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Abstract—This paper presents a time-based path planning
optimizer for separation assurance for unmanned aerial sys-
tems (UAS). Given Automatic Dependent Surveillance-Broadcast
(ADS-B) as a sensor, position, velocity, and identification infor-
mation is available at ranges on the order of 50 nautical miles.
Such long-range intruder detection facilitates path planning for
separation assurance, but also poses computational and robust-
ness challenges. The time-based path optimizer presented in this
paper provides a path planning method that takes advantage
of long-range ADS-B information and addresses the associated
challenges. It is capable of robust, long-range path planning
and is computationally efficient enough to run successively for
increased robustness. The ultimate result of this research is a
time-based path planner that is suitable for a Sense and Avoid
solution on small UAS in the National Airspace System.

I. INTRODUCTION

A. Motivation

The number of both public and private applications of
unmanned aerial systems (UAS) is increasing at an amazing
rate. Governmental institutions are taking an interest in UAS
for their ability to simply and efficiently perform tasks such as
weather research, search and rescue, wildlife surveillance, law
enforcement, wildfire monitoring, and military training. The
US Department of Transportation has projected that by the
year 2035 there will be approximately 70,000 UAS operated
by governmental agencies in the US [1]. Private industry is
also very interested in UAS applications. Anticipated non-
governmental UAS operations include smoke stack inspection,
cinematography, crop dusting, oil exploration, and news and
traffic reporting. The demand for UAS operations in the
National Airspace System (NAS) is rapidly growing.

The Federal Aviation Administration (FAA) has mandated
that for UAS to be permitted in the NAS, UAS must be
capable of an equivalent level of safety (ELOS) to the see-
and-avoid mandate for manned aircraft [2], [3]. For manned
aircraft each pilot has a responsibility to visually scan the
surrounding airspace for possible intruding aircraft and take
action to avoid a collision. Likewise UAS must be capable
of an equivalent degree of monitoring and avoidance of other
aircraft. This mandate is known as Sense and Avoid (SAA).

To satisfactorily accomplish the SAA requirement, UAS
must be able to both detect other aircraft and plan a collision
free path to avoid them. This results in essentially two separate,
albeit very related, tasks: detection and avoidance. Many
different sensors have been applied to intruder detection for
SAA efforts. While radar and visual methods have drawn a

particularly large amount of attention [4]–[7], another promis-
ing sensor is Automatic Dependent Surveillance-Broadcast
(ADS-B). ADS-B is a cooperative sensor that supports an
exchange of position, velocity, and identification information
between aircraft at demonstrated ranges of up to 80 nautical
miles [8]. In SAA efforts to avoid intruders, such long-range,
detailed intruder information is particularly valuable.

Many efforts in collision avoidance focus on small time
horizon reactionary avoidance where the goal is to avoid an
eminent collision as quickly as possible [9]. The maximum
detection ranges for radar and visual methods on small UAS
typically lend themselves to this type of approach. However,
with the long-range intruder information available through
ADS-B, the avoidance paradigm can shift to focus on long-
range path planning to avoid the possibility of a collision
scenario. This is typically referred to as separation assurance
or conflict resolution [10].

In planning a path to maintain separation assurance, the
likelihood of two aircraft maintaining a safe distance between
them increases. Some of the challenges that accompany long-
range separation path planning are the computational expense
of long-range path planning, uncertainty in intruder aircraft
positions, and unpredictability of intruder aircraft future ma-
neuvers. To develop a path planning method that offers the
benefits of ADS-B based separation assurance and to mitigate
the challenges associated therewith, the goal of this research is
to develop an optimization-based path planner for separation
assurance on UAS in a dynamic environment.

B. Relevant Literature

Other research has addressed the problem of optimal path
planning for UAS. Sanders and Ray presented an offline path
planner for fixed wing UAS using a genetic algorithm [11].
This work successfully demonstrated collision avoidance of
static obstacles and incorporated UAS dynamics into the algo-
rithm constraints. A multi-objective approach was formulated
to minimize path length and collision threat. The result of
this research was a valuable algorithm for static obstacle
avoidance, but no further work was reported to extend the
research to dynamic obstacles or real-time execution.

Jung, Knutzon, Oliver, and Winer presented a three-
dimensional path planning optimizer for UAS using a particle
swarm algorithm [12]. This method used a hybrid objective
function that had user-defined weights for fuel minimization
and threat avoidance. While the work demonstrated avoidance
of ground threats, it did not address dynamic aerial threats. Ad-
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ditionally, it relied on an operator to select the final weighting
distribution between fuel minimization and threat avoidance.

A linear programming, three-dimensional path planning
method for UAS is presented by Chen, Han, and Zhao
[13]. This research is particularly applicable to the separation
assurance path planning challenge. It presented a linear pro-
gramming method to plan a path in the presence of dynamic
obstacles. The reported execution time is suitable for real-
time applications. The overall goal of the algorithm was to
find the optimal path along which a UAS could pursue a
target and avoid obstacles. This work is very relevant to
separation assurance path planning, but the goal and scenario
are different. The scenarios demonstrated in the article have
distances on the order of 7,000 meters. This is significantly less
than the 25,000-100,000 meter range expected in a separation
scenario. Ultimately, it is likely that Chen, Han, and Zhao’s
work could be transformed into a separation assurance path
planning method, but further work is necessary to accomplish
and demonstrate this.

II. METHODOLOGY

The approach for this research is to use gradient-based,
constrained optimization techniques to optimize the position
of nodes along a path so as to find the minimum length path.
The problem formulation, robustness measures, underlying
assumptions, and optimizer implementation are considered in
this section.

A. Problem Formulation

The overall problem formulation uses a modified Euclidean
distance as the objective function, Cartesian coordinates of
each node as the design variables, and an ellipsoidal separation
criterion as the constraints. This formulation is shown below
in Eqs. (1) through (3).

Min :

n−1∑
i=1

(xi − xi+1)
2 + (yi − yi+1)

2 + (zi − zi+1)
2 (1)

W.r.t. : x1, x2, ..., xn, z1, z2, ..., zn (2)

S.t. :
(xi − xint(t))

2

R2
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+
(yi − yint(t))

2

R2
horz

+
(zi − zint(t))

2

R2
vert

> 1 (3)

The Euclidean distance formula shown in Eq. (4) provides a
very intuitive choice for a path length minimization objective
function, but it does pose several inefficiencies.

n−1∑
i=1

√
(xi − xi+1)2 + (yi − yi+1)2 + (zi − zi+1)2 (4)

Due to the square root operation the function gradient is
more complex than necessary. There is a significant improve-
ment in computational efficiency by modifying Eq. (4) to

be a second order function as shown in Eq. (5). While the
output of the objective function is not as intuitive, the overall
optimization is more efficient.

n−1∑
i=1

(xi − xi+1)
2 + (yi − yi+1)

2 + (zi − zi+1)
2 (5)

The design variables for the optimization are the x and z
Cartesian coordinates of each of the path nodes. The y coor-
dinate for each node is excluded to reduce the dimensionality
of the problem. This exclusion does not significantly reduce
the flexibility of the solution due to the fact that prior to
optimization the positions of the start and end node can be
transformed to both lie on the y axis. In such an orientation, the
most impactful coordinate variation will occur orthogonal to
the y axis. Thus the y coordinate is an unnecessary dimension.

Another key consideration in selecting the design variables
is the number of nodes between the start and end node. A
greater number of nodes adds more degrees of freedom to the
solution, but also increases the computational requirements
of the optimizer. Fewer nodes requires less computational
expense but also reduces the conformability of the path. A
brief analysis of the effect of the number of nodes is shown
in Section III.

The constraints are designed to ensure that at every time step
the ownship maintains separation from each intruder aircraft.
As a representation of general FAA separation thresholds of
500 feet vertical separation and 5 nautical miles horizontal
separation, the path is constrained to be outside a similarly
sized ellipsoidal buffer surrounding each intruder. To do this
a set of sub-nodes are created between each path node. The
time at which the ownship aircraft will arrive at each sub-node
is then calculated. Using that time and a knowledge of the
intruder position and velocity, each intruder position is linearly
extrapolated into the future. With the propagated ownship and
intruder positions, it is possible to ensure that the ownship is
outside of the ellipsoidal buffer for each intruder at all times.

B. Robustness

To accommodate for uncertainty in the intruder positions
and velocities, feasibility robustness is necessary. The FAA
requires ADS-B position and velocity reports to be accurate
to certain thresholds [3]. From these thresholds it is possible
to derive the error variance for both position and velocity.
Such error in the intruder states must be accounted for in
any applicable, realistic path planning method. Furthermore
the nature of long-range, time-based path planning requires
extrapolation of intruder positions over long time horizons.
This necessity introduces two forms of error: prediction error
and model error. Prediction error results from the growing
uncertainty as state information is propagated into the future.
Model error also grows as it is predicted into the future, but it
results from uncertainty in the model by which the information
is propagated.

Two robustness techniques mitigate these two types of error.
Feasibility robustness allows for error in constraint parameters
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to be incorporated into the constraint. In this path planner, a
worst-case feasibility robustness is used to account for the
uncertainty in intruder position. To implement the feasibility
robustness several simplifications are necessary. As error is
propagated forward in time, its growth can be calculated by
the covariance prediction method outlined in the Kalman filter
[9]. Over large time horizons however, this method yields
uncertainties that envelop the entire path region including start
and end points. This is too large to be useful. As a result, the
intruder error is assumed to be constant over the entire time
horizon. This constant error value is defined to be six times the
standard deviation calculated from the FAA mandated ADS-B
accuracy requirements. The six sigma error is then taken as
the worst-case deviation. These two simplifications make the
path optimization possible and are both accounted for in the
second robustness method.

Successive planning robustness is a method by which the
path is re-planned at regular intervals. While this is not a
new method, it does significantly contribute to the overall
applicability of the path planner. Unpredictable maneuvers,
environmental factors such as changes in wind, and error
prediction simplifications can be addressed by regularly re-
planning the optimized path. This is a major reason that
computational expense is of interest. For a more rapid path
planning method new plans can be generated more quickly
and more often.

C. Assumptions

For this problem formulation several assumptions are nec-
essary. The assumed sensor with which intruder information is
gathered is Automatic Dependent Surveillance-Broadcast. This
sensor provides latitude, longitude, altitude, ground speed,
heading, and climb rate [3]. The intruder positions and ve-
locities used to propagate intruder position into the future are
derived from this information. Furthermore the propagation
method for intruder positions is a constant velocity method.
Thus it is assumed that the intruders are not maneuvering.
While this assumption may not be entirely correct, long-
range intruder detection, such as is possible with ADS-B, and
regular, successive path re-planning can alleviate much of the
error in the assumption. The distances used in the intruder
ellipsoidal buffer region are FAA mandated aircraft separation
distances for aircraft further than 40 nautical miles from an
air traffic control radar station.

D. Optimizer Implementation

To solve the path planning optimization problem, we are
using MATLAB’s fmincon function. The active set method
has shown to be the fastest method for this problem. Currently
the objective function gradients are calculated analytically
and constraint gradients are calculated internally by fmincon’s
finite difference method. The finite difference method internal
to fmincon resulted in faster optimization results than a custom
complex step gradient method. The initial starting point path
used to seed the optimizer is an adjusted straight line path. To
ensure that the initial path is feasible, or at least close to it,

all nodes in the path are shifted upward by increasing their
altitude by 100 meters. By ensuring that the initial path is
feasible, or very close to it, the optimizer is able to converge
much more quickly.

III. TESTING

The optimization-based path planner for separation assur-
ance on UAS in dynamic environments was tested in simula-
tion to show convergence and effective path planning in both
specific intruder configurations and random intruder scenarios.

A. Simulation

The simulations for testing were executed in MATLAB on
an CORETM i5 processor. The start and end point of the
path were placed at (0,0,2500) and (0,27780,2500) meters
respectively. This range corresponds to the minimum allowable
broadcast range for ADS-B transmissions [14], [15]. To ensure
separation along the entire path, the constraint was evaluated
at 50 sub-nodes between each major node.

An initial intruder scenario for testing during development
was devised to include both a crossing and head-on intruder.
This scenario was expanded to include three crossing intruders
from the left, each at a different altitude, one diagonally
crossing intruder from the right, and one head-on intruder. The
intruder configuration presented in this set provided a demand-
ing scenario for the optimizer testing and will be referred to as
Scenario 1. Further testing included scenarios with randomly
generated intruders. To create these scenarios, we randomly
generated intruder starting positions and velocities, such as
would be available from ADS-B information. The altitude of
each of the intruders was adjusted to conform to Visual Flight
Rules requirements for altitude and heading [3]. This method
of intruder generation yielded a wide variety of scenarios for
testing.

B. Results

1) Path Results: The primary result of the optimization is
a time-based separation assurance path. Fig. 1, consisting of
Subfigs. 1a-1c, shows an optimized path at three time steps for
an eight-node path. The red triangle represents the ownship,
and the blue line seen in the plots is the optimized ownship
path. Each node is represented by a tick mark on the path. In
each sub-figure the ownship and intruder positions are shown
from a top view on the left hand plot and a side view on the
right hand plot. Each intruder and the associated separation
volume is represented by a shaded ellipsoid. The ownship and
intruder positions shown in Subfig. 1a-1c represent respective
positions as the scenario progresses in time. The arrows seen
in the left plot of Subfig. 1a indicate the direction of travel
for each intruder. In Subfig. 1b the ownship is not visible in
the top view as a result of being at a lower altitude than the
separation volume of one of the intruders. This difference in
altitude can be seen in the right hand plot of Subfig. 1b.

The optimizer solution is sensitive to the initial path guess.
In Fig. 1, the initial guess was the straight line path with the
altitude offset by 100 meters. In a different test with the same

3



(a) Intruder and ownship positions at node 1.

(b) Intruder and ownship positions at node 3.

(c) Intruder and ownship positions at node 5.

Fig. 1: This plot shows results of the optimization for an eight-node path. The sub-figures show the positions of the ownship
and intruders as time progresses.
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intruder configuration, the initial path was the straight line path
with the altitude offset by 500 meters. This yielded a feasible,
but different optimized path. Fig. 2 shows the difference in
the optimized eight-node path for a 100 meter altitude offset
and 500 meter altitude offset starting path.

2) Run Time Results: For UAS applications where compu-
tational resources are limited, the run time for the optimizer
is of particular interest. Due to the fact that the number of
nodes along the path directly influences the number of design
variables, the number of nodes significantly effects the run
time of the optimizer. Table I shows the relationship between
run time, path length, and the number of nodes.

TABLE I: This table shows the change in run time and
path length as a function of the number of nodes in the
path including the start and end nodes. The run times listed
represent an average run time with random intruder scenarios
and the run time for optimization of intruder Scenario 1. The
path length reported is the optimized path length for Scenario
1.

# of Nodes Ave. Run Time(s) Run Time(s) Path Length(m)
for Scenario 1 for Scenario 1

6 2.745 2.487 28776.14
8 4.301 5.784 28775.70

10 7.382 9.354 28775.46
12 12.766 12.700 28775.29

The run time listed in the second column of Table I is
an average of five path optimization runs. Each run started
with the 100 meter offset initial path and had a random set of
intruders. The third column of Table I shows the run time for a
single execution of Scenario 1. This scenario has three crossing
intruders from the left, one diagonally crossing intruder from
the right, and one head-on intruder. It is further defined in
Subsection III-A. The fourth column of Table I presents the
path length associated with the optimization executions in
column three. Note that this value is not the objective function
optimum. The objective function is a modified Euclidean
distance that does not represent actual distance along the path.

3) Robustness Results: Testing of the robustness measures
focused on the feasibility robustness. Monte Carlo simulations
provided for the testing of the feasibility robustness. Given
a normal distribution of the maximum FAA-allowed position
deviation about the initial position of the intruders, we sim-
ulated 100,000 intruder initial positions. Then the time-based
constraints for each sub-node were evaluated for both the non-
robust path and worst-case robust path. Each path had six
nodes.

Table II shows the results from the Monte Carlo simulation.
For the non-robust path, slightly less than half of the simu-
lations resulted in a conflict. For the worst-case robust path,
however, there were only two conflicts. The path length for
both paths is almost identical, but the robust path required
more time to run than the non-robust path.

TABLE II: This table shows the number of conflicts for
100,000 Monte Carlo simulations of intruder positions for
Scenario 1. It also shows the difference in path length and
run time between the non-robust and worst-case robust paths.

Path Type # of Conflicts Path Length(m) Run Time(s)

Non-Robust 49985 28772.0 1.612
Worst-Case Robust 2 28776.7 3.308

IV. ANALYSIS

The results presented in Section III are promising. Fig.1
shows the results of a path planner that is capable of generating
a time-based path through a complex, dynamic intruder envi-
ronment. The time-based aspect of the path provides several
key benefits. In Subfig.1a an intruder is located such that the
separation zone totally envelops the end node of the desired
path. In a non-time-based path planner, this apparent conflict
would require adjustment of the node in order for the planner
to find a viable path. With the time-based path optimizer,
this is not a concern. The intruder and ownship positions are
evaluated for a conflict only at the time at which the two
aircraft are at the given position. Thus the time-based path
optimizer eliminates many unnecessary maneuvers of non-
time-based planners.

The sensitivity of the time-based path optimizer to the
initial path guess is shown in Fig.2. This sensitivity suggests
that there are local minima in the design space. In finding a
safe, conflict free path, the local minima do not inhibit the
optimizer, but in finding the shortest path, the local minima
result in an inefficiency. For this reason, the initial path is
an important consideration. An initial path farther from the
unconstrained straight line optimum provides greater assurance
that the initial path is feasible, but it increases the likelihood
that the optimizer will find a local minimum. On the other
hand, a path closer to the unconstrained straight line optimum
provides much less opportunity for the optimizer to find
a local minimum, but also increases the run time as the
optimizer searches for a feasible initial path. Interestingly
there is the possibility that in choosing a value very close
to the unconstrained optimum, that the optimizer will find an
initial feasible guess that is quite far from the true optimum.
This may result in the worst case of both scenarios in that
the optimizer spends time finding an initial path, and then
the initial path that it finds is sufficiently far from the true
optimum that there is a high likelihood of the optimizer finding
a local minimum. Thus the initial path guess is an important
parameter. The choice of the 100 meter altitude offset straight
line path, which was used in the majority the results presented,
was determine empirically.

Table I shows the time necessary to run the time-based
path optimizer for different numbers of path nodes. One very
interesting correlation in the results is that as the number of
nodes increases, the run time increases and the path length
decreases. However, the run time increases much more rapidly
than the path length decreases. The path length difference
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Fig. 2: This plot shows two eight-node optimized paths. The left hand plot had a 100 meter altitude offset straight line initial
path, and the right hand plot had a 500 meter altitude offset straight line initial path.

between a path with six nodes and one with twelve nodes is
only about 0.75 meters. This correlation indicates that when
choosing the number of nodes it is reasonable to err on the
side of fewer nodes. Another important observation from Table
I is that all of the run times shown are slower than the 1
Hz measurement rate of ADS-B. While this initially seems
to be a serious downfall of the path planning method, it is
not a significant drawback. Any implementation of this path
planner on a UAS would require a conversion from MATLAB
to C++ or a similar language. In converting from MATLAB to
a compiled language, such as C++, the computational expense
of the planner will significantly decrease. An additional factor
that reduces the impact of slower-than-real-time computation
is that since the resulting path of the planner is time-based, it
does not lose validity over time in the same way that a non-
time-based method does. A time-based path is computed using
future positions of both the ownship and intruders. Thus it is
theoretically always valid. There is uncertainty in the method
by which the intruder positions are propagated forward in
time, but this uncertainty is less impactful than the uncertainty
associated with considering the intruders to be static. Thus as
a result of using an interpreted language for testing, and the
increased validity period associated with a time-based path,
the seemingly slow run times are not a significant concern.

The importance of robustness is illustrated by Table II.
From this table it is clear that the addition of worst-case
robustness drastically improves the feasibility of the optimized
path while only adding 3.7 meters to the overall path length
and requiring an extra 1.7 seconds of computation time. The
two conflicts associated with the robust path are a result of
the simplification of assuming the worst-case initial position
deviation to be six standard deviations of the maximum
FAA-permitted error. To account for this simplification, the
optimized path should be re-planned at regular intervals during
flight. The simulations reported in Table II do not reflect this

re-planning. Such re-planning would mitigate the effects of the
error simplification and further increase the overall robustness
of the path optimizer. The increase in robustness resulting
from both worst-case feasibility robustness and re-planning
significantly improves the applicability of the optimized path
and makes it viable in a realistic environment with uncertainty
in intruder positions.

V. CONCLUSIONS

In conclusion, the time-based path optimizer presented in
this paper is capable of long distance path planning for sepa-
ration assurance in an environment with dynamic obstacles.
Evaluation for separation assurance at multiple sub-nodes
between the primary path nodes allows for high resolution
long-range planning without excessive computational cost. The
incorporated robustness measures result in a path that is viable
in the presence of uncertainty in intruder positions. Ultimately
this time-based path optimizer is a capable long-range path
planner and is a key step toward a Sense and Avoid solution
for UAS in the National Airspace System.
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