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Abstract 

This paper discusses the balancing of a ground­
based satellite simulator. The simulator uses an air 
bearing as the primary method for the emulation of the 
frictionless environment of space. Of particular 
concern for accurate simulation is system balancing. 
'Balancing' refers to the process of moving the center 
ofmass(CM) of the simulator near to the center of 
rotation(CR) of the air-bearing to reduce the 
interference of gravitational torques. 

This paper develops an automatic balancing 
system for the simulator. This system calculates the 
system center of mass by analyzing the dynamic sensor 
data along with the integrated equations of motion. The 
algorithm uses the method of least squares to estimate 
the vector from the center of rotation to the center of 
mass. The center of mass of the simulator is then 
moved near to the center of rotation by means of 
movable masses that are adjusted to the correct 
location. The algorithm is able move the center of mass 
to a location closer than two hundredths of a millimeter 
from the center of rotation. This adjustment increases 
the period of oscillation of the simulator to more than 
60 seconds. 

Nomenclature 
I Mass moment of inertia tensor 
w Angular velocity vector 
r Vector: CR to CM 
MTHR Applied moment vector from thrusters 
B Aerodynamic drag coefficient 
8 Euler angle vector 
<P X Euler angle 
6 Y Euler angle 
lf1 Z Euler angle 
m System mass 
g Gravitational acceleration 
t time 

Background 

Accurate attitude detennination and control 
(ADC) is crucial to the success of satellite missions. 
However, it is difficult to ensure proper in-flight 
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operation of the ADC system. An option for satellite 
manufacturers is to test the ADC on the ground. 
Ho'Yever, the environment on earth is very different 
from the one in which the satellite will operate. This 
fact creates challenges in the functional ground testing 
of a satellite. 

Satellite Simulators 

A solution to this problem can be found in both 
hardware and software simulation of the satellite. 
Satellite simulators are useful to both the satellite 
industry and educational institutions. They are used for 
many purposes, including proof-of-concept design in 
the development of new satellites, pre-flight hardware 
and software integration and debugging, ADC 
algorithm testing, research into new ADC algorithms, 
and the teaching of satellite attitude control. 

Exact duplication of the space environment is 
extremely difficult. The goal with ground-based 
satellite simulation is to emulate the space environment 
to the level necessary to appropriately test crucial 
subsystems. This testing can be performed in several 
ways. The most common simulation techniques are full 
software simulation, using simulated electronic inputs 
as 'sensor' input to the flight computer, and full 
dynamic hardware testing of the satellite computer and 
sensors (Kaplan, 1976). 

Air Bearings 

Air bearings have been found to be an 
advantageous method for full dynamic testing of the 
satellite's hardware/software integration. These low 
friction supports allow for three-axis freedom of 
motion, within a limited range, and allow accurate 
duplication of torque-free motion. 

There are significant drawbacks with the use of 
air bearings. One drawback is the existence of 
gravitational torques. The center of mass of the 
simulator must be extremely close to the center of 
rotation of the bearing to minimize the gravitational 
torque about the center of rotation. Moving the center 
of mass toward the center of rotation is referred to as 
'balancing' the table. The goal ofbalancing the 



SSACS is to increase the period of oscillation as far as 
possible without causing system instability. 

The Full Eguations of Motion 

The motion of a rigid body around a stationary 
point other than the CM of the body can be described 
by 

(I) 
I 

(Young, I998) where A, M, and B are defined as 

-mr r +I 
X Z XZ 

A= -mr r +I mr 2+mr 2+I -mr r +I (2) xy xy x z .Y.Y yz yz 

B= 

-mr r +I -mr r +I mr 2 +mr 2 +I xz xz yz yz x y zz 

M -B ci Thrx X X 

M= M + -B w2 + Thrr y y 

MThrx -Bw2 
z z 

-mgrYcosQ>cos8 + mgrzsinQ>cos8 

mgrxcosQ>cos8 + mgrzsin8 

- mgr xsinQ>cos8 - mgr Ysin8 

2 2 
[ ( -2mr /z + Izy)wy + (2mryrz- Iyz)wz 

+ (-mr r +I )w w + (mr r -I )w w 
XZ XZ X y Xy xy X Z 

2 2 
+ (mr - mr -I +I )w w ] y z .Y.Y zz y z 

2 2 
[(2mrxrz-Izx)Wx + (-2mrxrz+Ixz)wz 

+ (mr /z- Izy)wxwy 
2 2 . 

+ ( -mr x - mr z + Ixx - Izz)wxwz 

+ ( -mr r +I )w w ] xy xy yz 
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[ ( -2mrxry + Ixy)wx + (2mrxry- lxy)wy 

+ (mr 2 
- mr 2 -I +I )w w 

X y XX ,Y.)' X y 

+ (-mr r +I )w w + (-mr r +I )w w] yz yz x z xz xz y z 
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These equations can be solved by simultaneously 
solving equation I with 

0 
sinQ> cosQ> 

case cose 
8= 

0 cos<f> -sinQ> 
w 

sinQ>tan8 cosQ>tan8 

(5) 

Equation 5 gives the values for the Euler angles Q>, 8, 
and w which describe the attitude of the body relative 
to an inertial frame (Wertz, I978). 

The Simplified Eguations of Motion 

The equations of motion for the SSACS can be 
greatly simplified by making a few assumptions. If w, 
r, the products of inertia, and B are assumed to be small 
compared to the other terms, and Mtbr is assumed to be 
zero, the equations of motion are given by equation 6. 
This equation, as with the full equations of motion, is 
completed by the inclusion of equation 5, the Euler rate 
equations (Wertz, I978). 

w= 

mg ( -r cosQ>cos8 + rzsin<J>cos6) 
I Y 

XX 

mg ( r cosQ>cos8 + r sin6) I X z 
Y.J' 

Manual Balancing 

(6) 

The common procedure used to balance air­
bearing satellite simulators is known as manual 
balancing. This is a time-consuming, iterative process 
where lead weights of varying mass are placed on the 
simulator at various locations in an attempt to balance 
the table. The process is finalized by carefully 
adjusting several strategically placed set screws to 
• zero-in' the CM to the CR. 

This manual method of balancing has advantages 
and disadvantages. Manual balancing is relatively 
simple to conceive and execute. It requires only 
patience and a little skill in weight placement. On the 
other hand, the amount of time required to balance the 
SSACS is considerable, often several hours, and the 
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results can be disappointing. After considerable time 
spent in the manual balancing process, the CM offset is 
still large enough to create oscillations around the CR 
with a period of approximately 20 seconds. Using the 
CM locator algorithm described below, the CM after 
manual balancing was fowtd to be 

'eM=( -0.0096 0.0715 -0.495) mm (7) 

The magnitude of this vector is 0.50 nun. Using 
manual balancing, it is extremely difficult to move the 
CM closer than a half of a millimeter to the CR. 

DIAMC Balancing 

An improvement over manual balancing is an 
automatic balancing system developed for the 
simulator. Known as Dynamic Identification and 
Adjustment of the Mass Center (DIAMC) balancing, 
this system automatically calculates the center of mass 
location and adjusts it a location very close to the center 
of rotation. 

DIAMC balancing is very advantageous, 
especially when compared to manual balancing. 
Balancing can occur within ten minutes, move the CM 
closer than two hwtdredths of a millimeter to the CR, 
and requires minimal input from the operator. 
However, creating the automatic balancing system 
(including component design and creation, and 
algorithm derivation and coding) is a difficult and time 
consuming affair. However, once operational, DIAMC 
balancing is far more effective than other methods. 

Center of Mass Location 

The first step in DIAMC balancing is locating the 
center of mass of the SSACS. To do this, the 
simplified equations of motion for the angular velocity 
of the SSACS are used (see equation 6). These 
equations can be integrated individually over a short 
time period to give three equations for each time step. 
This can be done easily with the assumption that e and 
<1> remain relatively constant over a small time step. 
After integration, the three equations contain only three 
unknowns, the CM offset distance vector, r. The 
equations after integration can be written 
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(w - w ) = 
Ya Y11 

~~.a'[( (cos<J>cos6)12 + ( cos<J>cos8)11 )rx 
Y.Y 

+ ( (sin6)12 + (sin6)tl )rz J 

(w - w ) = 
x,2 XII 

-;;Llt[( (cos<J>cos8)12 + (cos<f>cos6\1 )rY 
XX 

- { (sin<f>cos6)12 + (sin<J>cos6)11 )rz] 

(w - w ) = z12 z11 

-mg.Llt[( (sin<J>cos8)
12 

+ (sin<f>cos6)
11 

)rx 
2Jzz 

+ ( (sin6)t2 + (sin6)tJ )rY] 

(8) 

(9) 

(10) 

Placing these equations into matrix form gives 

[ dw, l 0 <1»12 <1»12 
[ r, 

.Llwy = <1»21 0 <1»23 ry (11) 

.Llwz <1»31 <1»32 0 rz 

The six values for <I» are assumed constant for a given 
time step. These values can be found by manipulating 
the expressions found in equations 8, 9, and 10 into the 
form given in equation 12. 

(12) 



Equation 11 can also be written in condensed form as, 

.10 = <I> r (13) 

These equations can be solved for r using the 
method of least squares. Collecting these equations into 
matrix form, and expanding the matrices for many time 
steps gives 

0 (<I> 12)t0 (<I> 12)t0 

(<1>21)t0 0 (<1>23)t0 

0 

(.1w)zo 

(.1w)tO 

(.1w)zo 

(.1w)tl 

(Aw)tJ 

(Awz)tl 

0 (<I>I2)tl (<I>I2)r/ 7y (14) 

(<1>2I)t/ 0 (<1>23)t/ 7z 

0 

etc. etc. 

Equation 14 can also be written 

(15) 

The OL and <I>L matrices are filled by calculating the six 
components specified in equation 12 for each time step. 
The least squares approximation for r is given by 

r=[<l> r <I> ]-I<I> r AO 
L L L L (16) 

Length of Test. An important consideration is 
the amount of data required to accurately locate the 
CM. To answer this question, a data set of 60 seconds 
at 25 hertz was taken from the SSACS. The CM 
location was calculated using various lengths of data, 
corresponding to test length. Representative test results 
for only the Z-axis are shown in Figure 1. 

This figure shows the calculated CM location, 
as well as the standard deviation for the calculation. 
The figures show that a longer test length results in the 
algorithm settling on a CM value, and the standard 
deviation becoming very small. 
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Fig. 1. Z-axis test length experiment. Calculated 
CM (solid), Corresponding standard deviation on 
the CM (dashed). 

The plots also show that these improvements in 
accuracy are large at first, and begin to diminish 
rapidly. After a 60 second test length, changes in 
accuracy are extremely minimal. For this reason, a 60 
second test length is used in the DIAMC balancing 
algorithm. 

Center of Mass Adjustment 

Once the center of mass offset vector, r, is 
known, the center of mass can be adjusted using Mass 
Moving Units (MMU). These MMU were designed 
and built by Walter Holeman for a previous satellite 
simulator and were adapted for use with the DIAMC 
balancing system (Holeman, 1997). The MMU are DC 
stepper motors mounted so that as the motor rotates, the 
motor itself is moved along the threaded rod. The 
motion of the stepper motor causes a change in the 
center of mass of the table. There are three MMU on 
the SSACS; each placed on a different axis. By 
combining the CM changes from each MMU, the CM 
offset can be minimized from any location as long as 
the initial offset is relatively close to the CR. 

The distance to move the MMU to compensate 
for the CM offset can be calculated from the general 
equation that defines the center of mass (Greenwood, 
1988). This equation is 

] n 

r=- L m.r. 
M i=l I I 

(22) 
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where r is as defined previously, M is the total mass of 
the system, rn; is the mass of each component, and ri is 
the distance to the center of mass of each component. 

The entire table can be assumed to be four 
components. The first component is the entire table 
minus the MMU. The other three components are the 
MMU. To simplify the derivation, assume that the CM 
offset is a result only of misplacement of the MMU, or 
that the table itself has no CM offset, and that the 
MMU are only misplaced along their respective axes. 
This allows the center of mass vectors to be written, 

(23) 

r2 = [ r , 0, 0 ]r 
mx (24) 

(25) 

(26) 

where r PI is the distance to the respective center of mass 
of the MMU. These assumptions allow equation 22 to 
be rewritten as 

The desired quantity is Ar PI' the change in MMU 
position that brings the system CM to zero, or, 

rx/m2 

Arm=-M ryjm3 

rz/m4 

(27) 

(28) 

This algorithm is only limited by the distance the MMU 
can travel. The maximum travel distance for the MMU 
is 0.076 meters. This correlates to a maximum 
correctable CM offset of0.88 mm. This means that the 
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SSACS needs to be manually balanced to within 0.88 
mm before any automatic balancing can be effective. 
Because of the limited knowledge of the physical 
parameters of the SSACS, this algorithm can be 
repeated to iteratively place the CM closer to the CR. 

The assumption can be made that all of the 
MMU masses are equal (m1=m2=m3=m). Using this 
assumption, equation 27 becomes, 

m r=- r M m 

and equation 28 becomes, 

Balancing Stability 

M Ar = -- r 
m m 

I (29) 

(30) 

An important issue with the DIAMC 
balancing algorithm is balancing stability. By this is 
meant the tendency for the SSACS to stay within its 
range of motion, free from impact with the bearing or 
its support. In contrast, an unstable SSACS has the 
tendency to tip over and come to rest against the 
bearing support. When in this condition, no dynamic 
data can be taken, and the balancing process must be 
started again. 

The cause of balancing instability is one of 
two things. Either the Z-axis CM is above the CR, or 
the CM is out farther along X-axis or Y-axis than down 
the negative Z-axis. The lowest energy state for both of 
these conditions is beyond the range of motion of the 
SSACS 

The CM along the Z-axis may not cross into 
the positive range without a loss of stability. To insure 
that the Z center of mass remains in the stable area, the 
Arm value in multiplied by 0.6. This also minimizes the 
chance that the CM will be moved out farther along the 
X or Y-axis than the value of the current Z-axis. 

DIAMC Balancing Effectiveness 

The effectiveness of the DIAMC balancing 
algorithm can best be measured by the reduction in the 
oscillatory period of the motion of the SSACS. 
Because of the incomplete knowledge of several of the 
physical parameters, most notably the inertia tensor and 
MMU placement, the DIAMC balancing algorithm 
works best when repeated several times. Experience 



using the DIAMC balancing algorithm in concert with 
the actual SSACS shows that three iterations of the 
balancing algorithm yield the best results. This 
conclusion is supported by figure 2 and figure 3. These 
plots show that the CM distances shrink drastically 
through the two iterations shown. Additional iterations 
do not achieve any better results. In fact, additional 
iterations are likely to cause balancing stability 
problems. 

Before starting the autobalancer, the table was 
balanced as well as possible manually. The CM was 
then located using the DIAMC balancing algorithm. 
The results can be seen in figure 2. The CM for each 
axis was within 0.5 nun of the CR. The period of 
oscillation for this CM is approximately 20 seconds, as 
shown in figure 3. The MMU were then moved 
according to the recommendations of the DIAMC 
balancing algorithm. The results can be seen in figure 
2. By moving the MMU, the CM has been moved 
dramatically closer to the CR. The results of this CM 
change can be clearly seen in figure 3. The period of 
motion has been increased to approximately 3 5 
seconds. To improve the response further, the process 
was repeated once again. This final iteration brought 
the CM for all three axes to within 0.1 mm of the CM 
and the period of motion has been increased to 60 
seconds. This data is shown in table I. 
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Fig. 2. Center of mass location measurements: 
Trial1. X-axis (solid), Y-axis(dashed), and Z­
axis (dotted). Test 1 is before any MMU 
movement, test 2 is after one iteration, and Test 3 
is after two iterations. 
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Fig. 3. X-axis tilt data for DIAMC balancing test: 
Trial 1. Test 1 (dashed), Test 2 (dotted), Test 3 
(solid). 

These figures show how well the DIAMC balancing 
algorithm works: The CM can be moved to within two 
hundredths of a millimeter from the CM, and the 
oscillations caused by the CM offset can be slowed to 3 
times their original value (see table 1). 

Table I. Period of Oscillation during DIAMC 
B 1 aancmg 

Manual Iteration Iteration Percent 
Balance I 2 Improve-

(sec) (sec) (sec) ment 

Trial 20 35 60 300 
1 

Trial 22 40 60 275 
2 

Comparison to a Simple Pendulum. The 
period of a simple one-degree of freedom pendulum 
with the small angle assumption can be found from 

T=~ 
(31) 

~ lxx 

(Greenwood, 1988) where M, g, and Ixx are used as 
previously defined. The value of r is the distance from 
the point where the pendulum attaches to the ceiling to 
the oscillating mass. This period value can be 
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compared to the period shown by the SSACS using the 
reM values from Trial I ofthe DIAMC balancing 
effectiveness test. The estimated simple pendulwn 
values and the observed values from the SSACS can be 
seen in table 2. The values correspond well. The large 
difference between the simple pendulwn and the actual 
SSACS at Iteration 3 can be explained by the fact that 
the SSACS is not a simple, frictionless pendulwn. The 
SSACS is a complex three-axis 'pendulwn' with the 
ability to transfer energy between the axes as well as 
non-linear friction at the air-bearing. 

The periods from the initial test and from 
iteration I correspond very well. This comparison 
provides more evidence that the DIAMC balancing 
algorithm is able to find an accurate CM estimate and 
correct for the offset. 

Table 2. Comparison of a Simple Pendulwn to the 
SSACS X-Axis 

reM SSACS 1-Axis 
X-Axis Pendulwn 

(mm) Period Period 
(Observed) (Calculated) 

(sec) (sec) 

Initial 0.500 20 21 
Test 

Iteration 1 0.120 35 42 

Iteration 2 0.014 60 132 
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