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Abstract-A wind field model can be used to eval­
uate the accuracy of pointwise ambiguity removal 
for NASA Scatterometer (NSCAT) data. Errors in 
pointwise ambiguity removal result in large model-fit 
errors when the pointwise wind estimates are assim­
ilated into the model. By thresholding the error, 
regions containing ambiguity removal error can be 
identified. For these regions, the ambiguity selection 
can be improved using the model-fit field. I have de­
veloped a new automated algorithm for evaluating 
the quality of the pointwise ambiguity selection and 
for correcting the ambiguity selection. This paper 
presents this correction algorithm, which is gener­
ally applicable to other scatterometers, and the re­
sults for NSCAT data. 

INTRODUCTION 

The NASA Scatterometer (NSCAT) is a microwave 
instrument capable of accurately measuring vector 
winds over the ocean during all weather conditions 
[Naderi et al., 1991). Scatterometers do not directly 
measure the wind; rather the speed and direction 
of the near-surface wind are inferred from the nor­
malized radar cross section (u0

) measurements at 
an observation point or wind vector cell ( wvc). The 
wind is related to u0 via a geophysical model func­
tion. However, there are several possible wind vec­
tors for any set of u 0 measurements. Although the 
speeds are typically the same, the directions vary 
with two to four possible directions for each wvc. 
An ambiguity removal algorithm must be employed 
to determine the correct direction. 

Point-wise wind retrieval is the traditional method 
for estimation of the winds over the ocean. It con­
sists of two steps and uses only the u 0 measurements 
for a single wind vector. The first step is to find the 
multiple wind vectors for each cell of the scatterom­
eter swath. The second step, ambiguity removal, 
selects one unique wind vector estimate for each of 
these cells, though this algorithm is prone to error. 
A quality assessment of these algorithms is essential 
to maintain the integrity of the data. 

Another method to determine wind measurements 
is model based wind retrieval [Long, 1993]. The 
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wind field model provides a description of the near­
surface wind field over the scatterometer measure­
ment swath and is optimized for scatterometer wind 
retrieval. Wind field models are based on the spatial 
correlation between wind vectors. The swath is sec­
tioned into rectangular regions and the wind is ex­
tracted over the entire region instead of by individual 
resolution elements. The model relates the compo-­
nents of the wind vector field over this region to a set 
of model parameters (Long, 1993] [Oliphant, 1996]. 
The models are either data-driven or dynamics-based. 

The wind field model can be used to improve the 
point-wise wind product by identifying and correct­
ing ambiguity removal errors. The quality of the fit 
of the estimated point-wise wind to a simple wind 
field model over a small area provides a measure 
of possible ambiguity removal errors. Large errors 
in the fit suggest possible ambiguity removal errors 
while small err'!rs suggest a realistic wind field. Ar­
eas with errors can be corrected by choosing the alias 
closest in direction to the model-fit. 

WIND FIELD MODELS 

As discussed in [Long and Mendel, 1990, Long, 1993), 
a simple wind field model can be developed which is 
expressed as 

W=FX 

where X is an L-element vector containing the model 
parameters and F is a constant model matrix where 
the rows of F form a basis set for possible wind 
fields. There are several different models for which 
this model matrix changes. 

While [Long, 1993] used a simple dynamics-driven 
model, in this paper we adopt a data driven model. 
We use the Karhunen-Loeve (KL) model since it is 
known to minimize the basis restriction error. The 
KL model is derived from the eigenvectors of the au­
tocorrelation matrix of the sampled wind [Jain, 1989]. 
Using standard eigenvalue/eigenvector decomposi­
tion methods, the KL model is formed as the lower 
subset of the sorted eigenvectors of the sample auto-­
correlation matrix. In this paper, the model matrix 
was subjectively chosen as the first 22 eigenvectors 



for the tradeoff between modeling error and the abil­
ity to locate regions with ambiguity removal errors. 
We note, however, that there is little performance 
difference in the algorithm when using between 20 
and 30 eigenvectors. 

A least squares estimate of the model parame­
ter vector X, X, can be obtained from the observed 
wind field W 0 using the pseudo-inverse of F, Ft, i.e., 
X=FtW0 . The reconstructed wind field W R, also 
known as the model-fit field, is W R = FX with the 
reconstruction error field WE given by 

W E=W R-Wo=(FFLI)Wo. 

If the reconstruction error is small, the model-fit is 
good and the observed wind field is "realistic" for the 
specific model. Large reconstruction errors suggest 
that the observed wind field is not realistic due to 
either ambiguity selection errors or poor modeling. 
Thresholds for the reconstructed error field detect 
regions with possible ambiguity removal errors. 

To illustrate, Fig. 1 is a region with clear ambi­
guity removal errors in the upper left corner of the 
region. The model-fit field exhibits large errors at 
some locations which correspond to the boundary of 
the ambiguity removal error region. These are easily 
seen in the difference field. By finding these areas 
of significant wind error in the model-fit, ambiguity 
removal errors are identified. 

There are a number of considerations when im­
plementing this simple technique. First, the model 
must be fit to the wind field over a region. To pro­
duce an adequate fit, the input wind must be de­
fined over the full region. Thus, for this simple algo­
rithm, only those regions with fewer than eight cells 
of land or missing measurements are used. The miss­
ing measurements are replaced with the average of 
the cells surrounding it and then processed. Second, 
the wind field model inherently smoothes the wind 
field over the entire region due to modeling error; 
the model matches the general flow of the wind, but 
may not adequately model the center of a cyclone or 
the boundary of a front. Such regions can be flagged 
as containing errors, because the modeling error is 
large. Third, the error in the model-fit can be high 
in regions where the wind estimates are very noisy 
even if ambiguity removal is correct. Thus, the re­
gion may be flagged as having possible ambiguity re­
moval errors even if the ambiguity removal is correct. 
Finally, at low wind speeds, the wind is highly vari­
able, resulting in significant modeling error which is 
further complicated by the low signal to noise ratio 
in these regions. Manual ambiguity removal is also 
very difficult in such regions. As a result, we are 
unable to verify the ambiguity removal accuracy for 
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Figure 1: A wind field that exhibits a significant area 
of ambiguity removal errors in the upper left corner. 

low wind speed regions. Figure 2 illustrates one such 
region. 

This method locates the boundaries of the regions 
that have possible ambiguity removal errors. Once 
the regions with possible ambiguity removal errors 
are identified, it is natural to try to find a means of 
correcting these errors. To this end, a technique for 
correcting the errors has been developed. 

An important consideration in making the correc­
tions is that some regions are poorly modeled by 

. the wind field model resulting in a poor model-fit 
for the reasons given above. So, regions with con-
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Figure 2: A region of low wind speed. 
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Figure 3: The plots for a corrected wind field. The 
circled vectors are those that were changed according 
to the algorithm. 

siderable numbers of possible ambiguity removal er­
rors are not considered candidates for the correction 
algorithm. Large numbers of possible ambiguity re­
moval errors are typically low wind speed regions or 
regions with significant areas of ambiguity removal 
errors in which the model-fit should not be used as 
a means of correction. 

Thus, for regions identified as having ambiguity 
removal errors, the correction technique proceeds as 
follows: determine the number of possible ambigu­
ity removal errors by identifying those that exceed 
the thresholds; if this number is greater than a given 
threshold, do not correct any of the vectors for this 
region; otherwise, choose the alias closest in direc­
tion to the model-fit as the corrected wind. 

Figures 3 and 4 demonstrates the use of the correc­
tion algorithm. As can be seen, the observed wind 
product contains several ambiguity removal errors. 
The algorithm chooses the alias that is closest in 
direction to the model-fit field, producing a subjec­
tively better corrected wind field. 

SELECTING THRESHOLDS 

The reconstruction error field provides much infor­
mation about the difference between the unique wind 
field and the reconstructed wind field. The value of 
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Figure 4: The plots for a corrected wind field. The 
circled vectors are those that were changed according 
to the algorithm. 

the model parameter vector is also useful for identi­
fying regions with ambiguity removal errors. 

To select the thresholds for the model parameters, 
a histogram of each parameter is examined. Figure 
5 shows the histograms of four of the parameters for 
the K-L model using 5488 regions of NSCAT data. 
Experimental testing has shown that large values for 
any of the model parameters correspond to regions 
with possible errors. After some examination of the 
values for the parameters, the thresholds are set at 
twice the standard deviation for each of them. This 
provides an initial starting place for subjectively al­
tering these numbers as needed to correctly identify 
error-prone regions. Only a few of the model pa­
rameters are necessary to identify regions of possible 
ambiguity removal errors. Since the columns ofF for 
the KL model are basis vectors in decreasing order, 
only the first few parameters are used as thresholds 
for the QA algorithm. 

The other thresholds for locating ambiguity re­
moval errors are determined from the reconstruction 
error field. These include the rms error, the normal­
ized rms error, the maximum component error, and 
the maximum direction error for each region. The 
rms error is found by summing the squared compo­
nents of the reconstruction error field, dividing by 
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Figure 5: The histograms for parameters three 
through six for the K-L model. Overlaid is a Gaus­
sian distribution with the same mean and variance. 

the number of terms, and taking the square root. 
The normalized rms error is found by squaring the 
components of the reconstruction error field, divid­
ing by the observed wind field, and taking the square 
root. The rms and normalized rms errors aid in lo­
cating regions of large error. Both of these error 
values are calculated for the entire region and thus 
provide information about the region as a whole. 
The maximum component and maximum direction 
error values are useful for locating regions in which 
only a few of the wind vectors are incorrect. Thresh­
olds on these error values locate regions with at least 
one individual wind vector error. The individual er­
rors are identified by finding those that exceed the 
thresholds. These are flagged as possible ambiguity 
selection errors, though, as discussed before the er­
ror may exceed the thresholds due to noise, modeling 
error, or ambiguity removal error. 

To select the threshold values for this algorithm, 
527 regions (10 revs) of NSCAT data were inspected 
by hand. The regions were subjectively grouped into 
four categories: "perfect" (no errors), "good" (those 
with only a few isolated ambiguity removal errors), 
"moderate" (as much as 10% but less than 20% of 
the wvc's identified as possible ambiguity selection 
errors), and "poor" (more than 20% of wvc's iden­
tified as possible errors). All of the poor regions 
either have low rms wind speeds making the region 
difficult to model or have significant areas of am­
biguity removal errors. For this data set, 66% of 
the poor regions were low wind speed regions ( rms 
speed less than a subjectively chosen threshold of 4 
m/s). All of the remaining (with rms speed greater 
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than 4 m/s) were regions with significant ambiguity 
removal errors. The statistics of each region were 
calculated and compared to the initial two sigma 
thresholds. The thresholds were adjusted such that 
the_ maximum number of poor, moderate, and good 
~egtons are correctly identified as containing ambigu­
Ity removal errors with a minimum number of false 
alarms. 

For this small set, the algorithm correctly iden­
tifies 100% of the poor and moderate regions and 
over 95% of the good regions with a false alarm rate 
of less than 5%. It should be understood that the 
thresholds can be altered to adjust the detection and 
false alarm probabilities. For example, if all regions 
with possible errors are to be detected, the number 
of false alarms will increase. The thresholds are de­
termined for a specific trade-off between detection 
and false alarms. 

The thresholds chosen for the detection algorithm 
were tested on a manually classified withheld data 
set of 27 4 regions ( 5 revs) and achieved a similar level 
of performance. The algorithm correctly identified 
100% of the poor and moderate regions and over 
98% of the good regions with a false alarm rate of 
less than 5%. Combining the statistics for these two 
data sets results in total detection rate of more than 
97% for all regions subjectively identified as con­
taining ambiguity removal errors with less than 5% 
of the perfect regions misidentified. Thus, though 
modeling error or noise will sometimes result in an 
incorrect evaluation of a region as containing possi­
ble errors, the vast majority of regions with possible 
ambiguity removal errors are located using this tech­
nique. The classification performance of low wind 
speed regions was also consistent with the previous 
results. Low ( < 4 m/s) rms wind speeds accounted 
for 75% of the poor regions with the remaining re­
gions (with rms wind speed of greater than 4 mjs) 
all containing significant areas of ambiguity removal 
errors. 

ALGORITHM DESCRIPTION 

A general procedural description of the algorithm 
follows: 

1. Segment the swath into 12x12 overlapping re­
gions (50% along track overlap). 

2. For each valid region (regions with fewer than 
eight cells of land or missing measurements), 
compute the model-fit field W, the reconstruc­
tion error field WE, the model parameter vec­
tor X, and the statistics of WE. These statis­
tics include the rms error, the normalized rms 
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error, the maximum component error, and the 
maximum angle error for each region. 

3. For each region, determine if any statistic, in­
cluding those for the model parameter vector 
X, is larger than the threshold. H so, the region 
is identified as containing possible ambiguity 
selection errors. Based on the number of pos­
sible errors identified for each region, segregate 
the regions into 4 classes ("perfect", "good", 
"moderate", and "poor") . 

4. For those regions not classified as "poor", cor­
rect the ambiguity removal error by choosing 
the ambiguity closest in direction to the model­
fit for those wvc's identified as possible errors. 

RESULTS FOR NSCAT 

This algorithm was tested on the data for the nine 
month NSCAT mission. To be considered candi­
dates for the correction technique in this implemen­
tation, 20% or fewer of the vectors in the region 
can be identified as possible errors . Regions not 
considered candidates are classified as "poor". Of 
the 408,069 regions examined, approximately 82% 
were considered candidates for the correction algo­
rithm. Only 4% of the individual vectors in these re­
gions were identified as possible ambiguity removal 
errors; however, only approximately 10% of these 
were changed using the model-based correction tech­
nique. For the remaining, the alias closest in di­
rection to the model-fit was the original wind vec­
tor. Thus, only 0.4% of the individual vectors were 
corrected using this approach. This suggests that 
NSCAT ambiguity removal is thus over 99% effec­
tive for these regions. 

Much can be said about the remaining 18% of the 
data for the NSCAT mission. Fig. 6 summarizes key 
statistics for this portion of the data. The major­
ity of these regions (approximately 7 4%) have rms 
speeds lower than 4 mfs. The scatterometer does 
not perform well at such low wind speeds and ambi­
guity removal algorithms have difficulty distinguish­
ing the correct wind vector at these speeds. Regions 
with such low wind speeds are thus not included in 
the assessment of NSCAT ambiguity removal. 

"Poor" regions with rms wind speeds in excess of 
4 m/ s contain significant ambiguity removal errors. 
This represents only 5% of the total data for the 
NSCAT mission. Not every wind vector in these 
regions is in error, a fact verified by a subjective 
analysis of these regions. However, a conservative 
approach is to treat each wind vector in these regions 
as a possible ambiguity removal error. Combining 
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Figure 6: (left) Histogram of the rms speed for all re­
gions classified as "poor" in the nine month NSCAT 
miSSIOn. (right) the percent of the total regions 
which are classified as "poor" at each rms wind speed 
bin. The vertical dashed line is at 4 mfs. 

this result with the near complete effectiveness of 
NSCAT for non-poor regions, we conclude that the 
skill of NSCAT is 95% or better for regions with rms 
winds speeds greater than 4 m/s. 

The performance of NSCAT was also evaluated as 
a function of time. From Fig. 7, it is clear that the 
accuarcy of NSCAT declines towards the end of the 
mission. This is most likely a seasonal effect. To see 
this more clearly, the performance of NSCAT was 
evaluated over severallattitude bands in the Pacific 
Ocean as described in Fig. 8. The statistics are these 
bands are described in Fig. 9. The expected varia­
tion of wind speed with latitude is clearly evident. 
There is a strong correlation between the ambiguity 
removal performance and the rms wind speed, with 
reduced overall ambiguity removal performance (i.e., 
more poor regions) at lower wind speeds. Thus, the 
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Figure 7: The percent of non-poor regions versus 
time over the nine month NSCAT mission. Each 
point represents the average computed over approx­
imately two days. 
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Figure 8: Geographical latitude bands in the Pacific. 

wind speed distribution in each band affects the am­
biguity removal performance and seasonal changes in 
the wind speed distribution results in temporal vari­
ations in the ambiguity removal performance. In 
particular, increased storm activity in the Northern 
Hemisphere results in increased wind speed with im­
proved ambiguity removal during the winter months 
in Bands 4 and 5. Similarly, the number of poor 
regions increases during the Southern Hemisphere 
summer due to a decrease in the rms wind speed. 
Because of its low rms wind speed, Equatorial Band 
3 is the most sensitive to changes in the mean rms 
wind speed with a significant drop in the percent of 
non-poor regions corresponding to a small drop in 
the rms wind speed at the start of 1997. 

CONCLUSIONS 

The detection algorithm works very well in identi­
fying regions with possible selection errors. Once 
the errors are detected, they can be corrected by 
choosing the point-wise alias closest the the model­
fit. The correction algorithm consistently produces 
a subjectively more realistic wind field. This tech­
nique provides a quick way in which to measure 
the accuracy of NSCAT ambiguity removal using 
only NSCAT data. Further research to optimize this 
technique, such as finding a theoretical basis for de­
termining when the regions are modeled well, is in 
progress. 
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Figure 9: (left) Percentage of non-poor regions as 
a function of time over the NSCAT mission. (left, 
middle) Percentage of poor regions with an rms wind 
speed greater than (solid) and less than (dotted) 
4 mfs. (right, middle) Average regional rms wind 
speed as a function of time. (right) Normalized his­
tograms of (bold) all regions and (light) those clas­
sified as poor by the QA algorithm. The vertical 
dashed line is at 4 mfs. 
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