variance, Gaussian random variables. K~M 
and ·K~c are the normalized variances for the modeling 
error and the communications error, respectively. 

The expected value of the measurement, z, is uM-, and 
the variance of z is: 

var(z) = (K~M + K~c + K~MI<~c )O'M2
• (2) 

To understand the effect of the modeling error, we 
examine the second moment of the measurement and 



solve for K~ M: 

= var ( z ) - K~c (3) 
uM-J1 + K~c 1 + I<~c 

= var(d)- e (4) 

where d is a random variable based on the measurement, 
and e is the detenninistic effect of the communication 
noise. 

EQUATIONS TO ESTIMATE J(pM 

The model function backscatter, u_M, and the commu­
nication error, Kpc, depend on several parameters, in­
cluding wind speed, wind direction, and radar incidence 
angle. Equation (3) further requires knowledge of the 
variance of the measurements for a given set of these 
parameters. Assuming that K p M is a constant (at least 
over a sufficiently small range of the parameters) allows 
us to average over measurements with similar sets of the 
parameters to yield an estimate of the average value of 
K~ M, and the variance of this estimate. The data is 
subdivided to yield M estimates of o = var( d) and of 
e = E(e): 

d1,1 e1,1 

d1,2 e1,2 

dl,No el,No ( ~ i1 

J. 
..... ,.. ............ ,.. 

02 f2 
~ 

.... ,.. ......... 
~ 

(5) 

dM,l eM,l iM 
dM,2 eM,2 

These estimates produce M estimates of the model 
function error squared, and the variance of this estimate: 

Here, E(J{f:;:;) is simply the sample mean of the M 
estimates. This estimate, though, is a function of random 
variables, so it is also a random variable with an asso­
ciated variance. If we assume d is distributed normally, 
then the variance of the sample variances, 6:;:, depends 
on the true variance and the number of samples used to 
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estimate the variance: 

- 2o2 

var(Om) = m 
Nm-1 

(7) 

This fact allows us to obtain the variance of the estimate 
of K'j,M 

(8) 

We don't know the true variance Om, but choosing Nm 
large enough so that the estimate 8: is sufficiently close 
to Om results in negligible error. 

We now have estimates of the mean and variance of 
J(~ M, so to obtain the mean and variance of Kp M, 

the function of a random variable, the principles of 
derived distributions and the fundamental theorem of 
statistics can be used [ 4]. Approximating with asymptotic 
integration, the expected value of the estimate of the 
model function error is -
E(K;;) ~ VE(J{f:;:;)- var(~'j,M )E(J{f:;:;)-i 

and the variance of this estimate is 

var(K;;) ~ 

(9) 

-var(K'j,M )2 

- (10) 
64E(K~M)3 

SIMULATIONS TO ESTIMATE /(pM 

A simulated wind field, along with simulated ERS-1 
measurements for several revolutions provides a test 
case for the estimation procedure. Values of KpA{ are 
introduced in the simulation to add uncertainty about the 
backscatter and (9) is used to see its ability to estimate 
the value of KPM· 

Recalling Eq. (3), we see that knowledge of uM-, 
the model function backscatter is required. However, 
the model function backscatter due to the true wind is 
much different from that due to the retrieved wind. Fig. 
2 compares the terms z /o-M- where the model function 
value is generated from true and then the retrieved winds. 
Normalizing the measurements by the backscatter that 
results from the retrieved wind, yields a much smaller 
variance than when the measurements are normalized by 
the backscatter based on the true wind. This difference in 
variance biases the estimate of the model function error. 

In satellite data, the true wind is not known. The wind 
is retrieved with maximum likelihood estimation [5] and 
de-aliased using a median filter based approach [6]; an 
estimate of the model function backscatter. is obtained 
from the geophysical model function using the retrieved 
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Figure 2: The backscatter measurement normalized by the 
model function based on the retrieved wind, uM,retrieved• 

yields a much smaller variance than that based on the 
true winds of the simulation, uM- true· This causes the 
estimate of the model function e;.,.or, K p M, to be low 
when the retrieved winds are used. 
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Figure 3: The estimate of KpM based on the true wind 
provides a good reconstruction of the true value of K p M, 

while that based on the retrieved wind (Median Filter 
De-aliasing) is consistently low. 

wind. The estimate of the model function error based on 
the retrieved wind is consistently low, as shown in Fig. 
3, while the estimate of KpM using the true wind yields 
almost exact reconstructions of the simulated values of 
the model function error. This is due to the difference in 
the model function when driven by true wind as opposed 
to retrieved wind. 

Recognizing the consistent bias of the estimate using 
retrieved rather than true winds, we can perform regres­
sion analysis to estimate a correction; this will allow 
KpM to be estimated directly from the retrieved wind. 
Unfortunately, simple regression analysis assumes that 
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-the regressor variable (in this case, K p M found using the 
retrieved wind) are deterministic; if there are errors in the 
regressor variable, more complicated techniques need to 
be employed. We assume for simplicity that because the 
variance of the estimates found with the retrieved wind 
are small in practice, this effect can be neglected. Fitting 
a quadratic equation to the data displayed in Fig. 3 sug­
gests that a simple functional form relates the estimate of 
the K p M based on the retrieved wind, to that resulting 
from the true wind: 

-2 -
KpM = -0.966KpM + 1.567 KpM + 0.035. (11) 

Simulating additional wind fields and estimating the 
model function error with (9), and then using the correc­
tion of (11) results in accurate estimation of the value of 
K p M used in the simulation. 

Equation (11) implies that the corrected value of the 
model function error is a function of that using retrieved 
winds---which was a random variable. Thus, the mean 
and variance of the corrected value needs to be deter­
mined again, using derived distributions. These can be 
approximated using the first and second moments of the --estimates Kp M and K'j, M. 

ESTIMATESBASEDONERS-1DATA · 

Binning the ERS-1 data according to various parameters 
reveals the behavior of the model function error. In this 
section, rough estimates of Kp M are found, appropriately 
adjusted for use when the backscatter is based on the 
retrieved wind using ( 11 ), and its derived distribution. 
Representative values of the model function error are 
found, and its sensitivity to incidence angle and wind 
speed are observed. 

Fig. 4 plots the value of K p M, against the incidence 
angle, with error bars indicating one standard deviation 
from the mean. For low incidence angles, meaning 
near-swath, the model function error is very high, nearly 
0.3. The value decreases as the incidence angle is 
increased. At about 45 degrees, the value of K p M 

reaches a minimum of about 0.175, and then increases 
as the incidence angle continues to increase. This seems 
rather odd behavior, but could be linked to the fact that 
the model function is based on Bragg scattering which is 
an approximation generally valid from 20 to 60 degrees 
incidence angles. Near the edges of this range, the 
approximation is less valid. 

The model function error is also quite sensitive to 
speed. Fig. 5 plots the estimate of KpM for two 
incidence angle bins, [17, 37] degrees and [37, 57] 
degrees, against wind speed. Other incidence angle 
bins follow similar trends. Of course the incidence angle 
dependence is apparent here, showing that I< p M is higher 
for low incidence angles. Further, the model function 
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Figure 4: The estimate of l<pM varies between about 
0.175 and 0.3, depending on the incidence angle. 
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Figure 5: The estimate of I< p M depends on the wind 
speed. This plot was produced by binning l<pM values 
estimated for ERS-1 satellite data observed at low in­
cidence angles and high incidence angles with different 
wind speeds. 

error appears to be lower at extreme wind speeds (both 
low and high), and higher for wind speeds near the mean 
wind speed. 

DISCUSSION 

U nmodelled effects in the geophysical model function 
and the wind retrieval process contribute variability to 
the backscatter of the ocean surface. In this paper, we 
have found an expression for the model function error 
based on a simple model. 

Simulations show that if the true surface wind is 
known, then the value of l{pM can be accurately es-
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timated. Using retrieved wind, instead, the estimated 
model function error is consistently less than the actual 
value of K p M. The correction function, found from 
simulations using independent, Gaussian random vari­
ables to introduce both communication noise and model 
function error, permits accurate estimates of KPM based 
on the retrieved wind. 

Examining ERS-1 data indicates the general behavior 
of the model function error. Low incid~nce angles have 
high model function errors, moderate incidence angles 
have low K p M, and high incidence angles experience 
moderate values. KPM is also sensitive to wind speed, 
though more so for lower incidence angles. 

These results indicate that the model function error 
is appreciable, particularly when compared to the com­
munication noise inherent in the scatterometer. These 
uncertainties limit the confidence that can be placed in 
the geophysical model, and need to be further understood 
to enhance the wind retrieval process. 

This work is being continued to observe the impact of 
the model function error on the confidence intervals of 
retrieved wind from satellite data. 
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