Utah State University DigitalCommons@USU

#### Reports

Utah Water Research Laboratory

1-1966

# Laboratory Investigations of Submerged Flow in Selected Parshall Flumes

M. Leon Hyatt

Gaylord V. Skogerboe

Keith O. Egglestron

Follow this and additional works at: https://digitalcommons.usu.edu/water\_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons

#### **Recommended Citation**

Hyatt, M. Leon; Skogerboe, Gaylord V.; and Egglestron, Keith O., "Laboratory Investigations of Submerged Flow in Selected Parshall Flumes" (1966). *Reports.* Paper 380. https://digitalcommons.usu.edu/water\_rep/380

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.



# LABORATORY INVESTIGATIONS OF SUBMERGED FLOW IN SELECTED PARSHALL FLUMES





Prepared by M. Leon Hyatt Gaylord V. Skogerboe Keith O. Eggleston

Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah

SCITECH

TC 175 .H92x 1966

January 1966

Report PR-WR6-6

## LABORATORY INVESTIGATIONS OF SUBMERGED FLOW IN SELECTED PARSHALL FLUMES

Prepared by

M. Leon Hyatt Gaylord V. Skogerboe Keith O. Eggleston

Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah

January 1966

Report PR-WR6-6

#### TABLE OF CONTENTS

| PURPOSE OF              | STUDY                | •              |               | •            |               |           |      |      | ·   | ·         | •   |      |       | •  | 1               |
|-------------------------|----------------------|----------------|---------------|--------------|---------------|-----------|------|------|-----|-----------|-----|------|-------|----|-----------------|
| CHARACTERIS             | STICS O              | F SI           | JBM           | ER           | GEI           | ) FL      | ow   | •    |     | ·         |     |      | •     | •  | 5               |
| SIX-INCH PAR            | SHALL                | FLU            | JME           |              |               |           |      |      |     |           |     |      |       |    | 7               |
| Analysis o              | f data               | •              |               |              |               | •         | ·    |      |     | •         |     |      |       | •• | 7               |
| ONE-FOOT PA             | RSHAL                | L FI           | LUM           | ſΕ.          |               |           |      | •    |     | ·         |     |      |       |    | 12              |
| Experimer<br>Analysis o | ntal faci<br>of data | litie          | s.            | ·            | :             |           | ·    | ·    | i   | ·         | ÷   | ·    |       | ·  | 12<br>13        |
| FOUR-FOOT F             | PARSHA               | LL 1           | FLU           | ME           |               |           | į    |      |     |           |     |      |       |    | 17              |
|                         |                      |                |               |              | ·             |           |      |      |     |           | ·   | ·    |       |    |                 |
| Experimer<br>Analysis o | ntal faci<br>f data  | litie          | s.            |              |               | :         | :    |      | ÷   |           | ÷   | ·    | ·     | :  | $\frac{17}{18}$ |
| SIX-FOOT PAR            | RSHALL               | , FL           | UMI           | ÷.           |               |           | •    |      |     | ۱         |     |      |       |    | 20              |
| Analysis o              | f data               | •              |               |              |               |           | •    |      | •   |           | •   |      |       | •  | 20              |
| CONCLUSIONS             |                      | •              | • •           |              |               |           | •    |      |     |           |     |      | , ÷   | ·  | 24              |
| REFERENCES              | •••                  | •              |               |              |               | •         |      |      |     |           | •   |      |       | ·  | 25              |
| APPENDIX A,             | Submer<br>Parsha     | ged<br>11 flu  | flow<br>1me   | da           | ta c          | olle      | cted | l by | Gui | naji      | for | · 6- | incl  | n  | 26              |
| APPENDIX B,             | Data co<br>for 1-f   | ollec<br>oot l | ted  <br>Pars | by U<br>shal | Jtah<br>1 flu | Wa<br>ime | ter  | Res  | ear | ch :      | Lab | ora  | tory. | y  | 30              |
| APPE <b>N</b> DIX C,    | Data co<br>for 4-f   | ollec<br>oot l | ted  <br>Pars | by l<br>hal  | Jtah<br>l flu | Wa<br>ime | ter  | Res  | ear | ch :<br>· | Lab | ora  | tory. | y  | 34              |
| APPENDIX D,             | Submer<br>6-foot 1   | ged<br>Pars    | flow<br>hall  | da<br>flu    | ta c<br>me    | olle      | cted | l by | Bla | isd       | ell | for  |       |    | 36              |

### LIST OF FIGURES

| Figure |                                                                                                  | Page |
|--------|--------------------------------------------------------------------------------------------------|------|
| 1      | Plan and sectional view of large Parshall measuring flumes • • • • • • • • • • • • • • • • • • • | 3    |
| 2      | Plot of 6-inch Parshall flume submerged flow data $\cdot$ $\cdot$                                | 8    |
| 3      | Submerged flow calibration curves for 6-inch<br>Parshall flume • • • • • • • • • • • • • • • • • | 10   |
| 4      | Plot of 1-foot Parshall flume submerged flow data                                                | 14   |
| 5      | Submerged flow calibration curves for 1-foot<br>Parshall flume                                   | 15   |
| 6      | Submerged calibration curves for 4-foot Parshall flume with plotted flow data                    | 19   |
| 7      | Plot of 6-foot Parshall flume submerged flow data                                                | 21   |
| 8      | Submerged flow calibration curves for 6-foot Parshall flume                                      | 22   |

#### LIST OF TABLES

s

-

| Table |                                                                         | F | age |
|-------|-------------------------------------------------------------------------|---|-----|
| 1     | Dimensions and capacities of selected Parshall flumes                   | • | 4   |
| 2     | Submerged flow data for 6-inch Parshall flume                           | • | 27  |
| 3     | Measurements and computation of parameters for 1-foot<br>Parshall flume | • | 31  |
| 4     | Measurements and computation of parameters for 4-foot<br>Parshall flume | • | 35  |
| 5     | Full scale model data for 6-foot Parshall flume                         | • | 37  |
| 6     | Half scale model data for 6-foot Parshall flume                         | ¢ | 38  |

#### NOMENCLATURE

| S ymbol        | Definition                                                                                                                                                                      |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H <sub>a</sub> | Depth of flow in a Parshall flume measured in<br>the converging inlet section at a point two-thirds<br>the length of the entrance section upstream from<br>the flume crest, ft. |
| H <sub>b</sub> | Depth of flow in a Parshall flume measured at a particular referenced point in the throat, ft.                                                                                  |
| Q              | Actual discharge, cfs.                                                                                                                                                          |
| W              | Throat width of a Parshall flume, ft.                                                                                                                                           |

#### PURPOSE OF STUDY

The primary objective of this study was to ascertain from selected sizes of Parshall flumes further proof of the validity of the method of analyzing submerged flow developed at Utah State University. The flume sizes selected for study were the standard 6-inch, 1-, 4-, and 6-foot Parshall flumes.

The data of Parshall (1953) was subjected to this method of analyzing submerged flow by Skogerboe, Hyatt, England, Johnson, and Griffin (1965). From this analysis the submerged flow calibration curves were developed for the sizes of Parshall flumes mentioned above. However, the authors desire to supplement this work with data collected in the laboratory and other selected sources for further validity of the calibration curves which were previously developed using Parshall's data.

Data was collected at the Utah Water Research Laboratory for the 1- and 4-foot flumes; the data of F. W. Blaisdell (1944) was used for the 6-foot flume; and the data of V. N. Gunaji (1950) was utilized for the analysis of the 6-inch flume. The resulting equations and calibration curves are listed in this report.

Since this study has been made only to provide supplemental information on the submerged flow calibration curves of the 6-inch, 1-, 4-, and 6-foot Parshall flumes, such items as construction, setting, maintenance, and methods for measurements are not considered in this report. The authors feel the work by Parshall (1953) is very adequate on these topics and should be referred to by the reader. Figure 1 is a plan and sectional view of a typical Parshall flume, along with a letter for each dimension line. Listed in Table 1 are the values of each dimension for the selected sizes of flumes. The size of flume is denoted by its throat-width, designated as W in Table 1. Also shown in Table 1 is the approximate discharge capacity of each flume, and the location of the flow depth measurement points,  $H_a$  and  $H_b$ .







Figure 1. Plan and sectional view of Parshall measuring flumes.

| Th<br>W | roat<br>idth<br>W | t<br>Dimensions in Feet and Inches |       |    |       |    |       |    |    |      |    |     |       | Free<br>Capa | Flow<br>cities |    |     |    |     |      |     |     |     |      |       |
|---------|-------------------|------------------------------------|-------|----|-------|----|-------|----|----|------|----|-----|-------|--------------|----------------|----|-----|----|-----|------|-----|-----|-----|------|-------|
| ft.     | in.               |                                    | A     |    | В     |    | С     | 2  | /3 | С    |    | D   |       |              | E              | E  |     |    | ĩ   | Н    | K   | Х   | Y   | Min. | Max.  |
| 0 †     | 6''               | 1'                                 | 3.50" | 1' | 3. 5" | 2' | 0.44" | 1' | 4. | 31'' | 2' | 0.  | 0.011 | 1'           | 011            | 21 | 0'' | 1' | 6'' | 4.5" | 3'' | 211 | 311 | 0.05 | 2.9   |
| 1;      | 011               | 21                                 | 9.25" | 21 | 0.0"  | 41 | 6.00" | 31 | 0. | 00;1 | 41 | 4.  | 8811  | 21           | 0''            | 31 | 011 | 3' | 0'' | 9.0" | 3'' | 2"  | 311 | 0.40 | 16.0  |
| 4'      | 0''               | 61                                 | 4.25  | 51 | 0.0"  | 6' | 0.00" | 4' | 0. | 00;1 | 51 | 10. | 6311  | 21           | 0"             | 31 | 0'' | 3' | 0'' | 9.0" | 3'' | 2'' | 3'' | 1.30 | 68.0  |
| 61      | 013               | 81                                 | 9.00" | 7' | 0.0"  | 71 | 0.00" | 41 | 8. | 00'' | 6' | 10. | 38"   | 21           | 0"             | 31 | 0"  | 31 | 0"  | 9.0" | 3'' | 2"  | 311 | 2.60 | 104.0 |

Table 1. Dimensions and capacities of selected Parshall flumes.

1 i

е <del>"</del>

#### CHARACTERISTICS OF SUBMERGED FLOW

Many measurement structures utilize the principle of passing the flow through critical depth. When the flow passes through critical depth then free flow conditions exist and the discharge is dependent upon only the upstream depth of flow. However, when the downstream depth of flow increases to the point that the upstream depth of flow is affected then free flow conditions no longer exist and the flow is said to be submerged. Submergence, which is often expressed as a percentage, is the ratio of the downstream head of a flume to the upstream head. In a Parshall flume the downstream head, H<sub>b</sub>, is the depth of flow measured at a particular referenced point in the throat, whereas the upstream head, H<sub>a</sub>, is the depth of flow located two-thirds of the length of the converging entrance section upstream from the flume crest. Hence, submerged flow conditions exist in a Parshall flume when the depth of flow at H  $_{\rm b}$  becomes great enough to affect the upstream depth of flow, H\_. When submerged flow conditions exist, the stagedischarge relationship developed for free flow conditions is no longer valid and another method for analyzing the flow must be used.

Previously, the principal method used for analyzing submerged flow has been to apply a correction to the free flow discharge with the higher submergence values requiring higher corrections. However, another method of analyzing the submerged flow problem has been reported by Hyatt (1965) in a thesis conducted under the supervision of

#### SIX-INCH PARSHALL FLUME

#### Analysis of data

The data used for the analysis of the 6-inch Parshall flume was taken from a study by Gunaji (1950). The large amount of data furnished by this study was felt to be sufficient to verify the method of analyzing submerged flow as previously explained.

The first and most vital step in the analysis was the determination of the power of the  $H_a - H_b$  term, or the slope of the lines of constant submergence. Skogerboe, Hyatt, Johnson, and England (1965) have shown that the value of the power of  $H_a - H_b$  in the submerged flow equation and the power of  $H_a$  in the free flow equation are the same for any given flume. The power of  $H_a$  in the free flow equation is obtained more easily and has been made available by Parshall (1953). For the 6-inch flume Parshall gives the value of the  $H_a$  power as 1.58. Villemonte and Gunaji (1953) give the power as 1.57. Because of the small difference in the two, and the more common acceptance of the work of Parshall, the value of 1.58 was selected. Thus the free flow equation for the 6-inch Parshall flume as given by Parshall (1953) is

 $Q = 2.06 H_a^{1,58} \dots 1$ Next the data was plotted on a three-dimensional log-log plot

with Q plotted as the ordinate,  $H_{a} - H_{b}$  as the abscissa, and  $H_{b}/H_{a}$  as the varying parameter (Figure 2). As shown in Figure 2, the slope of 1.58, the same slope as the free flow equation, is the slope which best fits the submerged flow data. Hence, the dashed lines of constant



Figure 2. Plot of 6-inch Parshall flume submerged flow data.

submergence which best fit the data of Gunaji (1950) are drawn on the slope of 1.58.

Villemonte and Gunaji (1953) in their study of the 6-inch Parshall flume state the upstream depth is unaffected until a submergence of about 56 percent is reached. Also, stated at a submergence of about 90 percent--designated as the "critical submergence"--in the diverging section of the flume a strong, backward rolling hydraulic jump in the flow changes to essentially standing waves. The scatter in the data of Figure 2 between the submergence values of 86 percent and 94 percent indicates the change in the flow described by Villemonte and Gunaji (1953).

The solid lines of constant submergence in Figure 2 are drawn to fit the submerged flow data of Parshall (1953). The solid lines have the same value of submergence as the dashed lines which are drawn to fit the data of Gunaji (1950). As illustrated in Figure 2, the 58, 70.0, and 77.6 percent solid and dashed submergence lines are almost identical. The 85, 94, and 96.7 percent dashed submergence lines, which bracket the "critical submergence" of Villemonte and Gunaji (1953), have poor compatibility with the solid submergence lines developed from the data of Parshall. Other tests conducted by the authors regarding Parshall flumes are also incompatible with the data of Gunaji at these higher submergence values. Using the data of Parshall (1953) the submerged flow calibration curves for the 6-inch Parshall flume are obtained as shown in Figure 3.

9



Figure 3. Submerged flow calibration curves for 6-inch Parshall flume.

The submerged flow discharge equation which fits the calibration curves shown in Figure 3 for the 6-inch Parshall flume is

When Equations 1 and 2 are equated, the transition submergence solves to be 55 percent which checks with the 56 percent stated by Villemonte and Gunaji (1953).

The submerged calibration curves for the 6-inch Parshall flume as shown in Figure 3 are identical to those developed by Skogerboe, Hyatt, England, Johnson, and Griffin (1965) because the same data was used in the development of each.

#### ONE-FOOT PARSHALL FLUME

#### Experimental Facilities

A commerical fabricated steel 1-foot Parshall flume was used for the study. The 1-foot flume was placed in the 5-foot deep by 5-foot wide flume located in the Fluid Mechanics Laboratory at Utah State University. The flume was placed with the converging floor section level in all directions. Other necessary precautions were taken to insure the compatibility of the authors' results with those of Parshall (1953).

Three pumps were used which were capable of delivering a maximum flow rate of approximately eight cubic feet per second (cfs). The flow rate was regulated by varying the number of pumps on the line and by means of a valve located on the line as it entered the laboratory.

The flow passed through the flume and discharged into weighing tanks where the water was weighed over a given time period to obtain the flow rate. The water was then discharged from the weighing tanks into the sump, where it recirculated.

Depth measurements were made by the use of a point gage in stilling wells. The measurements were made to the nearest 0.001 foot.

A tailgate was placed downstream from the Parshall flume to regulate tailwater depth and thereby control and vary the degree of submergence for each flow rate.

#### Analysis of data

As was discussed in the section on the 6-inch Parshall flume, the first step in the analysis was the determination of the value of  $H_a - H_b$  term. As previously mentioned, the value of the power of  $H_a$  in the free flow equation is to be the same as the value of the power of  $H_a - H_b$  in the submerged flow equation. Hence, the free flow data was plotted with Q as the ordinate and  $H_a$  as the abscissa. The equation which resulted from this plot and corresponded with the equation listed by Parshall (1953) for a 1-foot flume is

 $Q = 4.0 H_a^{1.52} \dots 3$ Thus the value of the power of  $H_a - H_b$  in the submerged flow equation is 1.52.

A three-dimensional log-log plot was prepared with Q plotted as the ordinate,  $H_a - H_b$  as the abscissa, and  $H_b/H_a$  as the varying parameter (Figure 4). Figure 4 shows the lines of constant submergence to be at a slope of 1.52 and also gives further validity to the method of analyzing submerged flow developed at Utah State University. From Figure 4 a submerged flow calibration curve for a 1-foot Parshall flume was developed (Figure 5). Utilizing Figure 5, the submerged flow discharge equation obtained for the 1-foot flume is

$$Q = \frac{3.11 (H_a - H_b)^{1.52}}{[-(\log H_b/H_a + 0.0044)]^{1.08}} \cdot \cdot \cdot \cdot \cdot \cdot \cdot 4$$



Figure 4. Plot of 1-foot Parshall flume submerged flow data.



Figure 5. Submerged calibration curves for 1-foot Parshall flume.

When Equations 3 and 4 are equated, the transition submergence for the 1-foot Parshall flume solves to be 62 percent. The submerged calibration curve (Figure 5) developed from the data gathered by the authors at the Utah Water Research Laboratory is identical to the one previously developed by Skogerboe, Hyatt, England, Johnson, and Griffin (1965), and thus supplements that work.

#### FOUR-FOOT PARSHALL FLUME

#### Experimental Facilities

For the study, a commerical fabricated steel 4-foot Parshall flume was used. The 4-foot flume was placed in the 8-foot wide by 6-foot deep flume at the Utah Water Research Laboratory, and in such a manner that compatible results with those of Parshall (1941) would be insured.

The Utah Water Research Laboratory is located along side the Logan River. Upstream from the laboratory is a small storage reservoir which provides the water supply for laboratory studies. The flow rate from this reservoir was regulated by means of a valve located in the laboratory. Once the flow had passed through the 8-foot wide by 6-foot deep flume, it is discharged back into the Logan River. For the study, the flow rate was measured by a 3-foot Parshall flume placed on a stand in the laboratory 8-foot by 6-foot flume at sufficient height to always insure free flow operation. The upstream depth,  $H_a$ , of the 3-foot flume was measured in a stilling well by means of a point gage to the nearest 0.001 foot.

Depth measurements of the 4-foot Parshall flume were also made by the use of a point gage in stilling wells, and with the accuracy of 0.001 foot.

A hydraulically operated tailgate located at the end of the 8-foot by 6-foot flume in the laboratory was used to regulate the tailwater depth and thereby control and vary the degree of submergence for each flow rate.

#### Analysis of data

The free flow equation as given by Parshall (1953) and used for the analysis for the 4-foot Parshall flume is

A three-dimensional log-log plot was prepared from the 4-foot Parshall flume data with Q plotted as the ordinate,  $H_{a}$  -  $H_{a}$  as the abscissa, and  $H_{b}/H_{a}$  as the varying parameter (Figure 6). As shown in Figure 6, the lines of constant submergence fit the data best at a slope of 1.57 (the same slope as the free flow equation). Figure 6 is also the submerged flow calibration curve for a 4-foot Parshall flume. The submerged flow discharge equation for the 4-foot flume as obtained from Figure 6 is

Equation 6 and the submerged calibration curve (Figure 6) for the 4-foot Parshall flume are identical to the one developed previously by Skogerboe, Hyatt, England, Johnson, and Griffin (1965) resulting in further validity of the method of analyzing submerged flow as developed at Utah State University. When Equations 5 and 6 are equated the transition submergence for the 4-foot Parshall flume solves to be 70 percent.



Figure 6. Submerged calibration curves for 4-foot Parshall flume with plotted flow data.

#### Analysis of data

Τh

The data used for the analysis of the 6-foot Parshall flume was taken from a study on model-prototype conformity by Blaisdell (1944). The submerged flow data was interpolated from a plot where increase in head was plotted versus submergence for several discharge values.

A plot of the free flow data resulted in a free flow equation for the 6-foot Parshall flume of

|   | Q :   | = 2 | 4.6 H | 1.! | 58  | •  | •   | •   | ٠   |     |     | ø  |      |      | ٠  | a  | 7 |
|---|-------|-----|-------|-----|-----|----|-----|-----|-----|-----|-----|----|------|------|----|----|---|
| е | equat | ion | given | by  | Paı | sh | a11 | (19 | 53) | for | the | 6- | foot | flun | ne | is |   |

| Q = | 24.0 | Ha | 1.595 | ٥ | • | ٠ | • |  | • | • |  | • | ۰ | • | 8 |
|-----|------|----|-------|---|---|---|---|--|---|---|--|---|---|---|---|
|-----|------|----|-------|---|---|---|---|--|---|---|--|---|---|---|---|

The data for the 6-foot Parshall flume was plotted on a threedimensional log-log plot with Q as the ordinate,  $H_a - H_b$  as the abscissa, and  $H_b/H_a$  as the varying parameter (Figure 7). Figure 7 shows several lines of constant submergence which fit the data best when the slope is 1.58. A slope of 1.58 or 1.595 was indicated by the free flow equations--Equations 7 and 8--previously given. Since the slope of 1.58 works best for both the free flow condition and the submerged flow condition, it will be used in the analysis. Hence, the free flow equation to be used is Equation 7.

Figure 8 is the submerged flow calibration curve for a 6-foot Parshall flume as developed from the data of Blaisdell (1944). Figure 8 also gives further validity to the method of analyzing



Figure 7. Plot of 6-foot Parshall flume submerged flow data.



Figure 8. Submerged flow calibration curves for 6-foot Parshall flume.

submerged flow as previously described. Utilizing Figure 8, the submerged flow discharge equation for the 6-foot Parshall flume can be written as

$$Q = \frac{15.89 (H_a - H_b)^{1.58}}{\left[-(\log H_b/H_a + 0.0044)\right]^{1.24}} \dots \dots 9$$

The submerged flow calibration curve shown by Figure 8 is almost identical to the one developed previously by Skogerboe, Hyatt, England, Johnson, and Griffin (1965). The difference between the two calibration curves can best be illustrated by the difference in the discharge equations. The equation for the calibration curves previously developed is

as compared to Equation 9 developed from Figure 8. However, both the developed curves and Equations 9 and 10 give comparable answers.

The transition submergence of the 6-foot Parshall flume is 74 percent as obtained from equating Equations 7 and 9.

#### CONCLUSIONS

The 6-inch, 1-, 4-, and 6-foot Parshall flumes were selected as representative sizes for collecting submerged flow data. Data for the 1- and 4-foot flumes were collected by the authors at the Utah Water Research Laboratory. The data of Gunaji (1950) was used for the 6-inch flume, and the data of Blaisdell (1944) was used for the 6foot flume.

The submerged flow data of the 6-inch, 1-, 4-, and 6-foot Parshall flumes were analyzed utilizing the method developed by Hyatt (1965). The calibration curves developed from the data of the 1-, 4-, and 6-foot flumes showed little, if any, variation when compared to the curves developed by Skogerboe, Hyatt, England, Johnson, and Griffin (1965). The transition points of 62, 70, and 74 percent, respectively, were identical with those previously obtained.

The submerged flow data for the 6-inch Parshall flume as reported by Gunaji was found to be compatible with the findings of Skogerboe, Hyatt, England, Johnson, and Griffin (1965) for lower submergence values (55 to 85 percent) but incompatible for higher submergence values (85 to 97 percent). Agreement on a transition submergence of 55 percent for the 6-inch flume was obtained, however.

The calibration curves developed for the 6-inch, 1-, 4-, and 6-foot Parshall flumes are shown in the report and all further supplement the work previously done.

#### REFERENCES

Blaisdell, Fred W. 1944. Blaisdell on model-prototype conformity. Trans. ASCE, 109:157-167.

Gunaji, Vasudeo Nagesh. 1950. Effect of submergence on discharge of a 6-inch Parshall flume. Unpublished M. S. Thesis. University of Wisconsin.

Hyatt, M. Leon. 1965. Design, calibration, and evaluation of a trapezoidal measuring flume by model study. M. S. Thesis, Utah State University, Logan, Utah. March.

Hyatt, M. L., and G. V. Skogerboe. 1966. Evaluation of free and submerged flow data for large Parshall flumes. Report PR-WR6-5, Utah Water Research Laboratory, Utah State University, Logan, Utah. January.

Parshall, R. L. 1941. Measuring water in irrigation channels. Farmers' Bulletin No. 1683, U. S. Department of Agriculture. October.

Parshall, R. L. 1953. Parshall flumes of large size. Reprint Bulletin 386, Colorado Agricultural Experiment Station, Fort Collins, Colorado. March.

Skogerboe, G. V., M. L. Hyatt, J. R. Johnson, and J. D. England. 1965. Submerged Parshall flumes of small size. Report PR-WR6-1, Utah Water Research Laboratory, Utah State University, Logan, Utah. July.

Skogerboe, G. V., M. L. Hyatt, J. D. England, and J. R. Johnson. 1965. Submergence in a two-foot Parshall flume. Report PR-WR6-2, Utah Water Research Laboratory, Utah State University, Logan, Utah. August.

Skogerboe, G. V., M. L. Hyatt, J. D. England, J. R. Johnson, and R. E. Griffin. 1965. Measuring water with Parshall flumes. Utah Water Research Laboratory and Utah Cooperative Extension Service, Utah State University, Logan, Utah. November.

Villemonte, J. R., and V. N. Gunaji. 1953. Equation for submerged sharp-crested weirs found applicable to 6-inch Parshall flume. Civil Engineering, June.

APPENDIX A

7

\_

-

SUBMERGED FLOW DATA COLLECTED BY GUNAJI FOR 6-INCH PARSHALL FLUME

| 1abi  | <u>e z. Submergeu</u> | now uata for 6. | -men Farshall Ilu                 | me.                             |
|-------|-----------------------|-----------------|-----------------------------------|---------------------------------|
| Q     | Ha                    | Н <sub>b</sub>  | H <sub>b</sub> /H <sub>a</sub> ,% | H <sub>a</sub> - H <sub>b</sub> |
| 0.063 | 0.111                 | 0.085           | 76.6                              | 0.026                           |
| 0.063 | 0.123                 | 0.104           | 84.6                              | 0.019                           |
| 0.063 | 0.141                 | 0.129           | 91.5                              | 0.012                           |
| 0.063 | 0.151                 | 0.141           | 93.4                              | 0.010                           |
| 0.063 | 0.167                 | 0.160           | 95.8                              | 0.007                           |
| 0.334 | 0.320                 | 0.169           | 52.8                              | 0.151                           |
| 0.334 | 0.333                 | 0.245           | 73.6                              | 0.088                           |
| 0.334 | 0.362                 | 0.271           | 74.9                              | 0.091                           |
| 0.334 | 0.376                 | 0.294           | 78.2                              | 0.082                           |
| 0.620 | 0.491                 | 0.386           | 78.7                              | 0.105                           |
| 0.620 | 0.511                 | 0.437           | 85.7                              | 0.074                           |
| 0.620 | 0.541                 | 0.452           | 83.5                              | 0.089                           |
| 0.650 | 0.485                 | 0.243           | 50.0                              | 0.242                           |
| 0.650 | 0.513                 | 0.439           | 85.6                              | 0.074                           |
| 0.650 | 0.549                 | 0.461           | 84.0                              | 0.088                           |
| 0.650 | 0.597                 | 0.521           | 87.0                              | 0.076                           |
| 0.650 | 0.686                 | 0.638           | 93.1                              | 0.048                           |
| 0.650 | 0.753                 | 0.714           | 94.9                              | 0.039                           |
| 0.650 | 0.881                 | 0.854           | 96.6                              | 0.027                           |
| 0.650 | 0.974                 | 0.954           | 98.0                              | 0.020                           |
| 0.650 | 1.080                 | 0.963           | 89.2                              | 0.117                           |
| 0.076 | 0.135                 | 0.074           | 54.7                              | 0.061                           |
| 0.076 | 0.155                 | 0.087           | 56.0                              | 0.068                           |
| 0.076 | 0.174                 | 0.111           | 63.8                              | 0.063                           |
| 0.076 | 0.194                 | 0.131           | 67.5                              | 0.063                           |
| 0.310 | 0.303                 | 0.152           | 50.2                              | 0.151                           |
| 0.310 | 0.307                 | 0.178           | 58.0                              | 0.129                           |
| 0.310 | 0.308                 | 0.199           | 64.6                              | 0.109                           |
| 0.310 | 0.320                 | 0.248           | 77.5                              | 0.072                           |
| 0.310 | 0.332                 | 0.252           | 75.9                              | 0.080                           |
| 0.310 | 0.360                 | 0.274           | 76.0                              | 0.086                           |
| 0.310 | 0.371                 | 0.305           | 82.3                              | 0.066                           |
| 0.310 | 0.397                 | 0.339           | 85.5                              | 0.058                           |
| 0.310 | 0.440                 | 0.394           | 89.5                              | 0.046                           |
| 0.310 | 0.478                 | 0.436           | 91.5                              | 0.042                           |
| 0.310 | 0.516                 | 0.478           | 92.6                              | 0.038                           |
| 0.310 | 0.571                 | 0.537           | 94.0                              | 0.034                           |
| 0.310 | 0.629                 | 0.600           | 95.5                              | 0.029                           |
| 0.310 | 0.673                 | 0.643           | 95.7                              | 0.030                           |
| 0.310 | 0.733                 | 0.705           | 96.5                              | 0.028                           |

Table 2. Submerged flow data for 6-inch Parshall flume.

-

.

| Q     | H<br>a | Н <sub>b</sub> | H <sub>b</sub> /H <sub>a</sub> ,% | H <sub>a</sub> -H <sub>b</sub> |
|-------|--------|----------------|-----------------------------------|--------------------------------|
| 0.693 | 0.513  | 0.340          | 66.3                              | 0.173                          |
| 0.693 | 0.517  | 0.362          | 70.0                              | 0.155                          |
| 0.693 | 0.522  | 0.389          | 74.3                              | 0.133                          |
| 0.690 | 0.528  | 0.414          | 78.5                              | 0.114                          |
| 0.690 | 0.535  | 0.439          | 82.0                              | 0.096                          |
| 0.690 | 0.541  | 0.452          | 83.6                              | 0.089                          |
| 0,687 | 0.549  | 0.472          | 86.0                              | 0.077                          |
| 0.687 | 0.578  | 0.482          | 83.4                              | 0.096                          |
| 0.682 | 0.594  | 0.493          | 83.2                              | 0.101                          |
| 0.682 | 0.605  | 0.516          | 85.5                              | 0.089                          |
| 0.678 | 0.625  | 0.544          | 87.0                              | 0.081                          |
| 0.678 | 0.641  | 0.567          | 88.5                              | 0.074                          |
| 0.676 | 0.689  | 0.626          | 91.0                              | 0.063                          |
| 0.676 | 0.743  | 0.691          | 93.2                              | 0.052                          |
| 0.675 | 0.766  | 0.720          | 94.0                              | 0.046                          |
| 0.672 | 0.801  | 0.760          | 95.0                              | 0.041                          |
| 0.672 | 0.860  | 0.825          | 96.0                              | 0.035                          |
| 0.671 | 0.954  | 0.926          | 97.4                              | 0.028                          |
| 1.580 | 0.858  | 0.491          | 57.4                              | 0.367                          |
| 1.580 | 0.882  | 0.622          | 70.5                              | 0.260                          |
| 1.580 | 0.911  | 0.708          | 77.6                              | 0.203                          |
| 1.580 | 0.961  | 0.816          | 84.9                              | 0.145                          |
| 1.550 | 0.995  | 0.877          | 88.2                              | 0.118                          |
| 1.550 | 1.019  | 0.911          | 89.6                              | 0.108                          |
| 1.550 | 1.044  | 0.948          | 90.6                              | 0.096                          |
| 1.550 | 1.095  | 0.983          | 89.8                              | 0.112                          |
| 1.550 | 1.118  | 1.005          | 90.0                              | 0.113                          |
| 1.550 | 1.141  | 1.033          | 90.5                              | 0.108                          |
| 1.520 | 1.193  | 1.094          | 91.8                              | 0.099                          |
| 1.520 | 1.251  | 1.169          | 93.4                              | 0.082                          |
| 1.520 | 1.306  | 1.229          | 94.0                              | 0.077                          |
| 1.520 | 1.354  | 1.283          | 94.7                              | 0.071                          |
| 1.500 | 1.426  | 1.368          | 96.6                              | 0.058                          |
| 1.500 | 1.510  | 1.459          | 96.7                              | 0.051                          |
| 0.220 | 0.335  | 0.206          | 61.5                              | 0.129                          |
| 0.220 | 0.400  | 0.381          | 95.4                              | 0.019                          |
| 0.220 | 0.450  | 0.435          | 96.8                              | 0.015                          |
| 0.220 | 0.490  | 0.478          | 97.5                              | 0.012                          |
| 2.068 | 1.019  | 0.596          | 58.6                              | 0.423                          |
| 2.068 | 1.043  | 0.723          | 69.3                              | 0.320                          |

Table 2. (Continued)

-

•

ø

| Q     | H <sub>a</sub> | Hb    | H <sub>b</sub> /H <sub>a</sub> ,% | H <sub>a</sub> -H <sub>b</sub> |
|-------|----------------|-------|-----------------------------------|--------------------------------|
| 2.060 | 1.086          | 0.855 | 78.7                              | 0.231                          |
| 2.060 | 1.161          | 0.993 | 85.5                              | 0.168                          |
| 2.060 | 1.183          | 1.040 | 88.0                              | 0.143                          |
| 2.060 | 1.220          | 1.092 | 89.8                              | 0.128                          |
| 2.060 | 1.264          | 1.155 | 91.5                              | 0.109                          |
| 2.050 | 1.302          | 1.200 | 92.2                              | 0.102                          |
| 2.050 | 1.340          | 1.247 | 93.0                              | 0.093                          |
| 2.050 | 1.390          | 1.273 | 91.7                              | 0.117                          |
| 2,050 | 1.419          | 1.307 | 92.2                              | 0.112                          |
| 2.050 | 1.461          | 1.359 | 93.0                              | 0.102                          |
| 2.050 | 1.520          | 1.423 | 93.8                              | 0.097                          |
| 2.040 | 1.580          | 1.496 | 94.6                              | 0.084                          |
| 2.040 | 1.652          | 1.575 | 95.3                              | 0.077                          |
| 2.040 | 1.691          | 1.622 | 96.0                              | 0.069                          |
| 2.040 | 1.731          | 1.664 | 97.4                              | 0.067                          |
| 2.020 | 1.750          | 1.686 | 96.5                              | 0.064                          |
| 2.020 | 1.771          | 1.716 | 97.0                              | 0.055                          |

Table 2. (Continued)

.

••

\*\*

APPENDIX B

У

DATA COLLECTED BY UTAH WATER RESEARCH LABORATORY

FOR 1-FOOT PARSHALL FLUME

| Та | ble | 3. |
|----|-----|----|
|    |     |    |

| Q      | H <sub>a</sub> | <br>H <sub>b</sub> | H <sub>b</sub> /H <sub>a</sub> ,% | H <sub>a</sub> - H <sub>b</sub> |
|--------|----------------|--------------------|-----------------------------------|---------------------------------|
|        |                |                    |                                   |                                 |
| 1.430  | 0.536          |                    | FREE                              | FLOW                            |
| 1.452  | 0.540          | 0.306              | 56.6                              | 0.234                           |
| 1.455  | 0.541          | 0.364              | 67.3                              | 0.177                           |
| 1.462  | 0.547          | 0.412              | 76.1                              | 0.135                           |
| 1.462  | 0.555          | 0.456              | 82.2                              | 0.099                           |
| 1.460  | 0.567          | 0.482              | 85.0                              | 0.085                           |
| 1.455  | 0.592          | 0.506              | 85.6                              | 0.086                           |
| 1.460  | 0.631          | 0.574              | 91.0                              | 0.057                           |
| 1.455  | 0.680          | 0.638              | 9 <b>3.</b> 8                     | 0.042                           |
| 1.440  | 0.724          | 0.690              | 95.3                              | 0.034                           |
| 1.440  | 0.776          | 0.754              | 97.1                              | 0.022                           |
| 1.465  | 0,583          | 0.502              | 86.2                              | 0.081                           |
| 1.455  | 0.567          | 0.465              | 82.0                              | 0.102                           |
| 1.466  | 0.554          | 0.420              | 75.8                              | 0,134                           |
| 1.430  | 0.535          | 0.365              | 68.2                              | 0.170                           |
| 1,425  | 0.536          | 0. <sup>3</sup> 84 | 71.7                              | 0.152                           |
| 1.427  | 0.529          | 0.206              | 39.0                              | 0.323                           |
| 1.440  | 1.114          | 1.102              | 98.9                              | 0.012                           |
| 1.442  | 0,536          | 0.331              | 62.0                              | 0.203                           |
| 1.429  | 0.532          | 0.316              | 59.4                              | 0.216                           |
| 1,435  | 0.534          | 0.351              | 65.7                              | 0.183                           |
| 2,530  | 0.755          |                    | FREE                              | FLOW                            |
| 2.520  | 0.762          | 0,465              | 61.0                              | 0.297                           |
| 2.520  | 0.761          | 0.428              | 56.0                              | 0.333                           |
| 2.520  | 0.759          | 0.406              | 53.6                              | 0.353                           |
| 2.525  | 0.763          | 0.477              | 62.5                              | 0.286                           |
| 2.525  | 0.768          | 0.527              | 68.6                              | 0.241                           |
| 2.520  | 0.770          | 0.558              | 72.5                              | 0.212                           |
| 2.525  | 0.779          | 0.617              | 79.3                              | 0.182                           |
| 2.461  | 0.795          | 0.703              | 88.5                              | 0.092                           |
| 2 461  | 0.795          | 0.685              | 86 2                              | 0,110                           |
| 2 461  | 0 778          | 0.665              | 85.4                              | 0 113                           |
| 2 461  | 0 770          | 0.628              | 81 6                              | 0 142                           |
| 2 461  | 0.882          | 0.020              | 91 5                              | 0 075                           |
| 2.435  | 1 110          | 1 073              | 96 5                              | 0 037                           |
| 4, 100 | τ, ττΟ         | 1,015              | /0. 0                             | 0.001                           |

Measurements and computation of parameters for 1-foot Parshall flume,

| Q     | H <sub>a</sub> | Hb     | H <sub>b</sub> /H <sub>a</sub> , % | H <sub>a</sub> - H <sub>b</sub> |
|-------|----------------|--------|------------------------------------|---------------------------------|
| 2.450 | 1.312          | 1.294  | 98.8                               | 0.018                           |
| 6.020 | 1.310          |        | FREE                               | FLOW                            |
| 6.090 | 1.362          | 1.059  | 77.7                               | 0.303                           |
| 6.090 | 1.382          | 1.109  | 80.0                               | 0.273                           |
| 6.090 | 1.411          | 1.182  | 83.7                               | 0.229                           |
| 6.090 | 1.463          | 1.267  | 86.5                               | 0.196                           |
| 6.090 | 1.352          | 0.951  | 70.3                               | 0.401                           |
| 6.130 | 1.351          | 0.929  | 68.7                               | 0.422                           |
| 6.130 | 1.345          | 0.857  | 63.7                               | 0,488                           |
| 6.160 | 1.347          | 0.824  | 61.0                               | 0.523                           |
| 6.290 | 1.355          | 0.789  | 58.2                               | 0.566                           |
| 6.410 | 1,356          | 0, (0) | FREE                               | FLOW                            |
| 4.980 | 1,153          |        | FREE                               | FLOW                            |
| 4.980 | 1,151          |        | FREE                               | FLOW                            |
| 5.200 | 1.180          | 0.583  | 49.4                               | 0.597                           |
| 4 940 | 1 160          | 0 583  | 50 3                               | 0 577                           |
| 4 980 | 1,160          | 0.614  | 53 0                               | 0.546                           |
| 4,980 | 1,169          | 0.775  | 65.4                               | 0, 394                          |
| 4.980 | 1,160          | 0.719  | 62.0                               | 0, 441                          |
| 4.980 | 1.180          | 0.888  | 75.3                               | 0.292                           |
| 4.980 | 1,181          | 0.859  | 72.6                               | 0.322                           |
| 4.980 | 1.198          | 0.939  | 78.4                               | 0.259                           |
| 4.980 | 1.222          | 1.018  | 83.4                               | 0.204                           |
| 4.980 | 1.280          | 1.115  | 87.0                               | 0.165                           |
| 4.690 | 1.258          | 1.146  | 91.1                               | 0.112                           |
| 4.690 | 1,373          | 1.251  | 91.1                               | 0.122                           |
| 3.350 | 0.897          |        | FREE                               | FLOW                            |
| 3,340 | 0.896          |        | FREE                               | FLOW                            |
| 3.320 | 0.899          | 0.516  | 57.4                               | 0.373                           |
| 3,310 | 0,902          | 0.536  | 59.4                               | 0.366                           |
| 3.310 | 0.905          | 0.581  | 64.3                               | 0.324                           |
| 3.320 | 0,907          | 0.605  | 66.7                               | 0.302                           |
| 3.310 | 0.914          | 0.684  | 74.8                               | 0.230                           |
| 3.320 | 0.932          | 0.745  | 80.0                               | 0.187                           |
| 3.320 | 0.941          | 0.780  | 82.8                               | 0.161                           |

Table 3. (Continued)

>

9

.

| Table 5. (Continued) |                                                     |                                                                                 |                                                                                                                                                  |  |
|----------------------|-----------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| H<br>a               | H<br>b                                              | H_/H_,%<br>b_a                                                                  | H - H<br>a b                                                                                                                                     |  |
| 0.962                | 0.842                                               | 87.5                                                                            | 0.120                                                                                                                                            |  |
| 1.029                | 0.911                                               | 88.6                                                                            | 0.118                                                                                                                                            |  |
| 1.138                | 1.049                                               | 92.3                                                                            | 0.089                                                                                                                                            |  |
| 1.304                | 1.236                                               | 94.7                                                                            | 0.068                                                                                                                                            |  |
| 1.453                | 1.402                                               | 96.5                                                                            | 0.051                                                                                                                                            |  |
|                      | H<br>a<br>0.962<br>1.029<br>1.138<br>1.304<br>1.453 | H H   a b   0.962 0.842   1.029 0.911   1.138 1.049   1.304 1.236   1.453 1.402 | H   H   H   /H   ,%     0.962   0.842   87.5     1.029   0.911   88.6     1.138   1.049   92.3     1.304   1.236   94.7     1.453   1.402   96.5 |  |

Table 3. (Continued)

-

ale.

#### APPENDIX C

DATA COLLECTED BY UTAH WATER RESEARCH LABORATORY FOR 4-FOOT PARSHALL FLUME

.

| Measurements and computation of parameters for 4-foot Parshall flume. |       |                |                                |               |  |
|-----------------------------------------------------------------------|-------|----------------|--------------------------------|---------------|--|
| Q                                                                     | Ha    | Н <sub>ь</sub> | H <sub>a</sub> -H <sub>b</sub> | $H_{b}/H_{a}$ |  |
| 28.60                                                                 | 1.466 | 1.093          | 0.373                          | 0.746         |  |
| 28.60                                                                 | 1.559 | 1.345          | 0.214                          | 0.863         |  |
| 28.40                                                                 | 1.732 | 1.628          | 0.104                          | 0.939         |  |
| 30.80                                                                 | 2.311 | 2.262          | 0.049                          | 0.979         |  |
| 30.80                                                                 | 1.650 | 1.433          | 0.217                          | 0.869         |  |
| 30.50                                                                 | 1.688 | 1.509          | 0.179                          | 0.895         |  |
| 30.50                                                                 | 1.937 | 1.852          | 0.085                          | 0.966         |  |
| 8.11                                                                  | 0.657 | 0.490          | 0.167                          | 0.746         |  |
| 8.01                                                                  | 0.649 | 0.502          | 0.147                          | 0.773         |  |
| 8.01                                                                  | 0.654 | 0.470          | 0.184                          | 0.719         |  |
| 8.01                                                                  | 0.672 | 0.586          | 0.086                          | 0.873         |  |
| 8.01                                                                  | 0.763 | 0.732          | 0.031                          | 0.960         |  |
| 8.01                                                                  | 0.794 | 0.766          | 0.028                          | 0.965         |  |
| 8.20                                                                  | 0.691 | 0.605          | 0.086                          | 0.875         |  |

Table 4.

Measurements and computation of parameters for 4-foot Parshall flume.

17

#### APPENDIX D

3

ø

SUBMERGED FLOW DATA COLLECTED BY BLAISDELL FOR 6-FOOT PARSHALL FLUME

|        | e J. Full Scale | model data 101 | <u>0-100t 1 al Shall 1</u>        | unie.                          |
|--------|-----------------|----------------|-----------------------------------|--------------------------------|
| Q      | Ha              | H              | H <sub>b</sub> /H <sub>a</sub> ,% | H <sub>a</sub> -H <sub>b</sub> |
| 33.700 | 1.2250          | 0.8730         | 71.3                              | 0.3520                         |
| 33.700 | 1.2430          | 1.0450         | 84.1                              | 0.1980                         |
| 33.700 | 1.3790          | 1.2670         | 91.9                              | 0.1120                         |
| 15.500 | 0.7580          | 0.6240         | 82.3                              | 0.1340                         |
| 15.500 | 0.7880          | 0.6920         | 87.9                              | 0.0960                         |
| 15.500 | 0.8490          | 0.7920         | 93.3                              | 0.0570                         |
| 15.500 | 0.8920          | 0.8570         | 96.1                              | 0.0350                         |
| 4.060  | 0.1162          | 0.0588         | 50.6                              | 0.0574                         |
| 4.060  | 0.1169          | 0.0925         | 79.1                              | 0.0244                         |
| 4.060  | 0.1183          | 0.1004         | 84.9                              | 0.0179                         |
| 4.060  | 0.1196          | 0.1042         | 87.1                              | 0.0154                         |
| 4.060  | 0.1253          | 0.1152         | 91.9                              | 0.0101                         |
| 4.060  | 0.1309          | 0.1237         | 94.4                              | 0.0072                         |
| 4.060  | 0.1455          | 0.1423         | 97.8                              | 0.0022                         |
| 1.060  | 0.1650          | 0.1553         | 94.1                              | 0.0100                         |
| 1.060  | 0.1410          | 0.1230         | 87.3                              | 0.0180                         |
| 1.060  | 0.1380          | 0.1140         | 82.7                              | 0.0240                         |
| 0.821  | 0.1155          | 0.0681         | 59.0                              | 0.0474                         |
| 0.821  | 0.1178          | 0.0997         | 84.6                              | 0.0180                         |
| 0.821  | 0.1221          | 0.1095         | 89.7                              | 0.0126                         |
| 0.821  | 0.1381          | 0.1302         | 94.3                              | 0.0079                         |
| 0.493  | 0.0843          | 0.0627         | 74.4                              | 0.0216                         |
| 0.493  | 0.0886          | 0.0798         | 90.1                              | 0.0088                         |
| 0.493  | 0.0975          | 0.0917         | 94,0                              | 0.0058                         |
| 0.493  | 0.1041          | 0.0997         | 95.8                              | 0.0043                         |
|        |                 |                |                                   |                                |

Table 5. Full scale model data for 6-foot Parshall flume.

>

| Q      | Ha    | H<br>b | H <sub>b</sub> /H <sub>a</sub> ,% | H <sub>a</sub> -H <sub>b</sub> |
|--------|-------|--------|-----------------------------------|--------------------------------|
| 131.00 | 2.875 | 2.130  | 74.10                             | 0.745                          |
| 131.00 | 2.884 | 2.209  | 76.60                             | 0.675                          |
| 131.00 | 2.892 | 2.230  | 77.10                             | 0.662                          |
| 131.00 | 2.904 | 2.300  | 79.20                             | 0.604                          |
| 131.00 | 2.967 | 2.572  | 86.70                             | 0.395                          |
| 131.00 | 3.030 | 2.676  | 88.30                             | 0.354                          |
| 131.00 | 3.105 | 2.829  | 91.10                             | 0.276                          |
| 49.80  | 1.802 | 1.667  | 92.50                             | 0.135                          |
| 49.80  | 1.748 | 1.594  | 91.20                             | 0.154                          |
| 49.80  | 1.695 | 1.497  | 88.30                             | 0.198                          |
| 49.80  | 1.663 | 1.443  | 86.80                             | 0.220                          |
| 49.80  | 1.614 | 1.420  | 88.00                             | 0.194                          |
| 49.80  | 1.600 | 1.374  | 85.90                             | 0.226                          |
| 49.80  | 1.581 | 1.255  | 79.40                             | 0.326                          |
| 49.80  | 1.573 | 1.175  | 74.70                             | 0.398                          |
| 49.80  | 1 567 | 1 066  | 68 00                             | 0 501                          |
| 25.00  | 1.009 | 0,602  | 59.70                             | 0.301<br>0.407                 |
| 25 00  | 1.007 | 0.692  | 68 30                             | 0.321                          |
| 25.00  | 1 020 | 0.810  | 79 40                             | 0 210                          |
| 25.00  | 1.025 | 0.820  | 80.00                             | 0.205                          |
| 25 00  | 1 005 | 0.005  |                                   | 0, 700                         |
| 25.00  | 1.035 | 0.835  | 80.70                             | 0.200                          |
| 25.00  | 1.045 | 0.825  | 78.90                             | 0.220                          |
| 25.00  | 1.056 | 0.904  | 85.65                             | 0.152                          |
| 25.00  | 1.098 | 0.994  | 90.50                             | 0.104                          |
| 25.00  | 1.145 | 1.075  | 93.90                             | 0.070                          |
| 25.00  | 1.159 | 1.098  | 94.70                             | 0.061                          |
| 25.00  | 1.190 | 1.135  | 95.40                             | 0.055                          |
| 25.00  | 1.193 | 1.141  | 95.60                             | 0.052                          |
| 25.00  | 1.207 | 1.153  | 95.50                             | 0.054                          |
| 15.00  | 0.803 | 0.746  | 92.90                             | 0.057                          |
| 15.00  | 0.779 | 0.670  | 89.80                             | 0.109                          |
| 15.00  | 0,765 | 0.668  | 87.30                             | 0.097                          |
| 15.00  | 0.747 | 0.631  | 84.50                             | 0.116                          |
| 15.00  | 0.740 | 0.604  | 81.60                             | 0.136                          |
| 15.00  | 0.733 | 0.555  | 75.70                             | 0.178                          |
| 15.00  | 0.730 | 0.502  | 68.80                             | 0,228                          |
| 15.00  | 0.729 | 0.456  | 62.50                             | 0.273                          |
| 9.86   | 0.629 | 0.591  | 94.00                             | 0.038                          |
| 9.86   | 0.616 | 0.573  | 93.10                             | 0.043                          |
| 9.86   | 0.607 | 0.557  | 91.80                             | 0.050                          |

Table 6. Half scale model data for 6-foot Parshall flume.

.

.

٢