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The Effects of Financing Unfunded Social
Security with Consumption Taxation
when Consumers are Shortsighted∗

Michael P. Clagg

Department of Economics and Finance
Utah State University

August 5, 2013

Abstract

Using a representative-agent life-cycle model with consumer shortsightedness, I
study an unfunded social security program financed via consumption taxation. Com-
pared to financing an unfunded program with payroll taxation, I find that there is only
a slight increase in well-being across planning horizons that is generated by a program
with a consumption tax.

∗I acknowledge and thank T. Scott Findley for his guidance and serving as my thesis committee chairman,
James Feigenbaum and Ryan Bosworth for serving as thesis committee members.
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We suggest that both our data and the available time-series evidence are con-
sistent with Milton Friedman’s view that people save to smooth consumption
over several years but, because of liquidity constraints, caution, or shortsighted-
ness do not seek to smooth consumption over longer horizons. . . . Indeed, Milton
Friedman explicitly rejected the idea that consumers had horizons as long as a
lifetime in discussing the permanent income hypothesis (Carroll and Summers
1991 pp. 307, 355).

1 Introduction

The unfunded social security program in the United States is the largest such program

in the world. It has been justified by many as: insurance against disability or premature

death; redistribution from the wealthy elderly to the poor elderly; as a replacement for failed

annuity markets; to compensate for under saving behavior. The most common justification

used is the under saving for retirement (Kotlikoff 1982; Feldstein 1985; Docquier 2002;

İmrohoroğlu et al. 2003; and many others). Feldstein (1985) stated more specifically, “the

principal rationale for such mandatory [social security] programs is that some individuals

lack the foresight to save for their retirement years”(p.303).

It is well known that the well-being of a life-cycle permanent-income consumer is reduced

by the presence of a social security program, if the program has a negative net present value.

This is due to the fact that the lifetime budget constraint is decreased. The existence of

myopic agents in a model can result in a social security program that has an optimal

tax rate greater than zero (Docquier 2002; Caliendo and Gahramanov 2009; Findley and

Caliendo 2009). The tax rate in such studies is usually set to maximize a paternalistic

social welfare function following behavioral economic practices (Akerlof 2002; Kanbur et

al. 2006). The first study that uses a mixed economy of life-cyclers and myopic agents

to estimate an optimal social security program was Feldstein (1985). Feldstein used an

agent who exponentially discounts utility and one who does not discount in order to show

that there is an opportunity for a welfare improvement. İmrohoroğlu et al. (2003) model

quasi-hyperbolic agents following Laibson (1998) and find that in a partial-equilibrium and

general-equilibrium setting it is not welfare-improving to have a social security program.

Kumru and Thanopoulos (2008) models consumers with temptation preferences and show

that some of the welfare loss is mitigated by a social security program. The payroll-tax

2



financed program can have an effect on labor supply, causing less labor to be supplied

as demonstrated in OLG general equilibrium models (Auerbach and Kotlikoff 1987; and

Hugget and Ventura 1999).

As an alternative to some of our proposals for benefit reductions or revenue
increases, policy makers could dedicate revenue from another specific source to
Social Security (Diamond and Orszag 2005, p. 5).

As foreshadowed in the quotation above, the idea of moving towards a consumption

tax for general government expenditures has received some consideration by policy makers.

Major changes to the U.S. social security program have not been enacted since it is viewed

as politically controversial by many. To date, the majority of the consumption-tax litera-

ture is focused along two lines: using detailed taxpayer information to estimate liabilities

under current and proposed regimes; and the study of theoretical economies and the effects

of policy changes inside this framework. Two studies in which a flat tax was considered

as a replacement for the current U.S. tax regime were conducted by Feenberg, Mitrusi and

Poterba (1997) and Gentry and Hubbard (1997). There is no publicly available data set

containing all necessary information, hence both studies use a combination of different pub-

lic sources. Feenberg, Mitrusi and Poterba (1997) use information on income, tax liabilities

and consumption while Gentry and Hubbard (1997) us data on use data on household port-

folio choice. Feenberg, Mitrusi and Poterba (1997) find those lower income households bear

a disproportionate share of the tax burden in comparison to the high income households.

This is in contrast to the findings of Gentry and Hubbard (1997) who find that the tax

liabilities could be progressive in nature, the more affl uent in the economy bear a larger

percentage of the tax burden. Important assumptions underlying these computational stud-

ies are that aggregate quantities and factor pricing remains constant under both regimes

being considered. The line of literature which uses calibrated general-equilibrium models to

examine the differences of tax liabilities under tax regime changes also exhibit mixed results

with respect to the progressivity of tax burdens. Ventrua (1999) uses an OLG model with

age and labor effi ciency shocks to simulate heterogeneity, and he finds that the change from

the current U.S. tax regime to a flat tax results in increased concentrations of wealth. Altig

et al. (2001) compute the transition dynamics in moving from the current U.S. tax code
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to a flat tax and finds that the poor are worse off during the transition and in the new

steady state as compared to before the transition. Correia (2010) uses an infinite-horizon

model with heterogeneity in initial wealth and income levels. She studies the refinancing of

government expenditures from an income-tax regime similar to that in the U.S. to one of a

flat consumption tax. She finds that well-being increases across all initial wealth levels. For

an in depth discussion of consumption taxation and optimal taxation levels, see Coleman

(2000).

The idea of financing the social security program from alternative sources is not new.

Gahramanov and Tang (2013) use a general-equilibrium OLG model with endogenous labor

decisions and mortality risk to investigate an optimal tax policy over capital taxes, payroll

taxes, income taxes, and consumption taxes. They find that the optimal policy to maintain

benefits at current levels is to eliminate the payroll tax and increase a consumption tax

above baseline. This leads to welfare gains across the economy. They then investigate the

welfare dynamics during the transitional period, where they find that the newly retired

and nearly retired face the largest welfare cost of this restructuring. They advocate for an

additional transfer payment to be made during the transition to maintain utility levels for

these individuals.

Findley and Caliendo (2009) study the short-term planning model of Caliendo and

Aaland (2007), supplemented with an unfunded social security program that is financed

with payroll taxation. They demonstrate that the program can be welfare improving for

some planning horizons in general equilibrium. An open question remains as to whether or

not a payroll tax is the best instrument to finance an unfunded program.

Indeed, I revisit the ability for social security to provide adequate retirement resources

in the short-horizon framework used by Findley and Caliendo (2009). My contribution is

the addition of an unfunded social security program financed with taxation on consumption.

I find that a payroll-tax financed program can be replaced with a consumption-tax financed

program. Such a move generates welfare gains in partial equilibrium, although the welfare

gains are small.

4



2 Model

I model a representative individual who optimizes consumption and saving behavior over

a short planning horizon. Time is continuous and indexed by t. The individual enters the

workforce at t = 0. The individual retires at t = T , and dies at age t = T̄ . During the

working period t ∈ [0, T ] the individual receives wages at rate w, and during the retirement

period t ∈
[
T, T̄

]
the individual receives social security benefits b = Rwνw +Cνc/

(
T̄ − T

)
.

The individual supplies one unit of labor inelastically while working. R =
T

T̄ − T
is the

worker to retiree ratio. νw is the payroll tax rate. νc is the consumption tax rate. C is

aggregate consumption in the economy. Consumption at each instant is c(t) and is the

control variable. Any income not consumed at each instant is placed in the individual’s

asset account, k(t), which grows at rate r. There are no borrowing constraints placed on

the individual, and k(0) = k(T̄ ) = 0 is assumed. The planning horizon length x is the

amount of time over which an individual optimizes. I impose the restriction x ≤ T̄ − T for

ease of modeling, as is customary in this model. It allows for a simple compartmentalization

of the life cycle:

• Phase 1 [0, T − x]

• Phase 2 [T − x, T ]

• Phase 3
[
T, T̄ − x

]
• Phase 4

[
T̄ − x, T̄

]
Phase 1 is the period of the life cycle during which the individual is in the workforce

and does not foresee retirement. Phase 2 is that period of the life cycle when the individual

is still in the workforce, but can see the future date of retirement. Phase 3 is after the

individual is retired from the workforce, but does not foresee the date of death. Phase 4 is

that part of retirement when the individual can see the date of death.

Inside the short planning horizon model, the individual’s behavior is time-inconsistent

in Phases 1-3. This is due to the sliding planning window which moves through time with

the individual. I model a naive individual, meaning that the individual does not anticipate
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his time-inconsistant behavior. Therefore, the individual’s actual behavior is the envelope

of the initial moments solved for during the optimization. The derivations of the following

solutions can be found in Appendix A.

2.1 Phase 1

At any t0 ∈ [0, T − x] the individual solves

max
c(t)

:

∫ t0+x

t0

e−ρ(t−t0) c(t)
1−φ

1− φ dt (1)

subject to
dk (t)

dt
= rk (t) + w (1− νw)− (1 + νc) c (t) (2)

k (t0) given (3)

k (t0 + x) = 0, (4)

where ρ is the personal discount rate and φ is the inverse elasticity of intertemporal substi-

tution (IEIS). The solution to (1)-(4) is the optimal planned path from the perspective of

t0 ∈ [0, T − x],

ĉ(t) = egt

[
k (t0) e−rt0 +

∫ t0+x
t0

w (1− νw) e−rjdj

(1 + νc)
∫ t0+x
t0

e(g−r)jdj

]
, (5)

for t ∈ [t0, t0 + x] where g =
r − ρ
φ

.

Following Caliendo and Aaland (2007), the actual consumption profile can be derived

by replacing t0 with t

c(t) = egt

k (t) e−rt +
w (1− νw)

r

(
e−rt − e−rte−rx

)
1 + νc
g − r

(
e(g−r)(t+x) − e(g−r)t

)
 , (6)

for t ∈ [0, T − x]. This can be more simply expressed as

c(t) = k(t)z1 + wz2, (7)
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where

z1 ≡
(g − r)

(1 + νc)
(
e(g−r)x − 1

) (8)

z2 ≡
(1− νw) (g − r) (1− e−rx)

(1 + νc)
(
e(g−r)x − 1

) , (9)

and the asset account follows the path

k(t) =
(
eΩt − 1

) w [(1− νw)− (1 + νc) z2]

Ω
, (10)

where Ω = [r − (1 + νc) z1].

2.2 Phase 2

At any t0 ∈ [T − x, T ] the individual solves

max
c(t)

:

∫ t0+x

t0

e−ρ(t−t0) c(t)
1−φ

1− φ dt (11)

subject to
dk (t)

dt
= rk (t) + w (1− νw)− (1 + νc) c (t) (12)

dk (t)

dt
= rk (t) + b− (1 + νc) c (t) (13)

k (t0) given (14)

k (t0 + x) = 0. (15)

The planned consumption path is the solution to equations (11)-(15),

ĉ (t) =
k (t0) e−rt0 +

∫ T
t0
w (1− νw) e−rjdj +

∫ t0+x
T be−rjdj

(1 + νc)
∫ t0+x
t0

egte−rjdj
egt, (16)

for t ∈ [t0, t0 + x]. The actual path is

c (t) =
k (t) e−rt +

∫ T
t w (1− νw) e−rjdj +

∫ t+x
T be−rjdj

(1 + νc)
∫ t+x
t e(g−r)jdj

egt (17)
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for t ∈ [T − x, T ]. Using z1 from above, it can be rewritten as

c (t) = k(t)z1 +
w (1− νw)

r
z1e

rt
(
e−rt − e−rT

)
+
b

r
z1e

rt
(
e−rT − e−r(t+x)

)
(18)

where

k (t) = eΩt

(
e−Ω(T−x)k (T − x) +

w (1− νw)

Ω

(
e−Ω(T−x) − e−Ωt

)
+
w (1− νw) (1 + νc) z1

r

[
e−rT

r − Ω

(
e(r−Ω)t − e(r−Ω)(T−x) − 1

Ω

[
e−Ω(T−x) − e−Ωt

])]
+
b (1 + νc) z1

r

[
e−rT

r − Ω

(
e(r−Ω)(T−x) − e(r−Ω)t

)
+
e−rx

Ω

(
e−Ω(T−x) − e−Ωt

)])
.(19)

2.3 Phase 3

At any t0 ∈
[
T, T̄ − x

]
the individual solves

max
c(t)

:

∫ t0+x

t0

e−ρ(t−t0) c(t)
1−φ

1− φ dt (20)

subject to
dk (t)

dt
= rk (t) + b− (1 + νc) c (t) (21)

k (t0) given (22)

k (t0 + x) = 0. (23)

The solution is the planned consumption path for t ∈ [t0, t0 + x],

ĉ(t) = egt

[
k (t0) e−rt0 +

∫ t0+x
t0

be−rjdj

(1 + νc)
∫ t0+x
t0

e(g−r)jdj

]
. (24)

The actual path for t ∈
[
T, T̄ − x

]
is

c(t) = egt

k (t) e−rt +
b

r

(
e−rt − e−r(t+x)

)
1 + νc
g − r

(
e(g−r)t − e(g−r)(t+x)

)
 , (25)
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which is the envelope of initial planned consumption allocations given

k(t) = k(T )e−Ω(T−t) +
bνcz3

Ω

(
1− e−Ω(T−t)

)
. (26)

2.4 Phase 4

Since the individual can see the date of death in this phase, behavior is time-consistent. The

planned consumption path from the perspective of t0 = T̄−x will be the actual consumption

path,

c(t) = egtz4, (27)

where

z4 =
g − r
1 + νc

k
(
T − x

)
erx − b (1− erx)

r
egT

(
1− e−x(g−r)

)
 . (28)

This characterizes the asset path during Phase 4 with

dk (t)

dt
= rk (t) + b− (1 + νc) c (t) (29)

and k
(
T − x

)
known.

2.5 Social security in the model

I will examine two options for social security financing in this model. A tax on consumption,

νc, will be levied against all consumption in the model. I will also examine a payroll tax,

νw, as done in Findley and Caliendo (2009). I will compare the two alternate tax regimes.

The unfunded program has a balanced budget and the individual does not take into account

the effects that his consumption level has on the level of benefits, such that

b =
νc

[∫ T−x
0 c(t)dt+

∫ T
T−x c(t)dt+

∫ T̄−x
T c(t)dt+

∫ T̄
T̄−x c(t)dt

]
T̄ − T

+Rwνw (30)

for t ∈ [T, T̄ ].

The use of a consumption tax to finance benefits creates an implicit function, since c(t)
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is a function of b while b is a function of c(t). Yet, it is possible to numerically approximate

the level of benefits. Due to the inelasticity of labor supply in this model the payroll-tax

portion of benefits is easily demonstrated analytically.

3 Simulation and numerical exercises

3.1 Baseline model parameters

The baseline parameters are summarized in Table(1). I set T = 40 and T̄ = 55 which

represents an individual who enters the work force at age 25, retires at age 65, and dies at

age 80. I set the real rate of return, r, to 0.035. The worker to retiree ratio is approximately

2.667. I set r = ρ following convention. I set φ = 1, making utility logarithmic.

3.2 Optimal tax rates

I will allow the model to determine the optimal payroll tax rate, ν∗w, and the optimal

consumption tax rate, ν∗c , for each planning horizon length, x. The optimal rate for both

programs is the rate that paternalistically maximizes lifetime utility for the individual,

ν∗c ≡ arg max
νc∈[0,1];νw=0

{∫ T−x
0 e−µt

c(t)1−φ

1− φ dt+
∫ T
T−x e

−µt c(t)
1−φ

1− φ dt

+
∫ T̄−x
T e−µt

c(t)1−φ

1− φ dt+
∫ T̄
T̄−x e

−µt c(t)
1−φ

1− φ dt

} (31)

ν∗w ≡ arg max
νw∈[0,1];νc=0

{∫ T−x
0 e−µt

c(t)1−φ

1− φ dt+
∫ T
T−x e

−µt c(t)
1−φ

1− φ dt

+
∫ T̄−x
T e−µt

c(t)1−φ

1− φ dt+
∫ T̄
T̄−x e

−µt c(t)
1−φ

1− φ dt

}
,

(32)

where µ is the social discount rate.

3.3 Individual life-cycle consumption profiles

Simulated consumption profiles using the baseline parameters in Table(1) can be seen in

Figure(1) for the case of no transfer program νc = 0 and for the case of a program with νc =

0.10 . The individual consumes less during Phase 1 and part of Phase 2, but has increased

consumption during part of Phase 2 and all of Phases 3 and 4. The consumption tax does
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not distort the asset account during Phase 1 as seen in Figure(2). The tax proportionally

decreases consumption during Phase 1. This non-distortion of the asset account holds for

a wide array of parameters as shown in Figures(2,4,6). During Phase 2-4 the tax rate does

change saving rates and consumption levels. It is important to note that the asset account

with a program in place is always less than or equal to the asset account when a program

is not present. This is similar to the result for the LCPI consumer in which the presence of

an unfunded program causes the individual to save less for retirement.

3.4 Welfare analysis: social security vs. no program

Here, I study an unfunded program financed by a consumption tax compared to the coun-

terfactual of no program at all. In doing this, I define a compensating variation (CV ) as the

percentage increase in period consumption that is needed to equalize lifetime utility without

a program to the lifetime utility with an optimally parameterized social security program.

In Table (2) I display the compensating variation. For all planning horizons which have a

non-zero optimal tax, an unfunded program raises well-being. I also report in Table (3) that

an optimally parametrized payroll-tax financed program is welfare improving, compared to

no program at all.

3.5 Welfare analysis: consumption-tax financing vs. payroll-tax financing

The welfare metric that I use is that of a paternalistic social planner, where the social

discount rate of µ evaluates utils over the entire life span, even though the individual is

optimizing over a short-horizon. This is consistent with the majority of the behavioral

economics literature.

I now define a uniquely different compensating variation, ∆, to measure the percentage

increase in c(t) under a particular tax regime in order to approximate the value of par-

ticipating in an optimally parameterized social security program. With φ = 1 the utility
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function becomes logarithmic, and ∆ solves the following equation,

{∫ T−x
0 e−µt ln [(1 + ∆) cνw(t)] dt+

∫ T
T−x e

−µt ln [(1 + ∆) cνw(t)] dt

+
∫ T̄−x
T e−µt ln [(1 + ∆) cνw(t)] dt+

∫ T̄
T̄−x e

−µt ln [(1 + ∆) cνw(t)] dt
}

=

{∫ T−x
0 e−µt ln [cνc(t)] dt+

∫ T
T−x e

−µt ln [cνc(t)] dt

+
∫ T̄−x
T e−µt ln [cνc(t)] dt+

∫ T̄
T̄−x e

−µt ln [cνc(t)] dt
}
.

(33)

Solving for ∆ gives

∆ = exp

[
Uc − Uw∫ T̄
0 e−µtdt

]
− 1 (34)

where

Uw =

{∫ T−x

0
e−µt ln [cνw(t)] dt+

∫ T

T−x
e−µt ln [cνw(t)] dt

+

∫ T̄−x

T
e−µt ln [cνw(t)] dt+

∫ T̄

T̄−x
e−µt ln [cνw(t)] dt

}
(35)

Uc =

{∫ T−x

0
e−µt ln [cνc(t)] dt+

∫ T

T−x
e−µt ln [cνc(t)] dt

+

∫ T̄−x

T
e−µt ln [cνc(t)] dt+

∫ T̄

T̄−x
e−µt ln [cνc(t)] dt

}
. (36)

The optimal tax rates are reported in Tables(4-9) for a range of parameter values.

I compare the utility of two identical individuals under the different tax regimes using the

∆ metric. As reported in Tables(4-9), I find that the consumption-tax financed program has

a higher total welfare, but only marginally. When using the Ramsey criteria for measuring

welfare (such that the social planner does not discount utility, µ = 0), I find that there

are large gains in well-being from a consumption-tax financed program compared to a

payroll-tax financed program. In this partial-equilibrium model the differences between the

consumption and saving profiles are relatively small, with the paths almost laying on top of

each other. But the cumulative utility gains from the consumption-tax financed program

are sizable.
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3.6 Robustness check of computational code

To check for potential computational errors in the simulation environment, I calculate the

present value of taxes collected over a given planning horizon. If the present value of taxes

is equal across tax regimes, then the behavior should be the same regardless of which tax

regime is in place. I analytically solve for when each of the two regimes have the same

present value of tax revenues for a given planning horizon.

The present value of taxes in a payroll-tax financed regime is

Iw =

∫ t0+x

t0

e−rtwνwdt, (37)

and the present value of taxes in a consumption-tax financed program is

Ic =

∫ t0+x

t0

e−rtνcĉ(t)dt, (38)

where ĉ(t) is the planned consumption path from the perspective of the planning instant

t0. Setting (37) equal to (38) yields

νw =
νc

1 + νc
(39)

where the derivation is found in Appendix B. I use this equation to estimate the difference

in the present values of the tax regimes within the simulations environment. I found the

two calculations to be almost identical.

4 Summary and possible extensions for future work

The presence of an unfunded security program can improve well-being. A consumption-tax

financed program leads to slightly higher levels of well-being as compared to a program

using payroll taxation. Due to the smoothing of consumption over the life-cycle, there is

an increase in lifetime utility. There is an opportunity to extend this research by allowing

factor prices to adjust given behavior in the model. A general-equilibrium setting would

likely lean to different quantitative results. This merits further investigation. Another in-
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teresting extension could be heterogeneity in the length of planning horizons across different

individuals in the model population.

Appendix A: derivations of consumption and savings profiles

Phase 1 [0, T − x]

The individual solves

max
c(t)

:

∫ t0+x

t0

e−ρ(t−t0) c(t)
1−φ

1− φ dt (40)

subject to
dk (t)

dt
= rk (t) + w (1− νw)− (1 + νc) c (t) (41)

k (t0) given (42)

k (t0 + x) = 0. (43)

Using the Maximum Principle for a one-stage problem results in the following Hamiltonian

equation and optimality conditions,

H = e−ρ(t−t0) c(t)
1−φ

1− φ + λ (t) (rk (t) + w (1− νw)− (1 + νc) c (t)) (44)

∂H

∂c
= e−ρ(t−t0)c(t)−φ − λ (t) (1 + νc) = 0 (45)

∂H

∂k
= rλ (t) = −dλ

dt
(46)

∂H

∂λ
= rk (t) + w (1− νw)− (1 + νc) c (t) =

dk (t)

dt
. (47)

Solving the maximum condition for c(t)

c(t) =

(
e−ρ(t−t0) 1

λ (t) (1 + νc)

) 1
φ

. (48)

Solving the costate equation

dλ

dt
= −rλ (t)→ λ (t) = ae−rt. (49)
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The constant of integration can be definitized such that

λ (t0) = ae−rt0 (50)

a = λ (t0) ert0 (51)

λ (t) = λ (t0) er(t0−t). (52)

Substituting equation (52) into (48) gives

c(t) =

(
e−ρ(t−t0) 1

λ (t0) er(t0−t) (1 + νc)

) 1
φ

(53)

= egt
(

1

λ (t0) (1 + νc)
e(r−ρ)t0

) 1
φ

(54)

where g =
r − ρ
φ

. This can be simplified as

c(t) = egtA (55)

where A =

(
1

λ (t0) (1 + νc)
e(r−ρ)t0

) 1
φ

is a transformation of the unknown constant. Solving

the state equation yields

k (t) = ert
[
q +

∫ t

(w (1− νw)− (1 + νc) c (j)) e−rjdj

]
. (56)

Using the boundary condition, k (t0) given, pins down the constant of integration

k (t0) = ert0
[
q +

∫ t0

(w (1− νw)− (1 + νc) c (j)) e−rjdj

]
(57)

k (t0) e−rt0 = q +

∫ t0

(w (1− νw)− (1 + νc) c (j)) e−rjdj (58)

q = k (t0) e−rt0 −
∫ t0

(w (1− νw)− (1 + νc) c (j)) e−rjdj. (59)
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The particular solution is

k (t) = ert
[
k (t0) e−rt0 +

∫ t

t0

(w (1− νw)− (1 + νc) c (j)) e−rjdj

]
. (60)

Using the other boundary condition, k (t0 + x) = 0,

ert0+x

[
k (t0) e−rt0 +

∫ t0+x

t0

(w (1− νw)− (1 + νc) c (j)) e−rjdj

]
= 0 (61)

k (t0) e−rt0 +

∫ t0+x

t0

(w (1− νw)− (1 + νc) c (j)) e−rjdj = 0 (62)

k (t0) e−rt0 +

∫ t0+x

t0

w (1− νw) e−rjdj =

∫ t0+x

t0

(1 + νc) c (j) e−rjdj. (63)

Substituting equation (55) into (63) gives

k (t0) e−rt0 +

∫ t0+x

t0

w (1− νw) e−rjdj =

∫ t0+x

t0

(1 + νc) e
gjAe−rjdj (64)

(1 + νc)A

∫ t0+x

t0

e(g−r)jdj = k (t0) e−rt0 +

∫ t0+x

t0

w (1− νw) e−rjdj, (65)

which allows us to solve for the transformation of the unknown constant

A =
k (t0) e−rt0 +

∫ t0+x
t0

w (1− νw) e−rjdj

(1 + νc)
∫ t0+x
t0

e(g−r)jdj
. (66)

Therefore, planned consumption is

ĉ(t) = egt

[
k (t0) e−rt0 +

∫ t0+x
t0

w (j) (1− νw) e−rjdj

(1 + νc)
∫ t0+x
t0

e(g−r)jdj

]
(67)

in closed-form. Since actual behavior will be decided from reoptimization at every instant,

the actual paths can be mapped by replacing t0 with t in (67). This gives the actual

consumption path

c(t) = egt

[
k (t) e−rt +

∫ t+x
t w (1− νw) e−rjdj

(1 + νc)
∫ t+x
t e(g−r)jdj

]
(68)
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= egt

k (t) e−rt +
w (1− νw)

r

(
e−rt − e−rte−rx

)
(1 + νc)

(g − r)
(
e(g−r)te(g−r)x − e(g−r)t

)
 (69)

= k(t)z1 + wz2 (70)

with algebraic simplification, where

z1 =
(g − r)

(1 + νc)
(
e(g−r)x − 1

) (71)

z2 =
(1− νw) (g − r) (1− e−rx)

(1 + νc)
(
e(g−r)x − 1

) . (72)

Substituting equation (70) into the law of motion that governs the actual evolution of the

asset account,
dk (t)

dt
= rk (t) + w (1− νw)− (1 + νc) (k(t)z1 + wz2) (73)

= k (t) (r − z1 (1 + νc)) + w (1− νw)− (1 + νc)wz2. (74)

Solving this differential equation gives

k(t) = e(r−z1(1+νc))t

[
q +

∫ t

(w (1− νw)− (1 + νc)wz2) e−(r−z1(1+νc))jdj

]
. (75)

With the initial condition, k(0) = 0, and with Ω = r − (1 + νc) z1, the constant can be

identified

0 = eΩ0

[
q +

∫ 0

(w (1− νw)− (1 + νc)wz2) e−Ωjdj

]
(76)

q = −
∫ 0

(w (1− νw)− (1 + νc)wz2) e−Ωjdj (77)

which provides a closed-form solution for the asset path during Phase 1

k(t) = eΩt

∫ t

0
(w (1− νw)− (1 + νc)wz2) e−Ωjdj (78)

=
(
eΩt − 1

) w ((1− νw)− (1 + νc) z2)

Ω
. (79)
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Phase 2 [T − x, T ]

The individual can see both work income and the social security benefits flow, but he is still

working. The individual solves

max
c(t)

:

∫ t0+x

t0

e−ρ(t−t0) c(t)
1−φ

1− φ dt (80)

subject to
dk (t)

dt
= rk (t) + w (1− νw)− (1 + νc) c (t) (81)

for t = [t0, T ] and
dk (t)

dt
= rk (t) + b− (1 + νc) c (t) (82)

for t = [T, t0 + x], where

k (t0 + x) = 0 (83)

k (t0) given. (84)

Using the Maximum Principle for two-stage problems results in the following Hamiltonians

and optimality conditions,

H1 = e−ρ(t−t0) c(t)
1−φ

1− φ + λ1 (t) (rk (t) + w (1− νw)− (1 + νc) c (t)) (85)

H2 = e−ρ(t−t0) c(t)
1−φ

1− φ + λ2 (t) (rk (t) + b− (1 + νc) c (t)) (86)

∂H1

∂c
= e−ρ(t−t0)c(t)−φ − λ1 (t) (1 + νc) = 0 (87)

∂H1

∂k
= rλ1 (t) = −dλ1

dt
(88)

∂H1

∂λ1
= rk (t) + w (1− νw)− (1 + νc) c (t) =

dk (t)

dt
(89)

∂H2

∂c
= e−ρ(t−t0)c(t)−φ − λ2 (t) (1 + νc) = 0 (90)

∂H2

∂k
= rλ2 (t) = −dλ2

dt
(91)
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∂H2

∂λ2
= rk (t) + b− (1 + νc) c (t) =

dk (t)

dt
. (92)

The two multipliers are defined as λ1 for t = [t0, T ] and λ2 for t = [T, t0 + x] and obey the

costate equations, (88) and (91), rewritten as

dλ1

dt
= −rλ1 (t) (93)

for t = [t0, T ]

dλ2

dt
= −rλ2 (t) (94)

for t = [T, t0 + x]. Two-stage problems require a condition,

λ1 (T ) = λ2 (T ) , (95)

which links the multipliers at the switch point. Solving equations (93) and (94) while

definitizing the constants of integration yields

λ1 (t) = a1e
−rt → a1 = λ1 (T ) erT (96)

λ2 (t) = a2e
−rt → a2 = λ2 (T ) erT (97)

Invoking the matching condition gives λ1 (T ) = λ2 (T ) → a2 = a1, such that continuity

exists across the switchpoint such that subscripts can be dropped.

λ (t0) = ae−rt0 (98)

a = λ (t0) ert0 (99)

λ (t) = λ (t0) er(t0−t) (100)

Solving the first maximum condition for c(t) gives

c(t) =

(
e−ρ(t−t0) 1

λ (t) (1 + νc)

) 1
φ

. (101)
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Substituting in equation (100) gives

c(t) =

(
e−ρ(t−t0) 1

λ (t0) er(t0−t) (1 + νc)

) 1
φ

(102)

= egt
(

1

λ (t0) (1 + νc)
e(r−ρ)t0

) 1
φ

(103)

where g =
r − ρ
φ

. This can be condensed

c(t) = egtA (104)

where A =

(
1

λ (t0) (1 + νc)
e(r−ρ)t0

) 1
φ

is a transformation of the unknown constant. Solving

the second maximum condition for c(t) yields

c(t) =

(
e−ρ(t−t0) 1

λ (t) (1 + νc)

) 1
φ

(105)

and substituting equation (100) into (105) yields

c(t) =

(
e−ρ(t−t0) 1

λ (t0) er(t0−t) (1 + νc)

) 1
φ

(106)

= egt
(

1

λ (t0) (1 + νc)
e(r−ρ)t0

) 1
φ

(107)

where g =
r − ρ
φ

. This can also be simplified

c(t) = egtA (108)

where A =

(
1

λ (t0) (1 + νc)
e(r−ρ)t0

) 1
φ

is also a transformation of the unknown constant.

Note that (108) and (104) are identical, therefore no distinction will be made after this.

Solving the first state equation gives

k (t) = ert
[
q +

∫ t

(w (1− νw)− (1 + νc) c (j)) e−rjdj

]
(109)
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for t ∈ [t0, T ]. Using the initial condition k (t0) given definitizes the unknown constant,

k (t0) = ert0
[
q +

∫ t0

(w (1− νw)− (1 + νc) c (j)) e−rjdj

]
(110)

k (t0) e−rt0 = q +

∫ t0

(w (1− νw)− (1 + νc) c (j)) e−rjdj (111)

q = k (t0) e−rt0 −
∫ t0

(w (1− νw)− (1 + νc) c (j)) e−rjdj. (112)

This gives the intended asset path for t ∈ [t0, T ],

k (t) = ert
[
k (t0) e−rt0 +

∫ t

t0

(w (1− νw)− (1 + νc) c (j)) e−rjdj

]
(113)

Evaluate (113) at t = T

k (T ) = erT
[
k (t0) e−rt0 +

∫ T

t0

(w (1− νw)− (1 + νc) c (j)) e−rjdj

]
. (114)

Solving the second state equation gives

k (t) = ert
[
q +

∫ t

(b− (1 + νc) c (j)) e−rjdj

]
(115)

for t ∈ [T, t0 + x]. Using k (t0 + x) = 0 identifies the unknown constant,

k (t0 + x) = ert0+x

[
q +

∫ t0+x

(b− (1 + νc) c (j)) e−rjdj

]
= 0 (116)

q = −
∫ t0+x

(b− (1 + νc) c (j)) e−rjdj. (117)

Therefore, the particular solution is

k (t) = ert
[∫ t

t0+x
(b− (1 + νc) c (j)) e−rjdj

]
, (118)

which can be evaluated at t = T ,

k (T ) = erT
[∫ T

t0+x
(b− (1 + νc) c (j)) e−rjdj

]
. (119)
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Set (114) equal to (119)

erT
[∫ T

t0+x
(b− (1 + νc) c (j)) e−rjdj

]
= erT

[
k (t0) e−rt0 +

∫ T

t0

(w (1− νw)− (1 + νc) c (j)) e−rjdj

]
. (120)

This can be rearranged

k (t0) e−rt0 +

∫ T

t0

w (1− νw) e−rjdj −
∫ T

t0+x
be−rjdj

=

∫ T

t0

(1 + νc) c (j) e−rjdj −
∫ T

t0+x
(1 + νc) c (j) e−rjdj (121)

and further simplified

(1 + νc)

∫ t0+x

t0

c (j) e−rjdj

= k (t0) e−rt0 +

∫ T

t0

w (1− νw) e−rjdj +

∫ t0+x

T
be−rjdj. (122)

Substituting in for c (t),

(1 + νc)A

∫ t0+x

t0

egje−rjdj

= k (t0) e−rt0 +

∫ T

t0

w (1− νw) e−rjdj +

∫ t0+x

T
be−rjdj (123)

the transformation of the unknown constant is identified,

A =
k (t0) e−rt0 +

∫ T
t0
w (1− νw) e−rjdj +

∫ t0+x
T be−rjdj

(1 + νc)
∫ t0+x
t0

egje−rjdj
. (124)

Inserting (124) into (108) yields planned consumption in closed-form,

ĉ (t) =
k (t0) e−rt0 +

∫ T
t0
w (z) (1− νw) e−rzdz +

∫ t0+x
T b (t) e−rzdz

(1 + νc)
∫ t0+x
t0

egte−rzdz
egt. (125)
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Replacing t0 with t gives the actual consumption path

c (t) =
k (t) e−rt +

∫ T
t w (1− νw) e−rjdj +

∫ t+x
T be−rjdj

(1 + νc)
∫ t+x
t e(g−r)jdj

egt (126)

=
k (t) e−rt +

w (1− νw)

r

(
e−rt − e−rT

)
+
b

r

(
e−rT − e−r(t+x)

)
(1 + νc)

(g − r)
(
e(t+x)(g−r) − e(g−r)t

) . (127)

Using z1 from above, this can be simplified

c (t) = k(t)z1 +
w (1− νw)

r
z1e

rt
(
e−rt − e−rT

)
+
b

r
z1e

rt
(
e−rT − e−r(t+x)

)
. (128)

Inserting (128) into
dk (t)

dt
= rk (t) + w (1− νw)− (1 + νc) c (t) gives

dk (t)

dt
= rk (t) + w (1− νw)− (1 + νc) k(t)z1 +

(1 + νc)w (1− νw)

r
z1e

rt
(
e−rT − e−rt

)
+ (1 + νc)

b

r
z1e

rt
(
e−r(t+x) − e−rT

)
(129)

= k (t) Ω + w (1− νw) +
(1 + νc)w (1− νw)

r
z1e

rt
(
e−rT − e−rt

)
+ (1 + νc)

b

r
z1e

rt
(
e−r(t+x) − e−rT

)
(130)

rewritten with Ω = (r − (1 + νc) z1). Solving this differential equation yields a general

solution,

k (t) = eΩt

(
q +

∫ t [
w (1− νw)− (1 + νc)

(
w (1− νw)

r
z1e

rj
(
e−rj − e−rT

)
+
b

r
z1e

rj
[
e−rT − e−r(j+x)

])]
e−Ωjdj

)
. (131)

Using the initial condition for Phase 2 definitizes the unknown constant, q, such that

k (T − x) = eΩ(T−x)

(
q +

∫ T−x [
w (1− νw)− (1 + νc)

(
w (1− νw)

r
z1e

rj
(
e−rj − e−rT

)
+
b

r
z1e

rj
[
e−rT − e−r(j+x)

])]
e−Ωjdj

)
(132)

23



q = k (T − x) e−Ω(T−x) −
∫ T−x [

w (1− νw)− (1 + νc)

(
w (1− νw)

r
z1e

rj
(
e−rf − e−rT

)
+
b

r
z1e

rj
[
e−rT − e−r(j+x)

])]
e−Ωjdj. (133)

This yields the actual solution for the asset path

k (t) = k (T − x) e−Ω(T−x−t) + eΩt

∫ t

T−x

[
(1− νw)w − (1 + νc)

(
w (1− νw)

r
z1e

rj
(
e−rj − e−rT

)
+
b

r
z1e

rj
[
e−rT − e−r(j+x)

])]
e−Ωjdj (134)

= eΩtk (T − x) e−Ω(T−x) + eΩt

∫ t

T−x
w (1− νw) e−Ωjdj

−eΩt

∫ t

T−x
(1 + νc)

w (1− νw)

r
z1e

rj
(
e−rj − e−rT

)
e−Ωjdj

−eΩt

∫ t

T−x
(1 + νc)

b

r
z1e

rj
(
e−rT − e−r(j+x)

)
e−Ωjdj (135)

= eΩt

[
e−Ω(T−x)k (T − x) +

w (1− νw)

Ω

(
e−Ω(T−x) − e−Ωt

)
− w (1− νw) (1 + νc) z1

r

∫ t

T−x

[
1− e−r(T−j)

]
e−Ωjdj

− b (1 + νc) z1

r

∫ t

T−x
erj
(
e−rT − e−r(j+x)

)
e−Ωjdj

]
(136)

= eΩt

[
e−Ω(T−x)k (T − x) +

w (1− νw)

Ω

(
e−Ω(T−x) − e−Ωt

)
−w (1− νw) (1 + νc) z1

r

[∫ t

T−x
e−Ωjdj −

∫ t

T−x
e−r(T−j)e−Ωjdj

]
− b (1 + νc) z1

r

(∫ t

T−x
e−rT e(r−Ω)jdj −

∫ t

T−x
e−rxe−Ωjdj

)]
(137)
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= eΩt

(
e−Ω(T−x)k (T − x) +

w (1− νw)

Ω

(
e−Ω(T−x) − e−Ωt

)
+
w (1− νw) (1 + νc) z1

r

[
e−rT

r − Ω

(
e(r−Ω)t − e(r−Ω)(T−x) − 1

Ω

[
e−Ω(T−x) − e−Ωt

])]
+
b (1 + νc) z1

r

[
e−rT

r − Ω

(
e(r−Ω)(T−x) − e(r−Ω)t

)
+
e−rx

Ω

(
e−Ω(T−x) − e−Ωt

)])
. (138)

Phase 3
[
T, T − x

]
The individual solves

max
c(t)

:

∫ t0+x

t0

e−ρ(t−t0) c(t)
1−φ

1− φ dt (139)

subject to
dk (t)

dt
= rk (t) + b− (1 + νc) c (t) (140)

k (t0) given (141)

k (t0 + x) = 0. (142)

Using the Maximum Principle, the Hamiltonian and optimality conditions are

H = e−ρ(t−t0) c(t)
1−φ

1− φ + λ (t) (rk (t) + b− (1 + νc) c (t)) (143)

∂H

∂c
= e−ρ(t−t0)c(t)−φ − λ (t) (1 + νc) = 0 (144)

∂H

∂k
= rλ (t) = −dλ

dt
(145)

∂H

∂λ
= rk (t) + b− (1 + νc) c (t) =

dk (t)

dt
. (146)

Solving the maximum condition gives

c(t) =

(
e−ρ(t−t0) 1

λ (t) (1 + νc)

) 1
φ

, (147)

and solving the costate equation yields

dλ

dt
= −rλ (t)→ λ (t) = ae−rt, (148)
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where the unknown constant can be rewritten

λ (t0) = ae−rt0 (149)

a = λ (t0) ert0 (150)

such that

λ (t) = λ (t0) er(t0−t). (151)

Substituting (151) into (147),

c(t) =

(
e−ρ(t−t0) 1

λ (t0) er(t0−t) (1 + νc)

) 1
φ

(152)

= egt
(

1

λ (t0) (1 + νc)
e(r−ρ)t0

) 1
φ

, (153)

where g =
r − ρ
φ

. The notation can be compressed for simplicity, such that

c(t) = egtA (154)

where A =

(
1

λ (t0) (1 + νc)
e(r−ρ)t0

) 1
φ

is again a tranformation of the unknown constant of

integration. Solving the state equation yields

k (t) = ert
[
q +

∫ t

(b− (1 + νc) c (j)) e−rjdj

]
(155)

for t ∈ [t0, t0 + x]. Using the initial condition, k (t0) given, identifies q

k (t0) = ert0
[
q +

∫ t0

(b− (1 + νc) c (j)) e−rjdj

]
(156)

q = k (t0) e−rt0 −
∫ t0

(b− (1 + νc) c (j)) e−rjdj. (157)

26



The intended asset path is therefore

k (t) = ert
[
k (t0) e−rt0 +

∫ t

t0

(b− (1 + νc) c (j)) e−rjdj

]
. (158)

Using the boundary condition, k (t0 + x) = 0,

er(t0+x)

[
k (t0) e−rt0 +

∫ t0+x

t0

(b− (1 + νc) c (j)) e−rjdj

]
= 0, (159)

which is simplified as

k (t0) e−rt0 +

∫ t0+x

t0

be−rjdj =

∫ t0+x

t0

(1 + νc) c (j) e−rjdj. (160)

Substituting (154) in for c (t) gives

k (t0) e−rt0 +

∫ t0+x

t0

be−rjdj =

∫ t0+x

t0

(1 + νc) e
gjAe−rjdj (161)

(1 + νc)A

∫ t0+x

t0

e(g−r)jdj = k (t0) e−rt0 +

∫ t0+x

t0

be−rjdj, (162)

where the tranformation of the unknown constant is identified

A =
k (t0) e−rt0 +

∫ t0+x
t0

be−rjdj

(1 + νc)
∫ t0+x
t0

e(g−r)jdj
. (163)

Therefore, the planned consumption path is

ĉ(t) = egt

[
k (t0) e−rt0 +

∫ t0+x
t0

be−rjdj

(1 + νc)
∫ t0+x
t0

e(g−r)jdj

]
. (164)

Replacing t0 with t yields the actual consumption path,

c(t) = egt

[
k (t) e−rt +

∫ t+x
t be−rjdj

(1 + νc)
∫ t+x
t e(g−r)jdj

]
(165)

= egt

k (t) e−rt +
b

r

(
e−rt − e−r(t+x)

)
(1 + νc)

(g − r)
(
e(g−r)t − e(g−r)(t+x)

)
 . (166)
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Using z1 from above and reducing the fraction,

c(t) = k(t)z1 +

b

r
(g − r) (1− e−rx)

(1 + νc)
(
e(g−r)x − 1

) (167)

= k(t)z1 + bz3

where

z3 =
(g − r) (1− e−rx)

r (1 + νc)
(
e(g−r)x − 1

) . (168)

The actual law of motion for Phase 3 is

dk (t)

dt
= rk (t) + b− (1 + νc) c (t) (169)

= rk (t) + b− (1 + νc) [k(t)z1 + bz3] (170)

= k (t) (r − (1 + νc) z1) + b (1− (1 + νcz3)) . (171)

Rewriting this with Ω = r − (1 + νc) z1 and then solving gives a general solution

k(t) = eΩt

[
q +

∫ t

b (1− (1 + νcz3)) e−Ωjdj

]
. (172)

Using the actual initial condition for Phase 3 identifies the unknown constant

k(T ) = eΩT

[
q +

∫ T

b (1− (1 + νcz3)) e−Ωjdj

]
(173)

q = k(T )e−ΩT −
∫ T

b (1− (1 + νcz3)) e−Ωjdj. (174)

The actual asset path is therefore

k(t) = eΩt

[
k(T )e−ΩT +

∫ t

T
b (1− (1 + νcz3)) e−Ωjdj

]
(175)

= eΩt

[
k(T )e−ΩT +

b (1− (1 + νcz3))

Ω

(
e−ΩT − e−Ωt

)]
(176)
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= k(T )e−Ω(T−t) +
b (1− (1 + νcz3))

Ω

(
e−Ω(T−t) − 1

)
. (177)

Phase 4
[
T − x, T

]
There is no time inconsistency in this phase. The path can be easily acquired by evaluating

(164) at t0 = T − x,

c(t) = egt

k (T − x) e−r(T−x) +
∫ T
T−x be

−rjdj

(1 + νc)
∫ T
T−x e

(g−r)jdj

 (178)

= egt


k
(
T − x

)
e−r(T−x) −

b
(
e−rT − e−r(T−x)

)
r

(1 + νc)
(
e(g−r)T − e(g−r)(T−x)

)
 (g − r) (179)

= egt (g − r)

k
(
T − x

)
e−r(T−x) − be−rT (1− erx)

r
(1 + νc) e(g−r)T

(
1− e−x(g−r)

)
 (180)

= egt
(g − r)
(1 + νc)

k
(
T − x

)
erx − b (1− erx)

r
egT

(
1− e−x(g−r)

)
 . (181)

Defining

z4 =
(g − r)
(1 + νc)

k
(
T − x

)
erx − b (1− erx)

r
egT

(
1− e−x(g−r)

)
 , (182)

actual consumption can be rewritten

c(t) = egtz4. (183)

Coupled with
dk (t)

dt
= rk (t) + b − (1 + νc) c (t) and k

(
T − x

)
given, (183) characterizes

the asset path during Phase 4.
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Appendix B: derivation of the present value of taxes

Assuming t0 = 0 for simplicity of demonstration, which corresponds to Phase 1, the present

value of taxes paid over a short horizon in the payroll-tax financed regime is

Iw ≡
∫ x

0
e−rtνwwdt (184)

=
νww

r

(
1− e−rx

)
. (185)

The present value of taxes paid in the consumption-tax financed regime is

Ic ≡
∫ x

0
e−rtνcĉ(t)dt (186)

=
νcĉ(0)

g − r

(
e(g−r)x − 1

)
(187)

where

ĉ(t) = ĉ(0)egt, (188)

and where

ĉ(0) =
w(1− νw)

∫ x
0 e
−rtdt

(1 + νc)
∫ x

0 e
(g−r)tdt

(189)

=

w(1− νw)

r
(1− e−rx)

(1 + νc)

(g − r)
(
e(g−r)x − 1

) . (190)

This can be rewritten

Ic =
νc
g − r

(
e(g−r)x − 1

) w(1− νw)

r
(1− e−rx)

(1 + νc)

(g − r)
(
e(g−r)x − 1

) (191)

=
νcw(1− νw)

(1 + νc)r

(
1− e−rx

)
. (192)

Comparing only one tax regime at a time, νw = 0 such that

Ic =
νcw

(1 + νc)r

(
1− e−rx

)
(193)
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Setting Ic equal to Iw with a scaler inserted suggests

IwΓ = Ic, (194)

or rewritten with substitution

νww

r

(
1− e−rx

)
Γ =

νcw

(1 + νc)r

(
1− e−rx

)
. (195)

This can also be written as

Γ =
νc

(1 + νc)νw
, (196)

or as

νw =
νc

(1 + νc)
(197)

with Γ = 1.
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Table 1

Baseline parameters

Retirement date T 40

Date of death T 55

planning horizon x 10

IEIS φ 1

Personal discount rate ρ 0.035

retiree to worker ratio R 2.667

wage w 40000

real rate or return r 0.035

Table 2

No program vs. consumption-tax financed program
W0 W∗w CV

1 236.3025252 252.6870847 34.70285%
2 246.2265692 252.7763546 12.64679%
3 249.5221449 252.8793832 6.29422%
4 251.1668483 252.9992367 3.38774%
5 252.152197 253.1384632 1.80939%
6 252.8081444 253.2981998 0.89499%
7 253.2759645 253.4785241 0.36897%
8 253.6262497 253.6790217 0.09600%
9 253.898201 253.899142 0.00171%
10 254.1153312 254.1153312 0
11 254.292599 254.292599 0
12 254.4399751 254.4399751 0
13 254.564361 254.564361 0
14 254.6706858 254.6706858 0
15 254.7625637 254.7625637 0

ρ = 0.035, µ = .035, r = 0.035, T̄ = 55, T = 40
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Table 3

No program vs. payroll-tax financed program
W0 W∗c CV

1 236.3025252 252.6862788 34.70088%
2 246.2265692 252.7732336 12.64040%
3 249.5221449 252.8726371 6.28118%
4 251.1668483 252.9881505 3.36690%
5 252.152197 253.123226 1.78118%
6 252.8081444 253.2802075 0.86199%
7 253.2759645 253.4606859 0.33642%
8 253.6262497 253.6661419 0.07256%
9 253.898201 253.898201 0
10 254.1153312 254.1153312 0
11 254.292599 254.292599 0
12 254.4399751 254.4399751 0
13 254.564361 254.564361 0
14 254.6706858 254.6706858 0
15 254.7625637 254.7625637 0

ρ = 0.035, µ = .035, r = 0.035, T̄ = 55, T = 40

Table 4
x ν∗c U∗c ν∗w U∗w ∆

1 .125 252.6871 .112 252.6863 0.00330%
2 .116 252.7764 .104 252.7732 0.01279%
3 .106 252.8794 .096 252.8726 0.02765%
4 .094 252.9992 .086 252.9882 0.04544%
5 .079 253.1385 .073 253.1232 0.06246%
6 .063 253.2982 .059 253.2802 0.07376%
7 .045 253.4785 .042 253.4607 0.07312%
8 .025 235.6790 .022 253.6661 0.05279%
9 .004 254.8991 0 253.8982 0.00386%
10 0 254.1153 0 254.1153 0
11 0 254.2926 0 254.2926 0
12 0 254.4400 0 254.4400 0
13 0 254.5644 0 254.5644 0
14 0 254.6707 0 254.6707 0
15 0 254.7626 0 254.7626 0

Note. ρ = 0.035, µ = .035, r = 0.035, T̄ = 55, T = 40
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Table 5
x ν∗c U∗c ν∗w U∗w ∆

1 .174 308.4714 .149 308.4695 .00657%
2 .165 308.5540 .142 308.5463 .02570%
3 .155 308.6604 .134 308.6437 .05608%
4 .142 308.7936 .124 308.7654 .09448%
5 .126 308.9556 .112 308.9151 .13564%
6 .109 309.1477 .097 309.0962 .17233%
7 .089 309.3703 .079 309.3119 .19544%
8 .066 309.6234 .058 309.8617 .19325%
9 .042 309.9069 .033 309.8617 .15141%
10 .016 310.2202 .004 310.2047 .05193%
11 0 310.5562 0 310.5562 0
12 0 310.8565 0 310.8565 0
13 0 311.1156 0 311.1156 0
14 0 311.3416 0 311.3416 0
15 0 311.5403 0 311.5403 0

Note. ρ = 0.025, µ = 0.025, r = 0.035, T̄ = 55, T = 40

Table 6
x ν∗c U∗c ν∗w U∗w ∆

1 .089 211.4763 .082 211.4761 .00123%
2 .080 211.5726 .074 211.5716 .00477%
3 .070 211.6777 .066 211.6756 .01039%
4 .059 211.7964 .056 211.7913 .01668%
5 .046 211.9263 .044 211.9219 .02148%
6 .031 212.0735 .030 212.0691 .02193%
7 .015 212.2356 .013 212.2327 .01427%
8 0 212.4104 0 212.4104 0
9 0 212.5603 0 212.5603 0
10 0 212.6770 0 212.6770 0
11 0 212.7700 0 212.7700 0
12 0 212.8452 0 212.8452 0
13 0 212.9070 0 212.9070 0
14 0 212.9585 0 212.9585 0
15 0 213.0018 0 213.0018 0

Note. ρ = 0.045, µ = 0.045, r = 0.035, T̄ = 55, T = 40
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Table 7
x ν∗c U∗c ν∗w U∗w ∆

1 .374 565.3000 .272 562.7388 4.76679%
2 .371 565.3004 .271 562.9414 4.38237%
3 .366 565.3026 .269 563.1766 3.94103%
4 .359 565.3085 .266 563.4393 3.45695%
5 .349 565.3209 .262 563.7199 2.95371%
6 .337 565.3431 .257 564.0081 2.45685%
7 .323 565.3782 .250 564.2955 1.98807%
8 .306 565.4298 .242 564.5765 1.56368%
9 .288 565.5014 .232 564.8478 1.19540%
10 .267 565.5965 .221 565.1082 0.89184%
11 .245 565.7188 .207 565.3572 0.65964%
12 .220 565.8716 .190 565.5949 0.50444%
13 .194 566.0587 .170 565.8220 0.43127%
14 .166 566.2832 .146 566.0400 0.44327%
15 .137 566.5486 .116 566.2936 0.46484%

Note. ρ = 0.035, µ = 0, r = 0.035, T̄ = 55, T = 40

Table 8
x ν∗c U∗c ν∗w U∗w ∆

1 .374 565.2580 .272 562.7530 4.65972%
2 .371 565.2970 .271 562.9989 4.26686%
3 .365 565.3624 .268 563.3064 3.80884%
4 .356 565.4555 .264 563.6687 3.30197%
5 .344 565.5783 .258 564.0726 2.77548%
6 .329 565.7334 .251 564.5032 2.26184%
7 .311 565.9231 .242 564.9476 1.78939%
8 .291 566.1499 .230 565.3959 1.38025%
9 .268 566.4161 .216 565.8412 1.0579%
10 .243 566.7788 .198 566.2785 0.91387%
11 .215 567.1300 .177 566.7046 0.77635%
12 .186 567.5262 .152 567.1175 0.74581%
13 .154 567.9690 .121 567.5568 0.75219%
14 .121 568.4595 .083 568.0839 0.68528%
15 .087 568.9987 .037 568.7190 0.5984%

Note. ρ = 0.025, µ = 0, r = 0.035, T̄ = 55, T = 40
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Table 9
x ν∗c U∗c ν∗w U∗w ∆

1 .374 565.2870 .272 562.7246 4.76908%
2 .372 565.2491 .272 562.8844 4.39332%
3 .368 565.1886 .270 563.0481 3.96862%
4 .362 565.1085 .268 563.2125 3.50739%
5 .354 565.0122 .266 563.3713 3.02842%
6 .345 564.9038 .262 563.5181 2.55147%
7 .334 564.7871 .258 563.6479 2.09280%
8 .321 564.6665 .253 563.7588 1.66405%
9 .306 564.5464 .248 563.8506 1.27308%
10 .290 564.4312 .241 563.9246 0.92547%
11 .272 564.3258 .232 563.9828 0.62569%
12 .253 564.235 .222 564.0275 0.37794%
13 .232 564.1636 .211 564.0611 0.18659%
14 .209 564.1167 .196 564.0857 0.05648%
15 .184 564.0995 .179 564.1033 −0.00702%

Note. ρ = 0.045, µ = 0, r = 0.035, T̄ = 55, T = 40

Figure 1

Consumption profiles with and without consumption-tax financed program

Note. ρ = 0.035, r = 0.035 , T̄ = 55, T = 40, x = 10
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Figure 2

Asset accounts with and without consumption-tax financed program

Note. ρ = 0.035, r = 0.035, T̄ = 55, T = 40, x = 10

Figure 3

Consumption profiles with and without consumption-tax financed program

Note. ρ = 0.025, r = 0.035, T̄ = 55, T = 40, x = 10
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Figure 4

Asset accounts with and without consumption-tax financed program

Note. ρ = 0.025, r = 0.035, T̄ = 55, T = 40, x = 10

Figure 5

Consumption profiles with and without consumption-tax financed program

Note. ρ = 0.045, r = 0.035, T̄ = 55, T = 40, x = 10
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Figure 6

Asset accounts with and without consumption-tax financed program

Note. ρ = 0.045, r = 0.035, T̄ = 55, T = 40, x = 10
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