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Abstract

Increasing rates in sea level rise imply drastic
consequences for U.S. coastal populations, in-
frastructure, ecological systems, and natural re-
sources in the coming decades. These direct im-
pacts will lead to negative repercussions in public
health, biodiversity, tourism, and other aspects
of the global economy. Using hourly tide read-
ings from the past 30 years at 38 gauges along the
east coast, we wish to develop a model that will
allow us to analyze the trends in this type of data
and to accurately and precisely predict sea level
change along the east coast. The model devel-
oped is an iterative generalized additive model
that will use spatial and temporal dependence
between gauges and across time, allowing us to
predict sea level change all along the east coast,
not only at the stations for which we have data.
This generalized additive model includes a linear
term, a seasonal trend term fit with B-splines,
and a term accounting for additional spatial vari-
ance with latent factors estimated by confirma-
tory factor analysis.

Introduction

The Intergovernmental Panel on Climate Change
(IPCC) estimates that global sea levels are currently
rising at an average rate of 3 millimeters per year and
this rate is expected to increase over the coming century
(Solomon et al., 2007). This increase in the rate of sea
level rise could lead to changes that will affect many as-
pects of daily life and the global economy, thus accurate
predictions and thorough understanding of the trends in
this process are vital for preparation for these changes.

The data set used in this study comes from
the National Oceanic and Atmospheric Administration
(NOAA) and was compiled by researchers at climate
control. This data set consists of tide gauge readings
taken hourly from 1979 to 2009 from 38 stations along
the east coast of the United States. Tide gauges are
instruments deployed at coastal sites around the world
that directly measure sea level as compared to a deter-
mined base level. Figure 1 shows an example of one of
these gauges. For the 38 tide gauges in this study, sea
level is measured as deviation from the mean high water
level for that station over a 19 year epoch (1983 - 2001).

http://www.oco.noaa.gov/tideGauges.html

Figure 1: Example of a tide gauge from NOAA (National
Oceanic and Atmospheric Administration)

The 38 stations where these tide gauges are located
range in location from Bar Pilots Dock–St. Johns River
in Florida to East Port–Passamaquoddy Bay in Maine.
Figure 2 shows the locations of the 38 stations used in
this analysis. At some of these stations there are many
missing observations due either to malfunctions in the
tide gauge or because at that time there was no gauge
in that location. These missing values lead to complica-
tions in modeling and predicting, but these issues will
be addressed later on.

Station Locations

Figure 2: Locations of the 38 tide gauges along the east coast

Due to factors dealing with global location, sea level
change is not constant across space in that it is different
depending on location. An important observation when
considering spatial data such as this is that sites that are
closer together are more likely to be closely related than
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sites that are further apart. Our model will take into
account these spatial correlations, and this will eventu-
ally allow us to predict along the coast because of the
spatial relationship between these sites and sea level.

Exploratory Analysis: Exposing Trends

To understand the temporal trends in our data, we iden-
tify patterns seen in sea levels at each station over time,
and model these trends for individual sites. After iden-
tifying and exploring these trends in individual sites we
will seek to combine these trends in an iterative spatial
generalized additive model that will use correlation be-
tween sites in order to predict at any location along the
east coast. Because ocean tides are greatly influenced by
the moon and its cycles, we average the 30 years of data
by lunar months which are approximately 28 days long,
resulting in 371 lunar month averages for each station.
A general linear trend can be seen in these lunar month
averages over time in all of the stations, but there are
other trends in addition to a simple linear relationship.
Figure 3 shows the lunar month averages across time
with a simple linear fit plotted on top (the blue line).
Note the missing data between 1996 and 1998.
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Figure 3: The linear trend in lunar month average across
time seen at a single station

There is a visible linear trend in the lunar month av-
erages, but there appears to be a cyclical effect within
years that could be indicative of a seasonal trend. After
accounting for the simple linear trend at each station,
we compute the residuals and see a definite pattern. The
residuals for the southern most stations have what we
will call an M-curve, but as we move north, station by
station this M-shape appears to flatten out into flat-
ter, more unimodal curves suggesting that this M-curve
effect changes across space, illustrated in Figure 3.2.
We fit these curves individually for each station with
B-splines. A B-spline with k knots splits the covariate
space into k+1 regions fitting a cubic polynomial to the

data in each region. The spline is constrained so that
the polynomials are differentiable at the knot points re-
sulting in a smooth non-linear fit to the data (James
et al., 2013). Figure 4 shows the residuals for a north
station and a more southern station fit with B-splines
with 6 knots.

EASTPORT − PASSAMAQUODDY BAY , ME
knots =  6

Month

R
es

id
ua

ls

Jan Feb Apr May Jun Jul Aug Sep Oct Nov

−
0.

10
0.

00
0.

10

FERNANDINA BEACH − AMELIA RIVER , FL
knots =  6

Month

R
es

id
ua

ls

Jan Feb Apr May Jun Jul Aug Sep Oct Nov

−
0.

2
0.

0
0.

2

Figure 4: The seasonal trends for a northern and southern
station fit with B-splines with 6 knots

These splines appear to be good fits to the residuals,
and because the seasonal trend seems to have spatial
correlation, we will attempt to fit spatial terms to these
splines so that we can model the relationship of this
trend with spatial location. Now that we have uncov-
ered some important trends in the data, we develop a
model that iteratively fits these trends and uses spatial
correlation to explain the relationships between sites,
allowing for more extensive predictive power and bet-
ter understanding of sea-level changes across space and
time.

Iteritive Generalized Additive Model

Generalized additive models are a generalization of lin-
ear models in which the predictions depend on smooth
functions of the covariates (Hastie and Tibshirani,
1990). We will model Yit, sea-level change at station
i and time t, with an intercept µi that will be the over-
all mean of each station, a linear term, and a spline term
that accounts for the seasonal trend. This model will be
expressed in the following manner:

Yit = µi + tβi +

k+1∑
j=1

gj(t
∗)ξij + νit νit ∼ N (0, σ2)

(1)
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where tβi is time (centered and scaled) multiplied by the
coefficient vector β for station i, gj(t

∗) is the polynomial
fit to the jth of (k + 1) covariate regions where k = 6 is
the number of knots in our B-spline, t∗ is the day of the
year, ξij is the coefficient fit to the jth covariate region
for the ith station, and νit is the unexplained variance
in sea-level change at station i and time t.

We refer to our model as an iterative generalized ad-
ditive model because we will fit the terms iteratively.
We will fit the linear term to the residuals of the model
containing only µi, then we will fit the spline term to
the residuals of the model with the intercept plus the
linear term. Note that µ̂i will simply be calculated as
the mean of all observed values for station i. We fit the
model in this manner in order to address the problem
we have with missing observations. For the first iter-
ation, the missing observations were all replaced with
the overall mean of the station to which they belong as
a beginning value. For each step in fitting the model
we predict Yit and then replace the formerly missing
values with Ŷit iteratively until the predictions of these
observations and the coefficients of the model converge
to specific values. Convergence is met when the Ŷits for
the originally missing observations change by less than
tolerance level τ for the current iteration compared to
the last. Fitting the model this way allows us to up-
date the values of the missing observations based on the
trends in the data step by step, resulting in better esti-
mates for these values at every step and a better final
estimate.

Inclusion of Spatial Correlation in Model

Previously we fit a linear trend and a spline term in-
dividually to each station; now we will model the rela-
tionship or correlation of these trends from station to
station. Understanding how spatial distance affects cor-
relation between stations will allow us to be able to make
inference along the coast between our stations. Given
the data at our stations and the distances from new loca-
tions to our stations, we will be able to predict sea-level
changes at these new locations.

A semi-variogram is a function describing the corre-
lation between points that are different distances apart.
Semi-variograms can be modeled with different spatial
correlation structures that behave differently depending
on how the data is spatially correlated (Waller and Got-
way, 2004). The Matern, exponential, Gaussian, and
spherical functions are examples of spatial correlation
structures; by exploring the fits of these different func-
tions to the residuals left over after taking out the linear
trend, we decide that the spherical function is the best
fit. Assuming the spherical semi-variogram is a good
fit to the semi-variogram of our data, the semi-variance
between two observations with distance ` < φ between

them is

γ(`) = (1− co)
3`

2φ
+

1

2

(
`

φ

)3

(2)

for all observations for which ` > 0 where φ is the range
over which the correlations will be nonzero, and co is
the nugget. The range φ refers to the distance at which
the semi-variogram appears to level out because points
with distances greater than φ are not correlated. For
reference to the terminology used in modeling semi-
variograms, the semi-variance at distance φ is σ2, re-
ferred to as the sill, and the partial sill ce is σ2 − co;
the nugget co is the semi-variance at distance 0, mean-
ing that if co is non-zero, that there is variance among
points that are very close together, indicating random-
ness or possibly underlying trends in the residuals. Fig-
ure 5 depicts a semi-variogram of a set of residuals fit
with the spherical function with the estimated nugget,
partial sill, and sill denoted.
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Figure 5: Variogram of the residuals from the linear model
fit with spherical correlation function

In order to estimate the coefficient βi for the linear
term, we first fit Yit − µi = tβ∗i , where β∗i is the coef-
ficient fit to centered time t for station i. We then fit
β∗i = α00 + xiα01 + x2iα02 using ordinary least squares
with xi being the coastal distance of site i. We estimate
α̂0 = (α̂00, α̂01, α̂02) = (X′X)−1X′β∗ with X being a
matrix with a column of ones, a column of xis, and a
column of x2i s. This results in an estimate of β∗ in
β∗∗ = Xα̂0.

We then calculate the residuals ri = β∗i − β∗∗i and
estimate the spatial covariance of ri and rj denoted cβ ,
rj being the the residual for station j, separated by dis-
tance ` with

ĉβ(θ̂) = σ2 − γ(`, θ̂) (3)

where θ̂ is the estimate of the semi-variogram param-
eters. We then fit β∗i = α0 + xiα1 + x2iα2 using gen-
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eralized least squares. We estimate α̂ = (α̂0, α̂1, α̂2) =
(X′W−1X)−1X′W−1β∗ with xi being the coastal dis-
tance of site i from the southern most station, and
W=Σ̂β(θ) being the covariance matrix made up of the
covariances ĉβ . The resulting spatially dependent esti-

mate of β is β̂ = Xα̂.
The step of fitting the spatial covariance to the resid-

uals is repeated, the new residuals being r+i = β∗i − β̂i,
until the estimates of β̂ converge to a value. β̂ is deter-
mined to have converged when each β̂i no longer changes
compared to the β̂i computed in the last iteration.

In fitting the data available for this study, no addi-
tional iterations were needed to converge to a value of
β̂ as the W estimated in the second iteration was equal
to the W produced in the first iteration. Using these
methods, we have modeled the trend of how the linear
effect changes across space while maintaining accurate
modeling at individual stations.

Now for the spline term
∑k+1
j=1 gj(t

∗)ξij , we model
the coefficient vector ξ·j for each of the 7 regions formed
by 6 evenly spaced knots in the same manner as we mod-
eled β but fit to the residuals of the model including tβ̂,
Yit − µi − tβ̂i. After estimating ξ∗ij and Vj = Σξj (θ),

for the ith station and jth of the 7 regions across co-
variate space, and solving for γ̂j = (γ̂j0, γ̂j1, γ̂j2) =
(X′V−1j X)−1X′V−1j ξ

∗
j , we have ξij = γj0+xiγj1+x2i γj2

by generalized least squares resulting in the spatially de-
pendent estimate for ξ·j in ξ̂·j = Xγ̂j . Just as with the

fitting of β, we solve for ξ̂·j iteratively, fitting Vj to the

residuals r+ij = ξ∗ij − ξ̂ij , until the estimate ξ̂j converges.
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Figure 6: Predicting the residuals from the spatial model
including the intercept, linear, and spline terms at a single
station by time of the year. The solid points are the ob-
served residuals and the open points are predicted residuals.
Yellow represents residuals and predictions for observations
from earlier years in the data and red represents observations
from later years.

Figure 6 shows for a single station that because of
the positive linear trend modeled by tβi, the model pre-
dicts the M-curves for more recent years to be higher
than the M-curves for earlier years. Figure 7 is an ex-
ample of what the model fit looks like at a single station,
the blue being the predicted lunar month average, and
black being the lunar month averages from the actual
data.
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Figure 7: The linear trend in lunar month average across
time seen at a single station

To this point in the model fitting process, we have
iteratively fit a station mean term, a linear term across
time, and a seasonal trend with B-splines. In order to be
able to predict anywhere along the coast, not just at the
38 stations, we have modeled the spatial covariance of
the data using the spherical theoretical semi-variogram.

Confirmatory Factor Analysis

In an effort to account for latent factors in the data that
the current model has not uncovered, we will perform
confirmatory factor analysis on the remaining residu-
als seeking an identified solution to the factor analysis
model

z1t = λ11f1t + λ12f2t + · · ·+ λ13f3t + ε1t

z2t = λ21f1t + λ22f2t + · · ·+ λ23f3t + ε2t

... (4)

z38t = λ381f1t + λ382f2t + · · ·+ λ383f3t + ε38t

where the factor loading λij quantifies the influence of
the factor fj· on the observed variable zi·, which in this
model represents the residuals at station i. Further, zit
represents the ith station at time t, fjt is the jth factor
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for the the residuals at time t, defined zt, and εit rep-
resents the specific factor (or error) component for zit.
We choose to constrain the number of latent factors m
to be 3 because exploratory analysis indicates the ma-
jority of variance in the residuals can be explained by
the first 3 eigenvalues of the residual matrix. In matrix
form, we write the model

zt = Λft + εt. (5)

The factor vector ft = (f1, . . . , fm)′ for time t has
mean 0 and covariance matrix Φ and the error vector
εt = (ε1t, . . . , εpt)

′ has mean 0 and diagonal covariance
matrix Ψ. The model will be constrained by fixing a
3 × 3 sub-matrix of Λ to be equal to the identity ma-
trix, thus defining each of 3 variables to be equal to a
factor plus error.

Using the parameter estimates Λ̂, Φ̂, and Ψ̂ in the
regression method formula

f̂t = Φ̂Λ̂′(Λ̂Φ̂Λ̂′ + Ψ̂)−1(zt − z̄) (6)

we can form factor score estimates for time t. We can
now estimate zt with

ẑt = Λ̂f̂t (7)

which results in the matrix Ẑ = (ẑ1, ẑ2, . . . , ẑ371)′ that
may be added to the GAM in (1) as another term in
order to account for the latent factors that persist in
the residuals of the previously fit model. In order to
be able to predict factor loadings for locations between
stations, we propose fitting smooth functions to the 3
factor loading vectors λ̂·1, λ̂·2, and λ̂·3.

Results

In order to better evaluate the predictive capabilities
of the proposed model, the data was split into training
and test sets in an effort to cross-validate the results.
The 4 stations with the most missing data as well as 2
randomly chosen stations were taken from our data set
as the test set, and the remaining 32 stations served as
our training set on which the model was fit. We then
predicted lunar month averages for mean high-water de-
viation at each of the 6 test stations using the model
developed on the training stations. The model up to
fitting the confirmatory factor analysis on the training
set produced satisfactory results similar to those seen
on the model fit to the entire data set.

In this chapter we discuss the results of the con-
firmatory factor analysis fitted to the residuals of the
model that includes the overall mean, linear, and sea-
sonal trend terms. We also discuss the resulting predic-
tions for stations in the training set. We will then dis-
cuss the prediction procedure for the test set and show
the resulting predictions.

Confirmatory Factor Analysis: Results

As previously described, confirmatory factor analysis
was performed on the residual matrix Z, the residuals
for the 32 training stations (z1·, ..., z32·) being the mul-
tivariate response variables, and zit being a residual for
the ith station at time t where t goes from 1 to 371 lu-
nar months starting in 1979. We fit the confirmatory
factor analysis using 3 factors, constraining each of 3
stations to be equal to one of the 3 factors in order to
reduce rotational ambiguity. During exploratory anal-
ysis we chose 3 stations that appeared to load high on
one of the 3 factors. Assuming station i is one of these
3 stations, we set the λij for station i and factor j to 1
and the other two λij ’s for that station to 0.

The resulting estimates for the factor loadings λ̂ij in-
dicate that there is a latent “northness” variable in that
stations towards the north appear to load high on factor
1, more central stations load high on factor 2, and the
southern stations load high on factor 3. Figure 8 depicts
the factor loadings by coastal distance, coastal distance
being the distance along the coast from the southern
most station.
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Figure 8: Factor loadings for the 3 factors by coastal distance
from the most southern station

Now in an effort to predict the remaining residuals
zij , we estimate the 371 f̂t’s by (6). Figure 9 shows the
estimates of the 3 factors across t. Depending on a sta-
tion’s factor loadings, its temporal trend is more or less
influenced by a combination of the 3 latent factors.
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Figure 9: Estimated values of the 3 latent factors across the
time

We now calculate the estimated residual matrix Ẑ =
Λ̂F̂ and add Ẑ to the model expressed in (1) resulting
in

Yit = µi + tβi +

k+1∑
j=1

gj(t
∗)ξij + (Λ̂F̂ )it + εit εit ∼ N (0, σ2)

(8)

where Λ̂ is a 32 by 3 matrix made up of the factor load-
ings for the 3 factors at each of the 32 training set sta-
tions, F̂ is a 3 by 371 matrix made up of estimated factor
values for the 3 factors at the 371 lunar month times,
εit is the error left over after fitting confirmatory factor
analysis to the residuals of the model in (1), and all other
parameters are as defined in the corresponding section.
The resulting model produces visibly better predictions
of sea level (mean high water deviations as defined in
Introduction) in the training stations than the model

without the addition of Ẑ.
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Figure 10: Predictions for 4 selected training set stations,
blue lines indicate the original data and red lines are the
predicted mhw deviations for that station

In Figure 10 we see that our predicted mean high
water (mhw) deviations match the patterns in the data
very well for these selected training set stations, as they
do in the other 28 training stations. It is not extremely
surprising that the addition of the estimated residuals
to our model improves prediction, but the interesting
question is how will the predictions for the test set sta-
tions be affected? We now focus on the prediction of
mhw deviation at stations for which we only have infor-
mation on spatial location and no relevant tide gauge
data.

Predicting along the coast

Because our model was developed using spatial covari-
ance structures, we can estimate β and ξ·j for any loca-
tion along the east coast given longitude and latitude as
well as coastal distance, which can be calculated given
longitude and latitude. In our model fit to the training
data we used the site means µ̄ as an estimate for µ be-
cause we believe that using these estimates at the sites
we know will give the model strength when predicting
µ between stations.

To estimate µ for the test sites, we fit a linear
model to the training set station means with coastal
distance and coastal distance squared as covariates as
we did for modeling β and ξ·j resulting in the esti-
mate µ∗. We then calculated the residuals µ∗ - µ̄ and
calculated the spatial covariance matrix U = Σ̂µ(θ̂)

where θ̂ is the vector of estimated semi-variogram pa-
rameters fit to the semi-variogram of the residuals. µ̂
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for the training set was then calculated by generalized
least squares with µ̂ = Xα̂ where α̂ = (α̂0, α̂1, α̂2) =
(X’U−1X)−1X’U−1µ̄ with covariance matrix U and
covariate matrix X, the same X used in estimating µ
with µ∗.

Because we have now constrained µ̂i to be spatially
correlated to the surrounding µ̂j ’s, we can estimate the
overall mean for a new set of locations µpred with µ̂pred
using the multivariate normal conditional distribution
to get

µ̂pred = E(µpred|µtrain) = Xpredα̂+

Upred,trainU−1train,train(µ̄train − µ̂train) (9)

where the subscript pred indicates the subset of that
matrix that pertains to the stations to be predicted at,
and the subscript train indicates the subset of the ma-
trix pertaining to the training set stations. Figure 11
shows the predicted µ̂i’s along with the actual station
means. When we see the mhw deviation predictions for
the test set stations in the following pages we will see
that some of our predictions are high overall or low over-
all but seem to fit the linear, seasonal, and ”northness”
factor trends well. The quadratic term we used in fitting
the linear regression to the station means appears to be
a satisfactory fit to the training set, and the spatial co-
variance appears to place predictions where we would
want, but some of our test stations don’t seem to follow
the patterns seen in the training means quite as well
as we would like. The fitting of the overall mean inter-
cept µ is a part of our model that will require further
investigation in an effort to produce better predictions.
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Figure 11: Station means and estimated means for test set
stations by coastal distance

Value vectors for β̂pred and ξ̂jpred are obtained in
the same manner as for µ̂pred with

β̂pred = E(βpred|βtrain) = Xpredα̂+

Wpred,trainW−1
train,train(β∗train − β̂train) (10)

and

ξ̂j(pred) = E(ξj(pred)|ξj(train)) = Xpredγ̂j+

Vj(pred,train)V
−1
j(train,train)(ξ

∗
j(train) − ξ̂j(train)) (11)

respectively, with all matrices and parameters as defined
in (1).

We now have the pieces to form mhw deviation pre-
dictions that account for the overall station mean, the
simple linear trend, and the seasonal trends seen in the
data. In order to estimate Zpred to account for the
“northness” factor in the test stations, and any east
coast location at which we wish to predict, we use linear
interpolation to get factor loadings Λ̂pred. We then cal-

culate Ẑpred = Λ̂predF̂ using the same F̂ from (8). Now
by (8) we add the 4 pieces of our general additive model
together for our test set stations and we have predicted
mhw deviation lunar month means at sites for which
we used only corresponding spatial locations in getting
predictions.

In Figure 12 we see that our predictions appear to
be very good for Chesapeake City, MD and Southport,
NC but shifted vertically compared to the actual data
for the other 4 test stations. We are satisfied with the
results in that the predictions look very good for all 6
stations barring the bias in estimating the overall mean
or intercept term µ. Our predictions appear to estimate
well the overall linear trend over time as well as the peri-
odic trends pulled out by CFA, and the seasonal trends
within years.
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Figure 12: Predictions for the 6 test set stations, blue lines
indicate the original data and red lines are the predicted
mhw deviations for that station

Conclusions

Due to factors dealing with global location, sea level rise
is not constant across space in that it differs by location.
An important observation when considering spatial data
such as this is that sites that are closer together are
more likely to be closely related than sites that are fur-
ther apart. The model developed in this project takes
into account these spatial correlations, and allows us to
predict up and down the coast because of the spatial
relationship between these sites and sea-level change.

We have seen that there is a general upward trend in
mhw(mean high water) deviation across the time span
of our data set (1979 to 2009), some stations increas-
ing more drastically than others. We see that generally
mhw deviations for stations in the south are increas-
ing more rapidly than those in the north. We have also
seen that there is a seasonal trend within years that typ-
ically follows a “M-shaped” curve, the steepness of parts
of the curve being different by station, but the general
shape appearing to flatten out as we go north from the
southern stations. After performing confirmatory fac-
tor analysis on the residuals left over from modeling the
overall mean, linear, and seasonal trends, we see that

there are 3 significant latent factors that contribute to
what we will call the “northness” factor, stations in the
north region loading more on factor 1, central stations
loading more heavily on factor 2, and the southern sta-
tions loading more on factor 3.

After fitting the previously described model with
spatial covariance matrices that correlate parameter es-
timates for stations depending on the distance between
them to a training set, we predicted mhw deviations
at 6 stations that we held out as our test set. We are
satisfied overall that our model produces reasonable pre-
dictions for our test set, noting the need for considerable
improvement in predicting the station intercepts. One
possible solution that will be looked into is the inclusion
of the mean high water mark for each station which may
lead to a smoother relationship between stations for the
intercepts versus using the overall station means. In ad-
dition, when looking at Figure 9 that plots the 3 factors
across time, we see a linear trend across time for factor
1. We would expect that this trend would have been
accounted for by the linear trend in our model, but this
trend seen in factor 1 indicates that by constraining the
stations to be spatially correlated we may have forced
the northern stations or stations that load high on factor
1 to have smaller linear coefficients.

We propose in future work to fit smoothing functions
to the factor loadings in order to get better predictions
than using interpolated factor loadings. To this point
in the process we do not have a good way to measure
uncertainty on our mhw deviation predictions, but we
can obtain uncertainty measurements on the parameters
µpred,βpred, and ξj(pred) using the formula for variance
given by the multivariate normal conditional distribu-
tion, related to how we calculated the point estimates.

This type of model that incorporates spatial correla-
tion between tide gauge stations can be a very effective
way to model sea level rise because it allows researchers
to predict sea level at locations they do not have data
for and model how general trends change along a coast.
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