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Constraining the Black Hole Mass Spectrum with Gravitational Wave

Observations I: The Error Kernel

Joseph E. Plowman1, Daniel C. Jacobs1, Ronald W. Hellings1,
Shane L. Larson2, Sachiko Tsuruta1

ABSTRACT

Many scenarios have been proposed for the origin of the supermassive black holes
(SMBHs) that are found in the centres of most galaxies. Many of these formation
scenarios predict a high-redshift population of intermediate-mass black holes (IMBHs),
with masses M• in the range 102M� . M• . 105M�. A powerful way to observe these
IMBHs is via gravitational waves the black holes emit as they merge. The statistics of
the observed black hole population should, in principle, allow us to discriminate between
competing astrophysical scenarios for the origin and formation of SMBHs. However,
gravitational wave detectors such as LISA will not be able to detect all such mergers nor
assign precise black hole parameters to the merger, due to weak gravitational wave signal
strengths. In order to use LISA observations to infer the statistics of the underlying
population, these errors must be taken into account. We describe here a method for
folding the LISA gravitational wave parameter error estimates into an ‘error kernel’
designed for use at the population model level. The effects of this error function are
demonstrated by applying it to several recent models of black hole mergers, and some
tentative conclusions are made about LISA’s ability to test scenarios of the origin and
formation of supermassive black holes.

Subject headings: Black Hole Physics - Early Universe - Gravitational Waves - Methods:
Statistical

1. Introduction

There is now substantial evidence (e.g., Kormendy & Richstone 1995; Richstone et al. 1998;
Bender 2005; Rees 2002, 2003) for the existence of supermassive black holes (SMBHs) in the nuclei
of most galaxies, the black hole in our own galaxy being the best studied and most clearly justified
of these objects. However, the origin of these black holes remains an unsettled question. In one
scenario, the more massive black holes formed from the merger and coalescence of smaller ‘seed’
black holes that were created in the very early Universe (e.g., Madau & Rees 2001). Several models
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utilizing this process have been proposed and numerically simulated (e.g., Haehnelt & Kauffmann
2000; Volonteri et al. 2003). In (e.g., Volonteri et al. 2003; Tanaka & Haiman 2009), typical seed
black holes are the remnants of Population III stars with masses m• ∼ 100 − 300M� formed at
high redshift (e.g., z ∼ 20 – 50). Thus, these models predict an evolving population of intermediate
mass black holes (IMBHs), with masses between ∼ 100 to 105M�.

1 In another version (Begelman
et al. 2006), the seed black holes are formed due to direct collapse of the cores of pregalactic halos
through a ‘quasi-star’ stage, resulting in a more massive seed population (∼ 104 − 106M�). This
scenario predicts far fewer IMBHs in the early universe.

Black holes in the IMBH mass range are extremely difficult to detect with the usual electromag-
netic observation techniques, making it very difficult to verify a particular formation and evolution
scenario and, especially, to discriminate between various models. However, the mergers themselves
produce gravitational waves in the Low Frequency (LF) band, from 10−6 Hz to 10−1 Hz, probed by
the proposed LISA mission (Jennrich 2004). Observations of the amplitude, frequency chirp, and
harmonic structure of the gravitational wave waveform enable both the luminosity distance and the
individual masses of the black holes in the binary system to be determined. LF gravitational wave
observations thus provide a probe of the cosmological spectrum of black holes, and allow tests of the
population models to be made. In this paper, we investigate how gravitational wave observations
of coalescing massive black hole binaries may be used to discriminate between models of massive
black hole populations and determine the merger history that has led to the observed population
of SMBHs.

We thus take a slightly different direction, compared to other recent works investigating LISA
detections of black hole coalescences. Most of these take the somewhat speculative black hole popu-
lation models and calculate the number of coalescences that each model predicts would be observed
by LISA. The scientific goal of these papers has clearly been the observation of the coalescence
itself. In this paper, we turn the problem around and ask, ‘What might LISA observations of
binary MBH coalescences tell us about the otherwise uncertain population models?’

The organization of the paper is as follows. In Section 2, we discuss some of the population
models and the motivation behind them. Section 3 describes the parameters relevant to detection of
a black hole binary and draws a distinction between ‘population’ parameters, which are relevant to
the population models, and astrophysically uninteresting ‘sample’ parameters, which vary randomly
for each sample drawn from a population. We also review the response of the LISA gravitational
wave detector to massive black hole binary coalescences, with emphasis on the ability of the detector
to determine the parameters of the binary from the gravitational wave waveform. The bulk of our
work is presented in Section 4, which describes a Monte Carlo calculation of an ‘error kernel’, which
is marginalised over the sample parameters. This error kernel, K(λ̂i, λi), is the average conditional
probability that a source will be detected with population parameters λ̂i in the LISA data, given

1Since our studies include both IMBHs, with mass ∼ 100M� to 105M�, and SMBHs, with mass ∼ 105M� to

109M�, we adopt the terminology ‘massive black hole’ (MBH) to cover the entire range from ∼ 100M� to 109M�.
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the existence of an astrophysical source with population parameters λi. The marginalisation over
sample parameters sets this apart from previous work, and the resulting error kernels can be applied
directly to model coalescence rates, producing a new set of coalescence rates as functions of the
best-fitting, ‘detected’, parameter values. Finally, in Section 5, we take several population models
from the literature and discuss how the error kernel may be used to produce a measure of how well
the models may be discriminated from one another. Although the models we use are incomplete,
being based only on summaries available in the literature, we nevertheless draw a few tentative
conclusions about LISA’s ultimate ability to distinguish between black hole population models in
Section 6.

2. Astrophysical Populations of Black Hole Binary Systems

Observations of the high redshift quasar population (Fan et al. 2001; Stern et al. 2000; Zheng
et al. 2000; Becker et al. 2001) suggest that a population of SMBHs has existed since early epochs
(z ∼ 6). The local census of SMBHs has been increasing in recent years (Tremaine et al. 2002),
driven by a growing body of observational evidence linking the mass of SMBHs with observational
properties of their host galaxies. Early studies revealed a rough correlation between SMBH mass
and the bulge luminosity of the host galaxy (Kormendy & Richstone 1995; Magorrian et al. 1998).
A much stronger correlation was later discovered between the SMBH mass and the stellar velocity
dispersion in the galactic core, the so-called ‘M -σ’ relation (Gebhardt et al. 2000; Ferrarese &
Merritt 2000; Tremaine et al. 2002). The current best fit to the M -σ relation (Merritt & Ferrarese
2001; Tremaine et al. 2002) gives the mass of the central black hole M• as

log
(
M•
M�

)
= 8.13 + 4.02 log

(
σ

200km/s

)
. (1)

The observational data supporting the M −σ relation currently spans a mass range from ∼ 105M�
to ∼ 109M�.

Given this observational evidence for the existence of a SMBH population, the question arises:
how did these objects come to be? Several scenarios are proposed (see Djorgovski et al. 2008):

1. direct gravitational core collapse of pregalactic dark halos,

2. growth from seed black holes through merging and coalescences over time,

3. gravitational runaway collapse of dense star clusters,

4. primordial BH remnants from the big bang.

In case 1 SMBHs can form very early in the Universe through direct collapse of dark matter
halo with mass of ∼ 106M� or larger (Bromm & Loeb 2002). In case 2, on the other hand, (Madau &
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Rees 2001; Haehnelt & Kauffmann 2000; Volonteri et al. 2003; Tanaka & Haiman 2009; Begelman
et al. 2006), seed black holes produced in the early universe are significantly smaller and grow
by accretion, coalescences and merging, leading to the population of SMBHs seen in the Universe
today. In most cases (e.g., Volonteri et al. 2003) the seed black holes have mass less than ∼ 300M�,
and are the remnants of ordinary Population III stars. Detailed stellar evolution calculations have
recently found, however, that these seed black holes can be remnants of very massive Population
III stars, referred to as CVMSs (Ohkubo et al. 2006, 2008; Tsuruta et al. 2007; Ohkubo et al.
2009; Umeda et al. 2009). These metal-free CVMSs evolve quickly and then collapse in the early
universe, yielding an IMBH population with masses in the range of ∼ 500M� − 10, 000M�. In
another version (Begelman et al. 2006), even more massive black holes can form from direct core
collapse of mini halos through a quasi-star phase, instead of through ordinary stellar evolution,
leading to a population with masses in the range ∼ 104M� to ∼ 106M�.

The scenario involving direct collapse is not difficult to distinguish from that involving Popu-
lation III stars, because the former predicts only a small number of the more massive IMBHs while
the latter predicts considerably more IMBHs with a wider range of masses and redshifts. In case
3 (e.g., Ebisuzaki et al. 2001; Portegies Zwart et al. 2004a,b), IMBHs can be formed at any time
in dense star clusters and grow by merging in the given environment. Such a process can produce
a low level population of mergers at all redshifts. Case 4 is theoretically possible, but currently it
will be hard to test by observations.

In this paper, we concentrate on versions of case 2, although the techniques used are general
and should also apply to discrimination between other MBH population scenarios. Specifically, we
use the results published in Sesana et al. (2007), which give coalescence rates for models discussed
in Volonteri et al. (2003), Koushiappas et al. (2004), and Begelman et al. (2006). In these models,
the evolution of the seed population through time is carried out numerically (Somerville & Kolatt
1999; Volonteri et al. 2003). In Volonteri et al. (2003), for instance, the evolution of a SMBH’s host
galaxy halo is first computed, starting at the present day and working backwards in time to z ∼ 20.
Then, the progenitor haloes are seeded with BHs of 150M�, and the BH merger history is traced
forward in time through the halo merger history. Major differences between different versions of this
scenario come from the varying astrophysical assumptions employed - e.g., the initial conditions,
environment, age (the redshifts when the seeds were produced), seed mass, dynamics, hierarchial
growth, etc., built into the process.

3. Gravitational wave binaries

3.1. Binary Parameters

Each black hole binary may be characterized by a number of parameters, which are usually
divided into two categories. The first category is the intrinsic parameters which have to do with
the local properties of the binary in its rest frame. They are m1, the mass of the primary, m2,
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the mass of the secondary, and either the initial orbital separation, a, frequency, f (related to a

by Kepler’s third law) or time to coalescence, tc, (related to a by the quadrupole formula)2. A set
of mass parameters equivalent to m1 and m2 but more directly related to the gravitational wave
waveform, is the chirp massMc = (m1m2)3/5(m1 +m2)−1/5 and the symmetric reduced mass ratio
η = (m1m2)/(m1 + m2)2. Note that, in the gravitational wave signal, the masses are scaled by
the redshift, so that the natural mass variables for gravitational wave data analysis are redshifted.
For instance, the redshifted chirp mass is Mc × (1 + z), although the reduced mass ratio remains
unchanged since it is dimensionless. The remaining parameters fall into the second category, and
are called extrinsic parameters. These have to do with the binary’s location and orientation with
respect to the LISA constellation. They are the luminosity distance DL (or equivalently, the redshift
z), the principle gravitational wave polarization angle ψ, the binary inclination ι, the sky location
angles θ and φ, and the initial phase of the binary orbit Φ0.

Redshift and luminosity distance are used interchangeably as source parameters, with the
relationship between them determined from the standard WMAP cosmology (ΩM = 0.27, Ωvac =
0.73, Ωrad = 0.0, and a Hubble constant of 71 km/s/Mpc).

Since the predictions of the population studies are given as functions of masses and redshift,
the binary parameters are best divided into two sets in a different way, for purposes of this paper.
The first set, consisting of Mc, η, and z, are what we will call population parameters, since these
are the parameters that characterise the population model predictions. The remaining parameters,
ψ, ι, θ, φ, tc, and Φ0, represent particular samples drawn from the population model and will
be referred to as sample parameters. Sample parameters have distributions that are essentially
stochastic and contain no useful information about the astrophysical processes which give rise to
the black hole population.

Despite the fact that the sample parameters are not part of the intrinsic astrophysical model,
they can have a dramatic effect on LISA’s source characterisation capabilities because all parameters
must be fit to the data in the process of extracting the population parameters of interest. A
key component of this analysis is therefore to calculate average LISA error distributions for the
population parameters by averaging over a Monte Carlo ensemble of many sources, each having
randomly-chosen values for the sample parameters. Such error distributions are referred to as ‘error
kernels’.

3.2. Gravitational Waves from Binary Systems

Calculation of the detectability of binary systems via gravitational wave emission is a standard
problem in the gravitational wave community; see, for instance, Flanagan & Hughes (1998a,b), and

2In general, the list of intrinsic parameters also includes the black hole spins and orbital eccentricity. Here,

however, attention is restricted to the simplified case of non-spinning black holes in circular orbits.
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Cutler & Flanagan (1994). We review the problem here for convenience and locality of reference.

Spin interactions and higher order post-Newtonian corrections are neglected in this paper,
although they can have an appreciable effect on parameter error estimation. For instance, Hellings
& Moore (2003) have shown that the inclusion of higher harmonics of the waveform would improve
the determination of the mass parameter η, while Lang & Hughes (2006) have shown that spinning
black holes produce a modulation in the signal that leads to a tighter bound on the sky position of
the binary.

The dimensionless gravitational wave strain produced by a circularised binary can be written
as the superposition of two independent polarization states h+ and h×. The polarization amplitudes
can be expanded in terms of harmonics as

h+,×(τ) =
∑
n

h
(n)
+,× exp[inΦ(τ)], (2)

where τ = t− k̂ · ~x locates the surface of constant phase for a gravitational wave propagating in a
direction k̂, and Φ(τ) is the phase of the binary orbit, as observed at the LISA detector. When the
binary is far from coalescence, the dominant emission is the n = 2 quadrupole, which is

h+(τ) =
2Mc [πf ]2/3

DL
(1 + cos2 ι) cos [2Φ(τ)]

h×(τ) = −4Mc [πf ]2/3

DL
cos ι sin [2Φ(τ)] (3)

where f is the fundamental quadrupole frequency, f = 2(dΦ/dt)/(2π). We note that h+ and h×
are still functions of the observed time τ .

The response of the LISA detector to the two polarizations of a gravitational wave from a
binary is given by

y(τ) = F+(θ, φ, ι, ψ, τ)h+(τ) + F×(θ, φ, ι, ψ, τ)h×(τ) (4)

where F+ and F× are the LISA form factors that depend on the position and orientation of the
source relative to the time-dependent LISA configuration.

3.3. Detecting Black Hole Binaries

One measure of the ability of the LISA detector to observe a binary signal is the signal-to-noise
ratio, defined as

(SNR)2 = 4
∫ ∞

0

|h̃(f)|2

SLISA(f)
df , (5)
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where |h̃(f)|2 = |h̃+(f)|2 + |h̃×(f)|2, with h̃+(f) and h̃×(f) being the Fourier transforms of the
polarization amplitudes in equation 3, and where SLISA(f) is the apparent noise level of LISA’s
Standard Curve Generator (Larson (2000), hereafter SCG), an estimate that averages the LISA
response over the entire sky and over all polarization states and divides the LISA instrument noise,
Sn(f), by this averaged response.

Previous treatment of LISA observations of binary black hole populations (Sesana et al. 2007)
have employed this measure of detectability, while others (Sesana et al. 2004) have used a charac-
teristic strain hc, following the prescription of Thorne (1987). In this measure, the raw strain h of a
source is multiplied by the average number of cycles of radiation emitted over a frequency interval
∆f = 1/Tobs centred at frequency f . The amplitude of the characteristic strain is then compared
directly against the 1-year averaged strain sensitivity curve from the SCG to produce an SNR. In
either case, a source is considered detectable if the resulting SNR exceeds some standard threshold
value (typically between 5 and 10).

While interesting for planning LISA data analysis pipelines, these SNR estimates fail to address
the fact that a detection is of little use for comparison with astrophysical theory if the parameters
of the binary are poorly determined. In particular, unless the masses and redshifts of the detected
black holes are measured, the observations cannot be compared with the black-hole evolution mod-
els. A more complete analysis that incorporates the effects of uncertainty in the binary parameters
is required.

Parameter error estimation for black hole binaries detected via gravitational wave emission has
been discussed by many researchers (Cutler & Flanagan 1994; Vallisneri 2008; Moore & Hellings
2002; Crowder 2006). This section reviews the covariance analysis for a linear least squares process,
based on the Fisher information matrix, the method which forms the core of the error analysis in
this paper.

Let us suppose that the LISA combined data stream consists of discrete samples of a signal
given by (Eq. 4), with added noise:

sα = yα(λi) + nα (6)

Here, λi are the parameters of the source and nα is the noise, assumed to be stationary and
Gaussian. The probability distribution of the αth data point is therefore

p(sα|λi) =
1√

2πσ2
α

× e−
1
2
[sα−yα(λi)]

2/σ2
α , (7)

where σα (with Greek subscript) is the standard deviation of the noise in the αth data point.

The likelihood function for a particular data set, with parameters λi, is the product of the
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probabilities (Eq. 7) for each data point. It is

L(sα|λj) ∝ exp
[
−
∑
i

1
2

[sα − yα(λj)]2

σ2
α

]
(8)

The set of parameters, λ̂i, that maximizes the likelihood function is an unbiased estimate of the
the set of actual model parameters, λi. To calculate the λ̂i, we assume that the differences between
the estimated values and the true values, ∆λ̂i ≡ λ̂i − λi are small enough that yα(λ̂i) can be
approximated by its first-order Taylor series expansion about λi:

yα(λ̂k) ≈ yα(λk) +∇iyα∆λ̂i. (9)

where ∇i represents the partial derivative with respect to λi. This first-order expansion is valid
when the SNR is high enough, and the degree of correlation between the parameters is low enough
that the resulting ∆λi are small. Using Eq. 8 we find3 that the likelihood is maximized by

∆λi = (F−1)ij
∑
α

1
2

(sα − yα)∇jyα
σ2
α

, (10)

where the matrix F is the Fisher information matrix, with components

Fij =
∑
α

1
2σ2

α

∇iyα∇jyα. (11)

The expected parameter covariance matrix is

〈∆λi∆λj〉 = F−1
ij (12)

The standard deviations in each detected parameter, σi (with Latin subscript), are given by the
diagonal elements of the covariance matrix:

σ2
i = F−1

ii (no sum over i) (13)

It is important to remember that the Fisher error estimate is accurate only when the parameter
uncertainties are small compared to the characteristic scales of the system being fit (Vallisneri &
Mock LISA Data Challenge Taskforce 2006), a condition that is not well satisfied for all of the
binaries being modelled here. In these cases, however, the method tends to overestimate the degree
of uncertainty in systems with a sharply-defined minimum, and the resulting error estimates tend
to be conservative.

Rather than write our own Fisher error estimation codes, we have made use of the publicly
available LISA Calculator (Crowder & Cornish 2006; Crowder 2006). The LISA Calculator uses
the same instrument noise model Sn(f) that is used as input to the SCG, and an analytic signal

3It is also necessary to keep only terms that are first order in the inverse of the SNR; see Vallisneri (2008)
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model given by Eqs. 3 and 4. It takes as input a set of source parameter values, λj , and outputs a
set of standard deviations (equation 13), σi, for the detected parameter values, λ̂i. Each detected
parameter, λ̂i, is assumed to have a Gaussian probability density with mean λi and standard
deviation σi,

pD(λ̂i|λi) =
1√

2πσ2
i

exp

[
−
[
λ̂i − λi

]2
2σ2

i

]
. (14)

4. The Error Kernel

The output of the astrophysical models of interest can be described in terms of a coalescence
rate, Γ(M,η, z), per unit redshift and time. However, the coalescence rate observed in the LISA
detector, Γ′(M̂, η̂, ẑ), will differ from Γ(M,η, z) because some sources will be too weak to be detected
and because errors in the LISA parameter determination will assign incorrect parameters to the
source, due to the effect of the noise on the estimation process. The effect of these errors is summed
up in the LISA error kernel, K:

Γ′(M̂, η̂, ẑ) =
∫

pop
Γ(M,η, z)× ε(M,η, z)

×K(M̂, η̂, ẑ|M,η, z) dz dη dM, (15)

where ε(M,η, z) is the average detectability of a source with parameters {M,η, z} in the LISA
detector.

4.1. Calculating the Error Kernel

As discussed in Section 3.1, coalescence rates given by the various models are functions of the
population parameters only. They do not depend on the sample parameters, which arise from the
random relationship between the observer and a particular binary in the population. We therefore
produce a Monte Carlo average or ‘marginalisation’ over the sample parameters, compiling the
Fisher matrix error estimates into an ‘Error Kernel’ which is a function of sample parameters only.

Since we have no a priori reason to expect inhomogeneous or anisotropic distribution, the
values of the extrinsic sample parameters of a black hole binary are assumed to be uniformly
distributed – angular location and orientation variables are uniformly distributed on the sky, and
Φ0 is uniformly distributed over the interval [0, 2π] (see Table 1).

The appropriate distribution to use for tc is somewhat more complicated, owing to two primary
considerations. First, astrophysical models of the MBH population are usually expressed in terms
of the number of coalescences per unit time and redshift. Second, the LISA detectability of a
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binary (generally related to SNR) is a monotonically decreasing function of the binary’s tc (all
else being equal) for tc longer than the LISA observation time Tobs. Because of their relatively
stronger signals, binaries coalescing inside or soon after the LISA observation lifetime window are
far more likely to be detected than those with long times to coalescence, so those with long times
to coalescence represent a negligible fraction of the set of detected binaries. In calculating the error
kernel, we found that the number of additional detected sources coalescing in the year following
the end of LISA observation was a negligible fraction of the total, and decided to simply use a 1
year observation time and range of tc for most of our results, multiplying by 3 to get results for
a 3 year observation. We found that the results were not significantly different from, for instance,
using a full 3 year observation time and 4 year range of tc.

While the binary masses are also population parameters, the models we have found in the
literature generally divide their mass spectra into very wide logarithmic bins or give no mass spectra
at all. Since the mass also has a significant effect on the detectability and parameter estimation
error of a source, however, we cannot simply generate masses completely at random or treat them
in some other trivial fashion. We therefore partially marginalize over the mass and attempt to
make a reasonable choice for the mass distribution within the mass bins published in the literature.
This choice of mass distribution is somewhat problematic, since additional information on the mass
distribution is available for some of the models studied (Volonteri et al. (2003), for instance), but not
for others. Even if useful information on the mass distribution were available for all of the models
studied, we prefer not to tailor intra-bin mass distributions to each particular model, because we
want the error kernels to be model-independent. We have decided, for purposes of this paper, to
use a simple uniform logarithmic distribution within each mass bin. While this distribution can
produce significant differences in detection rates for the coarsely-binned models studied here, our
opinion is that it remains a reasonable choice for a model independent intra-bin mass distribution,
and such problems are best solved by increasing the mass resolution of the reported model results.
For similar reasons, we also completely marginalise over mass ratio. We use the three mass ranges
found in Sesana et al. (2007) for our mass bins. The redshift is not marginalised, and separate
Monte Carlo runs are made at uniformly spaced values of z ranging from 0 . . . 20 (see Table 1)
and the statistics are collected as a function of redshift. The ‘population’ parameter space is thus
considered as a collection of two-dimensional volume elements chosen from the three mass bins and
up to 80 bins in redshift.

Within each volume element, values for the marginalised parameters are chosen randomly and
a covariance error analysis is performed, with the probability distribution function (PDF) for each
sample being calculated using Eq. 14. A typical single PDF for one sample is shown in Figure
1a. PDFs from the random sampling of the source parameters are stored and averaged, producing
a PDF for the population parameters corresponding to the source volume element chosen. An
example of a marginalised PDF is shown in Figure 1b. This conditional probability – the probability
of LISA assigning a particular redshift to a source, given that the source parameters are within this
mass and redshift bin – is exactly what is meant by the error kernel in Eq. 15. The marginalised
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error kernel is thus

K(λ̂i|λi) =
1
N

N∑
µ=1

1√
2πσ2

i,µ

exp

[
−
[
λ̂i − λi

]2
2σ2

i,µ

]
, (16)

where σi,µ is the uncertainty in the ith parameter in the µth randomly generated set of source
parameters within the bin. N is the total number of samples generated in the bin.

Although each individual element of the sum is a Gaussian, the process results in a non-
Gaussian distribution since the size of the uncertainty, σi,µ, changes with each new set of sample
parameters. This can be seen by comparing Figures 1a and 1b. The sum of Gaussians, all centred
on the value of the source parameter, has a taller peak and fatter tails than a single Gaussian with
average standard deviation

[∑N
µ=1 σ

2
i,µ

]0.5
/N .

There are two limitations in the way we have generated the error kernel that stem from our
use of the linear least-squares LISA Calculator. First, sources at moderate redshift and large sigma
will have tails that extend to low z, even though a true nearby source would not be confused with
a stronger source at moderate redshift. Production of the true PDF for such a case would involve
a more complete algorithm, avoiding the limitations of linear least-squares analysis and resulting
in a shorter low-z tail. Second, the LISA Calculator, like many least-squares tools, drops an ill-
determined parameter when the information matrix is singular, and gives an inappropriately low
sigma for the remaining parameters. This did occur in a number of the cases we ran and contributed
some anomalously strong peaks to the Monte Carlo averaging.

Our covariance studies found that the fractional uncertainties in the redshifted mass variables
were always much less than the fractional uncertainties in redshift (see figure 2), and are insignificant
compared to our coarse mass binning4. For the purposes of this initial study, we have ignored the
mass errors and considered only the distribution of the detected redshifts. The error kernel is thus

Ki(ẑ, z) =
1
Ni

∑
µi

1√
2πσ2

z,µi

exp
[
−(ẑ − z)2

2σ2
z,µi

]
, (17)

where i corresponds to one of the mass ranges defined in Table 1 and where the sigmas are under-
stood to be the uncertainties determined for each mass bin. Thus, our Monte Carlo study returns
three error kernels at a given redshift, one for each mass range. Each error kernel consists of a set
of PDFs, one PDF for each redshift bin ẑ. These source redshifts are uniformly spaced between
0 and 20 (see figure 1c). Each of these PDFs represent Monte Carlo averages of LISA calculator
Gaussian PDFs, varied over the sample parameters and the mass parameter ranges listed in Table
1. Each error kernel contains about 2 million LISA calculator runs. One may get a feel for the
shape of the entire kernel by looking at the 70% confidence intervals shown in Figure 1d.

4Rest-frame variables with dimensions of mass will have an error that is 100% correlated with the error in the

redshift, a detail we will investigate in future work.
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Fig. 1.— Creating the error kernel for the ‘medium mass’ bin and marginalised parameters described
in Table 1, total masses between 10, 000M� and 100, 000M�. a) The Gaussian PDF implied by
simple RMS error. b) Adding the probability densities resulting from many different marginalised
parameters results in a highly non-normal distribution. Shown here (in solid black) is the dis-
tribution of possible detections given several hundred sources at a redshift of 10 in a mass range
104 : 106M�. Overlaid (in dashes) is the distribution obtained by simply adding the errors in
quadrature. c) The zs = 10 PDF inserted into its place in the error kernel. Source redshifts are
sampled at even redshift intervals of 0.25. d) 70% confidence intervals for LISA determination of
redshift gives an overview of the resulting error kernel.
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4.2. Applying the Error Kernel

Once the error kernel in Eq. 17 has been calculated, it may be applied to any population model
that gives the source coalescence rate in the corresponding mass (i) and redshift bin Γi(z), producing
a prediction for the detected coalescence rate, Γ′i(ẑ). This is accomplished by a straightforward
convolution, which we write in continuum form as

Γ′i(ẑ) =
∫ zmax

0
Γi(z)×Ki(ẑ, z)dz. (18)

As we noted in Eq. 15, some of the binaries sampled will have signal-to-noise ratios too small
to be detectable, regardless of the error in the parameters. Previous analysis by Sesana et al.
(2007) has used the fiducial SNR limit of 5. We chose to use a cutoff at SNR = 8, but the number
of additional sources dropped due to our more conservative cutoff was negligible. The PDFs of
binaries which do not make the SNR cutoff should not be included in the error kernels, but the
proportion of rejected binaries in each source parameter bin must still be taken into account when
the error kernels are applied to the models. Therefore, the error kernels (which would otherwise
normalise to 1) are weighted with the fraction of binaries in each bin, εi(z), having SNR ≥ 8.
Taking this detectability into account, the convolved coalescence rates may be written

Γ′i(ẑ) =
∫ zmax

0
Γi(z)× εi(z)×Ki(ẑ, z)dz. (19)

5. Discriminating Between Population Models

As an illustration of LISA’s ability to discriminate between black hole population models,
we consider four formation models. The models we have chosen for the demonstration – those by
Volonteri et al. (2003), Koushiappas et al. (2004), and two by Begelman et al. (2006), one with ‘high’
feedback and one with ‘low’ feedback, (hereafter VHM, KBD, BVRhf, and BVRlf respectively) –
are variations on the extended Press-Schecter (EPS) formalism by Lacey & Cole (1993) which
assigns a mass-dependent probability to halo mergers. Key variations between these models are
their assumptions for accretion, their binary hardening scenarios, their choices for mass and redshift
of seed formation, and the details of the way they handle MBH binary interactions near the merger.

5.1. Convolving The Models with the LISA Error Kernel

The effect of the error kernel on population model testing can be seen in Figure 3, where we
have taken the VHM model with its three mass bins lumped together, spanning the range from
300 M� to 108M�. The VHM model, with its unique seeding scenario, predicts a large number
of low mass, high redshift binaries. The distribution, shown as the large-amplitude solid curve in
Figure 3, peaks and then rolls off sharply at z ≈ 17. The number of sources in this model that are
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expected to be visible with LISA, using a SNR> 8 cut-off relative to the averaged sensitivity curve
from the SCG, is given by the low-amplitude dotted curve (see Sesana et al. 2007). The dashed
curve represents our results, produced by integrating the model with the kernel, as in Eq. 18. It
gives predictions for the distribution of best-fitting parameters detected by LISA, using a cutoff
at SNR = 8. The obvious point to be made is that the redshift uncertainties smear out a model’s
features, so that, while the VHM model of Figure 3 has a very distinctive shape in its theoretical
incarnation, the distribution that would be observed by LISA will be far less so.

The presence of detected sources at very low (z < 2) redshifts, where the VHM population
model says that there should be very few, is a result of the excessively large low-z tails of the error
kernel discussed in Section 4. The less sharply peaked shape of the error kernel results as compared
with the Sesana results, however, is a consquence of applying detection errors to the redshifts, and
will persist even when more robust error-estimation techniques are employed.

Even with our SNR cutoff, we predict more visible sources (179 vs. 96) than did Sesana et al.
(2007). This is due in part to our error kernel, with its use of the logarithmic mass distributions
within the large mass bins found in the literature, having more massive binaries at high redshift
than is actually the case for the VHM models. We also found a puzzling discrepancy in Sesana
et al. (2007) between their stated event counts ( 250 for the VHM model with a 3 year range of
coalescence times) and the event counts found by integrating the curves in their figure 1 (over 400
for the same case). Since our model event rates were obtained by extracting the curves from that
figure, this discrepancy could also contribute to the differing number of visible sources.

5.2. Discriminating Between Models

For the four models we have chosen to consider as illustrative examples, the results of the
error kernel convolutions are shown in Figure 4. The graph in the upper left is for all masses and
the other three graphs represent the three mass bins we used. We use a modified version of the
Kolmogorov-Smirnov (K-S) test as a measure of separability of the models. Our test differs from
the K-S test in that it is sensitive to differences in the model event rates as well as to the cumulative
distribution functions (CDFs) of samples drawn from the models. For each pair of models shown in
Table 2, we have simulated Monte Carlo draws of the number of sources in each redshift bin, using a
Poisson distribution with probability given by each of the models. One thousand draws were taken
for each model and our test statistic was calculated, finding the greatest deviation between the
cumulative histograms of the two models. The probability that the two draws were from the same
model was then found by Monte Carlo sampling from the null hypothesis that the two samples have
the same CDF and have event counts which are Poisson distributed with identical rate parameters.

Several comparisons were done between the four models chosen from Sesana et al. (2007).
For each comparison, we assumed one year of LISA observations and randomly drew coalescence
parameters using the probability distributions for the two models being compared. In each set of
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draws, our modified K-S statistic, E, was determined and Q, the probability that two such draws
would be produced by the same model, was calculated. The results for each random draw were then
averaged over one thousand such realisations, giving the values displayed in Table 2. In the two
data columns, we show the results from the raw models themselves, with no parameter uncertainties
taken into account, and the results from the models after they have been convolved with the LISA
error kernel. As can be seen in the table, the probability that any of the simulated data sets for
one model might have been produced by one of the other models is small. The models examined
here appear to be easily distinguishable from each other, with the exception of the comparison of
the BVRhf model with the BVRlf model with its average Q value of 0.055 (corresponding to a
rather shaky 94.5% confidence). Even in that case, when we look at the median of Q rather than
its mean, we find it to be 0.012 (98.8% confidence), implying that a BVRlf realization can usually
be distinguished from a BVRhf realization.

6. Conclusion

In this paper, we have constructed an ‘error kernel’ for the LISA detector, using a public-
domain error computation module in a Monte-Carlo data pipeline, marginalising over the ‘sample’
parameters. This result represents a first implementation of a model-level error function for a
gravitational wave observatory, a concept which is central to all types of astronomy. The error
kernel approach introduced here is designed to replace simple SNR cuts as the interface between
population modellers and gravitational wave signal specialists.

The error kernel can be computed as a function of any of the population parameters. We
have chosen to use redshift alone, but total mass or mass ratio could easily have been added.
Once calculated, contours of the error kernel can be used to visualise the relative impact of the
detector noise, analysis technique, and choice of parameter binning on the ability of the detector
to determine the parameters of the sources in the model.

We reiterate that we are limited by working with the models as published, with their emphasis
on redshift as the parameter of interest, rather than having access to more detailed model results
giving populations as functions of masses and redshifts. In particular, while the logarithmic intra-
bin mass distribution is as reasonable a choice as any other, the mass bins published in the literature
are so large that no model-independent distribution can produce an error kernel that is free from
significant bias compared to what would be obtained using the full model results. Furthermore,
with LISA’s exquisite resolution in the redshifted mass variables, the mass distribution is likely to
provide useful astrophysical information in its own right. It is our opinion that a mass resolution
of at least 1 bin per decade over the range 102 . . . 106M� is necessary to meaningfully specify the
mass dependence of these populations. We are currently working toward improved comparisons
using more detailed models.

The demonstration in this paper for four model comparisons looks at the distinguishability of
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Binary Parameter Marginalisation Range(s)

ψ 0 : π
ι 0 : π/2
θ 0 : 2π
φ −π/2 : π/2

Φ0 0 : π
tc 0:4 years
η 0.0025 : 0.25
z Not Marginalised

Mtot

250 : 104M� Low Mass Case
104 : 106M� Medium Mass Case
106 : 108M� High Mass Case

Table 1: This table of parameters lists the completely marginalised case parameters (grey boxes)
along with their ranges and describes the treatment of the three population parameters. Reduced
mass ratio η is averaged, z is held constant and total mass (Mtot) is divided into three units.

Models Compared Before LISA kernel After LISA Kernel
〈E〉 〈Q〉 〈E〉 〈Q〉

VHM - KBD 175.6 < 10−4 90.5 < 10−4

VHM - BVRlf 119.7 < 10−4 49.7 < 10−4

VHM - BVRhf 132.9 < 10−4 58.9 < 1.0× 10−4

BVRhf - BVRlf 14.29 0.021 9.82 0.055

Table 2: Comparisons of models before and after convolution with LISA kernel, for binaries coa-
lescing within the observation window, assuming one year of observation time. The ‘Before LISA’
comparisons effectively assume that all of the sources are detectable and have zero redshift error,
while the ‘After LISA’ comparisons incorporates the effects of both parameter uncertainty and de-
tectability. E is the maximum deviation between the cumulative histograms of random draws from
the two models. Q is the corresponding probability that random fluctuations could be responsible
for the deviation.
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the models based on what might eventually be a catalogue of LISA binaries. Our approach has been
to do a forward modelling from the relevant parameters of the population model to the detected
parameters of sources seen in the LISA data. The fact that those predictions are statistically
different suggests that LISA data will have appreciable model-discriminating power.

When the LISA data are finally available, the analysis will include backward, Bayesian, mod-
elling which calculates and interprets the contribution of each detected source to a likelihood func-
tion for the models being tested. This backward population analysis framework will be an essential
component of future LISA data analysis, and is a natural direction of our future work in the long
term.

The work presented here was supported in part by NASA EPSCoR #437259. The work of SLL
was supported in part by NASA award NNG05GF71G. We extend our thanks to our anonymous
referee, whose comments have been of much help in clarifying portions of this paper.
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Heckman T. M., Hennessy G. S., Ivezić Ž., Knapp G. R., Lamb D. Q., McKay T. A., Munn
J. A., Nash T., Nichol R., Pier J. R., Richards G. T., Schneider D. P., Stoughton C., Szalay
A. S., Thakar A. R., York D. G., 2001, AJ, 122, 2850

Begelman M. C., Volonteri M., Rees M. J., 2006, MNRAS, 370, 289

Bender R., 2005, Growing Black Holes, Merloni A., Nayakshin S., Sunyaev R. A., eds., Springer

Bromm V., Loeb A., 2002, ApJ, 575, 111

Crowder J., Cornish N., 2006, Lisa calculator. http://www.physics.montana.edu/lisa/

lisacalculator/

Crowder J. O., 2006, PhD thesis, Montana State University, United States – Montana
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