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Abstract

Increasing rates in sea-level rise imply drastic
consequences for U.S. coastal populations, in-
frastructure, ecological systems, and natural re-
sources in the coming decades. These direct im-
pacts will lead to negative repercussions in public
health, biodiversity, tourism, and other aspects
of the global economy. Using hourly tide read-
ings from the past 30 years at 38 gauges along the
east coast, we wish to develop a model that will
allow us to analyze the trends in this type of data
and to accurately and precisely predict sea-level
change along the east coast. The model devel-
oped is an iterative generalized additive model
that will use spatial and temporal dependence
between gauges and across time, allowing us to
predict sea-level change all along the east coast,
not only at the stations for which we have data.
Here, the methodology and components of our
current model will be discussed as well as an
overview of results. We will also address the
model’s shortcomings and the work that is cur-
rently being done to improve the accuracy and
efficiency of its predictions.

Introduction

The Intergovernmental Panel on Climate Change
(IPCC) estimates that the global sea level is currently
rising at a rate of 3 millimeters per year and this rate is
expected to increase over the coming century [1]. This
increase in the rate of sea-level rise could lead to changes
that will affect many aspects of daily life and the global
economy, thus accurate predictions and thorough under-
standing of the trends in this process are vital for prepa-
ration for these changes. The data used in this study
comes from NCAR (National Center of Atmospheric Re-
search) and consists of tide gauge readings taken hourly
from 1979 to 2009 from 38 stations along the east coast
of the United States. Tide gauges are instruments de-
ployed at coastal sites around the world that directly
measure sea-level change as compared to a determined
base level. For the 38 tide gauges in this study, sea-level
change is measured as deviation from the mean high
water level for that station over a 19 year epoch.

http://www.oco.noaa.gov/tideGauges.html
Figure 1: Example of a tide gauge from NOAA (National
Oceanic and Atmospheric Administration)

The 38 stations where these tide gauges are located
range in location from Bar Pilots Dock—St. Johns River
in Florida to East Port—Passamaquoddy Bay in Maine.
At some of these stations there are many missing obser-
vations due either to malfunctions in the tide gauge or
because at that time there was no gauge in that location.
These missing values lead to complications in modeling
and predicting, but these issues will be addressed later
on.

Station Locations

Figure 2: Locations of the 38 tide gauges along the east coast

Due to factors dealing with global location, sea-level
change is not constant across space in that it is different
depending on location. An important observation when
considering spatial data such as this is that sites that
are closer together are more likely to be closely related
than sites that are further part. Our model will take into
account these spatial correlations, and this theory will
eventually allow us to predict up and down the coast
because of the spatial relationship between these sites
and sea-level change.



Exploratory Analysis: Exposing Trends

In order to understand the temporal trends in our data,
we identify patterns in sea-level change at each station
over time, and model these trends for individual sites.
After identifying and exploring these trends in individ-
ual sites we will seek to combine these trends in an it-
erative spatial generalized additive model that will use
correlation between sites in order to predict at any lo-
cation along the east coast. Because ocean tides are
greatly influenced by the moon and its cycles, we aver-
aged the 30 years of data by lunar months which are ap-
proximately 28 days long, resulting in 371 lunar month
averages for each station. A general linear trend can
be seen in these lunar month averages over time in all
of the stations, but there are other trends going on in
addition to a simple linear relationship. The graphic
below shows the lunar month averages across time with
a simple linear fit plotted on top (the blue line). Note
the missing data between 1996 and 1998.
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Figure 3: The linear trend in lunar month average across
time seen at a single station

One can see the linear trend in this plot, but there ap-
pears to be a cyclical effect within years that could
be some type of seasonal trend. After accounting for
the simple linear trend at each station, we compute the
residuals and see a definite pattern. The residuals for
the southern most stations have what we will call an M-
curve, but as we move north, station by station this M-
shape appears to flatten out into flatter, more unimodal
curves suggesting that this M-curve effect changes across
space. We fit these curves individually for each station
with B-splines. A B-spline with % knots splits the covari-
ate space into k + 1 regions fitting a cubic polynomial
to the data in each region. The spline is constrained
so that the polynomials are differentiable at the knot
points resulting in a smooth non-linear fit to the data.
The figure below shows the residuals for a north station
and a more southern station fit with B-splines with 6

knots. Red dots are observations from later years, and
the yellow are from earlier years.
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Figure 4: The seasonal trends for a northern and southern
station fit with B-splines with 6 knots

These splines appear to be good fits to the residuals and
because the seasonal trend seems to have spatial correla-
tion, we will attempt to fit spatial terms to these splines
so that we can model the relationship of this trend with
spatial location. Now that we have uncovered some im-
portant trends in the data, we will develop a model that
iteritively fits these trends and uses spatial correlation
to explain the relationships between sites allowing for
more extensive predictive power and better understand-
ing of sea-level changes across space and time.

Iteritive Generalized Additive Model

Generalized additive models are a generalization of lin-
ear models in which the predictions depend on smooth
functions of the covariates [2]. The response variable
Y follows an exponential family distribution, which in
our case will be NV(0,02). We will model Y;;, sea-level
change at station ¢ and time ¢, with an intercept u; that
will be the overall mean of each station, a linear term,
and a spline term that accounts for the seasonal trend.
This model will be expressed in the following manner:

k1
Yie = pi + B+ Y fi(t")&ij + €ir

=1

e ~ N(0, 02)

where t5; is time centered and scaled times the coeffi-
cient vector 8 for station i, f;(t*) is the j** polynomial
fit to covariate region (k+1) where k = 6 is the number
of knots in our B-spline, ¢* is the day of the year, &; is
the coefficient fit to the j** covariate region for the i*"
station, and €;; is the unexplained variance in sea-level
change at station ¢ and time t.



We refer to our model as an iteritive generalized addi-
tive model because we will fit the terms iteritively. We
will fit the linear term to the residuals of the model
containing only u;, then we will fit the spline term to
the residuals of the model with the intercept plus the
linear term. We fit the model in this manner in order
to address the problem we have with missing observa-
tions. The missing observations were all replaced with
the overall mean of the station to which they belong as
a beginning value. For each step in fitting the model
we predict Y;; and then replace the formerly missing
values with Yj, iteritively until the predictions of these
observations and the coefficients of the model converge
to specific values. Fitting the model this way allows us
to update the values of the missing observations based
on the trends in the data step by step resulting in bet-
ter estimates for these values at every step and a better
final estimate.

Inclusion of Spatial Correlation in Model

Previously we fit a linear trend and a spline term in-
dividually to each station; now we will model the rela-
tionship or correlation of these trends from station to
station. Understanding how spatial distance affects cor-
relation between stations will allow us to be able to make
inference along the coast between our stations. Given
the data at our stations and the distances from new loca-
tions to our stations, we will be able to predict sea-level
changes at these new locations.

A variogram is a function describing the correlation be-
tween points that are different distances apart. Var-
iograms can be modeled with different spatial correla-
tion structures that behave differently depending on how
your data is spatially correlated. The Matern, exponen-
tial, Gaussian, and spherical functions are examples of
spatial correlation structures; by exploring the fits of
these different functions to the residuals left over after
taking out the linear trend, we decide that the spherical
function is the best fit. Assuming the spherical spatial
correlation structure is a good fit to the variogram of
our data, the correlation between two observations with
distance r < ¢ between them is

e(r) = (1 —n)g—; +% (;)3

for all observations for which r > 0 where ¢ is the range
over which the correlations will be nonzero, and n is
the nugget. The range ¢ refers to the distance at which
the variogram appears to level out because points with
distances greater than ¢ are not correlated. For refer-
ence to the terminology used in modeling variograms,
the semivariance at ¢ is o2, referred to as the sill, and
the partial sill is the (sill - nugget); nugget is the semi-
variance at distance = 0, meaning that if the nugget is

non-zero, that there is variance among points that are
very close together, indicating underlying trends in the
residuals.
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Figure 5: Variogram of the residuals from the linear model
fit with spherical correlation function

In order to estimate the coefficient 3; for the linear
term, we first fit Yy — p; = ¢57,where 3 is the co-
efficient fit to centered time ¢ for station i. We then
estimate the spatial covariance matrix ¥3(6) of 8} with
the spherical corellation function where § = (02, ¢, 72)
with 02 = the sill, ¢ = the range parameter, and 72 =
the nugget effect. We then fit 3; = ag + z;01 + 27an
using generalized least squares with W=33(f) being
the variance matrix such that the coefficient vector
a = (X'WIX)"'X'W~18* and z; being the spatial
location of site i, and o = (g, a1, 2). Using these
methods, we have modeled the trend of how the linear
effect changes across space while maintaining accurate
modeling at individual stations.

BRIDGEPORT - BRIDGEPORT HARBOR CT

-0.9
I

-1.0

Lunar Month Averages

-12

LI I B M O
1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009

Year
Figure 6: The linear trend in lunar month average across
time seen at a single station



Now for the spline term Z?;l [i(t*)&j, we model &j
in the same manner as we modeled 3; but fit to the
residuals of the model including t5;. After estimat-
ing V; = X¢(0), &; for the " station and ;" of
k + 1 regions across covariate space, and solving for
v = (o, vt vi2) = (X'VIX)TIX'VTHER, we have
&j = vjo + wivj1 + 2372 by generalized least squares
with variance matrix V.
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Figure 7: The linear trend in lunar month average across
time seen at a single station

In the figure above we see the predicted values from our
model as hollow points and residuals from the previous
state of our model as solid points with yellow indicat-
ing earlier years, and red indicating more recent years.
Because of the positive linear trend modeled by tg3;, the
model predicts the m-curves for more recent years to be
up higher than the m-curves for earlier years. Because
the splines are constrained to be the same shape across
years, the shape is flattend out more than it should be,
making prediction of the more extreme points very diffi-
cult. In future work we will explore fitting yearly means
to our model in an attempt to increase the accuracy of
our model. In the following plot we can see this trend
in the lunar month averages compared to our predicted
lunar month averages (blue); our predictions look good,
but it appears that if our curve was magnified, it would
predict much better. We believe that accounting for the
yearly fluctuation in the m-curves will allow the model
to be more flexible in reaching the data from more ex-
treme years.
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Figure 8: The linear trend in lunar month average across
time seen at a single station

Once we fit the model to take out the yearly trend men-
tioned previously, we aim to model the remaining residu-
als by extracting eigen vectors in an effort to account for
latent factors in the data. Not only will applying this
type of latent variable model allow our predictions to
be more accurate, it will shed light on possible variables
that affect sea-level change that we did not discover in
our analysis.

Conclusion

Modeling sea-level change with an iterative generalized
additive model that accounts for spatial and temporal
correlation between observations results in a versatile
model that can be used as a strong predictive tool across
a wide variety of locations. The change in rate of the
rise in sea-level cannot by modeled as a positive sim-
ple linear model because of its complex relationships
with time and space. By applying spatial correlation
to the model accounting for the overall linear trends
and seasonal trends by station, we have good predic-
tive power, but there are trends in the data that war-
rant further investigation. It was mentioned earlier that
the uncertainty of our predictions would be distributed
N ~ (0,02). After accounting for the trends mentioned
in the last section, we will estimate the uncertainities of
our model or 62, and evaluate the model’s efficiency.
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