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Abstract 

More than a century ago Kirchhoff solved for the velocity distribution within an elliptical patch of 
uniform vorticity. That solution became the basis for all further studies of elliptical vortices and has been 
regarded as the only knovm exact solution for a steady, elliptical patch of uniform vorticity. In the 
present paper, an exact solution for a new elliptical patch of uniform vorticity is presented. The vortex is 
constructed of streamlines of constant eccentricity. By specifying a velocity distribution along either of 
the principle axes of the vortex, continuity between differentially-spaced streamlines provides the 
velocity distribution throughout the vortex. Some of the unique features of the vortex are that although 
the vorticity is uniform throughout the vortex, the angular velocity about the center is non-uniform, 
unlike the Kirchhoff vortex wherein both are uniform. The point of maximum velocity occurs not at the 
end of the major axes as in the case of Kirchhoff's vortex, but rather at the end of the minor axes, more 
nearly approximating the behavior of the twin vortices formed behind bluff bodies. In the present work, 
a non-orthogonal (non-confocal) elliptical coordinate system is employed to solve for the velocity and 
pressure distributions within the vortex. 

Introduction 

The study of flow past bluff bodies is broad, 
involving a variety of challenging problems, ranging 
from flame stabilization by means of bluff-body 
flameholders in ramjet and turbojet afterburners 
(Stwalley et a/. 1988), to the well-knovm problem of 
galloping conductors (Zdero et a/. 1995) and stall 
flutter associated with wings, propellers and 
compressor and turbine blades (Bisplinghoff et a/. 
1955) caused by vortex-induced oscillations. The 
principle of vortex shedding from a bluff body is also a 
well knovm method of flow measurement (Turner et a/. 
1993). Much current research focuses on designing 
wings so as to trap a vortex above an airfoil section in 
an effort to produce high lift during landing and 
takeoff (see for example, Slomski and Coleman 1993 
and Rossow 1992). Under certain conditions wake 
flows may experience cavitation at points of minimum 
pressure within the flow. ln a review of cavitation 
inception, Rood ( 1991 ), noted that a major hindrance 
to understanding the interaction between expanding 
nuclei and the underlying flow structure is the lack of 
knowledge about the dynamics of the flow structures in 
the single-phase flow. 

Bluff-body flow problems still rely almost entirely 
upon experimental or numerical data for their solution. 
This requires that proposed body shapes be handled 
case by case, if any quantitative information is to be 
knovm. Presently, the upper limit on direct numerical 
simulation of such flows is on the order of Re ~ I 000 . 
Numerical solutions of all other flows typically employ 
turbulence models. The major difficulty in theoretically 

predicting flow properties. heat transfer rates, etc. for 
bluff-body flows lies in the separated boundary layer. 
The capability of predicting flow property distributions 
along the front surface of a body is crucially dependent 
on conditions in the near wake region of the body. This 
flow region is characterized by highly vortical flow. 
The main problems encountered when trying to apply 
conventional boundary layer theory to separated 
boundary layers is the uncertainty as to the location of 
and pressure at the point of separation. Cavity and 
wake models have grovm increasingly elaborate. In all 
past theoretical models for separated flow, the pressure 
within the wake bubble, and hence along the separated 
streamline, is assumed to be constant. Moreover, in 
each of the practical flow models "an artifice of some 
sort is introduced," as remarked by Wu (1968), to 
allow the cavitation number to be a free parameter in 
order to account for viscous dissipation in the wake. 
This allows potential theory to then be applied to the 
resulting flow. Otherwise, a potential flow analysis of a 
finite wake bubble yields the dilemma of zero drag on 
the body. Wu ( 1968) also pointed out that a removal of 
flow energy directly from the potential flow in order to 
simulate viscous dissipation would require a removal of 
momentum, or mass, or both. It is this dilemma which 
the flow models attempt to overcome. The standard 
assumption of constant pressure within the wake is 
considered to be supported by experimental 
measurements of conditions immediately behind the 
body (Fage and Johansen 1927), which show that the 
pressure is "nearly constant." However, as noted by 
Thwaites ( 1960, p. I 06), Fage and Johansen also found 
that the pressure coefficient close behind the flat plate 



(referred to as the base pressure coefficient) was about 

cPb = - 1.4 , while at infinity cP = 0 . He then made 

the following remark: 

"This suggests the more plausible assumption that 
the pressure varies along the bounding 
streamline .. . But although mathematical methods 
are avai lable to solve the external inviscid flow 
once th ts pressure distribution is known, they do 
not indicate how it is to be determined at the start. 
This is the greatest immediate difficulty in the 
theory of well-separated flows: if it could be 
overcome it is likely that the concept of the free 
stream! vould survive for a long time to give 
way on , j a detailed theory of the flow within the 
wake and its interaction with the inviscid region." 

For supersonic flows, the hyperbolic nature of the outer 
flow simplifies the establishment of the inviscid flow 
configuration as well as a base pressure; however. for 
incompressible flows, the elliptic nature of the 
equations makes it necessary to find the outer flow and 
the wake geometry simultaneously. As remarked by 
Chow ( 1976), "It is apparent that this type of flow 
offers the most complicated and challenging 
problems." While theoretical models of such flows are 
many, there remains to be found a single analytical 
solution describing the pressure distribution within a 
bluff-body wake. From flow visualizations of the 
stationary, twin vortices formed in the near wake of 
bluff bodies (Prandtl and Tietjens 1934; Taneda 1956; 
Taneda 1968; Van Dyke 1982), it appears that bluff­
body wake vortices preserve the axis ratio of concentric 
elliptical streamlines. These ellipses are not confocal. 
The first analytical solution for this type of elliptical 
vortex was obtained as part of the present research. 

Wakeless Flow 

The original objective of the present work was to 
understand how the heat transfer along the front of a 
curved surface varies with surface curvature in 
separated flows. As a preliminary investigation, the 
solution for unseparated flow past a curved surface was 
obtained by a series of conformal transformations. The 
resulting dimensionless velocity profile along the 
curved surface is shown in Fig. I as a function of 
surface curvature. The curvature parameter, h, is the 
maximum distance between the surface and the chord: 
therefore, a value of h = 0 corresponds to a flat plate 
and h = I to a semi-circular cylinder. 
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Fig. I. Variation in dimensionless velocity profile 
with plate curvature. 

As seen from the figure, curvature of the plate 
appears to have little effect on the velocity di stribution 
in the neighborhood of the stagnation point. The 
dimensionless length, s, is the arc length normalized 
by the projected plate width (twice the x-coordinate of 
the surface endpoint in this case); therefore, for large 
values of curvature, the dimensionless flow path, s, is 
seen to be larger than unity. 

Wake Flow 

As indicated in last year' s report, free streamline 
theory is inadequate to treat separated flow past 
surfaces with curvature. In this classical approach to 
separated flows, the outer flow is uncoupled from the 
wake by some assumption about the base pressure 
coefficient. This assumption must be empirically­
based, if an accurate representation of the velocity 
profile along the front surface is hoped for. The 
common thread which appears in separated flows past 
any bluff body shape is the pair of stationary vortices 
which form in the wake. At large Reynolds numbers, 
the effect of body shape (including surface curvature) 
on the time-mean wake structure seems to be an almost 
second-order effect. It was, therefore, thought that 
useful information could be gained by studying the 
vortices formed within a wake. At low Reynolds 
numbers (Re < 45 for a cylinder, for example), a pair 

of standing vortices form and elongate into ellipses 
with increasing Reynolds number. More than a century 
ago Kirchhoff ( 1876) solved for the velocity 
distribution within an elliptical patch of uniform 
vorticity (see also Lamb 1932). However, this elliptical 
vortex, observed visually, appears unsuited for the 
description oftypical wake vortices. 
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The Coordinate System 

The general approach wi ll be to find an ell iptical 
coordinate system wherein contours of one of the 

contravariant components, i say, of the position 
vector of a fluid particle coincides with the vortex 
streamlines, as observed from flow visualizations cited 
in the Introduction. From these visualizations, the 
eccentricity of the twin vortices in the near wake 
region appears to be constant. Secondly, the mass flow 
rates passing through both principle axes (as well as 
any other axis through the origin) must be equal. But 
in order for this integration to be performed with 
respect to a single coordinate, it is convenient to make 
contours of the other coordinate pass through the 
origin. One such coordinate system is: 

x 1 = x1 Acos{x2
) 

x2 = .X1Bsin(x 2
) 

X3 = _x3 

where x* are the coordinates of a typical fluid particle 
relative to a rectangular coordinate system . For 
studying the twin vortices behind bluff bodies, this 
coordinate system has two major advantages over the 
orthogonal coordinate system of confocal ellipses. 
First, the eccentricity of the ellipse is constant even for 
a change in the first coordinate. Second, integration for 
the mass flow rate can be performed along lines of 

constant x2 because they all pass through the origin. 
Defining the constants A and B as follows 

A = cosh(q), B = sinh(q), q>O 

allows the axis ratio of concentric ellipses to remain 

constant as .X 1 and .X2 vary independently. It also 
ensures the useful identity: 

{I) 

The coordinate system is shown in Fig. 2. The metric 
tensor for this coordinate system is: 

_ ax* ax* 
giJ =~ ax' fiil 

0 

0 0 

3 

As seen from the off-diagonal elements. the coordinate 

system is orthogonal only when x2 = 0. 7d2, n. 37d4, ... 

The Jacobian determinant is .jg = x1 AB . 

X 

Fig. 2. Non-orthogonal, elliptic coordinate system. 

Solution Method 

A Geometrical Relationship 

The angle, e, of a cylindrical system is related to the 

··angle," x2
, of the non-confocal, ell iptical coordinate 

system by: 

Note that the two angles are equal only at points where 
the elliptic coordinate system is orthogonal. Taking the 
derivative with respect to time of tan e to get a relation 
for the fluid angular velocity about the origin and using 

the fact that rcose = 'i1Acos(x2
), yields 

-2 di I r dfJ 2 ( ) 2 
u = dt = AB X I dt (2) 

The ratio ( ;
1
) can be found from the definition of the 

coordinate system to vary as follows: 

(3) 

Velocity Vector Components 

A relationship between the velocity vector 

cii* 
components, u* = --' and the magnitude, lvl from 

dt 
the following inner product: 

Raising the index of the covariant component allows 
the velocity magnitude to be expressed in terms of the 



square of the contravariant velocity components in the 
barred system. as follows : 

Here the only nonzero velocity component is v2 

(recall that the curves :X 1 =con st. are streamlines 
across which no fluid passes). With th is simplification. 

- 2 lvl v = --
Ji;; (4) 

Conservation of Mass 

The mass flow rate passing between the origin and 
any point on the perimeter of the vortex is expressed as 
follows: 

(5) 

Where n is the unit normal to the area dA. The limits 
of this integral vary depending upon the angle at which 
the integration is performed. However, if the 
integration is performed in terms of the elliptical 

coordinates, the second coordinate, x2 
, will remain 

constant throughout the integration (see Fig. 2), and 

the limit, c, for the integral over :X1 will also remain 
constant ( c = b I B ) regardless of the path chosen for 
integration. To implement this transformation the 
Jacobian enters into the integrand, as follows: 

c L 

m = - J Jpv\/gdi3dil 
.r i=O.r3=0 

c 

. L f -2(-IAB\..cl m =- pv x F 
.ri =O 

The equivalent differential flow rate equation is: 

om = -LpABx1v 2dX1
• (6) 

which gives the mass flow rate between differentially­
spaced streamlines. For a constant-density fluid, it 
must have the same value when evaluated at any value 

of .X2 so long as .X 1 remains constant, that is 

Substituting Eq. (6) into this expression of mass 
conservation gives a relation for the velocity 
component in the elliptical coordinate system: 

4 

Since the angle, x2 
, was arbitrary, v2 is the same for 

all .X2 
, so long as .X1 remains constant. The quantity 

on the left will be replaced by Eq. (4), and the quantity 
on the right by Eq. (2). With these substitutions, the 
rotation rate about the origin becomes 

(7) 

Equation (7) gives the angular velocity of any particle 
of fluid about the origin. However, some assumption 
must be made as to the velocity magnitude along the 
semi-minor axis. 
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Fig. 3. Wake behind a normal flat plate with long 
trailing splitter plate. Re = 23,000 . (a) Mean 
velocity profiles, (b) Mean streamlines. XR is the 
mean reattachment length. (Castro and Haque 1987). 

Experimental measurements of th is velocity, made by 
Castro and Haque ( 1987), are shown in Fig. 3. These 
measurements. as well as those of Armstrong and 
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Barnes ( 1987) and Yang and Tsai ( 1992), show a 
linear variation in velocity with vertical distance from 
the vortex center to the perimeter. If this velocity 
magnitude is chosen to be a linear function of distance 
from the origin, that is if 

lvll (x•.:tl2) = Odrl(x•,,.n) = 0 dx
1
B, (8) 

where the proportionality constant Q d is the 
instantaneous angular velocity along the semi-minor 
axis, then the angular velocity of the vortex given by 

(7), denoted now by O(x 2
), is 

nc.x2) = B2n d . (9) 
A 2 cos2 x2 + 8 2 sin2 x2 

Notice that the angular velocity is not uniform 
throughout the domain. 

Substituting Eq. (9) into (2) we find that 

-2 B r. 
u = AHd, (10) 

which is a constant value. Then by Eq. (4), the fluid 
velocity magnitude is 

lvl = ~ nbx•~A2 - cos2(x2) (II) 

Notice that at any given angle, x2 
, the velocity 

magnitude is a linear function of x1
, the constant of 

proportionality depending upon the value of x2 
. 

The velocity distribution may be transformed to 
the rectangular coordinate system by means of the 
transformation 

The velocity distribution then becomes: 

- y 

(12) 

0 

Notice that the maximum velocity occurs along the 
broad side of the ellipse. 

5 

Calculating the Vorticity Distribution 

Denoting the permutation symbol by ~ yk and the 

permutation tensor by E yk , the vorticity may be 
expressed in the rectangular system as: 

(J) = (V' XV) 

ro' = r.Y*u = £Y*u k,j k,j 

The permutation symbol and tensor coincide in the 
rectangular system. Expressing the relation in terms of 
the permutation tensor provides a proper tensor 
relation valid in any coordinate system; therefore, in 
the barred system: 

Following the rules for covariant differentiation of a 
covariant tensor of order one, the velocity gradient 
expands as follows: 

(13) 

where F';'
1 

is the Christoffel symbol of the second 

kind given by 

Fm = ~ -mp( ogpk + ogPJ _ oglg ) 
Jy 2 g :::;- } --k -.-p . ux ex ox 

By direct computation, it can be shown that the only 
non-zero Christoffel symbols correspond to those of a 
cylindrical coordinate system, namely: 

-2 -2 1 - J - 1 
Tl 2 = F2 1 = -=f and F 2 2 =-X . (14) 

X 

When i = 3, Eq. (13) becomes: 

The velocities are known in terms of the contravariant 
components rather than the covariant components. 
Raising the index of the covariant velocity components 
and canceling the two symmetric Christoffel symbols, 

r{'2 and r f., , gives: 

- 3 1 [ a (- -p) a (- -p)] 
(!) = .Ji ax• gp2v - &2 gpl v 

The only non-zero component of velocity in the barred 
system is obtained when p = 2. Substitution of Eq. (4) 



for the velocity magnitude into the above equation then 
yields: 

The vorticity can be further simplified by substituting 
Eq. ( 11 ), differentiating, and employing ( 1) to obtain : 

-3 n ( b
2

) ffi = d I + a 2 . (15) 

Similar reasoning yields the identities ro1 = ro2 = 0 . 
Therefore, the vorticity of the flow is uniform and 
drops by half in the limit of large axis ratio. This 
constitutes a new solution for an elliptical patch of 
uniform vorticity. 

Verifving the Solution 
It can be verified by direct substitution that the 

solution satisfies the steady equations of continuity and 
momentum for an incompressible, Newtonian fluid: 

(V·v)=O (16) 

(17) 

The second of the above equations, called the vorticity 
equation, was obtained by taking the curl of the 
momentum equation. 

Calculating the Pressure Distribution 

Having verified that the velocity distribution is in 
fact a solution to the system given by Eqs. ( 16) and 
( 17), the momentum equation 

I 2pV(v·v) - p(vxffi) = - 'Vp + p\1 2 v (18) 

can now be used to find the pressure distribution 
within the vortex. The last term is seen to be zero by 
inspection of the velocity distribution ( 12) which is 
linear in the two independent variables. The Laplacian 
in rectangular coordinates immediately yields the zero 
vector. Therefore, the motion is such that the shear 
srress is zero throughout the vortex. In other words. the 
inner vortex driven by a shear layer will eventually 
behave as an in viscid fluid as T ~ oo. 

Written in covariant tensor form. Eq. ( 18) is: 

The first term of the equation contains a covariant 
velocity: however. the velocity is known in terms of the 
contravariant components. Making this change of 
variance and the substitution for the permutation tensor 
gives: 

(19) 

Applying Ricci 's theorem (see Borisenko and Tarapov 
1968) allows the metric tensor to be brought out of the 
covariant differentiation. The first term of Eq. (19) 
then becomes: 

6 

_ - (-p;;k) _ ~ - qv V -p;;rrr-k -k-p;;n 1 
[ 

d-p;;k) l 
2 pgkp v v 'I - 2 pgl:p Oi' + rm,V v + r, v v 

By inspection of the indices on the velocity 
components, the only values of m and n which survive 
the summation are m = n = 2. The partial derivatives 
also vanish. This gives: 

Summing on p and k and eliminating all zero-valued 
velocity components, gives: 

So for i = I, we have: 

(20) 

and fori = 2, 

(21) 

which is the same result that would be obtained if 
instead the velocity magnitude were simply 
differentiated following the rules for covariant 
differentiation of a scalar invariant. 

The second term in Eq. (19) is expanded below: 

- p,fiey*v1ro* = -p,/ie123v2ro3 

By inspection. the only indices which survived the 
summation are j = 2 and k = 3. By definition of the 
permutation symbol. the only non-zero component 
appears when i = I. Therefore. the only non-zero 
component of the second term in Eq. ( 19) is: 
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(22) 

Each of the terms in the momentum equation is 
now known with the exception of the pressure gradient. 
Solving Eq. ( 18) for the pressure gradient gives 

Expanding each of the terms on the right in the barred 
coordinate system using Eqs. (20) through (22), we 
have 

P,J 

P,J 0 

As in the case of a circular vortex. a trade off occurred 
in the radial component of the pressure gradient 
between the first and second terms. The positive 
contribution to the pressure gradient made by the 
vorticity term dominates, so that the pressure decreases 
toward the center. Integrating the second component of 

the pressure gradient with respect to x 2 gives: 

_ f op .=2 p (b)2n 2(-1)2 2(-2) /(-1) P = ---= = - - d X COS X + X 
Oi2 2 a 

Integrating the first component of the pressure gradient 

with respect to x 1 
, we have: 

In order to find the functions f(x1
) and h(x 2

) we 

can require that p- p' = 0 , so that the pressure 

distribution within the vortex becomes: 

where the identi ty (I) has been used. Since the pressure 
is a scalar invariant, its transformation is trivial: 
p = p. Using the definition of the coordinate system. 

the pressure can then be expressed in rectangular 
coordinates as 

7 

(23) 

Setting the center pressure, p,. , equal to the vapor 

pressure of the fluid gives the condition for incipient 
cavitation in the case of a liquid. It is interesting that 
contours of pressure remain circular even as the vortex 
elongates. Increased vortex eccentricity only reduces 
the radial pressure gradient, effectively causing the 
spacing between pressure contours to increase. The 
pressure distribution given by Eq. (23) increases quite 
slowly with r compared with that of the Kirchhoff 
vortex. In fact. for equal axis ratios and equal driving 

velocities, (defined as vb = O.bb, the velocity at the 

point (O,b) ), the pressure within the Kirchhoff vortex 

increases at a rate which is at least 3 times that of the 
present vortex. This characteristic of the present vortex 
is favorable since the pressure distribution in the wake 
bubble behind a bluff body is not far from uniform 
(Fage and Johansen 1927). Furthermore, the 
relationship between the present elliptical vortex and 
its circular pressure contours is supported by numerical 
visualizations made by Fomberg ( 1985) of the circular 
cylinder wake and also by Tamura et a/. ( 1993) in a 
study of rectangular cylinders. A comparison is shown 
in Fig. 4 of the pressure variation through a vortex 
center for the two vortices. The figures show that the 
pressure is more uniform in the present vortex. If the 
outer pressures of the two vortices are considered 
equal, it is apparent that the pressure does not drop as 
low towards the center of the present vortex as it does 
in the Kirchhoff vortex. Note also from Fig. 4(b) that 
increased vortex eccentricity increases the difference in 
center and outer pressures in the Kirchhoff vortex but 
decreases it in the present vortex. 
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Fig. 4. (a) Comparison of Kirchhoff vortex and the 
present vortex vertical centerline pressure variation for 
axis ratio of a I h = I . 



Vlb 

05 

, 
I 

I 

' I 

--

- Pn:sem von ex I 
- - K irchhofl'vonex 

oo L---------------------------------~ 
00 Ol 10 l.l 20 25 

(p-p . )1( pV /) 

Fig. 4. (b) Comparison of Kirchhoff vortex and the 
present vortex vertical centerline pressure variation 
for axis ratio of a I b = 2 . 

Shape Characterization through Vortex Eigenvalues 
The system (12) of ordinary differential equations 

may be put into the form: 

i=Ax (24) 

where the transformation matrix in two dimensions is 
given by: 

The solution to (24) is x(t ) = e A ' x 0 , where x0 is the 

initial position of a fluid panicle at time t = 0 . The 

eigenvalues of this system are A. 1 = i ~ O.d and 
a 

A. 2 = -i ~O.d, which corresponc to a stable center in 
a 

phase space, as expected. Here 1 is evident that the 
physical vortex is being represented as a non­
dissipative dynamical system. This could also have 
been deduced by the vanishing of the viscous stress 
term in Eq. ( 18). In reality, the stationary vortex is 
sustained because energy dissipation is offset by kinetic 
energy input along the broad side of the vortex by the 
free stream (see Batchelor 1956). 

The system matrix A can be reduced to Jordan 
canonical form and exponentiated to obtain the 
position of any fluid panicle in the vortex expressed as 
a function of time and its initial position : 

x(t) = x0 cos(~o.dr) -~y0 sin(~o.dr) 

8 

lt is noteworthy that the eigenvalues for the 
Kirchhoff vortex are A.K1 = iO.h and A. K2 = -iO.h. A 

distinguishing feature of the eigenvalues of the present 
vortex then is that the rotation rate along the minor 
axis is normalized by the degree to which the vortex is 
elongated. Consider the eigenvalues of the present 
vortex in the following form: 

~ . ud 
11.12 =±I- . 

. a 

ln the flow regime characterized by the standing eddies 
(roughly Re ~ 40 for cylinders), the length of the wake 
bubble, which is proportional to a, apparently varies 
linearly with Reynolds number, regardless of the 
obstacle shape (Taneda 1956; Grove et a/. 1964; 
Acrivos et a/. 1968; Taneda 1968; Dennis and Chang 
1970; Fornberg 1985). From experimental 
measurements in the wake of various bluff bodies at 

high Reynolds numbers (I 00 ~ Re ~ I 05 
), the driving 

velocity, vd, will likely remain on the same order of 

magnitude as the free stream velocity, the ratio of the 
two being nearly unity. This suggests that the vortex 
eigenvalue remains constant as the flow speed, and 
hence the length of the wake bubble, increases. If the 
vortex eigenvalue is independent of the flow speed in 
this initial Reynolds number range, what then is it a 
function of? By comparison of the wakes of various 
body shapes, such as normal flat plates and circular 
cylinders (see Prandtl and Tietjens 1934; Van Dyke 
1982), the eigenvalue appears to characterize the 
obstacle shape. 

Conclusion 

The solution of a new elliptical patch of uniform 
vorticity has been presented which more closely 
resembles the standing vortices found in bluff-body 
wakes than the conventional vortex. It was then 
showed that in standing eddy flow, obstacles may be 
characterizable by the eigenvalues of the vortices 
formed in their wakes. While the Kirchhoff vortex has 
been studied extensively in the past, the vortex 
introduced in the present paper has remained virtually 
unstudied. Therefore, issues such as its relation to 
shear flow, its stability, its behavior in unsteady flow, 
etc. have never been investigated. Future plans include 
an application to drag prediction and a numerical 
simulation of low Reynolds number flow past a normal 
Oat plate. 
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