
On the relationship between mass and diameter distributions in tree communities

James C. Stegen1 and Ethan P. White2*

1 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721

2 Department of Biology and the Ecology Center, Utah State University, Logan, UT, 84322

Running Title: Relating mass and diameter distributions

Keywords: individual size distribution, variable transformation, energetic equivalence, metabolic 

theory, light competition, resource partitioning

Article Type: Letter

Abstract word count: 124

Manuscript word count: 2858

Number of references: 52

Figures: 2

Supplemental Appendices: 1

*Correspondence: Ethan P. White, Department of Biology, Utah State University, 5305 Old 

Main Hill, Logan, UT, 84322. Phone: 435-797-2097. Fax: 435-797-1575. E-mail: 

epwhite@biology.usu.edu.

1



Abstract

It has been suggested that frequency distributions of individual tree masses in natural stands are 

characterized by power-law distributions with exponents near -3/4, and that therefore tree 

communities exhibit energetic equivalence among size classes. Because the mass of trees is not 

measured directly, but estimated from diameter, this supposition is based on the fact that the 

observed distribution of tree diameters is approximately characterized by a power-law with an 

exponent ≈ -2. Here we show that diameter distributions of this form are not equivalent to mass 

distributions with exponents of -3/4, but actually to mass distributions with exponents of -11/8. 

We discuss the implications of this result for the metabolic theory of ecology and for 

understanding energetic equivalence and the processes structuring tree communities.

Keywords: individual size distribution, size spectrum, variable transformation, energetic 

equivalence, metabolic theory, light competition, resource partitioning

2



INTRODUCTION

The idea of energetic equivalence was first suggested by Damuth (1981). Damuth noted that 

because the average population density of a species, N, was related its mass, M, raised to the -3/4 

power and the metabolic rate of an individual, B, was related to its mass raised to the +3/4 power 

the population energy use of a species was invariant with respect to mass (i.e. 

3 4 3 4 0Q BN M M M−= µ µ ). This pattern has been dubbed the Energetic Equivalence Rule and 

is commonly observed at broad spatial scales for mammals, invertebrates, fish, and trees 

(Damuth 1987; Cyr et al. 1997; Enquist et al. 1998; Ernest et al. 2003; White et al. 2007).

It has recently been suggested that a related pattern occurs for individual-size 

distributions (ISDs) within forest communities. By assuming that the scaling of the distribution 

of plant masses within communities behaves in the same manner as the scaling of plant mass and 

density across communities, Enquist and Niklas (2001) suggested that the number of individuals 

in a mass class, n, should be proportional to the mass of that class raised to the -3/4 power. If this 

assumption is valid, then energetic equivalence occurs among mass classes within tree 

communities. 

 Because diameter, D, not mass, is typically measured in forest communities, Enquist and 

Niklas (2001) provided indirect support for energetic equivalence across mass classes by 

deriving a prediction for the form of the size distribution in terms of diameter, 3 4 2n M D− −µ µ . 

In support of this model, Enquist and Niklas (2001) showed that for many of Alwyn Gentry’s 

forest plots (Phillips & Miller 2002) abundance among size classes declines approximately to the 

-2 power of diameter (but see White et al. 2008). While the precise form of the empirical 

diameter distribution and the value of the exponent have recently been questioned, it does appear 

that diameter distributions of many forests can be approximately characterized by this pattern 
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over some range of body sizes (Coomes et al. 2003; Muller-Landau et al. 2006b; White et al. 

2008; see also Fig. 2).

This result suggests a roughly equal partitioning of resources, energy flux, and net 

primary production among mass and diameter classes within forests and may provide insights 

into the processes structuring forest communities (Enquist & Niklas 2001; Enquist 2002). This 

pattern has subsequently been used to provide linkages from individual-level energetic 

constraints to community structure to whole ecosystem processes, and in turn, advance the 

metabolic theory of ecology as a powerful and predictive tool capable of integrating across levels 

of biological organization (Enquist et al. 2003; Brown et al. 2004; Kerkhoff & Enquist 2006; 

Kerkhoff & Enquist 2007). However, here we show that the derived form of the diameter 

distribution is incorrect and discuss the implications of this result for metabolic theory, energetic 

equivalence, and the processes structuring tree communities.

 

RELATING MASS AND DIAMETER DISTRIBUTIONS

Enquist and Niklas (2001) established the predicted form of the diameter distribution by 

first assuming that N and n scale with body size in the same manner (i.e. 3 4n M −µ ) and then 

substituting the relationship between individual mass and tree diameter, 8 3M Dµ  (Niklas 1994; 

West et al. 1997; West et al. 1999), into the predicted form of the mass distribution. This yields 

( ) 3 43 4 8 3 2n M D D
−− −µ µ µ  (see also Coomes et al. 2003; West & Brown 2004; Marquet et al. 

2005; West & Brown 2005; Muller-Landau et al. 2006b; Woodhouse 2006). However, this 

substitution is not a valid approach for transforming between variables when dealing with size 

distributions, which, unlike other allometric relationships, are characterized by probability 
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density functions. The problem occurs because changing from mass to diameter not only changes 

the position of individual points, but also changes the position of those points relative to one 

another and hence the density of those points along the size axis.

The appropriate univariate transformation between two probability density functions fX(x) 

and fY(y) where x is related to y by x = h(y) is

( ) ( ) ( )( )Y Xf y h y f h y′= (1)

where ( )h y′  is the derivative of ( )yh with respect to y (e.g., Freund 1971; Mood et al. 1974; 

Ross 2006). This is the standard method from calculus for a change of variables in a definite 

integral (Thomas & Finney 1996). The derivative accounts for the change in the position of the 

points relative to one another. Therefore the predicted diameter distribution for a model where 

the mass distribution is characterized by ( ) 3 4
Mf M M −µ , and where M and D are related by 

8 3M Dµ , is given by

( ) ( ) ( ) 3 45 3 8 3 5 3 8 3 1 3
D Mf D D f D D D D

− −µ µ µ

demonstrating that the predicted relationship between abundance and diameter is actually D-1/3, 

not D-2. Equivalently we can determine the form of the mass distribution that corresponds to a 

diameter distribution with an exponent of -2:

( ) ( ) ( ) 25 8 3 8 5 8 3 8 11 8
M Df M M f M M M M

−− − −µ µ µ

suggesting that observed individual size distributions of diameter actually support distributions 

of mass with exponents near -11/8, not -3/4. These results were confirmed by both simulations 

(Fig. 1) and analyses of empirical data (Fig. 2).

This variable transformation error has also occurred in other areas of ecology. Notably, 

May (1986), Peters (1983), and Southwood et al. (2006) did not properly transform between size 
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variables when evaluating the form of species body size distributions. The error is likely a result 

of thinking about frequency distributions from the perspective of the binning based approaches 

often used to analyze the data. These approaches typically treat frequency distribution data as 

bi-variate functional relationships, making it appear that the substitution discussed above is valid. 

Avoiding binning based approaches when modeling and analyzing frequency distribution data 

may help alleviate confusion regarding the type of size-abundance relationship being studied, 

and thus clarify the appropriate approach to transforming between variables.

We have focused on the transformation originally laid out in Enquist and Niklas (2001). 

However, the form of both the individual size distribution and the relationship between diameter 

and mass are subjects of debate (Niklas 1994; West et al. 1997; West et al. 1999; Enquist & 

Niklas 2001; Coomes et al. 2003; Chave et al. 2005; Muller-Landau et al. 2006b; Price et al. 

2007). The general approach we take is valid for any proposed form of the individual size 

distribution and functional relationship between diameter and mass. The transformation can 

generally be expressed as,

( ) ( ) ( )|M Df M P M D f D dD= ∫ . (2)

In concept this general solution makes it possible to incorporate alternative and/or more complex 

forms of the component relationships including the incorporation of: 1) error around the 

allometric relationships; 2) species level variation in the normalization (e.g., through variation in 

wood density; Chave et al. 2005) and exponent of the allometric function relating M to D (Price 

et al. 2007); and 3) the use of different distributions and functional relationships (e.g., those in 

Chave et al. 2005 and Muller-Landau et al. 2006b). In practice, analytical solutions to the 

transformation described in equation (2) may prove more difficult in the presence of these 

additional sources of complexity. Preliminary simulation results suggest that variability in the 
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exponent does not affect the transformation (Appendix S1), but that error around the allometric 

relationships may have some influence on the results (Appendix S1). Further research will be 

necessary to fully understand the implications of these and other complexities for transforming 

between different forms of the size distribution.

IMPLICATIONS FOR THE METABOLIC THEORY OF ECOLOGY

Because the observed form of the diameter distribution in tree communities is not 

consistent with an individual size distribution of the form ( ) 3 4
Mf M M −µ , the published 

metabolic theory explanation for the form of the individual size distribution (Enquist & Niklas 

2001) is not supported by empirical data. Therefore metabolic theory has yet to provide a 

mechanistic explanation for ISDs within forests (see also Torres et al. 2001; Coomes 2006; 

Muller-Landau et al. 2006b). In addition, the two studies in animal communities that have 

offered support for the predicted -3/4 form of the individual mass distribution (Ackerman et al. 

2004; Meehan 2006) did so using incorrect statistical methods (see White et al. 2008 for a 

detailed explanation). Specifically, a value of 1 must be subtracted from the exponent when 

using logarithmically binned size classes (see Bonnet et al. 2001; Andersen & Beyer 2006; Sims 

et al. 2007; White et al. 2008). As a result these studies support an exponent near -7/4, not -3/4. 

It has been suggested that these studies should be interpreted as deriving ( ) ( )( )Mf M loglog , and 

thus actually predict ( ) 47−∝ MMf M  (Reuman et al. in press). Regardless, we are aware of no 

data that support an individual size distribution with the ( ) 3 4
Mf M M −µ  form.

It should be noted, however, that Enquist and Niklas (2001) do provide a simulation 

model from which a size distribution characterized by ( ) 2
Df D D−µ  emerges. Their model 
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follows the succession of spatially explicit forest communities from an initial “seeding” of 

propagules to an equilibrium forest structure. Metabolic theory provides the basis for growth 

such that partitioning of new biomass into stems, leaves, and reproductive biomass is assumed to 

scale with mass as predicted by metabolic theory (West et al. 1999; Enquist et al. 2000; Enquist 

& Niklas 2002; Niklas et al. 2003). In addition to purely metabolic constraints, mortality and 

growth in this model are also affected by light competition due to light attenuation caused by 

overhead canopies (see also Coomes 2006; Muller-Landau et al. 2006a; Coomes & Allen 2007). 

The simulated ISDs are well characterized by ( ) 2
Df D D−µ  (Enquist & Niklas 2001). Similar 

results are also seen in more complex simulation models with allometric foundations (Chave 

1999). The rough concordance between observed and simulated distributions suggests that the 

rules governing biomass partitioning, as predicted by metabolic theory, may have important 

influences on the form of the size distribution.

In addition to predicting the form of the individual size distribution, a small branch of 

metabolic theory has utilized the presumed form of the mass distribution to make predictions for 

the scaling of ecosystem properties such as carbon storage and flux, and whole community 

nutrient stocks (Kerkhoff & Enquist 2006). Determining the specific implications of our central 

result for this study will require re-derivation of the model and re-analysis of the affected 

predictions. While detailed redevelopment is beyond the scope of the current study, it is clear 

that within-size-class predictions for any community or ecosystem attribute will be sensitive to 

the assumed ISD. In addition, any model for ecosystem processes where the size distribution 

plays a meaningful role will be influenced by the use of the incorrect form of the ISD (e.g., 

Kerkhoff & Enquist 2006). The form of the ISD is thus important for understanding how 

organismal processes ‘scale-up’ to populations, communities, and ecosystems. In general, our 
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results impact the metabolic theory predictions for the form of the ISD and for community and 

ecosystem level properties based on the ISD, but our results have no implications for the network 

model itself (West et al. 1997; 1999) or for any predictions of individual- and species-level 

properties (e.g. metabolic rate, mortality rate, etc.). 

IMPLICATIONS FOR ENERGETIC EQUIVALENCE

Different processes are responsible for generating the individual size distribution and the 

species-level size-density relationship (SDR; sensu White et al. 2007), the pattern Damuth 

(1981) originally proposed to exhibit energetic equivalence (Jennings et al. 2007; White et al. 

2007). These two patterns also take different mathematical forms. The ISD is a frequency 

distribution and is thus characterized by a probability density function, while the SDR is a 

bi-variate functional relationship. Our results have no implications for the traditional SDR based 

energetic equivalence rule because if population-level metabolic rate, Q, is invariant with respect 

to body size for one size measure, by definition it is invariant with respect to the other size 

measures (since direct substitution is the appropriate way to change variables for the SDR). For 

example, given the size dependence of metabolic rate ( 3 4 2B M Dµ µ ), population size must 

decline with body size such that 3 4 3 4 0Q BN M M M−µ µ µ  and 2 2 0Q BN D D D−µ µ µ  

(Enquist et al. 1998). 

In contrast, for the individual size distribution only a single measure of size (or a set of 

size measures that are related isometrically) can exhibit energetic equivalence. For example, 

observed diameter distributions in tree communities are fairly close in many cases to exhibiting 

energetic equivalence while mass distributions exhibit a steep decline in energy use with 

increasing size class: 2 2 0q Bn D D D−µ µ µ  and 3 4 11 8 5 8q Bn M M M− −µ µ µ , where q is 
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energy flux within a size class. More generally, it is a mathematical certainty that within any 

community, energy will not be partitioned among size classes in the same manner for different 

characterizations of body size when those characterizations are related allometrically (e.g. fish 

mass ~ fish length3 or tree mass ~ tree diameter8/3). 

The size of a tree can be defined based on various measurements including mass, trunk 

diameter, height (H), and crown area (i.e. leaf mass; A). Metabolic theory predicts, and/or 

empirical data support, allometric relationships between these measures of size such that 

8 3 4 4 3M D H Aµ µ µ  (Niklas 1994; West et al. 1997; West et al. 1999; Niklas & Enquist 2001; 

Muller-Landau et al. 2006a). Hence, a forest characterized by the ISDs 

€ 

fD(D)∝D−2 and 

€ 

fM(M)∝M−11/8, can also be characterized by the ISDs 

€ 

fH(H)∝H−5/2 and ( ) 3 2
Af A A−µ . 

Combining these height and crown area ISDs with the dependence of metabolic rate on height (

3B Hµ ) and crown area ( B Aµ ) shows that diameter is the only measure of size for which 

energetic equivalence is approximated within forests: 0q Dµ , 5/8q M −µ , 

( ) 3 5 2 1 2
Hq Bf H H H H−µ µ µ , and ( ) 3 2 1 2

Aq Bf A AA A− −µ µ µ . This occurs because the 

relative position of individuals along the size axis changes when transforming from one size 

measure to another. As a result, the number of individuals in a size class is dependent on how 

size is characterized, such that the amount of energy fluxed within a size class changes with the 

choice of size measure. This remains true regardless of taxon or community type. In contrast the 

amount of energy fluxed by a population or through a whole community is not dependent on how 

size is characterized because the number of individuals and the fluxes of each individual remain 

the same by definition. Thus, energetic equivalence holds across forests (Enquist et al. 1998) 

regardless of how size is characterized. 
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IMPLICATIONS FOR PROCESSES STRUCTURING TREE COMMUNITIES

Approximately equal energy use across diameter classes may point to diameter as a 

functional attribute of tree morphology critical to resource partitioning among individuals. If 

diameter is directly related to resource partitioning, the observation of approximate energetic 

equivalence would represent an important clue to understanding how resources are divided 

within forests. However, diameter is unlikely to be the most relevant aspect of size given that 

canopy area, leaf mass, and tree height are more directly related to light acquisition than is trunk 

diameter (see also Lawes et al. 2008). In fact, the observed form of the tree size distribution has 

been questioned due to a presumed dominance of light acquisition by larger individuals (Coomes 

2006; Muller-Landau et al. 2006b; Coomes & Allen 2007). Dominant resource acquisition by 

larger individuals would suggest that tree height, the only measure of size examined here for 

which energy flux increases across size classes, is the aspect of size most relevant to resource 

partitioning in forests. However, resource acquisition should logically result from a combination 

of canopy area (the number of leaves) and tree height (the per leaf resource availability). While 

more research is needed to determine how different aspects of tree size influence resource 

partitioning within forests (Schwinning & Weiner 1998), some insight is provided by the fact 

that realistic diameter distributions emerge from simulation models combining the ecological 

impacts of competition for light and stochastic mortality with allometric partitioning of biomass 

into growth and reproduction (Chave 1999; Enquist & Niklas 2001). In addition, Hara (1984) 

hypothesized that realized ISDs are sensitive to size dependent biomass partitioning. Roughly 

equivalent energy flux across diameter classes may thus represent an emergent property of plant 
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communities within which individuals are constrained to follow idealized biomass partitioning 

rules.

Exploring the sensitivity of the ISDs predicted by these models to the assumptions of 

individual biomass partitioning and light competition will provide a more rigorous evaluation of 

the processes leading to observed patterns of resource division among individuals. This will help 

determine if patterns of resource partitioning are due to a direct influence of size per se or if they 

emerge indirectly through ecological interactions and individual biomass partitioning. In 

addition, studying the temporal dynamics of ISDs following disturbance would allow community 

assembly to be examined through time from a body size perspective (Kohyama 1993). In 

general, understanding the relative influence of, and interactions between, individual biomass 

partitioning and competition should help elucidate fundamental processes structuring forested 

ecosystems.

CONCLUSIONS

Here we have shown that the distribution of individual tree masses predicted by Enquist 

and Niklas (2001), ( ) 3 4
Mf M M −µ , is not consistent with the observed form of tree community 

diameter distributions, ( ) 2
Df D D−µ , and is thus not supported by empirical data. Therefore, 

when properly analyzed the current metabolic theory explanation for the form of ISDs in tree 

communities is readily rejected. This result also demonstrates that patterns of energy use across 

size classes within forests are dependent upon how size is characterized. If measured in terms of 

diameter, all size classes flux approximately the same amount of energy whereas energy flux 

declines with mass and crown area and increases with height. This implies that energy is not 

partitioned due to size per se, but rather due to different functional attributes of different aspects 
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of size. This ‘context’ dependence of energy partitioning occurs because of the allometric 

relationships between different aspects of tree size and because individual size distributions are 

frequency distributions, not bi-variate functions. The nature of this dependence raises significant 

challenges for understanding the relative dominance of different size classes in tree communities. 
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FIGURE LEGENDS

Figure 1. Simulation results confirming the analytical solutions for transformations between 

different measures of body size. Random datasets of 500 individuals each were generated from 

power-law distributions with the appropriate exponents, a minimum value of 1 and a maximum 

value of 10,000. These datasets were treated as either mass data (exponent = -3/4) or diameter 

data (exponent = -2). The exponent of each dataset was determined using both maximum 

likelihood estimation (solid lines) and normalized logarithmic binning (dashed lines), the values 

were converted to the alternate measure of size (diameter or mass) using 8 3M Dµ , and finally 

the exponent for the alternate size measure was determined. Distributions of the results of 10,000 

of these simulations are presented for (a) Converting from mass (exponent = -3/4; blue lines) to 

diameter (red lines; analytical solution for exponent = -1/3) and (b) converting from diameter 

(exponent = -2; red lines) to mass (blue lines; analytical solution for exponent = -11/8). The 

simulated data clearly replicate the analytical result.

Figure 2. Empirical results confirming the analytical solutions for transformations between 

different measures of body size and rejecting the previously assumed distribution: 

( ) 3 4
Mf M M −µ . Data from the 50ha plot at Barro Colorado Island (Condit 1998; Hubbell et al. 

1999; Hubbell et al. 2005) were subdivided into 50 1ha subplots. Diameters (red lines) where 

converted to masses (blue lines) using 8 3M Dµ . Power-laws were fit to the data using 

maximum likelihood estimation based on the Pareto distribution (solid lines) and the Truncated 

Pareto distribution (dotted lines; using the maximum value of diameter or mass for the entire 

50ha plot as the maximum attainable value). The mode of the Pareto diameter distribution 

exponents is indicated by the solid black line and the predicted value for the mass exponent 

based on this observed diameter exponent is indicated by the dashed black line.
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