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ABSTRACT 
The Center for Atmospheric and Space Sciences (CASS) at Utah State University (USU) operates the ALO for studying the 
middle atmosphere from the stratosphere to the lower thermosphere.  ALO’s mid-latitude location (41.74°N, 111.81°W, 1466 
m) is very unique in that it is in the middle of an extensive set of rugged mountains, the Rocky Mountains, which are a major 
orographic source of gravity waves that may give rise to a longitudinal variation in the mesospheric structure.  Mesospheric 
observations between approximately 45 and 90 km have been carried out on many clear nights with the ALO Rayleigh-
scatter lidar since late 1993.  They have been carried out, mostly, with a frequency-doubled Nd:YAG laser producing 18 W at 
532 nm and a 44-cm zenith-pointing telescope.  To obtain better and more complete observations in the future, a considerably 
bigger steerable telescope, an alexandrite ring laser for resonance scatter, and an expanded data-acquisition system are being 
developed.  The observations in the extensive existing database have been reduced to provide absolute temperature profiles, 
which provide important information for understanding the physics and chemistry of the middle atmosphere and for 
examining global change.  They have been used to make a mesospheric temperature climatology that has been and is being 
used to examine secular, annual, seasonal, and tidal variations, to compare with other temperature observations and with 
modeled temperatures, and to study mesospheric inversion layers.  Day-to-day changes in the temperature profiles are also 
being compared to meteorological parameters to see if mesospheric changes can be related to low-altitude sources.  Temporal 
and spatial fluctuations in the density profiles have also been examined to provide more direct information on gravity wave 
activity.  And, on 24 June 1999 UT, the lidar probed the first known noctilucent cloud to penetrate to this low latitude, 
approximately 10° equatorward of previously reported sightings and detections.   
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1. INTRODUCTION 
Low temperatures in the polar summer mesosphere are understood in terms of the meridional component of the mesospheric 
circulation.  It flows from summer to winter hemisphere at high altitude followed by subsidence heating in the winter 
hemisphere and flows from winter to summer hemisphere at lower altitudes followed by adiabatic cooling of the rising air in 
the summer mesosphere.  The result of these dynamical effects is that the upper mesospheric temperature at polar latitudes is 
considerably colder in summer than in winter.  The driving force for the mesospheric circulation is attributed to gravity 
waves generated in the troposphere, propagating upward, and depositing momentum in the mesosphere.   

 
To understand this introduction and see where the research is going, it is necessary to have some background information on 
the structure and properties of the mesosphere leading up to the edge of space.  When mean zonal wind and temperature 
patterns throughout the region were constructed1, they showed a stratosphere that was basically in radiative equilibrium 
(except for the polar winter) and a mesosphere that was not in radiative equilibrium.  This manifested itself in two ways:  the 
summer mesopause temperature was much colder than the winter mesopause temperature, and the mesospheric jets (toward 
the east in winter and toward the west in summer) were much slower than expected.  Calculations and modeling showed that 
substantial agreement could be obtained by introducing a Rayleigh friction term to decelerate the mesospheric jets2–6.  This 
produced a meridional circulation from summer to winter that induces vertical motions leading to adiabatic cooling in the 
summer hemisphere and compressional heating in the winter hemisphere.  Meanwhile, the dissipation of vertically 
propagating gravity waves was proposed as the source of this drag7,8.  These gravity waves are believed to originate in the 
troposphere, the most often suggested sources being orography9,10, convective storms11,12, and the jet stream13,14.  However, 
what is important for this discussion is the existence of these waves, not their source.  As they propagate upwards, 
conservation of energy arguments say that the wave amplitude will grow by a factor of e every two-scale heights until energy 
dissipation (saturation or “breaking”) sets in.  This growth would be more than two orders of magnitude between the 
troposphere and the upper mesosphere.  It became practical to test the effects of breaking gravity waves, (i.e., eddy forcing) 
in model calculations after a scheme was proposed for the parameterization of momentum deposition (wave drag) and 



turbulent (eddy) diffusion15.  Several investigators tested the effects of wave drag16,17; others tested the combined effects of 
wave drag and turbulent diffusion18,19.  The success of these and similar calculations in accounting for the major dynamical 
features of the mesosphere and for the distribution of minor constituents in the mesosphere (and hence variations in emissions 
such as OH), have lent strong support to the central role of gravity waves.  And it appears that the eddy forcing from these 
breaking gravity waves accounts for the middle atmosphere circulation and departures from radiative equilibrium. 
 

2. ALO LOCATION 
The location of ALO is good for lidar operations and education, lidar observations, correlative observations, and gravity 
wave studies.  The Observatory is located on the USU campus, in the building occupied by both CASS and the Physics 
Department.  This makes it very convenient for students to operate the lidar and to use it for their research.   
 
The location in northern Utah has a high proportion of cloudless nights or nights with only thin cirrus clouds.  Furthermore, 
the air is comparatively clear because the valley where USU is located is at almost 1500-m altitude and away from heavy 
industry.  The campus is above the valley fog and occasional winter inversion layer, and the campus is at the mouth of a 
canyon that is the source of clear nighttime winds out of the high mountains.  Consequently, the number of nights observed is 
limited more by resources than by observing conditions.   
 
The location is also good because of the existence of other instrumentation nearby for correlative and validation studies.  
ALO is part of the USU cluster of mesospheric instruments.  The other part of the cluster is the Bear Lake Observatory 
(BLO), located 38 km away in a dark and electromagnetically quiet location.  Since its inception in 1990, BLO has been 
home from time-to-time for several instruments capable of making mesospheric observations.  These have included a very 
sensitive Fabry-Perot interferometer for OH winds and temperatures from approximately 87 km20–22, all-sky cameras to 
observe OH, O2, and O(1S) emissions23, instruments to measure rotational temperatures from OH or O2

24, and a digital 
ionosonde that can also operate in meteor and IDI modes25,26.  In addition to the USU cluster, radiosondes are launched at 
0000 and 1200 UT from five locations within 400 km of ALO:  Salt Lake City, UT; Boise, ID; Lander, WY; Grand Junction, 
CO; and Ely, NV.   
 
The ALO location is also good for studying several aspect of the generation, propagation and breaking of gravity waves.  
Northern Utah is located within one of the more mountainous regions of the world, which stretches from almost the Pacific 
coast in the west to the Great Plains in the east.  This Rocky Mountain region is a major orographic source of gravity 
waves9,10 that some believe have a major impact on the mesosphere.  In winter the jet stream, another major source of gravity 
waves13,14, often passes nearby.  The mid-latitude location puts ALO under the average location of the mesospheric jet27, 
which is expected to have a major role in filtering upward propagating gravity waves and the structure of which arises from 
gravity wave breaking.  In addition, the location is under the middle of the latitude region where mesospheric inversion layers 
occur28.  While these inversions are not fully understood, they are believed by many to be closely related to upwardly 
propagating gravity waves29–32. 

 
3. CURRENT RAYLEIGH-SCATTER LIDAR SYSTEM 

3.1 Rayleigh-scatter lidar 
The current lidar system is a vertically pointing, coaxial system.  It consists 
of a frequency-doubled Nd:YAG laser (Spectra Physics GCR-5, Table 1), a 
44-cm diameter Newtonian telescope, a cooled photomultiplier tube (PMT) 
housing (Products for Research), and a red-sensitive bialkali PMT (Electron 
Tubes 9954B).  The intense low-altitude returns are (partially) blocked by a 
rotating chopper (Oriel), which is fully open at approximately 18 km, and by 
an electronic gate (Products for Research) for the PMT.  The latter changes 
the gain by almost 103 and is gated on at 38 km, providing good data from 
below 45 km to above 90 km.  The pulses from the PMT are amplified by 
200 and sent to a multi-channel scaler with built-in discriminator (EG&G 
Turbo MCS).  The gate width is 250 ns (37.5 m) and 14000 gates (525 km) are sampled.  The samples are accumulated for 2 
minutes, or 3600 laser shots.   
 
While the power of a laser is usually given as average power, 18 W in this case at 532 nm, it can also be given as peak power, 
which is 2.6 GW.  This system typically produces 360 counts from 45 km in one gate after 2 minutes, which is equivalent to 
4.0×105 counts/s.  In the present configuration, the PMT starts to become nonlinear at 2–3 times this count rate.  
Consequently, with one detector, 45 km is taken to be the lowest good altitude.  While some light does get around the 

Table 1.  ALO laser for Rayleigh scatter 
Spectra Physics GCR-5 

Wavelength 532 nm 
Energy per Pulse 600 mJ 
Pulse-Repetition Rate 30 Hz 
Power 18 W @ 30 Hz 
Pulse Length 7 ns 
Spectral Width (Seeded) < 150 MHz 
Beam Divergence < 500 µrad 



chopper, enough to clearly identify clouds, the peak levels are less than the signal at 39 km, right after the electronic gate 
turns on.  The number of gates, or maximum range, is large to provide a diagnostic of the PMT behavior.  When the peak 
signal level is not too high and the electronic gate is working properly, the background level should be constant.  If it 
increases, decreases, oscillates, or has a bump, something needs to be corrected.  Lastly, the telescope field of view is 
approximately three times the beam divergence or 1.5 mrad.  
 
The ALO Rayleigh lidar system is compared to several others in Table 2.  The figure of merit is the power-aperture product, 
the product of the laser power and the unobstructed area of the receiving telescope, given in W-m2.  It works well so long as 
all the lidars operate at the same wavelength and nothing happens to either the emitted laser beam or the backscattered signal.  
Less quantifiable factors such as greater atmospheric transmission (as at ALO and MLO), more sensitive PMTs, and better 
system efficiencies are not included.  While having a small figure of merit, ALO is well within the range of these other lidars.  
Its small telescope is largely compensated for by the laser, which has been tuned for maximum power.  
 

Table 2.  Comparison of Rayleigh-scatter lidars 
Lidar ALO OHP33,34 CEL33 Fukuoka35 Wales36 York/ISTS37 MLO34 
Emission λ (nm) 532 nm 532 nm 532 nm 353 nm 532 nm 532 nm 353 nm 
Energy (mJ) 600 400 (300) 200 200 500 500 50 
Pulses / sec (Hz) 30 15     (50) 30 80 15 20 200 
Power (W) 18 6    (17.5) 6 16 7.5 10 10 
Aperture Dia. (m) 0.44 0.8   (1.0) 1.2 0.50 0.90 0.50 1.0 
Correction Factor 1.0 1.0   (1.0) 1.0 1.0a 1.0 1.0 1.0a 
Fig. of Merit (W-m2) 2.7 3.0   (13) 6.7 3.1 4.8 1.9 7.8 
aAssumed that the greater scattering at 353 nm is offset by greater absorption in the atmosphere and system. 

 
3.2 Data reduction 
The procedure used to determine temperatures and uncertainties from the observations is described in Wickwar et al.38.  In 
essence, it involves at initial temperature at the highest altitude, which is where the signal is 16 times as big as the standard 
deviation, and a downward integration.  The numerical integration has been carefully checked and the basic procedure 
verified with a simple simulation of the lidar data. 
 
The reduction procedure to obtain temperatures has been and continues to be very carefully examined to minimize systematic 
errors.  This requires careful determination of the background signal and checking for PMT saturation at low altitudes.  It 
requires examining each 2-minute integration.  It has involved determining the altitude of the laser, the value of g at the laser, 
and the effect of an altitude-varying mean molecular weight.  A full simulation of the data is also currently underway to 
better understand the derived temperature at the highest altitudes.  Because the observations were initially aimed at finding 
the temperature climatology and were acquired at night at mid latitudes, the initial values used in the integration were taken 
from the nighttime climatology39 from resonance-scatter lidar observations at Ft. Collins, Colorado.  In that way, our 
climatological temperatures should be valid to a higher altitude than if we had used initial values from another source.  They 
should also be valid to a higher altitude than temperatures derived for shorter time scales because the latter might be 
influenced by planetary waves or large-scale gravity waves.   
 
Another way to assess the validity of the observation and data-reduction procedure is to compare the temperatures to those 
obtained by other Rayleigh lidar groups at similar latitudes and to those obtained by different techniques.  Such comparisons 
have been carried out with several sets of data40,41.  In general, good agreement has been obtained among the temperature 
profiles.  However, some differences, localized in time and altitude, were found.  Because of the overall good agreement, 
these differences may well reflect significant geophysical differences that 
warrant further investigation.   
 
3.3 Database 
Between August 1993 and the present an extensive database has been 
acquired.  Table 3 gives a summary of the hours and nights observed.  The 
variations reflect many different things including equipment problems and 
changes, funding, and operating procedures.  While weather has affected 
the number of nights observed in a few months, it has not been a major 
impediment.  With this extensive database, the data can be examined on 

Table 3.  Hours and Nights Observed 
Dates Hours Nights 

Aug. 93 – Jul. 94 375 56 
Aug. 94 – Jul. 95 649 95 
Aug. 95 – Jul. 96 372 59 
Aug. 96 – Mar. 97 560 72 
May 98 – May 99 553 93 
June 99 – Apr. 00 745 134 

Totals 3,254 509 



many different time scales.   
 
The influence of the initial value is minimal after 20 km and 
may be small after only 5 or 10 km for a climatological 
average.  However, as the altitude of the initial point increases, 
the importance of a well-behaved background becomes greater 
and the need to consider variations in the proportion of neutral 
constituents increases.  Nonetheless, the greater initial altitude 
leads to a higher altitude at which the temperatures are good.  
In addition, the uncertainty at a given altitude decreases.   
 

4. MESOSPHERIC TEMPERATURES 
4.1 Sampling the results 
Turning first to Figure 1, it shows the temperature climatology 
at ALO for the period 1994 though 1999.  Each curve is for a 
different month, with the three dotted curves for summer 
(May–July), the three dashed curves for winter (December–
February), and the solid curves for the two equinox periods.  
These curves were obtained by averaging all the one-hour 
temperatures within a given month for all years.  The top 
altitude is reached when the number of curves contributing to 
this average falls to half the number at the lowest altitudes.  
The altitude resolution is 3 km.  Near the stratopause, the 
temperature clearly responds to solar heating, being 10% 
hotter in summer than in winter.  However, above 60–65 km 
the situation changes and the winter temperatures become 
significantly warmer than the summer temperatures.  For some 
months this change in behavior occurs gradually with altitude, 
while for some of the winter months it is very abrupt.  This 
temperature behavior in the upper mesosphere is caused by 
dynamics, as discussed in the Section 1.   
 
More insight into the behavior can be obtained by looking at 
the average nightly profiles that go into the long-term average 
in Figure 1.  The curves for January and June are shown in 
Figure 2, along with the corresponding curves from the 
MSISe90 empirical model42.  To the extent that they can be 
seen, these latter curves are a useful reference.  As in Figure 1, 
the altitude resolution is 3.0 km.  In the winter profiles, the 
most striking feature is the occurrence of large oscillations 
above 60 km.  This is the mesospheric inversion layer43,44,30.  
Our data show minimum-to-maximum amplitudes that can 
approach 50 K.  When examined with even finer time 
resolution, with 1-hour averages, many of the inversion-layer 
curves show a downward phase velocity and a vertical 
wavelength such that they appear to be closely linked to the 
diurnal tide.  A period with 10 nights of observations during 
an 11-day period in late February 1995 was examined by 
Meriwether et al.32 and compared to model predictions from 
the Global-Scale Wind Model (GSWM)62.  While this supports 
the tie to the tide, the observed amplitudes are approximately 
an order of magnitude greater than can be accounted for by the 
model.  This discrepancy is similar to, but even larger than the 
one between the amplitude of the 12-hour tidal winds deduced 
from Fabry-Perot observations of OH winds at BLO at 87 km 
in late summer and those modeled with the GSWM.  In other 
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Figure 1.  Monthly mean temperature profiles above ALO. 
The summer months are May–July, the winter months 
December–February.  The data are from 1994–1999. 
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Figure 2.  Comparison of winter and summer mesospheric
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periods a consistent behavior, judged by the peak altitude, will 
occur for several days and then change.  Similarly, the 
behavior in data from different years can appear very 
different45.  It is not clear at this time what produces these 
changes in behavior 
 
The bottom part of Figure 2 shows the June temperature 
profiles.  In addition to the warmer stratopause and colder 
upper mesosphere, these curves show a more consistent 
behavior from night-to-night than the winter data.  Very little 
spread in the values occurs below 70 km, and above that 
altitude it is significantly less than in winter.  Explanations for 
these differences largely involve seasonal changes in wave 
filtering by the mesospheric jets, which reverse direction from 
winter to summer.   
 
Another way to look at the temperature structure is to examine 
contour plots.  The top plot in Figure 3 is from the same ALO 
data as in Figure 1.  The bottom plot, from the MSISe90 
empirical model42, is for comparison.  While, overall, 
considerable similarity exists, some major differences are 
readily apparent.  The biggest difference is in the winter 
behavior in January and February.  Even with the multi-year 
averaging, the ALO data shows much stronger effects from 
the wintertime intermediate layers.  Throughout the year, the 
upper mesosphere temperatures are 10–30 K warmer than in 
the model.  In the lower mesosphere, the summer maximum in 
temperature occurs at least a month earlier than in the model.  
Some of these differences are examined elsewhere38,41.  These 
papers also show an intriguing difference between the 
Rayleigh and sodium resonance temperatures in the limited 
altitude region where they overlap.   
 
In addition to direct temperature observations, we have 
another observation that indirectly suggests lower 
temperatures than we have measured in the summertime mid-
latitude upper mesosphere.  On the evening of 22 June 1999 
local time (23 June 1999 UT), a noctilucent cloud (NLC) was 
observed visually from Logan, UT, and the following evening 
it was observed overhead with the lidar46.  A convenient way 
to display the lidar return is as the backscatter ratio R, the ratio 
of the observed signal to what it would have been from 
Rayleigh scatter alone.  This is done in Figure 4 for ∆h=337.5 
m and ∆t=12 minutes, starting at 04:22 on 24 June 1999 UT 
between 80 and 84 km as solid lines with 1-standard deviation 
error bars.  The abscissa applies to the first profile, the left-
most one, and each of the four successive profiles is shifted to 
the right by R=2.  Each profile is shown along with a dashed 
reference line obtained with ∆t=1 hour starting at 04:22 UT.  
A comparison of these pairs of profiles shows a layer 
changing in strength and altitude.  The major characteristics of 
the NLC were a peak altitude between 81.6 and 82.4 km, a 
thickness that varied between 400 and 800 m, a rate of descent 
of 24 cm/s, and a maximum backscatter ratio of 4.7 at 82.4 
km.  Other measures of the maximum strength of the 
backscattered signal are a volume-backscatter coefficient of 
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1994–1999 observations (Top) compared to the MSISe90 
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1.6×10-10 m-1-sr-1 and a range-corrected equivalent Rayleigh altitude of 76 km.  This was a very weak and thin NLC, which 
would be consistent with the equatorward edge of a NLC. 
 
Past observations and reviews of noctilucent clouds47 and polar mesospheric clouds48 indicate that they are a polar 
phenomenon with an equatorward boundary at approximately 50°N.  This visual detection at 41.7°N is approximately 8° 
equatorward of this boundary and the lidar detection is 11° equatorward of the lowest latitude previous lidar detection at 
52.4°N in Wales49.  Thus, NLCs have graduated to also being a mid-latitude phenomenon.  This detection could be a 
significant indicator of global change.  It could occur because of an increase in greenhouse gases that cool the mesosphere, an 
increase in methane that would lead to more water vapor in the upper mesosphere, or a combination of the two50.  Less 
directly, it could also arise because of an increase in the meridional circulation, perhaps as a result of an increased generation 
of gravity waves, leading to greater adiabatic cooling in the summer hemisphere (and warming in the winter hemisphere) or 
because of a significant temperature oscillation with a minimum at 82 km that lowers the usual local temperature.  In either 
case, this unexpected (at least at this time) observation requires the extension of future coordinated NLC observations to mid 
and lower latitudes.  These observations need to be comprehensive enough to distinguish among possible causes. 
 
4.2 Projects underway 
As noted in Section 1, because of ALO’s location in the 
middle of the Rocky Mountain chain, the possibility exists for 
finding significant longitudinal differences in temperature.  
The extent of these rugged mountains in western North 
America, make them one of the most significant orographic 
sources in the world.  Some of these waves are seen at low 
altitude in the lidar data as they pass through cirrus clouds, 
Figure 5.  The data shown are for 2-minute intervals and 
112.5-m altitude resolution.  Apparent in the figure is a 
downward phase progression, the vertical wavelength (just 
over 1 km), and the apparent period (approximately 30 
minutes).  However, it remains to be shown whether these 
gravity waves have a significant impact on mesospheric 
structure.  A counter argument to the orographic source is that 
mesospheric effects depend more on gravity wave filtering than 
on the sources.  Nonetheless, some early results from ALO and 
BLO, suggest possible effects.  For instance, in winter, the 
stratopause temperatures were cooler and the upper mesospheric 
temperatures warmer than the French found33.  The amplitude of 
the semidiurnal tide (or at least of a 12-hour oscillation) in the 
OH winds at 87 km observed with a Fabry-Perot interferometer 
in December and January at BLO was less (i.e., undetectable) 
than seen elsewhere with MF radars51.  While these might be real longitudinal differences, they might also be the result of 
comparing limited amounts of ALO and BLO data with much longer time sequences for other data.   

 
Accordingly, one of the projects underway is to compare the ALO temperatures with those from other climatologies at similar 
latitudes.  The intent is to look for significant differences that cannot be accounted for by data reduction procedures or data 
selection.  This effort commenced with the visit of a USU student to the University of Western Ontario, which operates the 
Purple Crow lidar51, at the beginning of the summer.  This lidar is at almost the same latitude, but is in an extremely flat region.  
Good overlap exists between the two data sets: the analysis is underway.  However, because of filtering arguments, a 
comparison with one site is not sufficient to make the case for longitudinal differences.  Hence, we are constantly on the lookout 
for other data sets with which to compare.   

 
Another approach to these comparisons is to compare the observations to calculations with general circulation models that 
include gravity wave parameterization and filtering.  If temperature differences are found between two sites, such a 
comparison may help to distinguish between a gravity wave source and filtering.  More generally, if the gravity wave sources 
in the model have been tuned to reproduce a different type of observation, or an observation at a different latitude, the 
comparison will provide information on whether these same sources will also reproduce the mesospheric temperatures 
observed with the lidar.  Agreement would be significant, but differences might provide information on the gravity wave 
parameterization or on the assumed saturation mechanism, e.g., linear, Doppler spread, diffusive.  Depending on the 

Figure 5.  Gravity waves in cirrus clouds during 3 hours 
and 20 minutes on 13 February 1999.  The ordinate is 
altitude in km; the abscissa is labeled in minutes.  Mie 
scatter occurs from cirrus clouds between 10 and 12 km. 
Each 2-minute profile is shown as the log of the count rate.   



differences, they may also provide information on other inputs to the model.  
We have initiated a comparison with the TIME-GCM53,54.  Enough significant 
differences exist in general circulation models that we are also interested in 
comparing with other models. 

 
While gravity waves may have a big impact on the temperature structure, 
information about them can be obtained more directly by examining the 
variability of both the density and temperature data35,36,55–58.  Initial studies have 
been performed with ALO data59,60.  This approach is being continued with the 
more extensive database that now exists.  Currently, we are working with 
Robert Sears in examining the densities for variability on nightly, monthly, 
seasonal, and annual scales.  This should help characterize the climatology of 
the gravity waves that reach the mesosphere and to which the lidar is sensitive.  
We hope to extend this work to develop a climatology of density variance, 
horizontal and temporal correlation lengths, profiles of power-spectral density 
slopes, and profiles of the deposition of turbulent energy as a function of period and wavelength.   

 
In examining the strong mesospheric inversion layers in winter, one of the striking features is that they can be very similar for 
several days, as in the period discussed by Meriwether et al.32, and then change rapidly.  Assuming that the inversion layers 
are closely related to gravity-wave activity, this change suggests that the gravity-wave source (or the filtering mechanism) 
has changed.  To test this, we will compare days with different temperature structures to potential gravity wave sources, i.e., 
to winds over the mountains, to the location and strength of the jet stream, and to frontal activity.  If, for instance, a distinct 
pattern or correlation is established with winds over the mountains instead of with jet-stream activity, that will be interesting 
in itself and will also support the notion that longitudinal 
variations should exist.   

 
In the above discussions of the temperature structure, the interest 
has been on variations over the course of weeks, months, and 
years.  The inputs are nightly averaged temperatures.  However, 
the lidar database is extensive enough to allow, with the 
appropriate averaging, a search for temporal variations on the 
scale of hours, i.e., for tides.  An initial attempt to do so61, using 
one-hour bins, was reasonably successful.  Oscillations were 
found with what appeared to be six, eight, and twelve hour 
periods.  Some grew with altitude.  In addition, the winter 
inversion layer has been associated with the 24-hour tide32.  The 
expanded database will make it much easier to look for tide-like 
variations.  Although, as always, questions will arise because 
the database is only comprised of nighttime data.  To help sort 
out the oscillations, they will be carefully compared to the 
Global-Scale Wind Model (GSWM)62.   
 

5. FUTURE DIRECTIONS 
5.1 Large Lidar Telescope 
The observations discussed and shown in Section 4 have all 
been made with the 44-cm Newtonian telescope described in 
Section 3.  To improve future observations, a much larger 
telescope is under development.  To obtain a large collecting 
area at minimal cost, the design is unusual.  It is consists of 
four co-aligned telescopes with a total collecting area 
equivalent to that of a 2.5-m telescope, i.e., 5.0 m2.  More 
specific information is given in Table 4.  The azimuth-
elevation mount is shown in Figure 6, fixed for now in the 
zenith position, with one primary-secondary pair of mirrors 
installed.  The other three primary-secondary pairs of mirrors 
have been made, ground, and polished.  When tests are 

Table 4.  ALO Large Lidar Telescope 
Each Mirror 

Dia. of Primary 1.27 m 
Dia. of Secondary 0.36 m 
Effective Area 1.16 m2 
Primary f.l. 2.41 m 
Effective f.l. 10.2 m 
Blur Circle 0.3 mm 
Max. FOV 5 mrad 

Four-Barrel Telescope 

Total Eff. Area 4.66 m2 
Azimuth ∠ Range 0°–360° 
Zenith ∠ Range 0°–45° 

 
Figure 6.  The four-barrel telescope in September 2000
with the first 1.25-m primary and matched secondary. 



completed on the first pair, they will have their final polishing, 
testing, and coating and then they will be installed.  To house 
the telescope, a large observatory building was built, which is 
shown in Figure 7 with the roof open.  The observatory was 
sized to enable the telescope to point in any direction up to 45° 
off zenith.   
 
The collecting area of the large lidar telescope is 33 times that 
of the current telescope.  Taking into account blockage by the 
secondaries, the figure of merit for the Rayleigh lidar will 
increase from 2.7 to 84 W-m2.  This will greatly increase the 
Rayleigh-scatter capability.  The greater sensitivity can be 
used to reduce the integration time, to increase the maximum 
altitude, to improve the measurement uncertainty, or various 
combinations of these depending on the research requirements.  In one scenario, the integration time would be reduced to 15 
minutes, approximately the shortest time consistent with hydrostatic equilibrium.  These profiles would have the same 
precision as those now obtained in an 8-hour night.  Alternatively, the precision for these profiles would be 2.8 times better at 
every altitude than obtained now in a 1-hour integration.  Or, the precision of these profiles at high altitudes would be 
equivalent to what can now be obtained in a 1-
hour integration at a 13-km lower altitude.  In a 
second scenario, the integration times would be 
unchanged.  The precision at the same altitudes 
would improve by a factor of 5.6.  Or, the 
precision of these profiles at higher altitudes 
would be equivalent to what can now be 
obtained at a 21-km lower altitude.  Ignoring 
potential difficulties (and opportunities) from 
changes in neutral composition, this would 
enable temperature measurements to 105 or 110 
km.  The upgraded ALO Rayleigh lidar is compared in Table 5 to several others in this new category of large lidars. 
 
5.2 Resonance Capability 
Additional information on what is happening in the transition region from the upper mesosphere to the lower thermosphere 
can be obtained by adding a resonance-scatter capability.  For that purpose, ALO acquired an alexandrite ring laser (Light 
Age, Inc.).  This is the same laser as two that the Institute for Atmospheric Physics (IAP) at Kühlungsborn, Germany, 
acquired and used very successfully to determine temperatures and potassium densities from potassium resonance scatter64–66.  
This approach to resonance scatter has the simplifying advantage of being based on a solid-state laser and an external-cavity 
diode laser for seeding.  To determine temperature, the laser has to be scanned over the potassium spectrum.  An absolute 
wavelength reference will be determined by observing the Doppler-free potassium spectrum.  The scanning will be performed 
by locking the seed laser (Newport/EOSI) to a computer-controlled capacitance-stabilized etalon (CSE) (Hovemere, Ltd.).  
The etalon gap will be varied to locate the Doppler-free reference line and then will be stepped across the potassium 
spectrum.  The seeder lockbox will adjust the seeder wavelength to 
maximize the signal from the emission passing through the CSE, thereby 
locking the seeder and the alexandrite to the etalon.  With this approach, 
the number of wavelengths included in the stepped scan across the 
potassium spectrum can be varied from, for instance, two to 20.  This will 
provide flexibility to make detailed measurements of the spectrum to 
insure that the equipment is working as expected or to make measurements 
at just two or three spectral positions to make high time resolution 
measurements for temperature (and wind) determinations.  A high-
resolution Fabry-Perot interferometer (Hovemere, Ltd.) will also be used 
as a laser spectrum analyzer (LSA) to examine each outgoing laser pulse 
for wavelength, spectral width, and power.  If the laser pulse is good, the 
sampled data will be added to the accumulated signal.  Otherwise, the data 
will be discarded.  Beyond this, the pulse repetition rate of the laser will be 
increased from 25 to 30 Hz to interleave them with the Nd:YAG pulses to 

Table 5.  Comparison of large Rayleigh-scatter lidars 
Lidar ALO ALOMAR63 Firepond PCL52 
Emission λ (nm) 532 nm 532 nm 532 532 nm 
Energy (mJ) 600 30 700 60 
Pulses / sec (Hz) 30 30 30 20 
Power (W) 18 11 21 12 
Aperture Dia. (m) 2.5 1.8 1.2 2.6 
Correction Factor 1.0 0.50a 1.0 1.0 
Fig. of Merit (W-m2) 84 14 24 66 
aHalf the light goes to the normal Rayleigh channel; half goes to the DWTS. 

Table 6.  ALO laser for Resonance scatter 
Light Age, Inc., alexandrite ring laser 

Wavelength 770 nm 
Energy per Pulse ~ 150 mJ 
Pulse-Repetition Rate 30 Hz 
Power 4.5 W @ 30 Hz 
Pulse Length 160 ns 
Spectral Width (Seeded) ~ 20 MHz 
Beam Divergence < 1.0 mrad 
CSE (free-spectral range) 10 GHz 
Number of steps 1024 
LSA (free-spectral range) 1 GHz 
Finesse 50 

Figure 7.  The lidar observatory in August 2000 with the 
roof open.  The building is approximately 10 m×10 m×7 m. 



obtain simultaneous Rayleigh and resonance observations.  
Many of the characteristics of this system are given in Table 6.   
During the last year considerable experience has been 
acquired in the laboratory with operating the alexandrite laser 
and controlling its wavelength.  This experience has been 
gained making O2 and H2O absorption measurements.  The O2 
observations can be made directly with the laser; the H2O 
observations require Raman shifting the laser beam in H2 to 
obtain the correct wavelength.  An example of H2O absorption 
for 6, 16, and 56-m path lengths is given in the bottom part of 
Figure 8.  The alexandrite wavelength was referenced to a 
known O2 rotational line near 766.8 nm, near the center of the 
alexandrite tuning range.  The spectrum was then scanned by 
varying the seeder wavelength.  The spectral purity of the 
alexandrite laser was monitored with the LSA.  The Raman-
shifted laser output was scanned over the H2O features near 
1125.4 nm in steps of 1.5 GHz.  Each scan took 15 minutes.  
The top part of Figure 8 shows model calculations of the H2O 
absorption for the three path lengths.  The modeling used a 
Voigt profile function with line positions from the 1996 
HITRAN database.  The H2O column densities were based on 
1500-m elevation and a mid-latitude atmosphere at 30% 
relative humidity (the measured value).  The experience 
gained from this work will be very valuable preparation for 
making our first potassium observations.   
 
An important question concerning these potassium observations is how they will compare to those by the IAP group and how 
they will compare to the sodium observations made elsewhere.  An indication can be obtained by extending the figure of 
merit discussed in Section 3.1.  A complication arises for resonance scatter in that a change in wavelength means a change in 
scattering constituent, i.e., from potassium to sodium.  This implies that the relative densities and cross sections have to be 
introduced into the figure-of-merit calculations.  The results are given in Table 7 referenced to a sodium lidar.   
 

Table 7.  Comparison of Resonance-scatter lidars 
Lidar ALO IAP64,66 Ft. Collinsa Urbana67,68 ALOMARb PCL69 
Emission & λ (nm) K at 770 K at 770 Na at 589 Na at 589 Na at 589 Na at 589 
Energy (mJ) 150 100 30 30 30 60 
Pulses / sec (Hz) 30 25 50 20 30 20 
Power (W) 4.5 2.5 1.5 0.60 0.90 1.2 
Aperture Dia. (m) 2.5 0.80 0.36 1.0 1.8 2.6 
Correction Factor 0.011c 0.011c 0.50d 1.0 0.50d 1.0 
Fig. of Merit (W-m2) 0.23 0.014 0.074 0.47 1.1 6.6 
aBased on memory of upgraded system seen in June 2000.  bEstimated. 
cBased on the ratios of peak number densities66,70 and scattering cross sections71,72, i.e.,  
[NMAX(K) / NMAX(Na)] × [σ(K) / σ(Na)] = [5.0×107 / 4.0×109] × [1.34×10-15 / 1.52×10-15] = 1.10×10-2. 
dThe output is split between two telescopes. 

 
A comparison of the alexandrite-based resonance lidars at ALO and IAP shows that with the four-barrel telescope at ALO the 
figure of merit is 16 times bigger at ALO than at IAP.  (If the 44-cm telescope were used at ALO, then the ratio would be 
0.5.)  Everything else being equal, this implies that similar temperature results could be obtained in 1/16th the time at ALO as 
at IAP, e.g., 4 minutes instead of 1 hour.  Alternatively, with the same asssumption, this implies that for the same integration 
times, the uncertainty at ALO would be 1/4th of what it would be at IAP.  Either way of comparing these systems implies that 
good potassium temperatures will be obtained with the system at ALO.  Moreover, they can be obtained with shorter 
integration times than for the ALO Rayleigh lidar. 
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Figure 8.  The absorption spectrum and model 
calculations for two H2O lines near 1125.4 nm.  (See text.) 



Turning to the sodium systems, it is apparent that the big advantage to observing sodium is its much greater density.  
However, the large collecting area of the four-barrel telescope largely overcomes this advantage.  The ALO figure of merit is 
larger than for the lidar at Ft. Collins and smaller than for the University of Illinois lidar at Urbana.  Based on what has been 
accomplished with these two lidars, this again implies that ALO will be able to obtain good temperatures.  The comparison 
with Illinois also indicates that ALO would be able to obtain good winds.  However, the comparisons with ALOMAR and 
PCL, both with large telescopes, indicate they are significantly more sensitive.   
 
The addition of the resonance capability to ALO will greatly improve the ability to measure temperatures in the transition 
region from the mesosphere to the lower thermosphere, 80–105 km.  The resonance lidar will be able to do this directly and it 
will be able to improve the Rayleigh observations in this region by providing the initial temperature for the data reduction.  In 
contrast, the Rayleigh system will provide the continuous observations from the stratosphere to this transition region.  In the 
overlap region above 80 km, the Rayleigh system will be sensitive enough to provide good comparisons between the two 
very different types of temperature measurements.  Questions will arise concerning Rayleigh scatter and a changing mean 
molecular mass, e.g., the ratio of atomic-to-molecular oxygen densities.  Initial observations at PLC69 have already raised 
questions about the effect of variations in the ratio of N2 to O2.  There should be much to learn by having simultaneous 
observations with these two techniques at the same location.  Additional correlative temperatures could be obtained, as 
discussed in Section 2, from instruments at BLO.  Furthermore, the possibility exists to add a wind capability, Section 5.4. 
 
5.3 New data-acquisition system 
To take advantage of the greater Rayleigh signal from the four-barrel 
telescope and the resonance signal from the alexandrite laser, a multi-
channel data-acquisition system with some additional features is needed.  A 
four-channel system is currently being built by Hovemere, Ltd.  Particulars 
are given in Table 8.  It is designed for four channels, but will initially be 
used for three: two will be devoted to Rayleigh scatter to cover the extended 
altitude range and one, with a GaAs photomultiplier tube, will be devoted to 
resonance scatter.  It differs from the current system in that it accumulates the photon counts from all the gates in the 
computer instead of in the photon-counting hardware.  This provides greater flexibility without taxing today’s PCs.  For 
resonance scatter, this system will allow every pulse to be examined with the LSA for wavelength, spectral width, and power 
so that a decision can be made to reject or accept and accumulate the data.  For both lidars it enables other data such as laser 
power, pointing directions, etc. to also be collected and recorded.  The overall system will be controlled by LabVIEW.   
 
5.4 Spatial structure and winds 
Although currently pointing in the zenith, the telescope and observatory building were built, as mentioned in Section 5.1, to 
point anywhere up to 45° off zenith.  The intent is to add the motors to point the telescope, the mirrors to direct the laser 
beams, and the controls to keep the laser beams and telescope co-aligned.  This will open the way to observations of the 
spatial structure of densities and temperatures and to observations of winds.  Spatial structures could be observed with both 
the Rayleigh and resonance lidars.  Winds could be observed with the resonance lidar because the setup (controls) for winds 
is the same as for temperatures.  Rayleigh winds, however, would require a new detector system such as the Doppler Wind 
and Temperature System at ALOMAR73,63.  
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