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ABSTRACT 

 

Background: The process of motor learning can decline with age, such that older adults tend to 

learn new motor skills at a slower rate and to a lesser degree than younger adults. The degree to 

which aging affects the generalization of motor learning, however, is unclear. 

Objective: The purpose of this study was to test whether task-specific training on one functional 

motor task would 1) result in motor learning, and 2) generalize to two untrained tasks in older 

adults.  

Methods: Twenty-one adults age 65 years and older participated in this study and were assigned 

to either a training group or a control group. The training group completed three days of training 

on a simulated feeding task with their non-dominant hand. The control group received no 

training. All participants were evaluated at pre-test and at post-test on the feeding task, as well as 

two other untrained functional upper extremity motor tasks (simulated dressing and writing).  

Results: The training group significantly improved feeding task performance from pre-test to 

post-test, whereas the control group did not. These improvements due to motor learning did not, 

however, generalize to the two untrained tasks, as neither the training nor control group showed 

any improvement on the simulated dressing or writing tasks from pre-test to post-test.  

Conclusions: These results suggest that, unlike younger adult samples in our previous studies, 

older adults may not generalize learned information across functionally distinct tasks. Thus, the 

process of generalization may be particularly susceptible to aging processes.  

 

Keywords: task-specific training; generalization; aging; upper extremity 
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INTRODUCTION 

Many older adults have difficulty performing activities of daily living (ADLs) that 

involve reaching and grasping (Covinsky, Lindquist, Dunlop, & Yelin, 2009; Katz, Ford, 

Moskowitz, Jackson, & Jaffe, 1963). To address these difficulties, individuals can and do seek 

physical rehabilitation. One approach to physical rehabilitation is task-specific training, in which 

individuals repetitively practice a specific task that they find difficult or meaningful (Bayona, 

Bitensky, Salter, & Teasell, 2005; Hubbard, Parsons, Neilson, & Carey, 2009). Task-specific 

training has been shown to promote motor learning experimentally (Michaelsen, Dannenbaum, 

& Levin, 2006) but may have limited feasibility clinically. People are often functionally limited 

on a number of tasks, rather than on just one specific task, yet practicing them all with a task-

specific approach in rehabilitation is not feasible given current clinical constraints (see 

Kimberley, Samargia, Moore, Shakya, & Lang, 2010; Lang et al., 2009). Thus, there is some 

expectation that what is practiced in rehabilitation will generalize to what is not practiced in 

rehabilitation.  

Generalization is operationally defined as the improvement in one task due to experience 

or practice on a different task (Schmidt & Lee, 1999). Generalization has been reported 

experimentally 1) between different conditions of the same upper extremity task (Seidler & Noll, 

2008); and 2) across distinct upper extremity tasks in healthy young adults (Schaefer & Lang, 

2012) and in adults with chronic post-stroke hemiparesis (Schaefer, Patterson, & Lang, 2013). In 

cases of generalization across tasks, participants who trained on one functional motor task 

improved their movement rate on other novel untrained tasks, whereas participants with no 

training did not improve. The functional tasks used in these two studies were embedded in ADLs 

and performed with the non-dominant hand. In Schaefer and Lang (2012), participants’ 
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performance on a novel untrained task that simulated dressing was measured before and after 

practicing training on another novel task that simulated feeding. The simulated feeding task 

required participants to spoon beans between cups and the simulated dressing task required 

participants to fasten buttons on a button board. Movement rate on the simulated dressing task 

(i.e. the number of buttons fastened in 20 seconds) improved, but only after training on the 

feeding task, demonstrating generalization. Participants with no training showed no improvement 

on either task. Similarly, in Schaefer et al. 2013, participants with post-stroke hemiparesis 

showed a similar pattern of results in not one but two untrained tasks, the simulated dressing task 

and a block sorting task. The block sorting task was adapted from the widely used Box and 

Blocks Test (Mathiowetz, Volland, Kashman, & Weber, 1985), where participants transferred 

blocks from one side of a partition to the other side. These studies suggest that generalization 

across tasks is experience-dependent, yet we have not tested whether it is age-dependent.  

Even primary aging, or normal aging (Eber, 2012), can affect aspects of motor 

performance, such as one’s movement speed (Walker, Philbin, & Fisk, 1997) or reaction time 

(Fozard, Vercryssen, Reynolds, Hancock, & Wuilter, 1994; Hunter, Thompson, & Adams, 

2001), as well as one’s ability to learn new motor skills (Perrot & Pertsch, 2007; Smith et al., 

2005; Tunney et al., 2003; Voelcker-Rehage, 2008). Despite the mounting evidence that normal 

aging affects motor learning, the degree to which aging affects the generalization of motor 

learning is still unclear, as there is evidence for (Langan & Seidler, 2011; Seidler, 2007) and 

against (Hinder, Schmidt, Garry, Caroll, & Summers, 2011) generalization in older adults. These 

findings are limited because the tasks used were not functional and not based on ADLs. The 

tasks used in this study were derived from ADLs.  
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The purpose of this study was to test whether healthy older adults would generalize task-

specific training across different functional motor tasks. In this study, participants age 65 or older 

trained with their non-dominant hand on a simulated feeding task for three consecutive days. We 

also tested their motor performance on two other untrained functional tasks (simulated dressing 

and writing) before and after training (pre- and post-test, respectively), and compared them to a 

group of age-matched participants who did not receive any training. We hypothesized that only 

the participants who completed task-specific training of the simulated feeding task would 

improve their performance on that task (i.e. motor learning) and the two other untrained tasks 

(i.e. generalization) from pre-test to post-test. 

 

METHODS 

Participants 

Twenty-one participants (mean ± SE age: 76.7 ± 6.6 years) participated in this study. 

Participants were excluded from this study if they had a neurological condition such as 

Parkinson’s disease, Huntington’s Disease, or a stroke, that could affect their motor function, or 

were under the age of 65 years. All participants were provided informed consent. The Utah State 

University Institutional Review Board approved this study. 

 We used several assessments to characterize general cognitive and motor function in our 

sample of participants. General cognitive status was measured with the Montreal Cognitive 

Assessment (MoCA). The MoCA is a reliable, easily administered, and brief cognitive screening 

test that assesses global cognitive status across various domains such as attention, concentration, 

executive function, memory, and language (Nasreddine et al., 2005). The maximum MoCA score 

is 30 points, with scores greater than or equal to 26 points considered as normal (Nasreddine et 
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al., 2005). To measure tactile sensation, we used Semmes Weinstein monofilaments (Touch-

Test™, North Coast Medical, Inc.), testing the distal end of the left and right index fingers only. 

We also tested maximal grip strength of the dominant and non-dominant hands using a hand 

dynamometer (Jamar, Sammons-Preston-Rolyan) (Andrews, Thomas, Bohannon, 1996; Schmidt 

& Toews, 1970). Hand dominance was determined using a modified Edinburgh Handedness 

Questionnaire (Oldfield, 1971).  

 

General procedure 

Motor tasks 

The motor tasks in this study were selected because they simulate three functional upper 

extremity activities: feeding, dressing, and writing. We have also previously used the simulated 

feeding and dressing tasks for similar reasons in younger groups of participants (Schaefer & 

Lang, 2012; Schaefer et al., 2013). In this study, the simulated feeding task required participants 

to spoon two raw kidney beans at a time from a center proximal starting cup to three distal target 

cups as fast as possible. The cups (9.5cm in diameter) were secured to a board (60.5cm x 

40.0cm), with three distal target cups secured radially at 45°, 90°, and 135° around the proximal 

starting cup (Fig. 1A). The board was placed such that the cups were oriented at the participant’s 

midline, with the proximal starting cup about 15.24cm from the participant’s midline. 

Participants performed 15 repetitions per trial. Thirty beans were placed in the starting proximal 

cup and participants were required to spoon them, two at a time, into the distal target cups. At the 

beginning of each trial, participants picked up a spoon with their non-dominant hand and 

spooned two beans at a time into each distal target cup, working from left to right. Participants 

were instructed to spoon two beans at a time and not drop beans off the spoon while transferring 
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beans from the starting proximal cup to distal target cup. If the participants spooned more or less 

than two beans or drop a bean, they were reminded to follow the instructions. The trial ended 

when the participant finished spooning the beans into the distal target cups and put the spoon 

back down on the board. The measure of performance for each trial was the time taken to 

complete the 15 repetitions (i.e. “trial time”), with faster times indicating better performance. As 

noted in our previous studies (Schaefer & Lang, 2012; Schaefer et al., 2013), this task has been 

adapted from a clinically relevant assessment of hand function (Jebsen, Taylor, Trieschmann, 

Trotter, & Howard, 1969).  

The simulated dressing task required participants to fasten buttons as quickly as possible 

with the non-dominant hand. Ten buttons (2.5cm in diameter) were sewn to heavyweight linen 

fabric attached to a wooden board (50.4cm x 50.2cm) (Fig. 1B). The buttons were sewn 5.3cm 

apart from each other, and 3.0cm from the edge of the fabric. The buttonholes were 3.7cm in 

length. Fabric weight (65.6 g/m
2
) and thread count (15 per cm) was measured according to 

ASTM Test Methods D3776-96 and D3775-98 (ASTM International, 2001a, 2001b). Prior to 

starting the dressing task, the placket with buttons was folded over the board and the placket with 

buttonholes was flat on the table (Fig. 1B). Participants were instructed to fasten each button 

completely through the hole before moving on to the next button. The task started when the 

participant picked up the buttonhole side of the fabric to fold over the board, and ended when the 

participant fastened the last button. The participant started at the distal end of the button board 

and ended at the proximal end of the button board. The measure of performance was the time 

taken to fasten all 10 buttons (i.e. “trial time”), with faster times indicating better performance.   

The writing task required participants to trace the phrase “browndog” within a standard 

template as fast as possible, while making as few errors as possible. Figure 1C illustrates this 
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standard template. Participants were instructed to, “Write in between the double lines of the 

letters as fast as possible without picking your pen up, while at the same time making as few 

errors as possible.” The phrase was adapted from the pangram “The quick brown fox jumps over 

the lazy dog” yet using only the words that contained letters that could easily be written in 

cursive. On the template, the phrase was printed in cursive font (Calfish Script Pro Regular) and 

24cm long, with the tallest letter being 4.5cm (Fig. 1C). Trial time started when the participant 

made contact with the pen and the paper, and ended when the participant reached the end point 

of the last letter. There were two measures of performance for the writing task. The primary 

measure of performance was the time taken to completely write the phrase within the lines (i.e. 

“trial time”), with faster times indicating better performance. The secondary measure of 

performance was the number of errors. An error was defined as writing outside the lines, 

touching a line with the pen, or picking the pen up off the paper. This writing task was adapted 

from the ‘star-tracing task’ (Gabrieli, Corkin, Mickel, & Growdon, 1993; Kumar & Mandal, 

2005; Milner, 1962). Unlike the simulated feeding and dressing task described above, this was 

the only experimental task that we have not used previously to test generalization of motor 

learning. We developed this task as a standardized and quantifiable proxy for handwriting, given 

that it often becomes more difficult with age (Walton, 1997). We also anticipated that this task 

would be a reasonable probe for generalization, given that generalization has been shown to 

occur between various conditions (Rouleau, Salmon, & Vrbancic, 2002) and between hands 

(Kumar & Mandal, 2005) when performing the star-tracing task, from which the writing task was 

derived. 

        Participants performed all motor tasks while seated and with only their non-dominant 

hand. Participants were instructed to focus on completing the tasks as quickly as possibly, 
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emphasizing movement speed. However, these tasks may not have been treated as speeded tasks, 

despite instructions, due to older adults focusing on the accuracy component of each task. 

Because eating with a spoon, manipulating buttons, and writing are typically performed with the 

dominant hand (Oldfield, 1971; Rigal, 1992), these experimental tasks may be well-practiced 

already and may not improve with training or generalization due to ceiling effects. Thus, to 

ensure task novelty and minimize pre-existing ceiling effects, all motor tasks were performed 

with the non-dominant hand. Participants were given no information regarding performance and 

movement strategy during training. Thus, a discovery learning approach was used in this study in 

which participants used trial and error to adapt their movement strategies over time (Orrell, Eves, 

& Masters, 2006; Taubert et al., 2010).         

  

Experimental protocol 

This study took place over three consecutive days (Fig. 2). All assessments (described 

above in “Participants”) were completed on day one. Immediately following these assessments, 

participants performed one trial of all three tasks in a random order with their non-dominant 

hand; this established their pre-test motor performance. Participants were then randomly 

assigned to the training group or the control group.  

 

Training group 

Immediately after establishing pre-test performance on day one, participants in the 

training group completed 50 trials of the simulated feeding task (Fig. 2). On days two and three, 

participants completed 50 additional trials per day of the simulated feeding (Fig. 2). Thus, the 

dose of task-specific training for simulated feeding was 2,250 total repetitions administered over 
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the course of three days (15 repetitions per trial x 50 trials per day x 3 days). This dose has been 

shown previously to yield generalization in other populations (Schaefer et al., 2013). Then, 

immediately following training on day three, participants again completed one trial of all three 

tasks in a random order with their non-dominant hand to establish their post-test motor 

performance (Fig. 2). Grip strength was measured again at this time to ensure that improvements 

in motor performance were due to task-specific training rather than muscle strengthening.  

 

Control group 

        In contrast to the training group, participants in the control group did not receive any 

task-specific training on any motor task. Instead, they returned on day three to complete one 

more trial each of the simulated feeding, dressing, and writing tasks with their non-dominant 

hand (Fig. 2) as their post-test performance.  

  

Data analysis  

JMP 8.0 (SAS Institute Inc., Cary, NC) was used for all statistical analysis (α=.05). T-

tests and chi-square tests determined whether the training and control groups were matched for 

age, sex, education, general cognitive status, tactile sensation, and pre-test non-dominant hand 

grip strength. Three separate 2 x 2 repeated-measures analyses of variance (ANOVAs), one for 

each motor task, determined the effects of group (training vs. control) and session (pre- vs. post-

test) on trial time, with group and session as between and within-subject factors, respectively. 

When warranted, posthoc analyses were conducted using the Tukey-Kramer Honestly 

Significant Difference (HSD). Based on our hypotheses, we expected a significant interaction 

between group and session on trial time, such that only the training group would improve from 
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pre- to post-test, suggesting that training had generalized. Because performance on the writing 

task was measured not only by trial time, but also by the number of errors, an additional 2x2 

repeated measures ANOVA determined the effects of group (training vs. control) and session 

(pre- vs. post-test) on the number of errors made in the writing task. Given the range of MoCA 

scores and ages within the training group, we also tested whether the amount of improvement 

(i.e. change score) for each motor task was related to three participant characteristics: MoCA 

score, age, and grip strength. To calculate each training group participant’s change scores for 

each motor task, we subtracted post-test trial time from the pre-test trial time (pre minus post). 

This score also normalized pre-test performance across participants by accounting for varying 

levels of pre-test performance. One-sample t tests were then used to determine whether the 

training group’s change scores were significantly different from zero for the feeding, dressing, 

and writing tasks. We then used Pearson Product Moment correlations to test the extent to which 

these change scores for the training group were related to specific participant characteristics 

(MoCA, age, and pre-test non-dominant grip strength).  

 

RESULTS 

Participant characteristics 

 Table 1 summarizes the participant characteristics for the training (n=11) and control 

group (n=10). Age (t(1)=.14, p = .71), MoCA score (t(1)=1.51, p=.23), sex (Χ
2
(1, n=21)=1.18, p 

= .27), and sensation (t(1)=.93, p=.34). The groups were not different between pre-test non-

dominant grip strength (t(1)=.17, p=.67). Moreover, non-dominant hand grip strength was not 

different across participants from pre-test to post-test (t(1)=.0012, p=.97). The training group did, 

however, had an average of two years less education compared to the control group (t(1)=7.73, 
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p<.05).  Although the design of the study was to test training over three days, two participants 

were unable to complete the entire dose over three days, due to fatigue. Therefore the remaining 

trials were carried over to the next training day to be completed (i.e. training dose administration 

equaled four days). 

 

Performance of the simulated feeding task: Evidence of motor learning 

As shown in Figure 3A, participants in the training group improved their performance on 

the simulated feeding task, as shown by a decrease in mean trial time over the course of task-

specific training. There was a significant interaction between group (training vs. control) and 

session (pre- vs. post-test) on trial time (F1,1=5.28, p<.05). Post-hoc analyses showed that, as 

hypothesized, mean trial time for the training group was significantly lower (i.e. faster) at post-

test compared to pre-test (p<.05), whereas the control group showed no significant change from 

pre- to post-test (p>.05). Moreover, mean trial times at pre-test were similar between the training 

and control groups (p>.05), indicating that both groups’ baseline performances were comparable 

at the start of the study (Fig. 3B). 

 

Performance of the simulated dressing and writing tasks: Evidence of generalization? 

 In contrast to our hypothesis, there were no significant interactions between group and 

session on mean trial time for the dressing task (F1,1 = 0.69, p =.42) or the writing task (F1,1=1.97, 

p =.17). There were no significant main effects of group on mean trial time for the dressing task 

(F1,1=.57; p =.46) or the writing task (F1,1=.35; p =.56). There were also no significant main 

effects of session on mean trial time for the dressing task (F1,1 = 0.22; p =.64) or the writing task 

(F1,1=.0001; p =.99). These results are shown collectively in Figure 4.  
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 The number of errors was a secondary measure of performance for the writing task. 

Similar to the above results for trial time, however, there was no significant interaction between 

group and session (F1,1=1.24; p =.28), nor a main effect of group (F1,1=.56; p =.46) on the 

number of writing task errors. The mean number of writing task errors is shown for each group 

in Figure 5.  

 To illustrate the extent to which performance on the three motor tasks changed from pre- 

to post-test, we calculated change scores for each participant. Figure 6 shows the mean change 

scores for the training and control groups for the feeding, dressing, and writing tasks. Positive 

values indicate improved performance. Consistent with our ANOVA results above, there was 

little change from pre- to post-test for all groups and tasks, except for the training group in the 

feeding task. One-sample t-tests indicated that no change scores were significantly different from 

zero (all p-values >.18), except for the training group in the feeding task (p<.05).  

 

Effect of participant characteristics on learning and generalization 

 To further interpret the above findings, we tested whether MoCA score, age, and pre-test 

non-dominant grip strength of participants in the training group were related to their amount of 

learning and generalization (i.e. change scores) using Pearson Product Moment coefficients (r
2
 

values). Figure 7 summarizes these findings, with no significant linear relationships between 

change score and MoCA score (left column), age (center column), or pre-test non-dominant grip 

strength (right column) for the feeding (top row), writing (middle row), or dressing (bottom row) 

tasks. All r
2
 values ranged from .0001 to .195 (p=.17 to .97). Thus, in this small sample, the 

amount of motor learning or generalization was unrelated to age, global cognitive status, or grip 

strength.  
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DISCUSSION 

The purpose of this study was to test whether healthy older adults would generalize task-

specific training across different functional motor tasks. We hypothesized that only the 

participants who completed task-specific training of the simulated feeding task would improve 

their performance on that task (i.e. motor learning) and the two other untrained tasks (i.e. 

generalization) from pre-test to post-test. As predicted, the training group improved performance 

on the simulated feeding task with three days of training, whereas the control group who 

received no training on that task did not. These results supports recent findings that motor 

learning occurs through task-specific training (Arya, Garg, Sharma, Agarwal, & Aggarwal, 2012; 

Blennerhasset & Dite, 2004; Christie, Bedford, & McCluskey, 2011; Michaelsen et al., 2006), 

that is repetitive, salient, and specific (Bayona et al., 2005; Hubbard et al., 2009), but also 

extends the idea of experience-dependent learning in older adults (Ausenda & Carnovali, 2011; 

Roderigue, Kennedy, & Raz, 2005; Voelcker-Rehage & Willimczik, 2006). Contrary to our other 

hypothesis, however, we found that the training group did not show any significant improvement 

from pre- to post-test on the untrained simulated dressing and writing tasks. These results 

suggest that although there was motor learning through task-specific training, this degree of 

learning did not generalize to improve dressing and writing task performance. In addition, 

general cognitive status (MoCA), age, and grip strength did not appear to affect the amount of 

motor learning or generalization (i.e. change score from pre- to post-test).  

Our most important finding was that motor learning, as a result of task-specific training 

on the feeding task, did not generalize to the dressing and writing tasks in older adults. This is 

contrary to our recent findings in adults with post-stroke hemiparesis, demonstrating that a 

comparable dose of task-specific training (~2,250 repetitions) on the feeding task over five days 
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generalized to other untrained upper extremity tasks, the simulated dressing task and the block 

sorting task (Schaefer et al., 2013). Similarly, in young healthy adults, one day (~350 repetitions) 

of task-specific training on the feeding task generalized another untrained upper extremity task, 

the simulated dressing task (Schaefer & Lang, 2012). Unlike these previous findings, older adults 

in this current study were not able to generalize motor learning after task-specific training.  

Numerous factors may contribute to the lack of generalization of motor learning in this 

current study. One factor may be an effect of age, such that younger and middle-aged adults may 

be able to generalize motor learning to a greater degree than older adults. In our previous studies, 

the mean ± SD age of participants was 58.9 ± 7.5 years (Schaefer et al., 2013) and 26.6 ± 4.3 

years (Schaefer & Lang, 2012), which is lower than that of the participants in this current study 

(76.7 ± 6.6 years). Generalization and the rate at which it occurs may be age-dependent, much 

like motor performance and learning as well. Aging is associated with declines in motor 

performance and learning. For example, older adults take much longer to complete a variety of 

tasks such as point-to-point movements (Cooke, Brown, & Cunningham, 1989; Goggin & 

Meeuwsen, 1992; Ketcham, Seidler, Van Gemmert, & Stelmach, 2002), handwriting (Conteras-

Vidal, Teulings, & Stelmach, 1998; Dixon, Kurzman, & Friesen, 1993), and grasping (Bennett & 

Castiello, 1994; Carnahan, Vandervoort, & Swanson, 1998). Similarly, reaction time slows with 

aging as observed in a variety of motor tasks (Fozard et al., 1994; Seidler, 2006; Walker et al., 

1997). Aging can also affect the amount and rate of learning new skills, as evidenced by slower 

acquisition of a ball-juggling task (Perrot & Bertsch, 2007), a visuomotor task (Smith et al., 

2005), and a walker to car transfer task (Tunney et al., 2003), compared to younger adults. Thus, 

there is substantial evidence that aging affects motor learning. Further studies are needed, 
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however, to determine whether or not older adults are unable to generalize learned information at 

all, or whether the rate of generalization is slower as compared to young adults.  

A second yet related factor affecting generalization of motor learning may be the 

relationship between the trained and untrained motor tasks. Our previous data suggested that 

spatiotemporal similarity between tasks (i.e. comparable hand paths and shoulder/elbow joint 

rotations) is not necessary for generalization to occur (Schaefer et al., 2013). As noted above, 

however, participants in this study were older compared to those in the previous studies, which 

suggests that with advancing age, generalization may be more difficult when tasks are 

functionally or spatiotemporally dissimilar, such as feeding, dressing, and writing. Moreover, 

although training on the feeding task did not improve trial times or error rates on the dressing 

and writing tasks in this study, there may be other learning-related improvements that were not 

tested for, such as changes in variability (Sosnoff & Newell 2006) or attentional requirements 

(Floyer-Lea & Matthews 2004; Luu, Tucker, & Stripling, 2007). Generalization of motor 

learning is likely characterized by a number of variables; thus, future studies are needed to 

quantify generalization in metrics that are relevant to advancing age.  

Finally, the training schedule may be a third factor that affects the generalization of 

motor learning. In this current study, participants performed 2,250 repetitions of the feeding task 

over three days (see Fig. 2). This dose of training is similar to that in our previous study, except 

that it was ‘administered’ over five days (Schaefer et al., 2013). Thus, the participants in the 

previous study had additional time to consolidate their motor learning compared to the 

participants in this study. Because consolidation is the process of transferring information from 

short-term memory to long-term memory (McGaugh, 2000), it plays a critical role in motor 

learning (Krakauer & Shadmehr, 2006; Maquet, 2001; Peigneux, Laureys, Delbeuck, & Maquet, 
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2001; Shadmehr & Brashers-Krug, 1997; Walker, Brakefield, Morgan, Hobson, & Stickgold, 

2002). Consolidation may also be necessary for generalization (Censor, 2013; Kantak, Sullivan, 

Fisher, Knowlton, & Winstein, 2011; Witt, Margraf, Bieber, Born, & Deuschl, 2010), which 

suggests that a given dose of task-specific training could be administered over a longer period to 

enhance generalization in older adults.  

These results suggest that the generalization of motor learning may be susceptible to 

aging processes, consistent with previous studies that show age-related declines in motor 

learning.  One consideration for future studies in aging and motor learning is how to best 

‘capture’ how and what older adults do learn. In this study, movement speed was emphasized. 

Although participants were instructed to complete tasks as quickly as possible, they may have 

instead focused on maintaining accuracy, given the tendency for older adults to emphasize 

accuracy rather than speed (Brébion, 2001; Salthouse, 1979). Thus, measures of accuracy may be 

more appropriate for quantifying motor performance in older adults rather than movement speed.  

Nevertheless, these findings have direct implications for older patient populations in physical 

rehabilitation, where there is not enough time to train specifically at a high dose on necessary 

ADLs. Collectively, the potential factors previously listed suggest an interaction between what, 

when, and how much task-specific training is needed in rehabilitation to maximize not only 

motor learning but also generalization in older patient populations. 
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FIGURE CAPTIONS 

Figure 1. Motor tasks. (A) Top view of the simulated feeding task. Proximal starting cup and 

distal target cups were secured to a board. Distal target cups were placed around the proximal 

starting cup at a distance of 10.7cm and at angles of 45°, 90°, and 135° around the proximal 

starting cup. Participants spooned beans from the proximal, starting cup to the distal target cups. 

(B) Top view of the simulated dressing task buttonboard. Buttons were fastened on the left panel 

of the button board and buttonholes were on the right panel of the button board. Participants 

fastened the buttons as quickly as possible starting from the distal end of the buttonboard. (C) 

Writing task template. Participants began to trace between the font’s borders starting at the top of 

the ‘b’ and ending at the tail of the ‘g’. Participants traced in between the boarder as fast as 

possible, while making as few errors as possible. Note: not actual size. 

 

Figure 2. Diagram of training schedule across three days. After pre-test on Day 1, participants 

were randomized to a training group or a control group. Then, only the training group completed 

50 trials of the feeding task on Days 1, 2, and 3, resulting in a training dose of 2,250 repetitions 

total. The control group did not receive any training. All participants were then evaluated again 

during Post-test on Day 3. Gray shading indicates sessions in which all motor tasks were 

completed in a random order.  

 

Figure 3. (A) Group mean ± standard error trial time for the training group over 150 trials (50 

trials/day x 3 days) of training on the feeding task. Faster trial times indicate better performance. 

(B) Mean ± standard error trial time for the pre- and post-test performance on the feeding task 

for the control and training groups. Faster trial times indicate better performance. *p<.05. Note: 
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the x-axis is the number of trials, not training day. Two people needed an additional fourth day to 

complete the training, 150 trials.  

 

Figure 4. (A) Mean ± standard error trial time for the pre- and post-test performance on the 

dressing for the control and training groups. (B) Mean ± standard error trial time for the pre- and 

post-test performance on the writing task for the control and training groups. Faster trial times 

indicate better performance.  

 

Figure 5. Mean ± standard error number of writing errors for the pre- and post-test performance 

on the writing task for the control and training group. Lower numbers of errors indicate better 

performance.  

 

Figure 6. Mean ± standard error change score on the feeding, dressing, and writing tasks for the 

Control and Training group. Change score is the change in trial time from pre- to post-test; 

scores >0 indicate improvement from pre- to post-test. *p<.05 

 

Figure 7. Linear relationships between each task’s change score (pre minus post, in sec) and 

MoCA score, age, and pre-test non-dominant grip strength. - - - indicate best fit line with 

corresponding r
2
 values. Note on display: MoCA score (left column), age (center column), grip 

strength (right column); feeding (top row), dressing (middle row), writing (bottom row). Scores 

>0 indicate improvement from pre- to post-test. 
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  Note: M: male; F: female 
aMaximum MoCA score = 30. Scores above 26 are considered normal.  
bHand Tested was the non-dominant hand, determined by Edinburgh Handedness Questionnaire.  
cSensation of the hand tested. Semmes-Weinstein monofilaments.  
dGrip Strength of the hand tested. Average of three consecutive measurements. Measured using a hand dynamometer.  
eTimeline of training dose (150 trials) administration for the training group.   

 

	

Table 1. Participant characteristics 

Participant Age (years) Sex MoCA
a 

Hand tested
b 

Education (years)
 

Sensation
c 

Grip strength (kg)
d 

Training dose 
administration 

(days)
e 

C01 71 F 24 L 18 2.38 26  

C02 72 M 26 L 16 3.61 43.33  

C03 71 F 26 L 22 2.83 18  

C04 71 M 27 L 24 3.61 29.33  

C05 86 M 6 L 16 3.61 29  

C06 84 M 21 L 22 3.61 33.33  

C07 80 F 24 L 18 2.83 8.33  

C08 87 M 22 L 12 3.61 14  

C09 83 F 20 L 19 2.83 2.67  

C10 68 M 30 R 20 4.31 37.9  

Control mean ± SD 77.3 ± 7.4  22.6 ± 6.5  18.7 ± 3.5  24.2 ± 13.1  

         

T01 73 F 23 L 17 2.83 22.67 3 

T02 76 F 24 L 16 3.61 19.33 4 

T03 80 M 19 L 12 3.61 37.3 4 

T04 76 F 27 L 14 3.61 18.33 3 

T05 68 M 27 L 16 2.83 41.33 3 

T07 74 M 27 R 14 3.61 44 3 

T08 68 F 28 L 14 3.61 31.33 3 

T09 76 F 28 L 16 4.31 20.67 3 

T10 75 M 23 R 21 3.61 32 3 

T11 83 F 28 L 12 3.61 17.33 3 

T12 89 F 24 L 12 3.61 6.67 3 

Training mean ± SD 76.2 ± 6.1  25.3 ± 2.9  14.9  ± 2.7  26.5 ± 11.6  

         

Total mean ± SD 76.7 ± 6.6  24 ± 5.0  16.7 ± 3.6  25.37 ± 12  
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Day 1 Day 2 Day 3 

Pre- 
test 

Post-
test 

15 reps/trial x 
50 trials, feeding 

15 reps/trial x 
50 trials, feeding 

15 reps/trial x 
50 trials, feeding 

where = random trial order of three motor tasks (feeding, dressing, and writing)  

TRAINING group 

CONTROL group  

Figure 2. 



 32 

  

Figure 3. 

Trial 



 33 

  

Figure 4. 
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