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ABSTRACT 

Scatterometers are radars specially designed to near­
surface wind over the ocean from space. Traditional 
scatterometer wind estimation inverts the model 
function relationship between the wind and backscat­
ter at each resolution element, yielding a set of ambi­
guities due to the many-to-one mapping of the model 
function. Field-wise wind estimation dramatically 
reduces the number of ambiguities by estimating the 
wind at many resolution elements, simultaneously, 
using a wind model that constrains the spatial vari­
ability of the wind. However, the appropriate choice 
of the model order needed for a particular wind field 
is not known a priori. The approximate model order 
is valuable because of the implicit trade-off between 
the computational complexity of high-order models 
and the imprecise model fit of low-order models. In 
this paper, a simple binary classification of wind 
fields is proposed which identifies whether or not 
a region will be well modeled by a low-order wind 
model. The raw scatterometer measurements pro­
vide data about the wind that can be exploited through 
hypothesis testing to identify the appropriate model 
order to use in field-wise wind estimation. Improved 
processing algorithms lead to better use of the data. 

INTRODUCTION 

1aval radar operators during World War II observed 
considerably more noise in their radar returns during 
stormy weather; with this simple beginning, scat­
terometry was born [Ulaby et al., 1981]. Scatterom­
eters are high frequency radars designed to infer the 
physical state of a system based on measuring the 
backscatter from that system. In particular. the last 
20 years have seen the use of several space borne 
scatterometers to estimate near-surface ocean winds 
with considerable success [Naderi et al., 1991]. The 
estimation procedure is not unique; that is, several 
wind vectors (as many as six) are typically found 
that could have produced the measurements. 
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For example, Fig. 1 displays all of the possi­
ble wind vectors based on point-wise wind estima­
tion, throughout a region; correctly identifying a 
unique wind field from the many possible combina­
tions is not a well defined process, involving con­
siderable computational resources and often prone 
to error . To ameliorate the problem of select­
ing unique wind vectors, field-wise estimation has 
been introduced in which an assumed model for 
the spatial correlation of wind vectors constrains 
the possible estimates [Long, 1989, Oliphant , 1996]. 
Flexible models which span a wide range of wind 
fields require many parameters-searching a high­
dimensional space for wind field estimation is com­
putationally prohibitive [Gunther and Long, 1994]. 
On the other hand , models with only a few param-
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Figure 1 : Constructing a unique wind field from 
the multiple point-wise estimates is a daunting task. 
Each resolutlon element can have as many as six 
point-wise estimates. Determining the optimal field 
for a 12 by 12 region would require comparing as 
many as 6144 fields. 
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Figure 2: Flow diagram for hypothesis testing. A statistic of the backscatter measurements for a region is 
computed, and a hypothesis test performed on this statistic. If the region is identified by the test as likely to 
be well modeled by a mean wind field, a set of fields is determined by globally optimizing that two-dimensional 
space; these solutions serve as initial values in a local optimization in a higher-dimensional space to more 
accurately estimate the wind field. If the hypothesis test reveals that the field will not be (probably) adequately 
fit by two bases, more work will need to be done. Experience suggests that a slight majority of wind fields 
are adequately fit by a mean wind field; those that are not can be used to develop models specifically designed 
for more difficult wind fields. Such models could include low wind speed models and non-linear models for 
fronts and cyclones. Additional hypothesis tests could be cascaded after this one: if the region is not fit by 
two bases, is it a low wind speed region or a front or a cyclone? 

eters are easily searched, but represent a limited 
range of wind fields [Long and Mendel, 1990]. In 
this paper a simple algorithm is examined to iden­
tify, directly from the backscatter measurements, 
whether or not a particular region can be well mod­
eled by a simple, low-order model. T l..s approach 
decreases the average number of model parameters 
without significantly increasing the average model­
ing error. 

Due to the nature of the wind estimation objec­
tive function , simple gradient search techniques can 
not guarantee convergence to the global optimum; 
the wind model vector space must be searched ex­
haustively. While exhaustively searching even a 6 
dimensional vector space is prohibitive, a two di­
mensional search is fairly straightforward. An ex­
haustive search involves selecting a two dimensional 
(i.e., mean) wind field and computing the probabil­
ity of measuring the actual scatterometer measure­
ments given that wind field and identifying the wind 
field (or set of fields) that maximizes that probabil­
ity. Figure 2 indicates a simple block structure of 
a hypothesis test to identify from the measurements 
whether or not a field is well modeled by a mean 
wind field. If a field is well modeled, there is no need 
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to waste additional resources trying to estimates 
higher order parameters; a mean wind field can be 
estimated, and if a better estimate is required, a lo­
cal optimization in a higher dimensional space can 
be performed. If the field is not well modeled by a 
mean wind field, then substantially more work needs 
to be done with this field-perhaps a six parame­
ter model, or a low-order non-linear model tuned to 
specific wind phenomena would work. The method­
ology presented here could easily be extended to ad­
ditional hypotheses to continue reducing the set of 
difficult wind fields. 

In the next section a statistic on the measure­
ment is identified which has a strong correlation to 
the error of the model fit; it is this statistic that 
can be used in a hypothesis test. Hypothesis test­
ing is then briefly described and specifically applied 
to wind field classes and the backscatter statistic. 
Finally, some conclusions are presented to put this 
work in perspective. 

STATISTICS ON THE MEASUREMENTS 

Initial examination of the backscatter field over a 
region reveals little relationship to the underlying 
wind field. Figure 3 shows a gray scale image of 
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Average Backscatter Measurements for Sample Region 
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Figure 3: The average backscatter measurements for 
the wind field region displayed in Fig. 1. While there 
is some relationship between the backscatter and the 
wind speed and complexity, the relationship becomes 
unclear for cells along the top because the backscatter 
is dramatically reduced with the increased incidence 
angle . 

the average backscatter measurements for the re­
gion displayed in Fig. 1. While there is some corre­
spondence between the magnitude of the backscat­
ter and the wind speed, the cells at the top of the 
image (which have much larger incidence angles) 
have negligible backscatter values, because of the 
strong incidence angle dependence of the measure­
ments [Wentz, 1984]. In order to observe the vari­
ability of the backscatter caused by wind variations, 
the incidence angle dependence must be removed. 
I selected over 2000 regions from NSCAT (NASA 
Scatterometer) data in which a two parameter model 
(the mean wind field) fit the field selected by Jet 
Propulsion Laboratories (JPL) very well, according 
to the normalized-vector RMS error. Each of these 
regions had fairly constant along track backscatter 
values and a strong cross-track dependence for the 
backscatter. Averaging over all the regions, and 
over the along-track cells to yield the cross-track 
dependence of the backscatter for each beam (the 
beams have different relative azimuths and possi­
bly different calibration errors) provides the aver­
age backscatter for each beam as a function of the 
cross track cell. The results are shown in Fig. 4 
where the curves show the cross-track dependence 
of the backscatter for each beam. Now we can ex­
amine the normalized backscatter of a region, where 
we normalize by dividing each backscatter measure-
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Figure 4: The average backscatter for· very smooth 
wind fields. i .e., those which a two parameter model 
fits the JPL nudged wind with less than 0.1 NRMS 
error. 

ment by the averages described by Fig. 4. Any 
patterns or variations in the normalized backscatter 
should then be due to the underlying wind pattern. 

The statistics of the normalized backscatter seem 
to have some relationship with the quality of fit of 
the wind model to the wind field. Examining more 
than 5000 regions, the RMS of the standard devia­
tion of the normalized backscatter from each beam 
is highly correlated with the VRMS (Vector RMS) 
error between the mean wind field estimate and the 
JPL estimate of the wind; this standard deviation is 
selected as the statistic for use in the hypothesis test. 
Figure 5 shows the relationship between the statis­
tic and the VRMS error for the 5000 wind fields. 
By setting a VRMS error criterion, the field can be 
classified as good or bad based on whether the field 
exceeds the criterion for quality. 

HYPOTHESIS TESTING 

Wind field classification algorithms can be used to 
select models with a minimal number of parameters 
while keeping the error within an acceptable range. 
The result increases the computational efficiency of 
field-wise estimation without significantly increasing 
the modeling error. In this section a simple classi­
fication algorithm is described which tests the hy­
pothesis that a field is poorly modeled by a low-order 
model-specifically, by a mean wind field. Referring 
to Fig. 2, a VRMS error threshold is selected to 
identify fields with error greater than the threshold 
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Figure 5: In general, the fields that are poorly fit by 
a mean wind field {these have a high VRMS error) 
have a large value of the measurement statistic {the 
std of the normalized backscatter). 

as a bad field (since it is poorly fit with two bases) 
and fields with less error as good. Either the region 
is adequately modeled by a low-order model (des­
ignated good, (}0 ), or it is poorly modeled by the 
low-order model (bad , BI). Comparing the statistic, 
y, to a threshold, v, provides the basis for the binary 
hypothesis test (Scharf, 1991): 

Wind Class Declaration = { (}(}1 ~ff Y >< v 
0 1 y - v. 

The statistic, y, is defined as the standard deviation 
of the a0 values of all the beams normalized by the 
average backscatter values to remove the cross track 
dependence. 

The choice of a threshold for the VRMS error 
of model fit identifies a field as being either well 
(Bo) or poorly (B1) modeled by a mean wind field. 
The definition of "well" modeled , and the choice of 
the threshold, depends on the particular application. 
The horizontal line in Fig. 5 illustrates, for a given 
application, the separation of the wind fields into 
two classes-{}0 if the VRMS error is below the line 
and B1 if the error is above the line. Having identi­
fied the fields as 80 or 81 , the empirical probability 
density functions of good and bad wind fields can 
be computed as functions of the statistic. Figure 6 
plots these densities for a few values of the VRMS 
error threshold. 

The density functions of good and bad wind fields 
displayed in Fig. 6 provide the probabilistic mea­
sures necessary for a hypothesis test. By setting a 
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threshold on the measurement statistic, we can test 
the hypothesis that a wind field will be bad. If our 
measurement is less than the threshold, the field is 
declared good, Bo; if the measurement is above the 
threshold, the field is declared bad, B1 . The vertical 
line in Fig. 5 illustrates this point by identifying a 
threshold on the statistic; the two classes of wind 
fields (separated by the horizontal line) and the two 
classes of declared wind fields (distinguished by the 
vertical line) define four distinct regions in the figure , 
which can be characterized through two numbers: 
the probability of false alarm and the probability of 
detection. 

The probability of false alarm is the probability 
that we incorrectly identify a good field as bad; this 
probability is computed as the area under t he pdf of 
good fields above the threshold. The probability of 
detection is the probability that we correctly iden­
tify a bad field as bad; this is computed as the area 
under the pdf of bad fields above the threshold. Op­
timally we want a low probability of false alarm and 
a high probability of detection; adjustment of the hy­
pothesis threshold requires a trade-off between these 
quality measures. 

In this case, the probability of detection is critical. 
If we miss detection of a bad wind field , we will 
try to use the two-parameter model on a field that 
contains more features than a simple mean flow. On 
the other hand, the probability of false alarm is not 
so important. If we classify a good wind field as 
bad, we will look at it more closely and use a more 
involved model-this more complicated model will 
work just fine and the wind will be estimated with a 
little more trouble. Of course if we set our threshold 
too low, we classify everything as bad and don't gain 
any savings in computation from the classification. 
Figure 7 displays characteristic curves for our four 
VRMS thresholds that identify the quality of the fi t 
by displaying the probability of detection against the 
probability of false alarm as the statistic threshold 
is adjusted. 

If, for example, the wind field class 80 is defined as 
wind fields that have a 2 parameter model fit VRMS 
error less than 3.4 m/s (below the horizontal line of 
Fig. 5), and with the choice of v = 0.52 (selected 
to declare half the wind fields in 80 and half in 81 ) , 

the probability of correctly classifying a 81 wind field 
(probability of detection) is 86% and the probability 
of incorrectly classifying a (}0 wind field (probability 
of false alarm) is 32%. With these thresholds (rather 
arbitrarily chosen) 50% of the wind fields are de­
clared to be well modeled by just 2 parameters-in 
fact, the average VRMS error of these fits is 2.2 m js. 
For comparison. if two parameters had been used for 
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F igure 6: Empirically derived probability density functions of good and bad wind fields as junctions of the 
statistic of the scatterometer measurements. As the VRMS error threshold is increased, the empirical density 
function becomes more erratic because there is a much smaller data set with which to estimate the density. 

all the regions, the average VRMS error would have 
been 3.2 m/s, and if 40 parameters had been used, 
the average VRMS error would have been 1.2 m/s. 
Thus for a moderate increase in modeling error, the 
number of required parameters was reduced from 40 
to two in half the regions-with a significant com­
putational saving. 

CONCLUSIONS 

Field-wise wind estimation profoundly reduces the 
number of ambiguities and reduces the computa­
tional load of scatterometer wind estimation. In­
creasing the number of model parameters increases 
modeling accuracy; however, it also increases com­
putational expense. Classification algorithms, such 
as that presented here, can be used to decrease the 
average number of model parameters without signif-
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icantly increasing the average modeling error. Iden­
tifying, a priori, fields that will be well modeled by a 
low-order model conserves computing resources for 
more difficult fields . Further, fields that are classi­
fied as poorly modeled by a mean wind field can be 
used to develop improved models specific to certain 
features like fronts and cyclones. Low-order models 
can be developed for these cases without the need of 
using the generic model which would require many 
parameters to model unusual fields . 
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