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ABSTRACT

Bayesian Model Comparison

Probit Vs. Linear Probability Model

by

Nate Rex Reasch, Master of Science

Utah State University, 2014

Major Professor: Tyler Brough

Department: Finance and Economics

The following paper analyzes the benefits of Bayes’ theorem in applied econo-

metrics. This is accomplished by demonstrating each step in conducting Bayesian

inference. This includes the prior selection, the likelihood function, posterior simula-

tion, and model diagnostics. To provide a concrete example I replicate, by Bayesian

inference, the main model of Blau, Brough, and Thomas.(2013) This model is found in

their research paper titled, Corporate lobbying, Political Connections, and the Bailout

of Banks. The analysis focuses on two different forms of limited dependent variable

regressions, the probit and linear probability model. The benefits of Bayesian econo-

metrics were extensive and serve as a testament to Bayesian methodology.
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INTRODUCTION

Bayesian inference is a method for formulating beliefs about uncertainty. When

approaching uncertainty, individuals innately form decisions based on prior beliefs.

These beliefs are unique to each individual and can be as vague or specific as the

individual chooses. When new information is observed, a rational individual will

update their prior belief. This new belief, called the posterior belief, is based on

the prior belief conditioned on the new information. The ability to update beliefs is

fundamental to Bayesian methodology. This approach is portrayed in Bayes’ Rule.

Given an event A and evidence B, Bayes’ theorem states: P (A|B) ∝ P (A) ∗P (B|A).

This is read as: The posterior belief of event A is proportional to the prior belief

updated by the likelihood of evidence B. This simple equation is extremely powerful

and is unknowingly used in every day life. From basic decision making to approaching

complex issues, Bayes’ Theorem is an indispensable tool.

This paper analyzes the benefits of Bayesian techniques and demonstrates com-

monly used practices to illustrate Bayesian inference. The data to conduct this anal-

ysis were adopted from the Journal of Banking and Finance. The essay is titled

Corporate Lobbying, Political Connections, and the Bailout of Banks. This analy-

sis was written by Benjamin Blau, Tyler Brough, and Diana Thomas (BBT) on the

possible bias of the Troubled Asset Relief Program. In their research they find that

firms with political connections had a high probability of receiving the TARP issued

bailout funds. In addition, they found that these same firms were also likely to receive

the TARP issued funds more quickly. Testing their models will provide additional

evidence to support their theory and be useful in illustrating Bayesian inference. The

analysis will begin with the formulation of priors and the simulation of the posterior.

Their results will then be verified by a probit regression, and extended with a linear

probability model. Finally, informal and formal model checks will be demonstrated.
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BAYES THEOREM

A. PRIOR

Theta, θ, will represent a set of parameters (β, h). The prior, P(θ), is an

innate belief of the parameters, in the form of a probability distribution, prior to

seeing data or evidence. Hence, it is called the prior. The prior can reflect an

informative or non-informative belief. An informative prior reflects a subjective and

specific prior knowledge. A non-informative prior, called a diffuse prior, represents

ignorance. Critics of the prior emphasize the subjectivity it introduces. In order to

reduce this bias it is a common practice to use diffuse priors in order to produce

convincing arguments. The prior is a powerful tool and can facilitate even the most

complex questions.

Prior selection is unique to the individual asking the question. One important

aspect to remember is that one has the ability to choose different priors and compare.

Model comparison is encouraged and increases the robustness of your argument. Even

though different priors may be chosen, Bayesian methodology relies on the idea of

convergence. This implies that given an infinite amount of time and data, individ-

uals with different priors should converge on the same inference. This increases the

defense against subjectivity. In this analysis, Normal-Gamma priors are assumed. It

is important to remember that a prior belief is a personal belief and is represented

by a probability distribution.

B. LIKELIHOOD

The likelihood, P(Y | θ), is a joint probability function of the data and param-

eters. In Bayesian analysis it is viewed as a function of just the parameters. This is

due to the assumption that the data are fixed and represent all available information.

The likelihood function is chosen based on the probability distributions assumed for
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the parameters. For example, in the probit regression, the likelihood of a normal

distribution was selected. In the linear probability model, a combination of the nor-

mal and gamma likelihood functions was selected. Likelihood selection has a direct

impact on the posterior distribution in two ways. First, the prior only affects the pos-

terior through the likelihood. Second, the likelihood function expresses all available

information regarding the data. Different likelihood functions can be used, but to

conduct this analysis commonly agreed upon likelihood functions were chosen. The

following represents a Normal-Gamma likelihood function:

P (Y |θ) =
1

(2π)
N
2

h
1
2 exp[−h

2
(β − β̂)TXTX(β − β̂)]h

v
2 exp[− hv

2s−2
] (2.1)

C. POSTERIOR

The posterior, P (Y |θ), is proportional to the prior, P (θ), multiplied by the like-

lihood, P (θ|Y ). Instead of simple point estimates, commonly calculated in frequentist

theory, an entire distribution is formed for each parameter of interest. The posterior

distribution provides abundant information to conduct inference. It also allows for

straightforward interpretations and vast amounts of summary statistics. Some impor-

tant statistics to summarize the posterior distribution are the mean, mode, standard

deviation, variance, skewness, kurtosis, and quantiles. The posterior distribution can

also be used to conduct various types of model diagnostics, which are discussed later.

The benefits of the posterior distribution are extremely advantageous in conducting

inference in regression analysis.

While the posterior has numerous advantages, it can be difficult to calculate.

To demonstrate this, suppose you have a model with two parameters, X1 and X2.

Assuming the prior for X1 and X2 is P(X1, X2), and the likelihood is L(X1, X2| Y),

Bayes theorem states the following: P(X1, X2|Y ) ∝ P(X1, X2) * L(X1, X2| Y). In or-
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der to calculate the posterior distribution, numerical integration will be required on

each independent distribution. The resulting distribution will have to be normalized

to ensure the posterior distribution integrates to one. To simulate from the poste-

rior will require more numerical integration. This numerical integration can be very

difficult even with just two parameters. Adding additional parameters would require

third and fourth dimensional integration. This can be cumbersome and extremely

difficult to calculate.

The introduction of Markov Chain Monte Carlo reduced the calculation of the

posterior substantially. A version of MCMC, called the Gibbs Sampler, is used to

replace the numerical integration and make use of modern day computers. Using the

same example stated above with two parameters X1 and X2. Suppose the posterior

distribution P(X1, X2|θ ) is based on two independent conjugate priors. Assuming

independent priors with standard forms, the Gibbs sampler is computed as follows:

1. Fix initial values for X0
1 and X0

2 .

2. Draw a random value X1
1 from the conditional distribution L(X1| X0

2 , θ )

3. Then draw a random value X1
2 from the conditional distribution L(X2| X1

1 , θ)

4 Continue this process thousands of times.

After a few repetitions, called the burn-in period, these random conditional dis-

tribution draws begin to behave like random draws from the marginal distribution.

Posterior simulation, which replaces difficult numerical integration, reduces the com-

putational burden of Bayesian econometrics and allows for a wide variety of models

to be computed and evaluated. Straightforward interpretations, reduced computa-

tion, and an abundance of summarizing statistics makes the posterior distribution an

important benefit of Bayesian econometrics.
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DATA VARIABLE AND MODEL SELECTION

A. DATA

The data begins with 237 financial firms that received Troubled Asset Relief

Program support. (TARP) This data was acquired from the Center for Responsive

Politics.(CRP) The data set reports quarterly statements of lobbying expenditures.

Using the center for Research on Security Prices(CRSP), the sample size was extended

to include all firms with the Standard Industrial Classification Codes (SIC) 60, 61,

and 62. These SIC codes represent the majority of financial entities, most importantly

banks. This extension led to including 334 firms that did not receive TARP support.

The final sample size includes 571 firms along with their matching characteristics.1

B. VARIABLE SELECTION

The dependent variable will be TARPDUMi. This variable is equal to one if a

firm received TARP support, and zero otherwise. To control for firm characteristics,

the following explanatory variables were chosen: Pricei, ln(Sizei), ln(TotAssetsi),

D/Ei, Turni, V olti, and Dummyi. The variable of interest is Dummyi which is

equal to one if a firm had positive lobbying expenditures prior to TARP, and zero

otherwise. The coefficient for the variable Dummyi will be the focus of the analysis.

The estimated sign and magnitude will indicate the association between lobbying and

the probability of receiving TARP.

C. MODEL COMPARISON

Limited dependent variables normally represent a qualitative choice with an

underlying latent utility. Typical ordinary least squares regressions require the dis-

tribution of Y given X to be normal. This is usually not the case with a dependent

1For Summary Statistics see Journal of Banking & Finance 37 (2013) 3007-3017.
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variable of zeros and ones. The assumption can be made that there is an underlying

latent variable Y* that is normally distributed. The objective of a limited dependent

variable is to derive the posterior of the latent data conditional on the observed data

Y. The latent variable Y* is unobserved, Y is observed. The following condition must

be met:

P (β, h|Y ∗, Y ) = P (β, h|Y ∗) (3.1)

This infers that if you knew Y*, there would be no additional information added by

knowing Y as well. In other words, if Y* was observed, normal regression techniques

would be implemented using Y* as the dependent variable. If this condition is met,

and Y* is unobserved, we can use the Gibbs Sampler with data augmentation to

simulate the posterior distribution of the latent data Y*. The latent data is assumed

to be normally distributed in both models. The variable Y is assumed to demonstrate

a nonlinear relationship in the probit, and a linear relationship in the linear probability

model. The attributes of the probit and linear probability models are described below.

The first technique will be to estimate the same probit regression used by BBT,

to verify their results. Probit models have unique assumptions that can capture effects

that normal regressions cannot. A probit regression assumes the binary dependent

variable is not normally distributed. It also binds the probabilities between zero

and one. The assumption is then made that the underlying latent data is normally

distributed. The resulting regression is nonlinear. This can capture nonlinear effects

when the observed values are only zeros and ones. One weakness of the probit model,

due to its nonlinear function, is the interpretation of the coefficients can be difficult.

To directly interpret a coefficient, the marginal effect must be calculated. Marginal

effects can be calculated in various ways. In this analysis the marginal effects are

demonstrated by selecting three individuals with independent utilities and presenting

their unique probabilities. Despite the difficult interpretation, the probit regression



7

is very useful and produces nonlinear relationships.

The second technique is the linear probability model. This regression method

was chosen to extend the results estimated by the probit regression. The linear prob-

ability model is estimated using normal regression techniques to fit a linear regression

through the observed zeros and ones. Since the relationship between Y and X is

assumed to be linear, the interpretations are straightforward. The weakness associ-

ated with a linear relationship is that the estimated coefficients can imply irrational

probabilities beyond the interval [0,1]. Testing this model will be useful in providing

additional evidence and demonstrating the usefulness of Bayesian techniques.
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RESULTS

A. PROBIT SUMMARY

The probit model was assumed to have a diffuse Normal-Gamma prior. The

posterior was simulated by using MCMC in the form of the Gibbs Sampler. The mean

was assumed to represent point estimates of the coefficients. Summary statistics are

portrayed in the following table followed by density plots.

Table 1: Probit Model Results

Regression was based on a diffuse Normal-Gamma prior. Each column represents

summary statistics for the posterior distributions of each estimated coefficient.

Intercept Price DE Turn Idiovolt Dummy

Mean -0.19 -0.002 0.004 -0.50 -0.13 0.49

Std. Dev. 0.18 0.004 0.005 0.39 0.04 0.23

Variance 0.03 .00002 0.00003 0.15 0.002 0.05

Skewness 0.07 -0.04 0.69 -0.66 -0.13 -0.03

Kurtosis 3.03 3.04 3.47 3.29 3.01 3.01

0% -0.91 -0.02 -0.01 -2.37 -0.28 -0.42

25% -0.31 -0.004 -0.000 -0.75 -0.16 0.34

50% -0.19 -0.001 0.001 -0.45 -0.13 0.49

75% -0.08 0.001 0.007 -0.20 -0.11 0.64

100% 0.45 0.01 0.03 0.36 0.01 1.41

MargEff 25.49%



9

Figure 1: Intercept Distribution Figure 2: Price Distribution

Figure 3: DE Distribution Figure 4: Turn Distribution

Figure 5: Idiovolt Distribution Figure 6: Dummy Distribution
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Using the mean as a point estimate of each posterior distribution, the probit es-

timates are similar to the results found by BBT. As assumed, the coefficients roughly

follow the prior distribution. Interpretations are provided in two ways. First, the

coefficients are informally interpreted to measure sign impact. This assumes, that in

large samples and holding everything else constant, each variable will have a positive

or negative impact on the probability of receiving TARP. Pricei in large levels has a

negative impact. DEi has a positive impact. Turni has a negative impact. Dummyi,

which is the focus of the regression, has a positive impact. This informal interpreta-

tion shows that having positive lobbying expenditures prior to 2008, has a positive

impact on receiving TARP. Second, the Marginal effect for Dummyi was portrayed

by representative individuals with utilities of zero and one. The mean of the prob-

ability distribution was observed to represent the marginal effect of Dummyi. The

individual with a utility of one shows a 25.49% increase in probability of receiving

TARP. This is strong evidence in favor of the theory that BBT find.

To provide a graphical view of the posterior distributions, density plots were

graphed. As assumed, the coefficients roughly follow the prior distribution. There

exists a positive skewness in the variable DEi and negative skewness in the variable

Turni. This is noted but not deemed too important since the focus of the analysis

lies on the variable Dummyi. The posterior distribution of the variable Dummyi is

very similar to that of the prior. This is evidence of correct model assumptions for

the variable Dummyi. It also provides evidence in favor of the bias found in political

contributions.
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B. LPM SUMMARY

The results found by the probit regression were extended by using a linear prob-

ability model to find any existing linear relationships. The regression was assumed

to have a diffuse Normal-Gamma prior. The Gibbs sampler was used to simulate the

posterior distributions. The following table and figures represent the results found.

Table 2: Linear Probability Model Results

Regression was based on a diffuse Normal-Gamma prior. Each column represents

summary statistics for the posterior distributions of each estimated coefficient.

Intercept Price DE Turn Idiovolt Dummy

Mean 0.62 -0.01 0.01 0.61 -0.03 2.12

Std. Dev. 62.12 1.61 1.16 56.80 12.02 107.01

Variance 3858.34 2.58 1.34 3226.40 144.47 11450.62

Skewness -0.02 -0.03 -0.02 0.03 0.05 0.02

Kurtosis 2.97 3.03 2.91 3.00 3.04 3.07

0% -216.67 -6.13 -4.24 -199.43 -39.72 -420.41

25% -41.02 -1.07 -0.76 -37.55 -8.08 -69.98

50% 0.36 0.01 -0.01 0.65 -0.08 2.53

75% 43.02 1.07 0.82 39.19 7.83 74.38

100% 239.38 7.02 4.09 221.36 42.51 400.72
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Figure 7: Intercept Distribution Figure 8: Price Distribution

Figure 9: DE Distribution Figure 10: Turn Distribution

Figure 11: Idiovolt Distribution Figure 12: Dummy Distribution
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The results estimated by the linear probability model had some flaws. These

model estimated irrational probabilities. As discussed before, this is an issue in the

linear probability model. Direct interpretation states that an increase in one unit

of the variable Dummyi is associated with a 212% increase in the probability of

receiving TARP. This is an unrealistic probability. This leads to the assumption that

our prior was not correctly specified, or the relationship is actually nonlinear and

using a linear probability model was not the correct assumption. This does not deter

from the results found by BBT. It serves as an example for further model comparison

with different priors.
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MODEL CHECKS

A. INFORMAL

One informal diagnostic technique is to plot the residuals of the regression. The

residuals are indicated by the symbol εi. The residuals were estimated using the

following equation: εi = Yi −Xiβ̂i. The results are shown below in the form of QQ

and density plots. The nonlinear QQ plots and the rough density plots may indicate

model assumption errors. This leads to the conclusion that additional priors should

be tested to better fit the residuals.

Figure 1: Linear Probability Model Residuals Plot Figure 2: Probit Residuals Plot

Figure 3: Linear Probability Density Plot Figure 4: Probit Density Plot
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B. PRIOR PREDICTIVE

The first formal approach of model diagnostics is called the prior predictive

distribution. It is based on creating a distribution prior to seeing any evidence. This

creates a theoretical distribution based on the prior belief. The following two figures

are density plots which represent the prior predictive distributions. These portray

vague priors that are centered around the hypermean. As observed in the results

section, this prior placed on the probit was a good assumption that corresponds to

similar results found by BBT. The linear probability model also represents vague

priors centered around a hyper mean. The results section estimates irrational proba-

bilities indicating this prior may be misstated. The prior predictive provides beneficial

insight on what the prior belief is predicting and should be part of every analysis.

Figure 5: Linear Probability Prior Predictive Figure 6: Probit Prior Predictive

C. POSTERIOR PREDICTIVE

Another formal approach is to simulate a predictive posterior distribution. This

creates a hypothetical distribution if additional observations were found. This is

simulated by creating a hypothetical series of zeros and ones given the assumptions
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of a model. A ratio of the number of ones predicted divided by number of simulations

is calculated. This provides a method of comparing the predictive distribution to the

posterior distribution. This ratio represents the number of firms that received TARP.

The data has a ratio of 237
571

= 0.415. The probit model has a predictive distribution

ratio of 148
10000

= 0.0148. The linear probability model has predictive distribution ratio

of 4989
10010

= 0.489. The density plots are shown below. These ratios find evidence

that the probit does not have a good predictive posterior distribution and the linear

probability model does. This indicates that there may be a better model that is

more compatible with the data. Additional models with different priors should be

estimated and compared to find the best predictive model.

Figure 7: Linear Probability Posterior Predictive Figure 8: Probit Posterior Predictive
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CONCLUSION

To extend the results found by BBT, a linear probability model was estimated.

The model was found to estimate irrational results indicating possible errors in the

prior. The model diagnostics were clear and consistent and lead to the conclusion of

a nonlinear relationship. This does not deter from the results found by BBT, instead

it indicates additional models need to be estimated using different priors. The results

estimated by the probit regression were similar to the results found by BBT. While

the posterior predictive and residuals were not consistent, the results did indicate

that political lobbying had a positive impact on the probability of receiving TARP.

This serves as additional evidence to support their theory.

Further research would include Bayes’ Factor and model averaging. These could

resolve the issues found during this analysis. Bayes’ Factor involves directly compar-

ing two different models. Model averaging allows an econometrician to conduct infer-

ence from more than one model. These additional topics could extend the research

and increase the robustness of the argument.

Bayesian econometrics is a beneficial method that can be applied in any situ-

ation. It allows an econometrician to form a prior, condition on the likelihood, and

form a posterior distribution. The posterior distribution provides straightforward in-

terpretations with an abundance of information to conduct inference. Applying Monte

Carlo methods allows for posterior simulation. The benefits of Bayesian econometrics

were demonstrated and found to be very useful in providing additional evidence to

support BBT. Bayesian methodology is an indispensable learning process that should

be applied in everyday life and in any econometric analysis.
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