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Dextral Shear along the Eastern Margin of the Colorado Plateau:
A Kinematic Link between Laramide Contraction and

Rio Grande Rifting (Ca. 75–13 Ma)

Tim F. Wawrzyniec,1 John W. Geissman, Marc D. Melker,2 and Mary Hubbard3

Department of Earth and Planetary Sciences, University of New
Mexico, Albuquerque, New Mexico 87131, U.S.A.

(e-mail: timwawrzyniec@twincitizen.net)

A B S T R A C T

Kinematic data associated with both Laramide-age and -style and Rio Grande rift-related structures show that the
latest Cretaceous to Neogene interaction between the Colorado Plateau and the North American craton was domi-
nantly coupled with a component of dextral shear. Consistent with earlier studies, minor-fault data in this study
yielded results of varied kinematics. Inverted to a common northeast-oriented hemisphere, the mean trend of kine-
matic shortening associated with Laramide-age structures is �. Inverted to a common west-oriented hemi-056� � 6
sphere, the mean trend of kinematic extension associated with Neogene rifting is �. The observed dispersion300� � 34
in these directions suggests multiphase deformation, particularly during rifting, along the margin of the plateau since
the latest Cretaceous. These data were evaluated using a simple two-dimensional transcurrent kinematic model;
assuming a minimal importance of strain partitioning, a mean trend of convergence between the Colorado Plateau
and the North American craton was estimated to be �. Subsequent Rio Grande rifting, which separated the055� � 5
plateau from the craton, was associated with a mean divergence trend of �. Analysis of paleomagnetic data307� � 5.8
from Pennsylvanian to Triassic red beds along the eastern margin of the plateau and from rocks within the rift indicate
clockwise rotations of uplifted blocks. Given the lack of regional strike-slip and dip-slip faults of common trends,
the consistent clockwise rotations support an absence of strain partitioning. Correspondingly, for the north-south-
trending eastern margin of the plateau, the apparently clockwise-rotated paleomagnetic data are consistent with
dextral transpressive shear between the plateau and the craton. Previous data indicating counterclockwise rotations
of crust within parts of the Española rift basin are, if reliable, consistent with dextral transtensive shear. Overall, the
transition from latest Cretaceous/Early Cenozoic shortening to Cenozoic extension seems characterized by a quasi-
continuous change from dextral transpressive to dextral transtensive deformation. This interpretation for the kine-
matic history of the eastern margin of the plateau demonstrates the importance of a dextral shear coupling between
the craton and the Farallon plate system—a conclusion rarely implied by previous models of Cenozoic multistress
field tectonics during deformation of the Cordilleran foreland.

Introduction

Along the eastern margin of the Colorado Plateau
(fig. 1), latest Cretaceous to Early Tertiary (Lar-
amide) contraction (ca. 75–35 Ma) and Rio Grande
rift extension (ca. 29–0 Ma) represent a prolonged
period of foreland deformation in the Cordillera of
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the western United States. Separated by an inferred
period of tectonic quiescence, these events and
their kinematics have been the subject of several
tectonic models (e.g., Kelley 1982; Hamilton 1988;
Chapin and Cather 1994). One recent model links
earlier contraction to subsequent extension by sev-
eral intermediate phases of mixed dextral and sinis-
tral strike-slip faulting (Erslev 1999, 2001).

In this article, we evaluate the kinematic history
of the eastern margin of the Colorado Plateau, re-
corded in minor-fault populations near the latest
Cretaceous to Early Tertiary Laramide style and the
Tertiary Rio Grande rift-related structures, to test
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Figure 1. Generalized map of physiographic provinces
of the Cordillera of the western United States. The
dashed box is the region shown in figures 2, 3, and 5.

the following hypothesis. If the western margin of
North America has experienced continuous dextral
shear since the early Late Cretaceous (Engebretson
et al. 1985) and the Colorado Plateau has acted as
a quasi-independent crustal element with respect
to the craton, then any far-field effects of plate in-
teraction should be reflected in brittle structures
along the plateau’s eastern margin. Fault data
should indicate a component of dextral shear dur-
ing all phases of Laramide and younger interaction
of the plateau with the craton.

Methods

We measured orientations of several populations of
minor-fault planes of recognizable offset along the
eastern margin of the Colorado Plateau. At each
locality, we characterized minor-fault planes by
measuring strike and dip of the plane and the rake
of the fault plane lineation. Rake, measured from
right-hand-rule strike, has a value between 0� and
180�. We determined sense of shear by observing
offset markers or by brittle shear criteria (Petit
1987). Mean maximum infinitesimal elongation
and shortening orientations (referred to as kine-

matic directions “s1” and “s3,” respectively) from
these populations were assigned to their respective
regional structures, the Elk Range thrust, the Cas-
tle Creek structural zone of the Sawatch Range
(Bryant 1966; Tweto 1977), the frontal thrust of the
Sangre de Cristo Range (Lindsey 1998), and the Villa
Grove transfer zone north of the San Luis Basin
(Van Alstine 1974; Chapin and Cather 1994; fig. 2).
We also studied faults that offset Tertiary intru-
sions, emplaced during and before the early stages
of Rio Grande extension. With the exception of the
intrusions, the kinematic data were collected from
Precambrian crystalline and Cambrian to Tertiary
sedimentary rocks. Following the techniques of
Marrett and Allmendinger (1990), we calculated s1

and s3 directions for each minor fault (kinematic T
and P axes, respectively). We determined mean ori-
entations for s1 and s3 from each population using
Bingham statistical methods.

To explore the possible influence of local block
rotations on the kinematic data, we examined and
summarized paleomagnetic data from several lo-
calities. We also obtained new paleomagnetic data
from several thick sections of red beds, ranging in
age from Late Pennsylvanian to Early Permian. For
further details of these results, see Geissman and
Mullally (1966), Lundahl and Geissman (1999), and
Marshall and Geissman (2000). For each locality,
independently oriented samples, as drilled cores,
were collected from as many discrete beds (in
hematite-cemented siltstones to fine- to medium-
grained sandstones) as possible. Seven to 10 sam-
ples were typically collected from each bed. At least
one specimen from each sample was progressively
demagnetized by thermal demagnetization to about
680�C. We also treated selected samples using pro-
gressive chemical demagnetization. Alternating
field demagnetization could not remove a sizable
fraction of the natural remanent magnetization
(NRM). We inspected demagnetization data using
orthogonal demagnetization diagrams and stereo-
graphic projections and determined directions of
magnetization that constituted sizable fractions of
the NRM using principal components analysis
(Kirschvink 1980) utilizing several demagnetiza-
tion steps. Using Fisherian statistics, we estimated
mean directions of magnetization for magnetiza-
tion components common to most, if not all, sam-
ples at a specific site. We accepted site mean
determinations when the a95 (cone of 95% confi-
dence) parameter was !15�, when the number of
independent samples was five or greater. The a95

parameter was usually !10� for sites that had more
than five independent samples. We then analyzed
location means for vertical axis rotations by
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Figure 2. Generalized map of foreland uplifts and basins, and locations of paleomagnetic and minor-fault sampling
sites (base map modified from Dickinson et al. 1988). Abbreviations for sites where minor-fault data and paleomagnetic
samples were collected are given in tables 1 and 2, respectively. Abbreviations for accommodation zones: VG p Villa
Grove; E p Embudo; SA p Santa Anna; T p Tijeras. Numbered locations: 1 p intrusions along the Castle Creek
structural zone; 2 p White Rock stock; 3 p Cripple Creek diatreme; 4 p San Juan volcanic field; 5 p Oritz volcanic
field; 6 p Mogollon-Datil volcanic field; 7 p Latir volcanic field; 8 p Socorro volcanic field (see Chapin and Cather
1994 for additional detail).
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comparing the resolved mean directions to ex-
pected field directions to determine R and DR (95%
error) values. The same analysis was applied to pa-
leomagnetic data from previously published
investigations.

We integrated the kinematic and paleomagnetic
observations by considering them in a transcurrent
reference frame. Of particular importance is a pre-
viously proposed quantitative relationship (Teyssier
et al. 1995) between minor-fault strain data and rel-
ative plate motion. Our results support the hypoth-
esis that, in regions where deformation occurs along
oblique-slip structures, plate motion is not parallel
to the related kinematic directions (maximum in-
finitesimal shortening and elongation). Moreover,
the resulting synthesis of kinematic and paleomag-
netic data strongly support the hypothesis that the
eastern margin of the plateau has experienced a com-
ponent of dextral shear during both contraction and
subsequent extension of the Cordilleran foreland.
The transcurrent frame thus provides an indepen-
dent basis for estimating total northward translation
of the plateau during latest Cretaceous through Ce-
nozoic foreland deformation.

Kinematic Results

Fault orientation and offset data were collected
from 1700 individual fault planes from multiple
outcrops at 10 localities along the eastern margin
of the Colorado Plateau (fig. 3). Locality selection
was largely based on the degree to which relative
timing of deformation could be understood and, to
a lesser degree, the proximity of these localities to
rocks suitable for paleomagnetic analysis. Where
applicable, the maximum age of deformation (table
1) was derived from crosscutting relations between
minor-fault populations and intrusions of known
age or between faults and strata within structurally
controlled basins. Minimum ages of deformation
are more equivocal; however, north of the Uinta
Arch, Laramide-style deformation is thought to
have ended in the Early Eocene (e.g., Dickinson and
Snyder 1978; Mutschler et al. 1988). Contractional
deformation along the eastern margin of the Col-
orado Plateau remains poorly constrained and may
have continued into to the earliest Oligocene but
very likely ended after the formation of the Eocene
erosional surface (e.g., Epis et al. 1980; Gregory and
Chase 1994; Lindsey 1998). Rift-related extension
is an ongoing process; therefore, the minimum age
of extensional structures is no greater than maxi-

mum age of faulting and something less than the
present.

Individual collection localities are from four prin-
cipal areas within central and southern Colorado
(fig. 3). First, the northernmost localities are asso-
ciated with the Castle Creek structural zone
(CCSZ) and the Elk Range thrust (ERT) (e.g., Bryant
1966). Isotopic age determinations from synkine-
matic intrusions indicate that the north-northwest-
trending CCSZ was active by 72 Ma (Obradovich
et al. 1969; Mutschler et al. 1988). This fault system
consists of several steeply dipping, dextral-oblique,
vertically anastomozing shear elements (Bryant
1966; Lamons 1991). The ERT has a more north-
west-directed trend and may have up to 10 km of
offset (Bryant 1966) related to northwest-directed
compression (Wawrzyniec and Geissman 1995). In
the waning stages of contraction, at ∼35 Ma (Ob-
radavich et al. 1968; Mutschler et al. 1988), the ERT
was crosscut and intruded by the White Rock stock.
Faulted localities within the stock generally consist
of poorly organized fracture sets consistent within
an overall extensional regime.

The second area, the Cripple Creek diatreme, is
west of the Elkhorn thrust near Pikes Peak. The
oldest volcanic unit of the diatreme is the Cripple
Creek breecia, emplaced at about 30 Ma (Kelley et
al. 1998), within an interpreted releasing bend
geometry between two north-northwest-trending
dextral-oblique shear zones.

The third area is near the so-called Villa Grove
accommodation zone (Chapin and Cather 1994),
the southern termination of the Arkansas graben
to the north and the San Luis Basin to the south
(e.g., Van Alstine 1974). The Monarch and Poncha
Pass localities are within an east-west-trending
band of diffuse deformation dominated by north-
northwest- to south-southeast-directed extension
(fig. 3).

The fourth area is broadly related to the frontal
thrust of the Sangre de Cristo Mountains and ex-
tends from La Veta Pass to the western margin of
Huerfano Park. Huerfano Park is one of the “Echo
Park”–type Eocene basins that formed in the wan-
ing stages of the Laramide orogeny (Chapin and
Cather 1983). Wawrzyniec (1996) suggested that
these basins formed within a tensional bridge be-
tween the north-northwest-trending thrust to the
west and the north-northwest-trending Isle fault
further east. Similar to the Elk Range, the Huerfano
Park Basin and the thrust that defines the western
basin margin were locally affected by Oligocene in-
trusive activity (Penn and Lindsey 1996). West of
La Veta Pass, parts of the Paleocene section were
subsequently affected by younger, extensional
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Figure 3. Generalized map and representative equal area projection contour plots of axes associated with Laramide
uplift bounding structures and of s1 associated with Oligocene extensional structures. A star indicates the mean
orientation of the shortening and the extension direction, respectively. For equal area projections of actual fault data,
the arrows indicate motion of hanging wall. Note that with exception to the White Rock stock data, all of the equal
area projections contour plots on the left side of the figure are of s3 axes, contour plots on the s1 axes.

This content downloaded from 129.123.127.4 on Mon, 2 Jun 2014 15:34:30 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


310 T . F . W A W R Z Y N I E C E T A L .

Table 1. Summary of Minor-Fault Strain Data

Location
Maximum
age (Ma)

Number of
samples s3 s3

Elk Range thrust 72 296 236/23 131/25
Castle Creek structural zone 72 136 245/33 142/18
Sangre de Cristo frontal thrust,

La Veta Pass (LSV) K 76 051/42 293/25
Redwing thrust K 148 053/34 317/10
White Rock stock 35 70 244/42 086/45
Monarch Pass 13 22 265/36 168/10
Poncha Pass 13 13 212/43 334/29
Poison Canyon Formation, east of

La Veta Pass (LVP) 26 18 262/53 121/31
Cripple Creek diatreme 32 15 187/05 279/13
Faults in host rocks of the Cripple

Creek diatreme 32 13 000/08 090/02

Note. Three individual locations near La Veta Pass include two kinematic sites (LSV, LVP) and one paleomagnetic site (LAV).
Values in bold used in transcurrent model to estimate plate motion direction. K p Cretaceous.

faulting. Fault data were collected from thrust-
related outcrops near Redwing (RT) and a roll-over
anticline at La Veta Pass (LSV). West of La Veta
Pass, northwest of Spanish Peaks, faults that cross-
cut a series of north-northeast-trending dikes that
intruded the uppermost Cretaceous to Paleocene
Poison Canyon Formation were also measured
(LVP). All fault plane measurements are in Wa-
wrzyniec (1999); the mean kinematic directions are
summarized in table 1 and figure 3. Inverted to a
common hemisphere, the mean orientations of s3

directions associated with Laramide-age structures
have a shallow plunge and a trend that ranges from
051� to 065�. For rift deformation structures, the
mean orientation of s1 ranges from 269� to 348�. For
all of these localities, contraction during Laramide-
style deformation appears uniformly directed to-
ward the east-northeast, whereas extension esti-
mates during rift-related deformation are more
dispersed.

Paleomagnetic Results

Many paleomagnetic studies have been conducted
on Pennsylvanian through Triassic redbed strata
east and northeast of the Colorado Plateau (table
2; fig. 2). We have augmented published paleomag-
netic data with additional results from several lo-
calities in upper Pennsylvanian to lower Permian
strata to assess magnitudes of vertical axis rotation
of crust along the plateau’s eastern margin (table
2). In our new results, progressive thermal demag-
netization typically isolated a well-defined mag-
netization, unblocked above 600�C. In orthogonal
demagnetization diagrams, these magnetizations
trend to the origin and were readily evaluated using

principal component analysis (fig. 4). Except for one
site at the Indian Creek locality and three at La
Veta Pass, all of these rocks yielded south-to-south-
east declination and shallow positive or negative
inclination magnetizations after structural correc-
tion, consistent with magnetization acquisition
during the Late Paleozoic reversed-polarity super-
chron. The four anomalous sites yielded magneti-
zations of north-to-northwest declination and shal-
low inclination and are antipodal to most of the
data. We assume that the hematite-dominated rem-
anence was acquired early in the diagenetic history
of each redbed sequence sampled and that it may
not necessarily be a primary magnetization, as
noted by Magnus and Opdyke (1991) for a Penn-
sylvanian redbed section along the Arkansas River.
Reference of the data to the paleohorizontal, as-
suming penecontemporaneity or relatively early
age of remanence acquisition, is unambiguous be-
cause there is no stratigraphic or structural evi-
dence of substantial deformation of the strata dur-
ing or soon after deposition. In fact, generally
throughout the study area, stratigraphic sequences
that include Pennsylvanian through mid-Creta-
ceous strata do not exhibit angular unconformities.
All locality mean directions are exceptionally well
defined, with a95 values ranging from 2.1� to 13.4�.
Rotation estimates, in particular for Pennsylvanian
to Permian strata, are associated with relatively
high precision because each data set is of low dis-
persion, and the North American apparent polar
wander path is well defined for this interval. With
the exception of results from Carizzo Arroyo and
Tejon, New Mexico, inferred clockwise rotations
(tables 2, 3) are all !15�, but we note that all sta-
tistically significant declination discordancies are
clockwise. Data from the Arkansas River, Red-
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Table 2. Summary of Paleomagnetic Data

Study area
Lat./long.
(�N/�W)

Age of strata/
remanence na

Corrected
declination

(�)

Corrected
inclination

(�)
a95

(�) k
Rb

(�)
DRc

(�) Data source

Rudi Reservoir (RR) 39.4/106.8 Pm. 26 158.5 �16.0 3.8 58 14.8 4.5 This study
Arkansas River (AR) 38.5/105.9 U. P. 38 136.2 �4.3 4.9 24 �1.9 5.0 Magnus and Opdyke 1991
Elk Range (ER) … P.-L. Pm. 5 145.9 �4.6 13.4 34 8.4 10.5 This study
Redstone (RS) … P.-L. Pm. 8 147.9 �10.5 8.3 45 10.7 6.8 This study
Castle Creek (CC) … P.-L. Pm. 7 143.0 .4 9.6 41 5.5 7.7 This study
La Veta Pass (LAV) … L. Pm. 17 152.7 �13.5 4.1 75 8.1 4.6 This study
Indian Creek (IC) 37.6/105.2 L. Pm. 17 168.7 �12.0 4.3 126 30.2 3.0 This study
Vail, Colorado (VL) 37.4/105.1 P.-Pm. 145 150.6 �1.1 3.2 19 12.9 3.9 Miller and Opdyke 1985
Las Vegas, N.Mex. (LV) 29.6/106.2 M. Tr. 8 152.3 �9.2 2.8 32 �14.6 8.8 Molina-Garza et al. 1996
Mora, N.Mex. (MR) 35.6/105.3 U. Tr. 8 359.1 7.9 10.0 55 �3.2 7.2 Molina-Garza et al. 1996
San Diego Canyon (SD) 36.0/105.3 L. Pm. 12 148.0 �1.4 7.6 89 2.6 3.7 Geissman and Mullally 1996
Tejon, N.Mex. (TJ) 35.7/106.7 U. Tr. 9 23.0 9.5 4.6 71 21.3 6.3 Molina-Garza et al. 1991
Tecolote Canyon (TC) 35.3/106.3 L. Pm. 15 168.7 3.3 6.1 3.8 24.6 5.2 Lundahl and Geissman 1999
Abo Pass (AB) 35.3/106.4 L. Pm. 84 152.0 �6.0 5.9 55 8.1 3.6 Steiner 1988
Carizzo Arroyo (CA) 34.4/106.4 L. Pm. 36 164.0 �2.6 2.1 32 20.3 4.7 This study

Note. U. p upper; M. p middle; L. p lower; P. p Pennsylvanian; Pm. p Permian; np number of sites; a95 p 95% probability level confidence limit of directional
mean; k p precision parameter; R p rotation; DR p 95% probability level confidence limit of rotation estimate.
a Values in bold are number of samples from individual beds.
b Negative values represent counterclockwise rotations; positive values represent clockwise rotations.
c These values are a function of the quality of the reference apparent polar wander path for the time period in question. For Triassic data, the confidence limits
may be too low because of a less clear understanding of the apparent polar wander path for North America. The following North American paleomagnetic poles
were used for rotation estimates: 38�N/132�E (301 Ma); 43�N/127�E (281 Ma); 46�N/120�E (261 Ma); 44�N/108�E (240 Ma); 55�N/102�E (231 Ma); 58�N/88�E (221
Ma).
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Figure 4. Representative orthogonal demagnetization diagrams from six localities showing typical response to
thermal demagnetization of upper Pennsylvanian to lower Permian red beds considered in this study. In each, the
endpoint of the magnetization vector is plotted in geographic coordinates onto the horizontal projection (filled sym-
bols) and the true vertical projection (open symbols). Peak demagnetization temperatures (�C) are given beside the
vertical projections. In each example, a magnetization of southeast declination and shallow inclination is isolated
over a wide range of laboratory unblocking temperatures.

stone, Castle Creek, and Elk Range localities, all
in Colorado, and the Mora locality, in New Mexico,
show statistically insignificant rotation. Data from
Rudi Reservoir, La Veta Pass, and Indian Creek lo-

calities indicate modest clockwise rotation. Over-
all, the data set reveals a progressive decrease in
the magnitude of vertical axis rotation from south
to north along the eastern margin of the Colorado
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Table 3. Summary of Plate Motion Calculations

Location Major trend (�) Maximum age (Ma) v a PM directionsa

Elk Range thrust (ER) 320b 72 84 78 062
Castle Creek structural zone (CCSZ) 350b 72 75 70 055
Sangre de Cristo frontal thrust, La Veta

Pass (LAV) 320b Kc 89 88 052
Sangre de Cristo Frontal thrust, Redwing,

Colo. (RT) 325b Kc 88 86 051
White Rock stock (WRS) 320b 35 54 18 302
Monarch Pass (MP) 290 13 58 26 316
Poncha Pass (PP) 270 13 64 38 308
Poison Canyon Formation, east of La Veta

Pass (LVP) … 26 … … 301
Cripple Creek diatreme (CC) 340 32 61 32 308
Faults in host rocks of the Cripple Creek

diatreme (CCPC) 340 32 70 50 300
a Directions reported in italics represent direction of divergence between the two plates. PM p plate motion.
b Measured to the nearest 5� (Tweto 1979).
c K p Cretaceous.

Plateau and the absence of significant vertical axis
rotation along the northeast margin of the plateau
(fig. 5).

Discussion

The kinematic data presented here are consistent
with those of similar studies (e.g., Erslev 1993; Pay-
lor and Yin 1993; Bird 1998; Johnston and Yin 2001)
in that on the local scale, contraction associated
with Laramide-style structures is relatively uni-
form (fig. 3), and on a regional scale, these results
are consistent with east-northeast-directed trans-
pression. Similar local-scale examples of conver-
gence directions, often referred to as j1, are reported
or implied along several structures throughout the
central and southern Rocky Mountains (e.g., Evans
1993; Paylor and Yin 1993; Varga 1993; Molzer and
Erslev 1995; Johnston and Yin 2001). Likewise, our
findings agree well with many regional kinematic
models for Laramide convergence (e.g., Hamilton
1988; Livaccari 1991; Erslev 1993). Rift-related
structures, however, show increased dispersion in
divergence orientation but are fully consistent with
west-to-northwest-directed extension. The relative
importance of northwest-directed extension is con-
cordant with some previous studies of rift kine-
matics and extension (e.g., Woodward 1977; Lewis
and Baldridge 1994). However, our findings, as well
as theirs, do not support a hypothesis that the Rio
Grande rift opened in association with a compo-
nent of sinistral transtension. In a regional sense,
the kinematics of sinistral extension requires
southwest-directed extension along the north-
south-trending Rio Grande rift; a point described
by Chapin and Cather (1994) as a small rotation
about a Euler pole located along the Uinta Arch.

Although reasonable, this hypothesis fails to de-
scribe the observed variability associated with rift-
related structures. Specifically, it does not address
observations of dextral transtension along several
rift-related structures in the southern (Lewis and
Baldridge 1994), central (e.g., Woodward 1977), and
northern (this study) parts of the Rio Grande rift.
The conflict between sinistral and dextral trans-
tension could indicate that (1) the structures ana-
lyzed represent different stages of rift kinematics,
(2) evidence for northwest-directed extension is
strictly a local phenomenon resulting from varia-
tion in fault geometry, and/or (3) the relationship
between regional extension and kinematic data
from minor-fault populations is poorly understood.
Although the first two explanations remain plau-
sible, we will attempt to better define the relation-
ship between fault-kinematic data and regional ki-
nematics related to both the Laramide orogeny and
the younger Rio Grande rift. We propose that a dex-
tral transcurrent hypothesis provides a less com-
plicated and possibly more realistic explanation for
Cenozoic deformation of the Cordilleran foreland.
A key to this analysis is understanding the kine-
matics of block rotations that are well defined by
a regionally extensive paleomagnetic data set from
rocks within the eastern margin of the Colorado
Plateau.

Paleomagnetic Data and Transcurrent Block Rota-
tions. Most paleomagnetic data from uplifts within
the margin of the Colorado Plateau reveal small and,
for some localities, statistically significant clock-
wise rotation of crustal fragments. Most localities at
the north-to-northeastern margin of the plateau re-
veal insignificant rotation. For example, rocks as-
sociated with the Sangre de Cristo thrust (fig. 2) were
sampled at La Veta Pass and east Indian Creek lo-
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Figure 5. Generalized geologic map of the eastern and the northeastern margin of the Colorado Plateau. Inset
diagrams show paleomagnetic data, plotted in the southeast quadrant of an equal area projection, with observed
locality means (based on data from several individual sites; see table 3) and the associated reference directions with
the inferred age of the reference directions given in millions of years.
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Figure 6. Map-view diagrams showing how individual
blocks may rotate during transcurrent deformation.
Dashed lines show predeformation position of shear zone
elements. a, During transpression, clockwise vertical
axis rotation and concomitant dextral simple shear ac-
commodates narrowing of the deforming zone. b, During
transtension, anticlockwise vertical axis rotation and
concomitant dextral shear accommodates broadening of
the deforming zone.

calities, along the northern limb of an overall bow-
shaped thrust where counterclockwise rotation
would be predicted. Such rotation geometries have
been observed associated with larger-scale, bow-
shaped fold and thrust belts such as the Jura Arc
(Hindle and Burkhard 1999) and the Cantabria-As-
turias Arc of northern Spain (Weil et al. 2000). How-
ever, all sites in this part of the Sangre de Cristo
Mountains, regardless of bedding orientation, con-
sistently demonstrate clockwise rotations, which
suggests that some larger-scale kinematic process is
affecting these rocks. In a first-order sense, rotation
of parts of Laramide-age uplifts may have occurred
as a function of dextral transpressive shear of the
eastern margin of the Colorado Plateau (fig. 6a). For
moderate strains associated with dextral transpres-
sive deformation, both the blocks and steeply dip-
ping bounding structures must rotate in a clockwise
sense as strain accumulates (Tikoff and Teyssier
1994; Teyssier and Tikoff 1998). The apparent kin-
ematic consistency and clockwise rotation in asso-
ciation with Laramide structures suggests that
strains are both moderate and consistent with dex-
tral transpression.

The paleomagnetic data from upper Paleozoic to
lower Mesozoic redbeds along both margins of the
Rio Grande rift contrast with those reported from
Tertiary-age rocks within parts of the rift. Brown
and Golombek (1985, 1986) and Salyards et al.
(1994) obtained data from Tertiary volcanic and
shallow intrusive rocks and upper Tertiary detrital
strata from parts of the Española Basin that suggest
that parts of the basin experienced counterclock-
wise, rather than clockwise, rotation. Such coun-
terclockwise rotation is consistent with a model of
dextral transtension affecting the eastern margin of
the Colorado Plateau since the mid-Tertiary (fig.
6b). However, we must underscore some concerns
about the overall reliability of this data. The de-
tailed work of Salyards et al. (1994) involved mid-
Miocene strata of the Tesuque Formation. At each
locality, mean directions of magnetization were es-
timated on the basis of sample data and did not
include an analysis of site, or bedding mean, direc-
tions. The within-locality scatter of results was
high, but with high numbers of samples, the con-
fidence limits are artificially reduced. In this con-
text, the apparent declination discrepancies provide
rotation estimates that vary from 0� (and statisti-
cally insignificant) to �. Brown and�28.5� � 10.6
Golombeck (1985, 1986) reported a broader range
of rotation estimates for Tertiary igneous rocks,
from � to �. Although pa-�19.5� � 9.1 �90� � 11.1
leomagnetic data from volcanic and shallow intru-
sive rocks typically provide far better determina-

tions of an instantaneous geomagnetic field, the
sampling record may be very sporadic and short
lived. Sufficient averaging of the geomagnetic field
to estimate rotations with respect to an expected
time-averaged reference direction requires a large
number of independent readings of the field over
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Figure 7. Time versus latitude chart schematically rep-
resenting the timing of the Laramide orogeny and Rio
Grande rifting (modified from Dickinson et al. 1988;
Chapin and Cather 1994). Numbered locations refer to
igneous events in figure 2. Solid error bars show the range
of cessation of sedimentation in transpressional basins.
Dashed error bars show the age range of sedimentation
of the Santa Fe Formation within basins of the Rio
Grande rift. Dashed polygons show the beginning and
end of the Laramide as presented in Dickinson et al.
(1988). A, Laramide orogeny and continued northeast-
directed convergence. B, Transition phase lasting 1–6
m.yr., in which extension is likely given the widespread
occurrence of volcanic activity. C, Rio Grande rift
marked by the onset of sediment accumulation (Santa Fe
Formation); rifting may continue to the present. The rift
may terminate near the Arkansas graben (Dry Union For-
mation) because the trend of bounding structures
changes to the northwest and becomes subparallel to the
calculated divergence direction.

several millions of years. At several localities, it is
doubtful that the data reported by Brown and Go-
lombek (1985, 1986) satisfy these criteria.

We will nonetheless assume that the paleomag-
netic data from the Española Basin, central Rio
Grande rift, indicate that at least parts of the basin
experienced counterclockwise rotations. This is
consistent with the hypothesis of Muehlberger
(1979) that the Española Basin, bounded by the Em-
budo fault zone (northwest boundary), the Pajar-
ito–La Bajada–San Francisco–Sandia fault systems
(western boundary), the Tijeras-Canoncito fault
zone (southeast boundary), and the Pecos-Picuris
fault (eastern boundary/rift fault), experienced
young rigid block counterclockwise rotation.
Again, in contrast to models involving left-lateral
transtension, we argue that such counterclockwise
rotation of blocks within the rift can be explained
by dextral transtension (fig. 6b). The rotation of rift
blocks and related bounding structures could have
occurred if vertical axis rotations accommodate
part of the overall east-west-directed extension of
the deforming eastern margin of the Colorado Pla-
teau. Furthermore, modest counterclockwise ro-
tation of parts of the Española Basin is consistent
with a model of mid-Tertiary dextral transtension
along the plateau’s eastern margin. Assuming a
west-to-northwest-oriented least principal stress
direction, and therefore a similar direction for max-
imum elongation, left slip along the northeast-
trending Embudo and Tijeras-Canoncito fault zones
during some part of their mid-Tertiary and younger
history (Muehlberger 1979) could be explained as
an authentic component to overall right slip along
the north-trending western and eastern margins of
this part of the Rio Grande rift, which could result
in localized counterclockwise rotations. To further
test this hypothesis of Cenozoic dextral transcur-
rent deformation, it is necessary to see how these
rotations relate to both timing of deformation and
the observed pattern of strain in the context of rel-
ative plate motions.

Timing of Deformation. The approximate age of
Laramide structures is well established (fig. 7) ei-
ther by the age of the sedimentary rocks affected
by structures measured in this study or by isotopic
age determinations of synkinematic intrusions.
The maximum age of faulting in the Castle Creek
structural zone is indicated by several ∼72 Ma in-
trusions that affected and were affected by oblique-
dextral deformation (Tweto 1977; Lamons 1991;
Wawrzyniec and Geissman 1995). The timing of
deformation along the Sangre de Cristo Mountains
is well defined by the age of strata in the Raton and
Huerfano Park Basins east of the main frontal

thrust. Sediments from the uplift are no older than
65–72 Ma (Dickinson et al. 1988; Lindsey 1998).
Fold axes within Eocene strata of the Huerfano Park
Basin parallel the trend of the frontal thrust, sug-
gesting that northeast-directed convergence, as in-
dicated by the minor-fault data, is concurrent with
folding of basin sediments.

Two areas we selected to address the earliest
phase of Rio Grande extension were affected by Ol-
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igocene magmatism. The White Rock stock and
Cripple Creek diatreme are thought to have been
emplaced after Laramide deformation and before or
during the earliest stages of rifting. Although this
interpretation may be true for the Cripple Creek
diatreme, some uncertainty remains regarding the
timing of contraction and emplacement of the
White Rock stock. Recalibrated K-Ar age estimates
from the stock yielded dates of ∼35 Ma (Obradovich
et al. 1969; Mutschler et al. 1988), and crosscutting
relations suggest that the stock stitches the Elk
Range thrust (i.e., the pluton was emplaced along
the thrust and in places cuts the thrust). However,
outcrop exposures of fault gouge from the thrust
plane reportedly contain fragments of granodiorite
similar to the White Rock stock, suggesting that
faulting may have continued after emplacement
(Allen 1968). Faults yielding kinematic data from
the White Rock stock, which indicates localized
transtension, may have formed after or near the end
of northeast-directed convergence. Data from the
bounding structures of the Cripple Creek diatreme
(table 1) that are thought to accommodate multiple
phases of strain, including Early Eocene to possibly
Oligocene dextral slip, are consistent with dextral
shear along these structures. The associated exten-
sion direction is similar to that defined by faults
that clearly cut igneous rocks of the diatreme itself.
The Cripple Creek diatreme was emplaced between
32 and 27 Ma (Kelley et al. 1998). Surface and sub-
surface field relations suggest that the diatreme was
emplaced into an incipient basin (Lindgren and
Ransome 1906), possibly associated with a struc-
tural dome of Laramide affinity at the intersection
of north-northwest-trending dextral and northeast-
trending sinistral strike-slip structures (Birming-
ham 1987). Also, data from faults restricted to the
diatreme’s oldest rocks reveal a poorly documented
phase of north-south-directed thrusting, suggesting
that north-south shortening was only important
during the earliest phase of diatreme evolution. We
suggest this phase may represent a youngest stage
of compressional tectonics within the Cordilleran
foreland. We interpret these observations to be con-
sistent with dextral transtension during diatreme
emplacement.

The only structures we examined that are di-
rectly associated with Neogene extension are ad-
jacent to the Villa Grove transfer zone, between the
San Luis rift basin and the Arkansas graben. Here,
crystalline rocks of the northernmost Sangre de
Cristo Range are separated from crystalline rocks
of the southernmost Sawatch Range by a few kilo-
meters of Tertiary gravels of the Dry Union For-
mation. On the basis of exposures of ash beds

within the Dry Union Formation, Van Alstine
(1974) interpreted these gravels to be Late Miocene
or younger; therefore, the structures are exclusively
Neogene in age.

The timing relations provide a clear basis for sep-
arating Laramide contractional from younger, ex-
tensional structures. In the absence of rigorous es-
timates of the minimum age of faulting, a
limitation in any study of fault kinematic data, it
is impossible to accurately determine the time be-
tween contraction and extension. Based on the ob-
served crosscutting relationships, however, the gap
may be short lived (!10 m.yr.). As revealed by
minor-fault populations, the kinematics of these
structures are established by the maximum age of
faulting. Given the oblique-slip geometries of most
of the minor faults and major structures, we con-
tend that the kinematic and paleomagnetic data
can be interpreted in the context of regional-scale,
dextral-transcurrent deformation. These data pro-
vide insight into relative plate motions between the
plateau and the craton.

Transcurrent Deformation and Plate Motions. As a
first-order approximation, we assume that the east-
ern margin of the Colorado Plateau has experienced
no slip partitioning since the onset of Laramide de-
formation. This assumption implies that bulk de-
formation along the eastern margin was not sepa-
rated into purely dip-slip (thrust or normal faults)
and purely strike-slip structures. The absence of
such structures and the overwhelming volume of
field data revealing oblique-slip faults support this
assumption. In a non-slip-partitioned system, the
relationship between convergence and s3 and di-
vergence and s1, respectively, is described by the
following relation (Teyssier et al. 1995):

a
v p � 45�,( )2

where v is the angle between the kinematic direc-
tions (s3 or s1) and the trend of the major structure
associated with the population of minor faults. The
term a is the angle between the trend of the major
structure and the plate motion direction. Values of
v and a range from 45� to 90� and 0� to 90�, respec-
tively. Pure strike-slip deformation is characterized
by �; therefore, �. Pure dip-slip faultinga p 0 v p 45
is characterized by �; thus, �. Thesea p 90 v p 90
conditions also apply to the trend of the plate
boundary (fig. 8). For each of the individual struc-
tures we examined within the plate boundary, we
obtained a value of v for each by determining the
acute angle between the orientation of s3 and the
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Figure 8. a, Map-view diagram showing the relations between shear zone trends, plate motion direction, and
kinematic directions (s1 and s3). b, Map-view diagram representing the deforming eastern margin of the Colorado
Plateau (gray) located between a fixed craton and an obliquely converging plateau (Laramide orogeny). c, Same as
above, except for obliquely diverging plates (Rio Grande rift). Also depicted are the geometric relations used to derive
northward translation estimates for both tectonic events.

trend of the related major contractional structure
associated with the minor-fault population. For ex-
tensional structures, we measured the acute angle
between s1 and the trend of the related major struc-
ture. Using the above relation, we calculated mo-
tion directions for each major structure. In the con-
text of north-directed plateau motion, this analysis
(figs. 3, 7; app. A1 in Wawrzyniec 1999) yields con-
sistent plate motion directions for each locality.
The consistency further validates the assumption
of no (or at least minimal) slip partitioning. If par-

titioning was important, and we had failed to ac-
count for it, each structure of different orientation
would yield a distinct plate motion (see Teyssier et
al. 1995).

The inferred absence of slip partitioning is also
supported by geologic observations. First, in the
area studied, there are no documented unequivo-
cally syn- or post-Laramide steep-dipping, dextral
strike-slip faults with large offsets (11–3 km). Also,
no structures share a common trend, with one be-
ing pure strike slip and one being pure dip slip.
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Tweto and Sims (1963) and Tweto (1977) argued
that most of the faults in central Colorado follow
preexisting weaknesses of Precambrian ancestry.
Structures can be reactivated under conditions
where stress is not predictably oriented for brittle
failure and fault movements are commonly
oblique, with convergence or divergence and trans-
lation occurring simultaneously (e.g., Teyssier and
Tikoff 1998). Thus, partitioning of slip into purely
strike-slip and purely dip-slip faults is an unrea-
sonably complicated model to explain observed re-
gional kinematics. Finally, our paleomagnetic re-
sults, all from tilted strata, indicate a regional
pattern of modest clockwise rotation of fault-
bounded blocks along the eastern margin of the
plateau. Although the inferred rotations can be pro-
duced by many mechanisms, they are consistent
with non-slip-partitioned, dextral-transcurrent de-
formation. In light of all of these observations, we
assert that the absence of pure strike-slip fault sys-
tems with discernible Cenozoic offset, in concert
with paleomagnetic data and the likelihood of fault
reactivation, affirms the validity of the assumption
of lack of slip partitioning.

Plate motion results in combination with esti-
mates of east-west contraction and subsequent ex-
tension along the eastern margin of the plateau al-
low us to estimate the magnitude of northward
translation since inception of Laramide deforma-
tion. Chase et al. (1992) estimated about 27 km of
east-west shortening at the latitude of Denver
based on minimum values of shortening for the
Front Range–Rampart fault (11 km), the Elkhorn-
Williams thrust (6 km), and the Elk Range thrust
(10 km). The estimate for the Elk Range thrust,
however, is based on a model proposed by Bryant
(1966), in which thrusting is associated with a grav-
ity slide of Paleozoic rocks off the Sawatch uplift.
The magnitude of offset is estimated from a “pos-
sible window” west of the Castle Creek structural
zone south of Aspen. If these interpretations are
correct, then deformation along the Elk Range
thrust is related to exhumation, and the estimate
of shortening has no bearing on the amount of east-
west contraction across the eastern margin of the
plateau. Alternatively, if the gravitational-slide hy-
pothesis is incorrect, then the amount of shorten-
ing along the Elk Range thrust must be reevaluated
in the context of contractional structures to explain
the field observations. Based on recent findings (La-
mons 1991; Wawrzyniec and Geissman 1995) and
this work, the new estimate of east-west shortening
must take into account the oblique nature of short-
ening across the Elk Range thrust. Assuming a con-
servative estimate of about 17 km of east-west con-

traction, a mean plate convergence direction of 054�
yields an estimate of minimum northward trans-
lation of the plateau during Laramide contraction
of about 12 km (fig. 8b). If the 10-km shortening
estimate along the Elk Range thrust is valid, then
a minimum northward translation estimate may be
as high as 19 km.

A similar estimate can be made for mid-Cenozoic
and younger rift-related motion of the plateau.
Based on seismic data, cross sections across the San
Luis Basin indicate 8%–12% (∼9 km) extension
(Kluth and Schaftenaar 1994). Using this value as
representative of extension across the northern Rio
Grande rift and a mean divergence direction of 312�,
we estimate about 8 km of northward translation
during rifting (fig. 8c). In total, we estimate a min-
imum of about 20–27 km of northward translation
of the plateau since the onset of the Laramide
orogeny.

There is a remarkable consistency in the calcu-
lated plate motions of the Colorado Plateau relative
to the craton (figs. 3, 7; table 1). There is also rea-
sonable agreement between our translation esti-
mates and conservative estimates of syn- and post-
Laramide northward translation of the plateau
(20–35 km; Woodward et al. 1997; Woodward 2000)
that are based on stratigraphic piercing lines.
Cather (1999), however, proposed a minimum of 85
km of northward translation on the basis of an al-
ternative interpretation of the same stratigraphic
relationships. We recognize that some stratigraphic
relations and apparent piercing lines across the
eastern margin of the plateau permit such large off-
sets. Existing data, however, on the distribution of
stratigraphic pinch outs and isopachs limit total
dextral offset across the margin to be between
about 25 and 135 km since the latest Cretaceous
(Cather 1999; Ingersoll 2000; Lucas et al. 2000;
Woodward 2000). On the basis of our estimates of
crustal shortening north and northeast of the Col-
orado Plateau since the mid-Cretaceous, we argue
that the larger-magnitude estimates of dextral off-
set and northward translation of the plateau, in-
ferred by Cather (1999), Karlstrom and Daniel
(1993), and Cather and Karlstrom (2000), are ex-
cessive and not well reflected in the observed struc-
tures with offsets of appropriate age. Moreover, the
large-magnitude estimates of northward transla-
tion are best supported by apparent offsets of pre-
Laramide strata or features within Precambrian
basement rocks (e.g., Woodward et al. 1997), an ob-
servation that further undermines the credibility of
offset estimates based on field relations involving
rocks ostensibly younger than mid-Cretaceous in
age.

This content downloaded from 129.123.127.4 on Mon, 2 Jun 2014 15:34:30 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


320 T . F . W A W R Z Y N I E C E T A L .

Tectonic Implications

Laramide features in the southern Rocky Moun-
tains are characterized by long, wide, asymmetric
uplifts flanked by deep basins with locally derived
detritus (Dickinson and Snyder 1978). Uplifts and
basins trend north-south along the eastern margin
of the Colorado Plateau (Chapin and Cather 1983;
Dickinson et al. 1988). Structures associated with
these features have been interpreted to be the result
of northeast-directed convergence (e.g., Woodward
et al. 1997; Bird 1998), as supported by the kine-
matic data reported here. Our results for Neogene
rift-related structures, however, in part challenge
previous interpretations of the nature of deforma-
tion along the rift.

The part of the Rio Grande rift defining the east-
ern margin of the Colorado Plateau extends from
central New Mexico to central Colorado and is
characterized by an array of north-northeast-trend-
ing, en echelon, right-stepping, asymmetric basins.
These overprint several uplifts and basins that were
actively defined during the earlier Laramide orog-
eny (fig. 2). The en echelon pattern of basin for-
mation, and other field relations, were interpreted
to indicate a component of sinistral slip associated
with early, mainly Miocene, southwest-directed ex-
tension and opening of rift basins (e.g., Kelley 1982).
Sinistral slip parallel or subparallel to the axis of
the Rio Grande rift would necessarily result in a
south-directed component of translation of the pla-
teau relative to the craton. The most rapid period
of extension (Middle to Late Miocene) is thought
to coincide with about 1.5� of clockwise rotation
of the plateau about a Euler pole centered on the
Uinta Arch (Chapin and Cather 1994). Our results,
in contrast, are consistent with a dominant com-
ponent of east-west to northwest-southeast exten-
sion and a lesser component of dextral displace-
ment along north-south-trending basin-bounding
faults.

Evidence of sinistral shear, as summarized by
Kelley (1982), includes right-stepping en echelon
rift basins, sinistral drag folds along north-south-
trending structures, sinistral structures that trend
060�, and sinistral offset of pre-Cenozoic strati-
graphic pinch outs across rift basins. We find the
sum of evidence less than conclusive. First, right-
stepping, en echelon patterns of faulting and basin
formation are potentially characteristic of dextral
shear (e.g., Aydin and Nur 1982). In fact, Karlstrom
et al. (1999, p. 158) argued that “the basic right-
stepping configuration of the Rio Grande rift
mimics a Laramide right-stepping oblique slip de-
formation system.” They also described this defor-

mation system as dextral transpressional, an idea
first implied by Chapin and Cather (1981, 1983).
An implicit possibility to this hypothesis is that
this pattern of right-stepping Laramide-age uplifts
is associated with transtensional basins localized
as flexural basins between uplifts (Kellogg 1996) or
by the formation of tensional bridges between
north-northwest-trending dextral reverse faults
(Wawrzyniec 1996). Such basins do exist and have
been described as “Echo Park”–type basins by
Chapin and Cather (1981) and as intermountain ba-
sins by Dickinson et al. (1988). The hypothesis also
implies that reactivation of the right-stepping ge-
ometry would uplift older basins during sinistral
transtension or act to deepen the older, Laramide
basins during dextral transtension. Given that sev-
eral Laramide-age basins appear to be preserved be-
neath some basins of the right-stepping Rio Grande
rift (e.g., Galiesteo-El Rito Basin and Huerfano
Park, San Luis “Echo Park”–type basins; fig. 2;
Chapin and Cather 1981), the observed geometry
of Laramide and rift-related basins is most consis-
tent with dextral transtension. Second, drag folds
are notoriously unreliable as an indicator of abso-
lute offset. Surface exposure of folds can easily yield
an apparent sense of motion. Perhaps, more im-
portantly, their interpretation requires a thorough
understanding of the fold geometry and the timing
of fold development with respect to fault slip; folds
can form any time before faulting and may be the
product of an entirely unrelated tectonic regime.
Unfortunately, the simple descriptions provided by
Kelley (1982) fall short of providing a clear picture
of fold timing and geometry and therefore do not
provide any conclusive insight. Third, long-lived,
sinistral-oblique faults that trend 060� (e.g., the Te-
jeras Canyon fault near Albuquerque; Karlstrom et
al. 1999) are compatible with dextral shear along
the eastern margin of the plateau. For the Laramide
orogeny, the orientations of such structures are si-
nistrally oblique to the resolved plate convergence
direction of 054�. During Neogene rifting, this same
structure could also accommodate sinistral shear
as a secondary component to overall northwest-
directed extension. In other words, sinistral shear
along the Tejeras Canyon fault, and other faults of
similar orientation, are compatible with both dex-
tral transpression and dextral transtension along
the north-south-trending eastern margin of the Col-
orado Plateau. Finally, the validity of using pre-
Cenozoic stratigraphic piercing points to demon-
strate sinistral shear in the Neogene is debatable.
However, where rift sediments do not obscure
these features, the stratigraphic piercing points
consistently demonstrate, regardless of the mag-
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nitude of translation, bulk dextral shear associated
with post–mid-Cretaceous northward translation
of the plateau (Woodward et al. 1997; Cather 1999).
Thus, the stratigraphic piercing points appear in-
appropriate for testing a sinistral transtensional hy-
pothesis for rift kinematics as proposed by Kelley
(1982) and implied by Chapin and Cather (1994).
We contend that the evidence supporting transla-
tion during major phases of rifting is consistent
with dextral transtension, as also discussed by
Lewis and Baldridge (1994), which resulted in the
continued northward movement of the plateau dur-
ing the majority of time spanning Rio Grande rift
formation.

In a more regional context, northward plateau
translation and attending dextral shear, from the
latest Cretaceous to today, require a driving mech-
anism. A preferred hypothesis for Laramide defor-
mation is the northeast-directed subduction of a
subhorizontal lithosphere slab (Dickinson and Sny-
der 1978), with late Laramide, northeast-directed
convergence driven by extensional collapse south-
west of the plateau. Although the latter mechanism
was undoubtedly important as plate convergence
rates waned through the Eocene, our results are
consistent with prolonged dextral, oblique plate in-
teraction that ultimately changed to west-to-north-
west-directed extension within much of the Cor-
dillera in the Neogene and, in some areas
specifically, by the Early Oligocene. Field relations

along the eastern margin of the Colorado Plateau
reveal the potential role of continuous, dextral
plate interactions along the western continental
margin since the Late Cretaceous in dictating struc-
tural relations observed far inboard of the margin
of the North American continent.
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