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Box 1:  Inferring Pattern and Process in Ecological Communities 

 

The theoretical framework outlined in Section 2 can be used as a tool to understand a 

variety of empirical relationships between macroecological distributions. To demonstrate 

the utility of this framework, we consider the variance-variance relationship [Eq. 7 and 

9]. We highlight three attributes of the variance-variance relationship that allow us to 

infer pattern and process in ecological communities. Specifically: (i) the position (i.e. 

coordinates) of a sampled community along the relationship relative to the 1:1 line; (ii) 

the slope of relationship; and (iii) the intercept of the relationship. For illustrative 

purposes we examine the 

€ 

Var M[ ] −Var N[ ]  relationship.  

To derive the variance-variance relationship, first consider the case where the 

biomass of a species population is functionally determined by numerical abundance (i.e. a 

“N causal” model). Using the definition of the average body size within a population 

€ 

m = M
N

, and the expression for the allometric size-density relationship

€ 

N ∝m aN |m , we 

obtain: 

€ 

M ∝N
1+

1
aN |m . Log-transforming this relationship and allowing for variation in M 

not explained by N yields: 

 

€ 

logM = logc + 1+
1

aN |m 

 

 
 

 

 
 logN + ZM |N ,     [Eq. 1] 

 
where c is the proportionality constant in the scaling relationship between M and N and 

€ 

ZM |N  captures variation among species biomass that is not explained by population 

density (

€ 

ZM |N  is a random variable independent of N). Taking the variance of both sides 

reads: 



 

€ 

Var logM( ) = 1+
1

aN |m 

 

 
 

 

 
 

2

Var logN( ) + Var ZM |N( ) .      [Eq. 2] 

 
Alternatively, assuming a “M causal” model (where the numerical abundance of a 

species population is functionally determined by its biomass) yields a different 

expression for the variance-variance relationship. In this case we model 

€ 

N ~ M
1+

1
aN |m 

 

 
 

 

 
 
−1

. 

Log-transforming this relationship and allowing for variation in N not explained by M 

yields: 

 
 

€ 

logN = ′ c + 1+
1

aN |m 

 

 
 

 

 
 

−1

logM + logZN |M ,     [Eq. 3] 

 
where c′ is the proportionality constant in the scaling relationship between N and M and 

€ 

ZN |M  captures variation among species population density that is not explained by 

population  biomass (

€ 

ZN |M  is a random variable independent of M). Taking the variance 

of both sides and rearranging reads: 

 

€ 

var logM( ) = 1+
1

aN |m 

 

 
 

 

 
 

2

var logN( ) − 1+
1

aN |m 

 

 
 

 

 
 

2

var logZN |M( )  [Eq. 4] 

 

Figure 1 shows the variance-variance relationship described by Equation 2 (or 

equivalently 4) in the case of perfect allometry (i.e. M is entirely determined by N and 

vice-versa). 

 
The position (or coordinates) of a sampled community on the variance-variance graph 

reflects ecological pattern. Communities that lie in the shaded area above the 1:1 line 



have a less even species-biomass distribution relative to the species-individual 

distribution (N is more equitably distributed across species than M). In contrast, 

communities that lie in the non-shaded areas below the 1:1 line have a more even 

species-biomass distribution relative the species-individual distribution (M is more 

equitably distributed across species than N). 

 
The slope of the variance-variance relationship also reflects ecological processes as 

the exponent of the size-density relationship

€ 

aN |m  governs its value. For example, the 

slope is steeper than 1 in communities characterized by 

€ 

aN |m < −
1
2

 (which encompasses 

the predicted “Damuth Rule” 

€ 

aN |m = −
3
4

), but shallower than 1 as soon as 

€ 

aN |m > −
1
2

.  

 
The sign of the intercept of the variance-variance relationship is dictated by the 

direction of the functional relationship between M and N (Figure 2).  The intercept is 

positive under a “N causal” model (

€ 

M = f N( ) ) but negative under a “M causal” model 

(

€ 

N = f M( )). The intercept may thus be used in natural communities to understand causal 

pathways linking M and N and therefore to gain insight into forces organizing 

communities. 

 
 
 
 
 
 
 
 
 
 
 
 



Figure 1: The expected variance-variance relationship between biomass (M) and 

numerical abundance (N) depends on the exponent of the size-density relationship 

(here the size-density relationship is assumed exact) 
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Figure 2: With deviations about the size-density relationship, the expected variance-

variance relationship between biomass (M) and numerical abundance (N) depends 

on the "model of causality" 
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Box 2: How macroecological distributions may arise from community 

assembly rules 

Macroecological distributions (e.g. GSADs, SsD, SeD) originate from multiple 

processes acting at different spatial scales. They are often observed at the level of local 

communities, but local communities are subject to processes that operate at both the local 

and the regional scale (MacArthur & Wilson, 1967; MacArthur, 1972; Brown & Maurer 

1987, Ricklefs & Schluter, 1993). Large-scale determinants (e.g. barriers to dispersal, 

climate, evolution, extinction) determine the geographic ranges of species, and therefore 

the potential set of species that can persist in a local community. Based on their traits, 

some species are locally excluded by competitors or are simply not sufficiently adapted 

(Tilman 1982, 1990). Local processes therefore restrict the set of possible species. The 

net effect of local processes in turn restricts the geographic ranges of species: if a species 

in a region does not possess the right traits to occupy a niche in any local community, it 

will go regionally extinct (‘upward’ forces of local conditions on the geographic 

distribution of species). The regularities found in this filtering or ‘sub-setting’ of species 

groups have been called assembly rules (Eriksson 1993), which set the distribution of the 

functional traits of species in local communities (McGill et al. 2006). In this mechanistic 

view, local communities are assembled from the ‘parts on the shelf’ of the geographic 

region in which they occur by passing through a set of filters. What parts pass through the 

filters depend on the species’ traits.  



The figure below provides an overview of how local macroecological distributions 

may arise from community assembly rules. The species found at the geographical scale 

show a particular distribution of trait values, subject to evolutionary processes. Only a 

subset of those species is expected to reach a particular local community (Loreau et al. 

2001). Of these, only a subset may be able to establish. The species that do establish 

determine the distribution of trait values, such as the species-size distribution. This 

distribution, together with trait-trait relationships and local environmental conditions (e.g. 

temperature) in turn determines the individual-energy use distribution. Various biotic 

interactions among species, and between species and environmental factors, determine 

the “abundance” of the species present in the local community. This outcome depends 

critically on the underlying distribution of trait values. Which “abundance” is primarily 

determined depends on the relative importance of different ecological processes for 

structuring communities. For example, the SID may be the pattern most directly 

reflecting processes if birth, death and recruitment are at the core of community 

organization. Alternatively, the SBD may be the pattern most directly reflecting 

processes if the community is strongly subject to disturbances affecting species’ biomass. 

Or the SER might also be the pattern most directly reflecting processes if resource 

division rules are dominant processes. Because these three GSADs are interrelated, 

processes acting on one of them will also affect the others.  

 

 

 

 



 

 

Figure 1: Hypothesized relation between macroecological distributions and various 

important processes that structure communities on local and regional (geographic) 

scales. The different symbols of different size represent individuals of different 

species, characterized by different traits (e.g. body-size, resource requirements, 

dispersal ability) 
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Taking species abundance distributions beyond

individuals: Appendix

Appendix S1: Detailed data sources and methods

Birds

We use data from the North American Breeding Bird Survey (BBS; Robbins et al. (16); Sauer et al.

(17)), which consists of several thousand survey routes scattered across the continental United

States and southern Canada. Data are gathered by volunteer observers who identify and count

individuals of every bird species seen or heard at each of 50 stops along a 40 km route. The

BBS dataset thus allows for the observation of patterns at both the local scale (individual survey

routes) and continental scale (aggregating data across routes). We only use data from the 1400

routes for which surveys were conducted every year over the 5-year period 2002-2006 in order to

minimize the chances of failing to detect rare species McGill (12); (Hurlbert and White). We

exclude species not well-covered by BBS survey methodology (i.e., waterbirds, raptors, nocturnal

species) and focus on 349 species of terrestrial land birds. Since sampling effort is constant across

years and routes, we calculate density for each species in each route using the sum of the counts

over the 5 year period and at the continental scale using the sum of densities per route. Mean

species body-mass measurements are taken from the literature Dunning (5), and per-capita energy

use is calculated using empirically derived field metabolic rates (FMR; Nagy et al. (15)) for all bird

species: e ≈ FMR ≈ 10.5m0.681.

1



2

Fish

Fish data is obtained from a stratified survey of all major drainages in Trinidad, which took place

between 1996 and 1998. Data comes from seventy-six sites. The section of stream (average length

50 m) sampled at each site is short enough to be fished thoroughly, yet long enough for all species

present to be represented in the catch. The sampling protocol includes major habitat types present

in the river at that point (e.g. pool and riffle). Electrofishing is employed where possible, but is

replaced by seining (mesh size 1.25 cm) when rivers are turbid. Large deep rivers are sampled with

gillnets and a trammel net. Guppies Poecilia reticulata and other small fish are collected with dip

nets. Sampling effort is consistent across sites. The total number of individuals is recorded for

each species at each site. Biomass is measured in the field at the time of fishing for each species

and represents the total wet weight of all individuals caught. Per-capita energy use is calculated

based on re-fitting data on resting metabolic rates Gillooly et al. (8) using a multiple regression on

appropriately transformed data. This relationship accounts for variation in local temperature as well

as body size: e ≈MR ≈ 31382m0.75262e−
−0.4319
kT where k is Boltzman’s constant (8.6 10−5 eV K−1

) and T is temperature measured in degrees Kelvin. Temperature is calculated at each site from

the average of three temperatures measurements recorded at the beginning, middle, and end of

sampling. The value chosen for temperature has in practice no effect on our results since it is the

same for every species within local communities.

Mammals

We use data from several small mammal communities from the Sevilleta LTER in New Mexico (6)

and the Portal Project in Arizona Brown (1); Ernest et al. (7). These studies include individual

measurements of size and thus biomass can be directly calculated by summation without relying on

mean species values (contrary to the bird data). The Sevilleta data comes from six sets of mark-

recapture webs sampled continuously from 1994 to 1998 (Five Points Grass, Five Points Larrea,

Goat Draw, Rio Salado Grass, Rio Salado Larrea and Two 22). Data is summed over three days

within each census, the two annual censuses, and over the five year period. Recaptures within a

single census is excluded. We use data from the control plots of the Portal Project (see Brown
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1998 for details of the study) and sum the values of numerical abundance and biomass over the

12 monthly censuses and the five years from 1994-1998. Per-capita energy use for both studies is

calculated from the allometry reported in Nagy et al. (1999) relating field metabolic rate (FMR)

and mass for desert mammals: e ≈ FMR ≈ 3.18m0.785.

Trees

We use data on trees from the Center for Tropical Forest Studies network (http: //www.ctfs.si.edu).

Within a 50-ha plot in Barro Colorado Island in central Panama, spatial location, species identi-

fication and diameter at breast height (d) are reported for every stem > 1cm Condit (4); Hubbell

et al. (10, 9). To estimate individual aboveground mass we use the empirical interspecific allometry

m = 0.124 d2.53 relating individual mass (m) to diameter at breast height Brown (2); we then

sum the individual tree masses to obtain an estimate of biomass. More accurate species-specific

allometries incorporating wood density are available for BCI Chave et al. (3), but the allometry

we use provides a first good approximation close to the theoretical prediction m ∝ d
8
3 West et al.

(18). The energetics of trees stricto senso is not well characterized, but it has been proposed that

surrogates such as biomass production, water consumption or respiration rates scale as m
3
4 West

et al. (18) (thus d2) and foresters have traditionally assumed that total basal area is a decent mea-

sure of total production or resource use. To estimate per-capita energy use, we use the relationship

derived by refitting the data from Gillooly et al. (2001) using a multiple regression on appropri-

ately transformed data: e ≈ respiration ≈ e16.949 m0.692 e−
0.642
kT , where k is Boltzman’s constant

(8.6 10−5 eV K−1 ) and T is temperature measured in degrees Kelvin. Temperature is calculated

as the mean annual temperature (average within days, then within months and then the whole

year) averaged over the last 5 years. The value chosen for temperature has in practice no effect on

our results since it is the same for every species. The data available for estimating the allometric

relationship of energy use by plants is based on seedlings and plant parts Gillooly et al. (8), and

is thus necessarily a rough estimation. In addition, photosynthesis is strongly dependent on light

availability, and light availability is highly dependent on size in tropical forest: small trees in the

shaded understory are likely not at their maximum metabolic rate (13; 14). As this is the best data
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available, it is the one we use to get a reasonable though course characterization of the energy use

of tree species.

Appendix S2: Detailed empirical results

Evenness

The bird data consist of 1400 local communities. Individuals are distributed with more equitability

than biomass in all local communities but 5 and with more equitability than energy use in all

local communities but 15. Energy use is more equitably distributed than biomass in all local

communities. The fish data consist of 76 local communities. Individuals are distributed with more

equitability than biomass in 55 of these 76 local communities and with more equitability than

energy use in 43 of them. Energy use is more equitably distributed than biomass in 59 of the 76

local communities. The mammal data consist of 7 local communities. Individuals are distributed

with more equitability than biomass in all of them and with more equitability than energy use in

all local communities but 1. Energy use is more equitably distributed than biomass in all local

communities. The tree data consist of 50 local communities. Individuals are distributed with more

equitability than biomass and energy use in all of them. Energy use is more equitably distributed

than biomass in all local communities.

Skewness

Local bird communities are slightly more often characterized by a left-skewed SID (814 out of 1400,

~ 58%), but right-skewed SBDs and SEDs (~75% and 59% of the local communities respectively).

Local fish communities are characterized by mostly right-skewed SIDs (48 out of 76, ~ 63%) and

slightly more right-skewed SEDs ( ~ 54%), but slightly more left-skewed SBDs (~55%). Five out

of the seven local mammal communities show a positive skew for the SID, the SBD and the SED,

while the two other local communities show a negative skew for the three distributions. All the

local 1 ha local tree plots show a positively-skewed SID, and all of them a negatively-skewed SBD

(but 2 plots) and SED.
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Appendix S3: Detailed derivations relevant to the conversion framework

General conversion formula

Macroecological distributions are all interrelated by conditional probabilities (or probability den-

sities; e.g. Figure S1). The conversion between the frequency distribution SX and the frequency

distribution SY is given by the general formula:

SY (Y ) =
ˆ
P (Y |X)SX (X) dX (1)

With

Y = f(X) + ε

where f is a general allometry and the error ε is independent of X and centered (E (ε) = 0),

P (Y |X) reads:

P (Y |X) = P (f (X) + ε|X) = P (ε|X) = Pε (ε) = Pε (Y − f (X))

Combining with 1, the conversion from X to Y is given by the general formula:

SY (Y ) =
ˆ
Pε (Y − f (X))SX (X) dX (2)

Specific conversion formulas (Table 2)

• General allometry, no error

When there is no error around an allometric relationship f , Pε may be written as a Dirac delta

function:

Pε (Y − f (X)) = δ (Y − f (X))
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For any monotic function g with root xi:

δ (g (x)) =
δ (x− xi)
|g′ (xi)|

where the prime denotes the derivative. We thus have (for f ′ (X) 6= 0):

δ (Y − f (X)) =
δ
(
X − f−1 (Y )

)
|f ′ (X)|

Therefore, (2) becomes

SY (Y ) =
SX
(
f−1 (Y )

)
|f ′ (f−1 (Y ))|

(3)

• Power-law allometry, no error

Substituting in 3, for a power-law allometry f : x→ log (c) + ax without error:

SY (Y ) =
1
|a|
SX

(
1
a

(Y − log (c))
)

(4)

• General allometry, normally distributed error

Substituting in 2, for a normally distributed error Pε(x) = 1
σ
√

2π
exp−

x2

2σ2 and a general allometric

relationship f :

SY (Y ) =
ˆ

1
σ
√

2π
exp−

(Y−f(X))2

2σ2 SX (X) dX (5)

• Power-law allometry, normally distributed error

Substituting in 5, for a normally distributed error and power-law allometry:

SY (Y ) =
ˆ

1
σ
√

2π
exp−

(Y−log(c)−aX)2

2σ2 SX (X) dX (6)
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The geometric SID results from the uniform SsD (case power-law allometry

with no error)

It has been show Loehle (11) that the geometric SID results from the uniform SsD when an exact

power-law allometry is assumed. This result is easily reproducibe using our framework. Assume

that the size distribution is uniform on a log scale, i.e:

Ss (log (m)) = 1
log(mmax)−log(mmin) if mmin ≤ m ≤ mmax

= 0 otherwise

substituting in 4 leads (with aN |m ≤ 0)

SN (log (N)) = 1
|a|(log(mmax)−log(mmin)) if cm

aN|m
max ≤ N ≤ cm

aN|m
min

= 0 otherwise

i.e. the species abundance distribution is also uniform on a log-scale. Note that the geometric rank

abundance curve is equivalent to the uniform distribution on a log scale, and we therefore reproduce

the results by Loehle (2006). The advantage of our framework is that it offers the possibility to

extend such predictions to biologically more realistic cases, in particular incorporating the effect of

variation around the size-density relationship.

Converting the skewness of macroecological distributions

We write

Y = log
(
cY |X

)
+ aY |XX + ZY |X (7)

with ZY |X independent of X. Assume that ZY |X is centered (E
[
ZY |X

]
= 0). The expected value

of Y reads:

E[Y ] = E[log
(
cY |X

)
+aY |XX+ZY |X ] = log

(
cY |X

)
+aY |XE [X]+E

[
ZY |X

]
= log

(
cY |X

)
+aY |XE [X]
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The variance of Y reads:

V [Y ] = a2
Y |XV [X] + V

[
ZY |X

]
The skewness of Y is defined by:

γ1 =
E[(Y − E[Y ])3]

(E[(Y − E[Y ])2])
3
2

=
E[(Y − E[Y ])3]

V [Y ]
3
2

E[(Y−E[Y ])3] = E

[(
aY |X (X − E [X]) + ZY |X

)3]
= E

[
a
3
Y |X (X − E [X])3 + Z

3
Y |X + 3a2

Y |X (X − E [X])2 ZY |X + 3Z2
Y |XaY |X (X − E [X])

]
ZY |X and X are independent, so that:

E
[
3a2
Y |X (X − E [X])2 ZY |X

]
= 3a2

Y |XE
[
ZY |X

]
E
[
(X − E [X])2

]
= 0

E
[
3Z2

Y |XaY |X (X − E [X])
]

= 3aY |XE
[
Z2
Y |X

]
E [(X − E [X])] = 0

Finally

E[(Y − E[Y ])3] = E
[
a3
Y |X (X − E (X))3

]
= a3

Y |XE
[
(X − E (X))3

]
+ E

[
ZY |X

]3
Thus the skewness becomes

γ1 =
a3
Y |XE[(X − E[X])3] + E

[
ZY |X

]3
(a2
Y |XV [X] + V

[
ZY |X

]
)

3
2

This expression shows that Y can be skewed even if X is not, if ZY |X is skewed. In the case of

unskewed ZY |X :

γ1 =
a3E[(X − E[X])3]

(a2V [X] + V
[
ZY |X

]
)

3
2

This formula shows that if X explains Y with a given unexplained variance, the absolute value



9

of the skewness of Y is always smaller than the absolute value of the skewness of X. This formula

also shows that the sign of the skewness of Y is opposite to that of X for a ≤ 0. In particular,

with aM |N = 1 + 1
aN|m

, N and M are expected to have opposite skew for 1 + 1
aN|m

< 0 , or

equivalently 0 > aN |m > −1. With aE|N = 1+ ae|m
aN|m

, N and E are expected to have opposite skew

for 1 + ae|m
aN|m

< 0 , or equivalently 0 > aN |m > −ae|m.

Appendix S4: Equitability in the distribution of individuals, biomass and

energy

Assuming that the relationships between both N and m and e and m are power-law, we denote

cN |m and aN |m the normalization constant and power-law exponent of the allometry between m

and N . Writing E = Ne and M = Nm, it is obvious that the relationship between any 2 of

the 5 variables N, m, e, M and E is also power-law. Notations for the allometries between any

two other variables are denoted accordingly. For example if N ∼ maN|m , then m ∼ N
1

aN|m , so

that M ∼ N

(
1+ 1

aN|m

)
and aM |N = 1 + 1

aN|m
. If furthermore we neglect intraspecific body-size

variation (reasonable assumption in the case for determinant growers such as birds and mammals),

we can write e ∼ mae|m , so that E ∼ N

(
N

1
aN|m

)ae|m
∼ N

1+
ae|m
aN|m and aE|N = 1 + ae|m

aN|m
. For

example with Damuth (aN |m = −0.75) and Kleiber’s (ae|m = 0.75) coefficients: aM |N = −0.33 and

aE|N = 0 (energy equivalence rule).

Using the formulas presented in the manuscript (section 2), it is straightforward to derive the

relationships between the variance in number of individuals, biomass and energy use. This is done

in Box 1 for number of individuals and biomass. For simplicity in the figures in Box 1 we have

separated the effect of the slope of the size-density relationship (case without error) to the effect

of the “causal” relationship. In Figure S2a) we combine the two effects to illustrate the conditions

under which biomass is expected to be more equitably distributed than individuals. Figure S2b

is the parallel for illustrating the conditions under which energy is expected to be more equitably

distributed than individuals.
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Captions

• Figure S1: General link between diversity distributions

We denote probabilities (or probability densities) associated with species level conversions (blue

shade, conversion between species individual, biomass and energy distributions) by upper case

symbols (P ), and probabilities associated with per capita level conversions (yellow shade, conver-

sion between species individual, size and per capita energy distributions) by lower case symbols (p).

Conversions between population level distributions naturally stem from per capita level probabili-

ties (in particular p (N |m) describing the relationship between density and body-size, and p(e|m)

describing the relationship between metabolic rate and body-size). Equations in the figure provide

the relationships between probabilities at the population and per capita level.

• Figure S2: Conceptual figure illustrating the effect of allometric slopes, error and causality

on the relationships between: a) the equitability of individuals and biomass division b) the

equitability of individuals and resource division

If the error around allometries is ignored (plain lines), whether biomass (or energy) is more equitably

distributed than the number of individuals depends on the slope of the size-density relationship

(or the ratio of the slopes of the size-density and size-energy relationships, respectively). With

Damuth exponent for the size-density relationship (-0.75), biomass is expected to be more equitably

distributed than the number of individuals. With Kleiber’s exponent for the size-energy relationship

(0.75), energy is expected to be more equitably distributed than the number of individuals for a size-

density relationship steeper than -0.375. Incorporating the effect of scatter around the allometries

significantly change the results. The relationships between evenness depend on the direction of

causality (short-dashed lines versus dashed-point lines).
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