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ABSTRACT2

3

Functional near infrared spectroscopy (fNIRS) is a neuroimaging techonology that enables4
investigators to indirectly monitor brain activity in vivo through relative changes in the concentration5
of oxygenated and deoxygenated hemoglobin. One of the key features of fNIRS is its superior6
temporal resolution, with dense measurements over very short periods of time (100ms7
increments). Unfortunately, most statistical analysis approaches in the existing literature have not8
fully utilized the high temporal resolution of fNIRS. For example, many analysis procedures are9
based on linearity assumptions that only extract partial information, thereby neglecting the overall10
dynamic trends in fNIRS trajectories. The main goal of this article is to assess the ability of a11
functional data analysis approach for detecting significant differences in hemodynamic responses12
recorded by fNIRS. Children with and without specific language impairment wore two, 3×5 fNIRS13
caps situated over the bilateral parasylvian areas as they completed a language comprehension14
task. Functional data analysis was used to decompose the high dimensional hemodynamic curves15
into the mean function and a few eigenfunctions to represent the overall trend and variation16
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structures over time. Compared to the most popular general linear model, we did not assume any17
parametric structure and let the data speak for itself. This analysis identified significant differences18
between the case and control groups in the oxygenated hemodynamic mean trends in the right19
inferior frontal cortex and left inferior posterior parietal cortex brain regions. We also detected20
significant group differences in the deoxygenated hemodynamic mean trends in the right inferior21
posterior parietal cortex and left temporal parietal junction brain region. These findings, using22
dramatically different approaches, experimental designs, data sets, and foci, were consistent23
with several other reports, confirming group differences in the importance of these two areas for24
syntax comprehension. The proposed functional data analysis was consistent with the temporal25
characteristics of fNIRS, thus providing an alternative methodology for fNIRS analyses.26

Keywords: fNIRS, Hemodynamic response curve, Functional Data Analysis, Specific Language Impairment, Sentence Comprehension27
28

1 INTRODUCTION

Functional near infrared spectroscopy (fNIRS) is a non-invasive method for measuring near-infrared light29
absorption through the skull, enabling researchers to speculate a close proxy to neural activation that results30
from relative changes of the cerebrovascular alterations in oxygenated and deoxygenated hemoglobin31
concentrations in cortical structures (Villringer and Dirnagl, 1994; Boas et al., 2014; Tak and Ye, 2014).32
Since light between 650 and 950 nm is weakly absorbed by biological chromophores (Hoge et al., 2005),33
the relatively deep penetration of NIR light makes it an effective research tool in neuro-imaging studies.34
Compared to other imaging technologies such as functional magnetic resonance imaging (fMRI) and35
positron emission tomography (PET), fNIRS has a few advantages such as low cost, high flexibility,36
portability, and the ability to accommodate young children and patients with psychological issues (Arenth37
et al., 2007; Ye et al., 2009). fNIRS offers superior temporal resolution with dense measurements over time38
and provides data for a wide range of functional contrasts such as oxygenated (∆HbO), deoxygenated39
(∆HbD), and total hemoglobin (∆HbT ) responses simultaneously as participants perform functional40
tasks in naturalistic environments (Ye et al., 2009; Kozel et al., 2009; Tak and Ye, 2014; Hall et al., 2013).41
Despite the extensive study of fNIRS data, little has been done to study the mean and variation trends42
of hemodynamic curves as individuals complete language processing tasks. Indeed, analysis approaches43
that truly utilize the superior temporal characteristics of fNIRS are rare in the existing literature. Even44
rarer are studies of concomitant behavioral and neural differences between children with specific language45
impairment (SLI) and typically developing control children as they complete language comprehension46
tasks.47

In this article, we introduce a functional data analysis (FDA) methodology with a goal of addressing48
several challenging questions: 1) how to best utilize the superior temporal resolution of fNIRS; 2) how to49
model its hemodynamic trends for syntax-related stimuli; 3) how to connect light optodes with brain regions50
without anatomy information; 4) how to speculate the differences in brain activities between case and51
control in reaction to the same stimuli. FDA is a nonparametric data-driven statistical technique that does52
not make any parametric assumption such as the linearity or normality. Our main objective was to model53
the overall hemodynamic trends from a functional perspective as opposed to individual discrete points that54
are considered using existing analysis approaches. Although the modeling goal of FDA conforms to the55
temporal hemodynamic signals of the fNIRS context (Barati et al., 2013), it has seldom been applied in the56
fNIRS literature.57
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Tak and Ye (2014) reviewed currently existing statistical models in fNIRS data. The most well-known58
and widely used method was the general linear model (GLM) (Schroeter et al., 2004; Plichta et al., 2007),59
which has been integrated into numerous fNIRS analysis tools (Shimada and Hiraki, 2006; Koh et al.,60
2007; Abdelnour and Huppert, 2009; Ye et al., 2009; Strangman et al., 2009; Huppert et al., 2009; Custo61
et al., 2010; Penny et al., 2011). As a multivariate statistical model, GLM works well, but FDA differs in62
important ways. First, GLM is a traditional parametric model that assumes a linear combination structure.63
Assuming a parametric form would likely be misleading if the underlying data did not satisfy the main64
linear assumptions. Therefore, nonparametric modeling without any assumptions should be more flexible.65
Second, as a multivariate model, GLM does not utilize the time course of the data and hence can not66
capture the overall trends of the hemoglobin concentration in the dynamic or functional sense (Barati et al.,67
2013). Third, GLM does not provide a relevant hypothesis test approach to compare the differences in the68
overall hemodynamic trends between case and control groups due to its model structure restrictions.69

Comparing which brain regions are significantly involved in a task performed by two groups requires70
formal hypothesis testing. Unfortunately, many of the current statistical approaches used to perform71
hypothesis tests for fNIRS data may not be optimal in the functional sense. Simple statistics such as t-test72
have been performed to statistically compare single-value differences between different groups (Germon73
et al., 1994; Aldrich et al., 1994; Germon et al., 1999; Young et al., 2000; Hoshi et al., 2001; Isobe et al.,74
2001; Kennan et al., 2002; Schroeter et al., 2002; Hoshi, 2003; Matsuo et al., 2003; Tachtsidis et al.,75
2004; Tsujimoto et al., 2004; Shibuya-Tayoshi et al., 2007; Kim et al., 2010). Multi-way ANOVA has also76
been employed in fNIRS studies (Fallgatter and Strik, 1998; Bartocci et al., 2000; Fallgatter and Strik,77
2000; Herrmann et al., 2003; Hoshi, 2003; Suto et al., 2004; Folley and Park, 2005; Kameyama et al.,78
2006; Arenth et al., 2007; Irani et al., 2007). Although these methods were able to evaluate differences in79
hemoglobin observations, information was lost because only partial measurements were considered. Using80
FDA to compare the overall temporal mean and variation trends of hemodynamic functions rather than81
simply defining a magnitude may be more informative and robust, especially in a context in which optical82
signal attenuation or motion artifacts cause noise (Ye et al., 2009).83

When repeated measurements are recorded over a dense grid of time points, often by machine, they are84
typically termed as functional or longitudinal data, with one observed curve per subject. Formally, FDA85
models each hemodynamic response curve as a continuum function over time, thus capturing the overall86
dynamic trajectories of the function over time, even though the measurements are collected discretely87
(Ramsay and Silverman, 2002; Ramsay, 2006; Ferraty and Vieu, 2006; Barati et al., 2013). Although some88
experimental errors are generally unavoidable, the nonparametric kernel smoothing captures the underlying89
mean function and hence greatly reduces the effects of noise. The functional principal component analysis90
(FPCA) based on the Karhunen-Loeve theorems decomposes the high dimensional auto-covariance matrix91
extracted from fNIRS data to a few important orthogonal eigenfunctions. The first few eigenfunctions92
explaining the majority of variation are likely induced by cognitive related tasks, with the remaining93
eigenfunctions explaining only a very small percentage of variation that may be caused by nuisance factors94
such as breathing, vasomotor, measurement error, movement artifacts, and other unaccounted activities95
(Akgül et al., 2006). To perform comprehensive comparisons on the hemodynamic curves between case96
and control groups, we tested the equality of mean functions, and eigenfunctions and eigenvalues of the97
auto-covariance functions using two-sample FPCA approaches. Bootstrap sampling was used to determine98
the threshold of the significance of the tests because the distributions of the test statistics were unknown99
(Benko et al., 2009). Importantly, FDA is inherently nonparametric and does not assume any parametric100
structure or distributions within the hemodynamic curve data.101
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Some researchers have investigated the functional relationship between fNIRS and fMRI and their102
correlation over time (Mandeville et al., 1999; Siegel et al., 2003; Okamoto et al., 2004; Fujiwara et al.,103
2004; Steinbrink et al., 2006). Although many common properties exist between fNIRS and fMRI,104
functional curve based modeling, which is mature in fMRI research (Grodzinsky, 2000; Ben Schachar et al.,105
2003; Müller et al., 2003; Ben-Shachar et al., 2004; Binder et al., 2009; Seghier et al., 2010; Seghier, 2013;106
Weismer et al., 2005), has rarely been used for fNIRS stand-alone experiments. The progress achieved in107
fMRI analyses paves the way for improvements on fNIRS approaches. We believe that the FDA approach108
could promote breakthroughs in fNIRS research, similar to the way it did for fMRI.109

To test the potential of FDA to analyze fNIRS data, we used fNIRS to asssess differences in neural110
activation between children (case: children with specific language impairment; control: age-matched,111
typically-developing children) as they engaged a language comprehension task that is known to favor112
the children in the control group. Specific language impairment is a developmental language disorder of113
unknown origin that is characterized by significant deficits in the acquisition and use of spoken and written114
language in the absence of hearing, intellectual, emotional, or acquired neurological impairments (Leonard,115
2014; Bishop, 2014). This disorder affects approximately 7% of the school-age population (Tomblin et al.,116
1997). If functional data analysis is a promising statistical approach for fNIRS, it should reveal group117
differences in parasylvian (language related) neural regions as children perform the task.118

2 MATERIALS AND METHODS

2.1 Participants119

Thirty children (15 children with specific language impairment and 15 age-matched, typically developing120
control children) between the ages of 8 and 12 participated in the study. There were 8 males in each group.121
The children in the SLI group met the standard classification criteria of performance on multiple language122
measures that was one or more standard deviations below the mean. The typically-developing controls123
performed above one standard deviation from the mean on multiple language measures. All the children124
in both groups were right-handed, monolingual English speakers. All the children in the SLI group were125
receiving special education services in the public schools. In addition, we provided independent testing to126
insure that the children in the SLI group met our identification criteria.127

2.2 Sentence Comprehension Task128

The children completed a language comprehension task in which they listened to a sentence and then129
selected a picture (from three choices) that depicted the agent (actor) in the sentence. There were 60 total130
sentences with 15 sentences representing each of four sentence types: subject-verb-object (“The ring had131
moved the square behind the very bright cold bed”), subject relatives (“The watch that had hugged the132
truck behind the kite was bright”), passives (“The shoe was hugged by the clock under the very cold box”),133
and object relatives (“The book that the shirt had hugged under the kite was new”). The sentences were134
controlled for length, vocabulary complexity, and vocabulary imageability (Montgomery et al., 2015).135
Similar to Dick et al. (2004), noun animacy and noun affordance cues were removed, making the sentences136
semantically implausible. This was done so that the children’s decisions about the agent of the sentence137
would be based primarily on syntactic knowledge or word order rather than semantic plausibility. Children138
saw three pictures on a computer screen as they listened to each sentence. They were asked to point to the139
picture of the agent of the sentence (the thing doing the action) as quickly as possible after hearing each140
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sentence. All children completed 8 training items before fNIRS scanning began. See Montgomery et al.141
(2015) for a complete description of the stimuli.142

2.3 functional Near Infrared Spectroscopy Procedures143

Data was collected with the Hitachi ETG-4000 (Hitachi Medical Co., Japan) with 44 channels divided144
across two 3 × 5 probe caps. The channels were determined by bilateral placement of the optode caps145
such that the middle detector in the lowest row of optodes was placed over T3 or T4. The measurement146
patches covered the majority of the right and left parasylvian regions including inferior frontal cortex,147
inferior parietal lobule (including the temporal parietal junction and inferior posterior parietal cortex),148
and superior temporal cortex. The channel locations are depicted in Figure 1.149

The fNIRS scan began with a 30 second rest period in which children were instructed to focus on a “+”150
in the middle of the computer screen and to “relax” their mind. After the first rest period, children listened151
to 60, 12-word sentences representing four different syntax types (15 subject-verb-object sentences, 15152
subject relative clause sentences, 15 passive sentences, and 15 object relative clause sentences). E-prime153
software was used to present the stimuli in a pseudo-random order and to record the accuracy and speed154
of the children’s responses. The sentences were presented in three blocks of 20 items, presented in a155
psudorandom order, with each item being separated by a jittered rest interval that varied between 2 and 6156
seconds. Each block was separated by a 25 second rest period. The stimuli onsets for each participant were157
consistently predefined and each participant was given 8 seconds to think and respond.158

Throughout the fNIRS scan, near-infrared light from the source optodes travels approximately 1-1.5 cm159
into the cortex where it is absorbed by oxygen molecules attached to hemoglobin in the blood in the brain160
(Dehghani and Delpy, 2000). The amount of light that is not absorbed is measured by the detecting optodes.161
The relative changes in the concentration of oxygenated hemoglobin (∆HbO), deoxygenated hemoglobin162
(∆HbD) and total hemoglobin (∆HbT ) were estimated according to changes in the optical properties of163
the light using the Beers-Lambert conversion (see Plichta et al. (2007) for a detailed description). A length164
of 8,521 and a frequency of 10 Hz time series was collected within a duration of 851 seconds for each165
channel of each participant. Figure 2A displays one example of original ∆HbO time series at channel 31166
(mainly overlapped in the right inferior frontal cortex) for a child in the SLI group.167

2.4 Data Preprocessing168

There were a total of 3,960 individual time series collected from three hemoglobin categories (∆HbO,169
∆HbD and ∆HbT ), 44 channels, and 30 participants (15 cases and 15 controls). Each time series170
contained 8,521 measurement units consisting of 4,800 intermittent task measurement units and 3,721 rest171
measurement units. The active periods represented 15 stimuli segments for each of the four syntax types.172
The following preprocessing steps were designed to extract the most important information from such a173
large amount of data.174

The first step of data preprocessing was to group channels based on regions of interest (ROIs). The global175
alignments of the channel positions between individuals were difficult because fNIRS has the shortcoming176
of weak spatial anatomical representation. The ROIs for the current project were derived a priori based on177
previous findings in both the fMRI and fNIRS literature demonstrating changes in cortical activation during178
language processing tasks. Four areas within the parasylvian region, inferior frontal cortex (Broca’s area),179
superior temporal cortex, the temporal parietal junction and posterior inferior parietal cortex (Angular180
Gyrus) are frequently implicated in verbal tasks (Rossi et al., 2012; Scherer et al., 2012; Petrides, 2013).181
A Polemus system was used for 3D digitization of head size and optode location following testing. This182
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provided standardized Montreal Neurological Institute coordinates and anatomical labels that related to183
each participant individually. We determined the corresponding channel for each monitored brain region184
based on the largest percentage of overlapping rate between the channel and the brain regions of interest185
for each participant.186

The second step of data preprocessing was to extract only stimulus-related active units from the original187
time series and focus only on the segments associated with cognitive activity during the target stimulus188
comprehension tasks. There were 60 such windowed segments, each lasting 8 seconds (corresponding to189
80 units), and hence, a total 4,800 units were extracted. As an example, Figure 2B displays the stimulus-190
relevant ∆HbO extracted from the original time series at channel 31 (mainly overlapping the right inferior191
frontal cortex) for a child (Sue) in the SLI group. This process was repeated for all individuals.192

Since the observations were collected very densely, we used the average of the 10 units per second as193
the modeling target, illustrated in Figure 2C. Comparing B and C of Figure 2, notice that the two signals194
look almost the same, except Figure 2B has length 4,800 but Figure 2C is only of length 480 (1/10 of195
original length). If there were any differences caused by averaging the 10 dense units per second (Figure196
2C), it would be smoother and would capture the trend even better by removing more noise or errors from197
averaging.198

The third step of data preprocessing related to selecting the hemoglobin categories. It is not clear whether199
neuronal activation is best represented by ∆HbO, ∆HbD, or ∆HbT . Researchers may expect that the200
deoxygenated hemoglobin to show opposite trends to that of ∆HbO because the ∆HbO and ∆HbD201
often complement each other (Cui et al., 2010). However, comparing Figure 3A with Figure 3B for one202
example of the same channel for the same person, note that the deoxygenated hemodynamic trends are203
flatter than the oxygenated hemodynamic trends, and there does not appear to be opposite trends in most204
time segments. This suggests that the oxygenated hemoglobin contains a more rubust signal than the205
deoxygenated hemoglobin. In this article, we mainly focused on modeling ∆HbO and ∆HbD because the206
results of ∆HbT (the sum of ∆HbO and ∆HbD) were highly correlated with the other two.207

The forth step of data preprocessing involved extracting the syntax-relevant time course by locating the208
time onsets of the 15 questions for each syntax type. This yielded four different time courses, each with209
120 units. As an example, Figure 4 displays one example of the four syntax-relevant ∆HbO hemodynamic210
curves extracted from the original time series at channel 31 (mainly overlapped in the right inferior frontal211
cortex) for a child in the SLI group named Sue.212

Factors such as breathing, vasomotor response, measurement error, movement artifacts, and other213
unaccounted activities (Akgül et al., 2006), may cause noise in fNIRS data. These four preprocessing steps214
enabled us to extract the most important signals and remove unavoidable confounding factors. Comparing215
Figure 2A with Figure 4, notice that it is harder to recognize patterns from Figure 2A due to many complex216
and sharp fluctuations and strands. On the contrary, the patterns are smoother and clearer in Figure 4. After217
these preprocessing steps, our data were ready for the statistical models and hypothesis tests.218

2.5 Functional Data Analysis Structure219

Let Yikc, i = 1, . . . , n; k = 1, . . . , T ; c = 1, 2, denote the relative changes in the concentrations of220
oxygenated or deoxygenated hemoglobin of the ith subject measured at discrete time point tk for the cth221
group. Here c = 1 denotes the case group and c = 2 denotes the control group, n is the number of subjects222
per group, and T is the total time points measured for each subject. These observed densely collected curves223
with noise can be modeled as independent realizations of a stochastic process with smooth trajectories.224
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Let X1c(t), . . . , Xnc(t) denote random smooth trajectories of the underlying stochastic process in L2(T ),225
t ∈ T , where T is the time interval. Then we can reconstruct the smooth functions X ′is from the original226
densely collected noisy observations Y ′i s as (Müller, 2008)227

Yikc = Xic(t) + εikc, i = 1, . . . , n; c = 1, 2; k = 1, . . . , T ; t ∈ T , (1)

where εikc are the experimental errors and assumed to be independent, with E(εikc) = 0 and V ar(εikc) =228
σ2kc.229

For each group c, the mean function of Xic(t) is µc(t) = E(Xic(t)) and auto-covariance function of230
Xic(t) is231

Gc(s, t) = cov{Xic(s), Xic(t)} = E{[Xic(s)− µc(s)][Xic(t)− µc(t)]},

for s, t ∈ T . Here µc(t) is interpreted as the mean function of oxygenated or deoxygenated hemodynamic232
curves for group c. Throughout this paper, it is assumed that µc(t) is a smooth function of t, and Gc(s, t)233
is a positive definite and bivariate smooth function of s and t, for s, t ∈ T . The “smooth” refers to twice234
continuously differentiable. The idea of model (1) is that the observed noisy curve over time is described235
by an underlying smooth function plus noise.236

In order to model the auto-covariance function, functional PCA interprets Gc(s, t) as the kernel of a237
linear integral operator on the space L2(T ) of square-integrable functions on T , mapping f ∈ L2(T ) to238
AGcf ∈ L2(T ) defined by239

(AGcf)(t) =

∫
T
f(s)Gc(s, t)ds. (2)

An eigenfunction v of the auto-covariance operator AGc is a solution of the equation (AGcv)(t) = λv(t),240
with eigenvalue λ. For each c, we assume that the operator AGc has a sequence of smooth orthonormal241
eigenfunctions vlc satisfying

∫
T vkc(t)vlc(t)dt = δkl (here δkl is the Kronecker symbol), with ordered242

eigenvalues λ1c ≥ λ2c ≥ . . . ≥ 0. By Mercer’s Theorem, applying a spectral decomposition on the243
function Gc yields244

Gc(s, t) =
∞∑
l=1

λlcvlc(s)vlc(t). (3)

Since the eigenfunctions vlc’s form a complete orthonormal sequence on L2(T ), the generalized Fourier245
expansion (Karhunen− Loeve Theorem (Karhunen, 1946) or functional principal component expansion)246
on Xic yields247

Xic(t) = µc(t) +
∞∑
l=1

ζilcvlc(t), c = 1, 2, (4)

where the sum is defined in the sense of L2 convergence and248

ζilc =< Xic − µc, vlc >=

∫
T

(Xic(t)− µc(t))vlc(t)dt (5)

are uncorrelated random variables with E(ζilc) = 0, and var(ζilc) = λlc, subject to the L2 convergence,249
i.e.250

Σlλlc = E(||Xic − µc||2) =

∫
Gc(t, t)dt <∞.
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ζlc are frequently referred to as the lth functional principal component score or the lth dominant modes of251
random effects.252

By way of Equation (4), the dynamic trends of random function Xic(t) can be modeled by the mean253
trend function µc(t), the eigenfunction vlc, and the distribution of functional principal component scores254
ζilc. The first L principal components were used to approximate Equation (4) to capture the most important255
variations, remove the noise effects, and estimate the main signals of the trajectories of Xc(t) effectively256
(Ramsay and Silverman, 2002).257

2.6 Parameter Estimates258

Using the observed data set D = {Yikc, i = 1, . . . , n; k = 1, . . . , T ; c = 1, 2}, we were able to estimate259
all unknown parameters µ̂c(t), Ĝc(s, t), and σ̂2kc from Equations (1 - 5). The smooth function Xic(tk) and260
σ̂2kc of each discrete noisy observation (tik, Yikc) were estimated by model (1) via nonparametric kernel261
smoothing. Then the unbiased estimator of µc(t) was easily obtained from the sample mean of Xic(t).262

Once the estimator µ̂c(t) was obtained, we computed the sample estimate of auto-covariance matrix by263

Ĝc(t, s) = n−1Σn
i=1{Xic(s)− µ̂c(s)}{Xic(t)− µ̂c(t)}.

The estimate of eigenfunctions were obtained by the corresponding spectral decomposition on Ĝc(s, t). To264
be more specific, λ̂qc are eigenvalues of Ĝc, given by265 ∫

T
Ĝc(s, t)v̂lc(s)ds = λ̂lcv̂lc(t).

And v̂lc is the eigenfunction corresponding to λ̂lc, satisfying
∫
T v̂

2
lc(t)dt = 1 and

∫
T v̂kcv̂lc(t)dt = 0 if266

k 6= l. The signs of v̂lc were not uniquely determined. In order to ensure the closeness of v̂lc from two267
groups of c = 1, 2, we allowed the signs of v̂lc to be chosen arbitrarily as long as < v̂l1, v̂l2 > ≥ 0 for268
l = 1, . . . , L.269

Ĝc also presents an empirical version of the expansion (3)270

Ĝc(s, t) =
L∑
l=1

I(λ̂lc > 0)λ̂lcv̂lc(s)v̂lc(t), (6)

where I is the indicator function used to only keep the terms with positive eigenvalues. From the271
percentage of variation explained by the first few eigenfunctions, the first L largest eigenvalues λ̂1c, . . . , λ̂Lc272
were chosen. The positive definiteness of the estimated auto-covariance matrix Ĝc(s, t) was not always273
guaranteed, which might be a problem in practical applications. Once λ̂lc and v̂lc were obtained, we checked274
whether or not λ̂lc > 0 (Müller, 2008). If λ̂lc was negative, then we dropped this negative eigenvalue and its275
corresponding eigenfunction, and reconstituted the estimate from remaining eigenvalues and eigenfunction276
estimates.277

Once eigenvalues λ̂1c ≥ . . . ≥ λ̂Lc and orthonormal eigenfunctions v̂1, . . . , v̂L were obtained, the fitting278
of individual trajectories required estimation of functional principal component scores. By the discretization279
on the equation (5), plugging µ̂c and v̂lc into a Riemann sum approximation of the integral, we have280

ζ̂ilc = ΣT
k=1(Xic(tk)− µ̂(tk))v̂lc(tk)(tk − tk−1), (7)
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setting t0 = 0 (Müller, 2008). We assured that n−1Σζ̂ilc = 0, n−1Σζ̂ilcζ̂iwc = 0 for l 6= w; l, w = 1, . . . , L,281
and n−1Σζ̂2ilc = λ̂lc. This approximation method by sum worked well because our observations were282
collected densely and consistently for all subjects without missing values.283

2.7 Nonparametric Kernel Smoothing284

The nonparametric regression kernel smoothing was a traditional approach to capture the curve trends285
without making assumptions about the error distributions. The goal of smoothing was to model the286
underlying function by estimating X(t) = E(Y |t) from the original discrete measurement and removing287
the noisy observations caused by measurement errors. To define a kernel smoother, we need a bandwidth h288
and a kernel function K.289

The Nadaraya-Watson Estimator (NW), a basic framework for kernel estimators (Nadaraya, 1964; Watson,290
1964; Cai, 2001; Racine and Li, 2004; Bailey et al., 2010; Demir and Toktamiş, 2010; Kato, 2012; Simonoff,291
2012), was defined by292 ∑n

i=1Kh(t− ti)Yi∑n
j=1Kh(t− tj)

, (8)

where Kh(t) = 1/hK(t/h). The kernel function K(t) was a non-negative symmetric real valued integrable293
function satisfying

∫∞
−∞K(t)dt = 1,

∫∞
−∞ tK(t)dt = 0, and

∫∞
−∞ t

2K(t)dt > 0. The Epanechnikov294

kernel K(t) = 3/4(1 − t2)I(|t| < 1) was used. The bandwidth h controled the number of points that295
neighbored each ti and hence determined the weight of each point contributing to the estimator. The choice296
of bandwidth was crucial in changing the result because it served as a smoothing parameter and determined297
the trade-off between the variance and bias of the resulting nonparametric regression estimates. Typically,298
smaller h decreases the bias but increases the estimation variance. We chose the optimal bandwidth that299
minimized the Generalized Cross Validation (GCV).300

GCV (h) =
1

T (1− ν/T )2

T∑
k=1

(Yikc −Xic(tk))
2,

for each subject i and group c. Here ν is the trace of matrix M301
302

M =


l1(t1) l2(t2) . . . lT (t1)
l1(t2) l2(t2) . . . lT (t2)

...
...

...
...

l1(tT ) l2(tT ) . . . lT (tT )

 ,

with303

li(t) =
Kh(t− ti)∑n
j=1Kh(t− tj)

Once the smooth trajectory of each Xi, i = 1, . . . , n was estimated from the NW nonparametric kernel304
smoother with the optimal bandwidth, we estimated the mean µ̂c(t) for each group directly from the sample305
mean, which was a consistent and unbiased estimator.306

2.8 Hypothesis Tests307

The main goal of this article was to determine whether functional data analysis applied to fNIRS data308
would reveal significant differences in the hemodynamic function curves between the case and control309
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groups as they processed syntax-related stimuli. We examined eight parasylvian brain regions: left and310
right inferior frontal cortex, the temporal parietal junction, inferior posterior parietal cortex, and superior311
temporal cortex. Statistically, we used formal hypothesis tests to judge the extent to which the distributions312
of the random functions X1c, . . . , Xnc differed for case and control groups. By way of the empirical313
Karhunen-Loeve decompositions (4), we approximated the functions of Xic(t) as314

Xic(t) = µ̂c(t) +
L∑
l=1

ζ̂ilcv̂lc(t), c = 1, 2; i = 1, . . . , n. (9)

As a result, the possible differences of the hemodynamic signals between the case and control group could315
be tested from the following three steps.316

The first test was whether or not significant differences existed for the overall mean trends between case317
and control group for each syntax type at each brain area of interest:318

H01 : µ1(t) = µ2(t), t ∈ T .

If H01 failed to be rejected, it would mean that the overall mean trends of hemodynamic curves were319
similar between the case and control groups. The second test was whether or not significant differences320
existed for the variation trends between case and control groups for each syntax type at each brain area of321
interest:322

H0,2l : vl1(t) = vl2(t), t ∈ T ; l = 1, . . . , L.

If H0,2l failed to be rejected, it would mean that the lth variation mode had similar trends between the case323
and control groups. The third test was whether or not significant differences existed for the variance of324
principal component scores for each syntax type at each brain area of interest:325

H0,3l : λl1 = λl2, l = 1, . . . , L.

If H0,3l failed to be rejected, it would mean that distribution of the lth principal component scores were326
similar between the case and control group.327

The first two tests, H01 and H0,2l were challenging because they were based on high dimensional curves,328
and both the test statistics and the distribution were unknown. The most traditional approach involves329
judging the similarity of two curves by measuring how far the norm of the differences of the two vectors is330
away from zero. Define the following measures (Benko et al., 2009):331

D1 = ||µ̂1(t)− µ̂2(t)||2,

D2,l = ||v̂l1(t)− v̂l2(t)||2, l = 1, . . . , L,

D3,l = |λ̂l1 − λ̂l2|2, l = 1, . . . , L.

The three null-hypotheses would be rejected respectively, if332

D1 ≥ ∆1;1−α; D2,l ≥ ∆2,l;1−α; D3,l ≥ ∆3,l;1−α,

where ∆1;1−α, ∆2,l;1−α, and ∆3,l;1−α denotes the α-level critical values of the distributions of333
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∆1 = ||(µ̂1(t)− µ1(t))− (µ̂2(t)− µ2(t))||2,

∆2,l = ||(v̂l1(t)− vl1(t))− (v̂l2(t)− vl2(t))||2, l = 1, . . . , L,

∆3,l = |(λ̂l1 − λl1)− (λ̂l2 − λl2)|2, l = 1, . . . , L.

We decided to use ∆s as the primary test because Ds were equal to ∆s under the null hypotheses and the
values of Ds were shifted by the difference in the true means, eigenfunctions, and eigenvalues under the
alternative hypotheses. However, because the true population mean, eigenvalues and eigenfunctions were
unknown, above ∆s can not be accessed directly. Therefore, we used the bootstrap sampling to determine
the threshold (Benko et al., 2009).

∆∗1 = ||(µ̂1(t)− µ̂∗1(t))− (µ̂2(t)− µ̂∗2(t))||2,

∆∗2,l = ||(v̂l1(t)− v̂∗l1(t))− (v̂l2(t)− v̂∗l2(t))||2, l = 1, . . . , L,

∆∗3,l = |(λ̂l1 − λ̂∗l1)− (λ̂l2 − λ̂∗l2)|2, l = 1, . . . , L,

where µ̂∗1(t), v̂
∗
l1(t), λ̂

∗
l1(t), as well as µ̂∗2(t), v̂

∗
l2(t), λ̂

∗
l2(t) were estimated from each independent bootstrap334

samples X∗11(t), . . . , X
∗
n1(t) and X∗12(t), . . . , X

∗
n2(t), respectively. We performed 1,000 nonparametric335

bootstrap samples for both case and control group and we repeated the nonparametric kernel smoothing for336
each sample. Finally the 1− α percentiles were used to determine the thresholds of the tests.337

3 RESULTS

3.1 Real NIRS Data Analysis338

Behaviorally, the case (specific language impairment) group identified the agents of subject-verb-object339
and subject relative clause sentences as well as their age-matched, typically developing controls. However,340
the children in the case group were significantly less accurate than the children in the control group on the341
passive and object relative clause sentences.342

The goal of statistical modeling was to determine whether there were significant differences in the343
hemodynamic trends between the case and control groups. Additionally, we speculated which brain regions344
were associated with children’s syntax comprehension ability from the significant group differences. For345
each hemodynamic category (∆HbO and ∆HbD), we performed 32 tests to consider all combinations of346
four different syntax types and eight different brain regions.347

Using the functional data analysis approaches described in Sections 2.5 and 2.6, we first estimated the348
mean function µ̂c(t), eigenfunctions v̂lc(t), and eigenvalues λ̂lc for each group, with c = 1 corresponding349
to case group and c = 2 for control group. During the analysis, we kept the first two eigenfunctions (i.e.350
L=2) because they explained 90% of the overall variations, and the remaining eigenfunctions explained351
only a very small percentage of the variations.352

With respect to potential group differences in mean trends of ∆HbO, H01 was rejected at the significance353
level of 0.1 at two brain regions: right inferior frontal cortex brain region for subject-verb-object, subject354
relative clause, and object relative clause sentences, and at the left inferior posterior parietal cortex355
brain region for object relative clause and passive sentences. Therefore, we concluded that the right356
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Table 1 Significant group differences in the percentages of variation explained by the first two
eigenfunctions between the case and control groups (Note: IPPC stands for inferior posterior parietal
cortex; TPJ stands for temporal parietal junction; STC stands for superior temporal cortex; OR stands
for object relative clause sentences; SR for subject relative clause sentences; SVO for subject-verb-object
sentences; and PAS for passive sentences; v11 stands for the first eigenfunction of the case group; v21
stands for the second eigenfunction of the case group; v12 stands for the first eigenfunction of the control
group; and v22 stands for the second eigenfunction of the control group).

Category Brain Region Syntax Case Control

v11 v21 v12 v22

∆HbO left IPPC OR 88.3% 5.5% 76.8% 15.3%

∆HbO left TPJ PAS 97.4% 0.6% 87.9% 5.2%

∆HbO left STC PAS 89.8% 3.9% 92.8% 5.4%

∆HbO left STC SVO 84.7% 6.0% 95.2% 1.8%

∆HbO right STC OR 83.0% 6.2% 96.1% 1.3%

∆HbD left IPPC OR 97.5% 0.9% 59.8% 33.6%

∆HbD left IPPC PAS 97.6% 0.8% 61.2% 31.4%

∆HbD left IPPC SR 97.7% 0.7% 66.8% 23.8%

∆HbD left IPPC SVO 96.8% 1.0% 69.8% 15.6%

∆HbD left TPJ OR 97.1% 0.8% 83.0% 12.8%

∆HbD left TPJ PAS 97.1% 0.8% 87.6% 8.3%

∆HbD left TPJ SR 97.9% 0.6% 91.8% 4.5%

∆HbD left STC OR 93.8% 2.4% 83.5% 13.3%

∆HbD left STC PAS 92.1% 2.7% 87.7% 10.0%

∆HbD left STC SR 95.0% 1.9% 88.8% 8.1%

∆HbD left STC SVO 92.4% 2.6% 89.2% 5.5%

inferior frontal cortex and left inferior posterior parietal cortex were associated with the children’s syntax357
comprehension processing ability. Figure 5 displays the estimated mean trajectories µ̂c(t) of ∆HbO in358
these two brain regions with corresponding significant syntax types. A close inspection of Figure 5 reveals359
that the mean trajectories of case and control have different dynamic trends (different shape and magnitude)360
for each syntax type, with opposite fluctuate oscillations at some time segments but similar directions361
at other time segments. The mean trajectories of the control group were always above those of the case362
group in these two brain regions. In the right inferior frontal cortex brain region, the mean oxygenated363
hemodynamic trajectories of the control group were always above zero, while those of the case group were364
below zero. In the left inferior posterior partietal cortex, the mean oxygenated hemodynamic trajectories365
of both case and control groups were below zero.366
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The hypothesis test H01 for ∆HbD was rejected at the right inferior posterior parietal cortex (at 0.05367
significance level) and left temporal parietal junction (at 0.1 significance level) for all four syntax types.368
We concluded that there were significant differences (related to both shape and magnitude) in the mean369
trajectories of ∆HbD at these two brain regions between case and control group, and these two brain370
regions were also associated with children’s syntax comprehension ability. A close inspection of Figure 6371
reveals that the mean trajectories of ∆HbD for the control group mainly fluctuate around zero but that372
of case group around -0.2 for all the eight scenarios. Using the same range of y-axis as the oxygenated373
hemodynamic trajectories of ∆HbO in Figure 5, the overall mean trends of the deoxygenated hemodynamic374
trajectories ∆HbD were very flat, especially those of the case group. So, we decreased the range of the375
y-axis in Figure 6 to the half of that of Figure 5 so that the significant oscillations were more apparent.376

None of the 32 hypothesis tests related to the variation trends (H0,2l, l = 1, 2) could be rejected for either377
∆HbO or ∆HbD at any of the eight brain regions or for any of the four syntax type types. Thus, there378
were no significant differences in the eigenfunction (i.e. variation trends) in ∆HbD and ∆HbD between379
the case and control group.380

Hypothesis test H0,3l, l = 1, 2, related to the eigenvalues, was rejected at a few brain regions and syntax381
types. It indicated that the percentages of variation explained by the first two eigenfunctions (i.e. the382
distributions of the first two principle component scores) were significantly different between case and383
control groups. Table 1 summarizes the details of percentage of variation for all significant brain regions384
and syntax types. Among all these significant differences, the left inferior posterior parietal cortex brain385
region for ∆HbD achieved the maximum for all four syntax types, with the first eigenfunction of the case386
group (v11(t)) explaining 96− 98% of the total variation of the case group versus 59− 70% of the total387
variation of the control group (v12(t)). Similarly, the second eigenfunction (v21(t)) explained 0.7− 1.0%388
of the total variation of the case group versus 15− 34% of the total variation of the control group (v22(t)).389
Additionally, we also noticed that the superior temporal cortex brain regions for ∆HbO showed opposite390
directions in the percentage of variation explained by the first two eigenfuncitons as compared to other391
brain regions. Specifically, the first eigenfunction of the case group (v11(t)) explained a greater percentage392
of total variation than the first eigenfunction of the control group (v12(t)) for almost all scenarios, except the393
∆HbO at left superior temporal cortex for passive and subject-verb-objects sentences, and right superior394
temporal cortex for object relative clause sentences. Also, we observed that the second eigenfunction of the395
case group (v21(t)) explained a much smaller percentage of total variation than the second eigenfunction396
of the control group (v22(t)) for almost all scenarios with the exception of the ∆HbO at left superior397
temporal cortex for subject-verb-object sentences and right superior temporal cortex for object relative398
clause sentences.399

4 DISCUSSION

The primary goal of this article was to determine whether significant group differences in the hemodynamic400
trajectories existed for two groups with known language differences. To achieve this goal, we designed401
a syntax type comprehension tasks in which 15 children with specific language impairments and 15402
age-matched, typically-developing controls pointed to pictures representing the agent (actor) after hearing403
four types of sentences (subject-verb-object sentences, subject relative clause sentences, passive sentences,404
and object relative clause sentences). We administered the 60 questions in a pseudo-random order to 30405
participants during the NIRS data collection. We performed three formal hypothesis tests to formally assess406
the group differences between the case and control group, and determined the threshold by bootstrap407
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approach for high dimensional object when both test statistics and distributions were unknown (Benko408
et al., 2009).409

The functional data analysis approach is different from the widly used traditional approaches in existing410
NIRS literature (e.g., GLM and t-test). In functional data analyis, the modeling is performed in the411
functional sense that treats the entire curve as the modeling target and fully utilizes the superior temporal412
resolution of fNIRS data. But GLM extracts multivariate discrete points and does not utilize the dynamic413
trajectories of the fNIRS curve. As a nonparametric data-driven approach, FDA does not assume any linear414
structure or normality distribution such as that within the GLM model (Shimada and Hiraki, 2006; Koh415
et al., 2007; Abdelnour and Huppert, 2009; Custo et al., 2010; Penny et al., 2011; Tak and Ye, 2014).416
Unlike simple t tests (Germon et al., 1994; Aldrich et al., 1994; Germon et al., 1999; Young et al., 2000;417
Hoshi et al., 2001; Isobe et al., 2001; Kennan et al., 2002; Schroeter et al., 2002; Hoshi, 2003; Matsuo et al.,418
2003; Tachtsidis et al., 2004; Tsujimoto et al., 2004; Shibuya-Tayoshi et al., 2007; Kim et al., 2010), FDA419
tests the trajectory differences of two entire curves for two groups and captures not only the differences420
in magnitude but also in shape. Thus, our approach was inclusive of all observed stimulus-relevant data421
information and was not restricted to the magnitudee differences as t-test does.422

We successfully detected significant group differences in the oxygenated hemodynamic mean trends423
in two brain regions, right inferior frontal cortex and left inferior posterior parietal cortex. The mean424
oxygenated hemodynamic trajectories between case and control groups showed different trends (different425
shape and magnitude) in these two brain regions, with some segments showing opposite fluctuating426
oscillations but other segments having similar directions. In the right inferior frontal cortex brain region,427
the mean oxygenated hemodynamic trajectories of the control group were always above zero, while those428
of the case group were below zero. In the left inferior posterior partietal cortex, the mean oxygenated429
hemodynamic trajectories of both case and control groups were below zero. We also detected significant430
group differences in deoxygenated hemodynamic mean trends in the region of the right inferior posterior431
partietal cortex and left temporal parietal junction brain area. The mean deoxygenated hemodynamic432
trajectories of the control group mainly fluctuated around the zero line while that of case group were433
all below -0.2. Some of these significant findings from our quantitative functional NIRS analysis were434
consistent with the results of a few other studies that had dramatically different approaches, experiments,435
data sets, and foci. For example, the left inferior posterior parietal cortex (Angular Gyrus) brain region has436
been reported to be highly engaged in semantic processing during language comprehension (Geschwind,437
1965; Joseph, 1982; Demonet et al., 1992; Vandenberghe et al., 1996; Vigneau et al., 2006; Houdé et al.,438
2010; Price, 2010), including some reports got by MRI (Binder et al., 2009; Seghier et al., 2010; Seghier,439
2013). Further, differences between children with and without SLI in the extent of activation of this area440
has been noted in studies of listening to nonwords and words (Weismer et al., 2005). A number of MRI441
studies have noted group differences between children with SLI and their age-matched controls in the size442
of right hemisphere parasylvian areas (Plante et al., 1991).443

There were no significant differences in the eigenfunctions, but the percentage of total variation explained444
by each eigenfunction significantly differenced in the left inferior posterior partietal cortex, left temporal445
parietal junction, and both left and right superior temporal cortex. The finding of significant group446
differences in the percentage of variation explained by the first two eigenfunctions may be of particular447
interest. Recall that the first two orthogonal eigenfunctions derived from the fNIRS high dimensional448
auto covariance matrix were likely related to the cognitive processes involved in performing our syntax449
comprehension task. The significant group differences in the percentage of total variation explained by450
the eigenfunctions may relate to group differences in information processing functions that have been451
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associated with attention, semantic processing, and syntactic processing in the left inferior posterior452
parietal cortex, the left temporal parietal junction, and the left superior temporal cortex. Further research453
on larger samples of participants are needed to fully understand the meaning of these results.454

In future work, we will compare the signicant differences between left and right hemispheres. Unlike455
the comparisons between case and control groups, the left and right brain samples are not independent456
requiring a different approach. We will also explore more detailed functional properties in the rest periods.457
Although there are several hypothesis tests involved, we will leave the multiple correction for the future for458
a few reasons. First, there are only 15 subjects within each group, which is much less than the dimension of459
the curves (length of 120 after preprocessing and length of 8,521 before preprocessing). As a result, power460
is limited due to the difficulties of collecting children with SLI. Therefore, we do not want to diminish461
our ndings due to a large number of multiple corrections. We believe that our methods will yield better462
results after the sample size is large enough and will investigate the multiple correction when we have an463
appropriate sample size. Second, the multiple tests involved here are not independent. Instead, they form464
close correlations, as ∆HbO and ∆HbD and the four syntax types are highly correlated. Therefore, many465
multiple correction approaches will not be appropriate and likely will mislead the results. For example, we466
nd that the test of equal mean hemodynamic trends between case and control (H1,0) reject, whether we467
consider each of the syntax types (with 120 length) individually or we test the stimuli of the four syntax468
types simultaneously (with 480 length). However, if we use multiple correction, say Bonferroni correction,469
then each syntax test will only have an α/4 signicance level, which makes the individual syntax period470
impossible to be rejected given the current sample size. In that case, none of the individual syntax types471
would show signicant differences, but the whole stimuli curve with four syntax types will be signicant472
between case and control. This will result in conicting conclusions.473

In summary, this proof of concept study was conducted to explore a more advanced statistical analysis474
approach to the analysis of the time course of hemodynamic data collected with functional near infrared475
spectroscopy. This approach enables us to compare which brain regions are signicantly involved in syntax476
comprehension ability in the two groups. Functional data analysis strategies were used to decompose the477
high dimensional ∆HbO and ∆HbD time curves into mean curves and eigenfunctions to represent overall478
trends and variation structures (Ramsay and Silverman, 2002; Ramsay, 2006; Ferraty and Vieu, 2006;479
Barati et al., 2013). After detailed comparisons and hypothesis tests, we revealed greater brain activity480
for the case group than the control group for all four syntax types. In addition, different percentages of481
variation for the case and control groups were explained by the first two eigenfunctions, suggesting that482
the two groups used different cognitive processing strategies while performing the tasks. The approach of483
FDA proposed in this paper has promise as an analysis method that captures the overall mean trends and484
variation trends of hemoglobin concentration over time within and between groups without assuming any485
structure.486

ETHICS STATEMENT

This study was approved by the Utah State University Institutional Review Board. All participants (adults487
and children) and the parents or guardians of all children signed consent forms that were approved by the488
IRB. The participant’s name “Sue” was a pseudonym.489

DISCLOSURE/CONFLICT-OF-INTEREST STATEMENT

The authors declare no conflicts of interest.490

Frontiers 15

Provisional



Guifang et al. Function-based fNIRS analysis

AUTHOR CONTRIBUTIONS

GF conceived the statistical modeling, programmed and performed the data analysis and figures, and wrote491
the first version of the manuscript; NW collected and processed the data; JMB assisted with experimental492
design and programmed the task; JWM and JLE created the experimental task; RBG conceived the research,493
helped design the experimental task, supervised all aspects of data collection and data processing, edited494
the manuscript, and wrote the experimental design section.495

Funding: Funded in part by the Lillywhite Endowment to Utah State University.496

REFERENCES

Abdelnour, A. F. and Huppert, T. (2009). Real-time imaging of human brain function by near-infrared497
spectroscopy using an adaptive general linear model. Neuroimage 46, 133–143498

Akgül, C. B., Akin, A., and Sankur, B. (2006). Extraction of cognitive activity-related waveforms from499
functional near-infrared spectroscopy signals. Medical and Biological Engineering and Computing 44,500
945–958501

Aldrich, C., Wyatt, J., Spencer, J., Reynolds, E., and Delpy, D. (1994). The effect of maternal502
oxygen administration on human fetal cerebral oxygenation measured during labour by near infrared503
spectroscopy. BJOG: An International Journal of Obstetrics & Gynaecology 101, 509–513504

Arenth, P. M., Ricker, J. H., and Schultheis, M. T. (2007). Applications of functional near-infrared505
spectroscopy (fnirs) to neurorehabilitation of cognitive disabilities. The Clinical Neuropsychologist 21,506
38–57507

Bailey, R. W., Addison, J. T., et al. (2010). A smoothed-distribution form of nadaraya-watson estimation.508
Department of Economics Discussion Paper , 10–30509

Barati, Z., Zakeri, I., and Pourrezaei, K. (2013). Functional data analysis view of functional near infrared510
spectroscopy data. Journal of biomedical optics 18, 117007–117007511

Bartocci, M., Winberg, J., Ruggiero, C., Bergqvist, L. L., Serra, G., and Lagercrantz, H. (2000). Activation512
of olfactory cortex in newborn infants after odor stimulation: a functional near-infrared spectroscopy513
study. Pediatric Research 48, 18–23514

Ben Schachar, M., Hendler, T., Kahn, I., Ben Bashat, D., and Grodzinsky, Y. (2003). The neural reality of515
syntactic transformations. Psychological Science 14, 433–440516

Ben-Shachar, M., Palti, D., and Grodzinsky, Y. (2004). Neural correlates of syntactic movement: converging517
evidence from two fmri experiments. Neuroimage 21, 1320–1336518
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Figure 1: Display of the 44 channels divided across two 3 × 5 probe caps. The channels 1-22 belong to the
left brain hemisphere and the channels 23-44 belong to the right brain hemisphere.
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Figure 2: One example of ∆HbO time series at channel 31 (mainly overlapped in the right inferior frontal
cortex) for Sue, a child participant with specific language impairment. A: the original time series of ∆HbO
with length 8,521; B: the extracted stimulus-relevant ∆HbO under 60 target stimuli instants with length
4,800; C: the average version of B with length 480. By averaging the 10 measurements of each second, the
curve maintains similar signal but only using 1/10 of original length.
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Figure 3: One example of the four different stimulus-relevant hemoglobin categories at channel 31 (mainly
overlapped in the right inferior frontal cortex) for Sue. A: the stimulus-relevant oxygenated hemodynamic
curve ∆HbO; B: the stimulus-relevant deoxygenated hemodynamic curve ∆HbD; C: the stimulus-relevant
total hemodynamic curve ∆HbT ; D: the stimulus-relevant absolute total hemodynamic curve ∆|HbT |.
∆HbT is computed by summing ∆HbO and ∆HbD. Absolute total ∆|HbT | was computed by summing
the absolute value of ∆HbO and ∆HbD.
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Figure 4: One example of extracted syntax-relevant ∆HbO at channel 31 (mainly overlapped in the right
inferior frontal cortex) for Sue under four syntax types respectively, each with 15 target stimulus questions.
The black dots are the original observation Yikc of oxygenated hemoglobin and the red curves are smoothing
hemodynamic trajectories Xic(t) estimated by nonparametric kernel smoother from model (1). A: object
relative clause sentences (OR); B: passive sentences (PAS); C: subject relative clause sentences (SR); D:
subject-verb-object sentences (SVO).
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Figure 5: The mean trends for ∆HbO (i.e. H01). The mean trajectories µ̂c(t) of 15 smoothing ∆HbO
curves, in the control group (c = 2) is depicted as a blue line and similar information for case group
(c = 1) is depicted as a red line. IFC = inferior frontal cortex; IPPC = inferior posterior parietal cortex.
OR = object relative clause sentences; SR = subject relative clause sentences; SVO = subject-verb-object
sentences; and PAS = passive sentences. A: the mean trajectories of ∆HbO for OR syntax type at the right
IFC; B: the mean trajectories of ∆HbO for SR syntax type at the right IFC; C: the mean trajectories of
∆HbO for SVO syntax type at the right IFC; D: The mean trajectories of ∆HbO for OR syntax type at the
left IPPC; E: the mean trajectories of ∆HbO for PAS syntax type at the left IPPC.
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Figure 6: The mean trends for ∆HbD (i.e. H01). IPPC = inferior posterior parietal cortex; TPJ= temporal
parietal junction. OR = object relative clause sentences; SR = subject relative clause sentences; SVO =
subject-verb-object sentences; and PAS = passive sentences. A: the mean trajectories of ∆HbD for OR
syntax type at the right IPPC; B: the mean trajectories of ∆HbD for PAS syntax type at the right IPPC; C:
the mean trajectories of ∆HbD for SR syntax type at the right IPPC; D: the mean trajectories of ∆HbD
for SVO syntax type at the right IPPC; E: the mean trajectories of ∆HbD for OR syntax type at the left
TPJ; F: the mean trajectories of ∆HbD for PAS syntax type at the left TPJ; G: the mean trajectories of
∆HbD for SR syntax type at the left TPJ; H: the mean trajectories of ∆HbD for SVO syntax type at the
left TPJ.
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