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ABSTRACT

A discrete time optimal control forestry model is built and a shooting
method solution algorithm identified. The applicability of the model and
algorithm to public policies that affect forestry resources is demonstrated
in an application of the model to examine the development of wood process-
ing capacity in Southeast Asia. The necessary conditions of the optimal
control model are manipulated to identify a difference equation problem
with initial and terminal conditions. The solution to this boundry value
problem is identified using a search routine that repetitively, numerically
evaluates (shoots) the difference equations. The solution is the tra-

jectory that satisfies the initial and terminal conditions.
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[ntroduction

Many nations that have extensive forest resources use public policy to
achieve specific objectives. Analysis of the achievement of these object-
ives is complicated by the stock-flow characteristics of the resource. In
the near term the forest resources are relatively fixed but over the longer
run the forests are renewable. The policies, therefore, have impacts on
the utilization of current stocks, regeneration of the forest, and the
utilization of these regenerated forests. These topics can be analyzed
both theoretically and numerically using discrete time optimal control
(DTOC) theory. In this paper we introduce a new method to numerically
solve this problem and apply it to the public policy of developing a wood
processing capacity in Southeast Asia.

Traditionally, Southeast Asia has been a source of tropical hardwood
logs which have been processed into lTumber and plywood elsewhere. In this
paper we use a control theory model to examine the effects of the

implementation of a 1og export ban upon the accumulation of domestic

7imp1iéations of such a policy on mill wood prices and harvests are also

examined. Such a policy is of interest because Indonesia, the region's
largest single source of commercial tropical hardwoods, has recently
imposed such an export ban. Other Southeast Asian countries are also
considering similar actions to Timit Tog exports.

The hectares of timber by age group and the stock of plywood produc-
tion capital are state variables in our DTOC model while the annual har-
vests, annual expenditure on variable factors of plywood production and

annual investment in plywood production capital are the control variables.



The first order conditions from the maximum principle are manipulated
to give a set of difference equations which are solved using an iterative
shooting technique. While the DTOC theory has been applied to timber
harvest scheduling problems, these studies use different solution
techniques.

DTOC theory has been applied to the forest utilization problem by
McDonough and Park (1975), Cohan (1982), and Lyon and Sedjo (1983).
McDonough and Park developed an optimal control forestry model and wrote
a gradient method algorithm to implement their model. They implemented
their model using illustrative data originally used by Walker (1971).
Their primary purposes were to show the usefulness of a new computer
language and the usefulness optimal control theory.

David Cohen (1982) developed a detailed theoretical model of forest
management and timber supply using optimal control theory. His model is
solved using a two-step procedure which first selects total harvest
quantities and management activities and }econd selects actual harvests
to minimize costs. The algorithm uses an approach known as generalized
equilibrium modeling which is esgéiffally a form of successive
approximations with relaxiation to solve systems of nonlinear
simultaneous equations.

Lyon and Sedjo (1983) developed and applied a Supply Potential
Optimal Control (SPOC) model which examines the potential long-term
supply of timber harvest using a discrete time optimal control techique.
Their model incorporates features that allows it to deal with the
problems of finding the economically optimal rate of drawdown of
existing old growth stands, as well as to project the optimum harvest

levels after the transition has been completed and a steady state



achieved. The problem was solved by using an optimal control theory
algorithm which uses a gradient technique.

Below the DTOC forestry model that we use will be developed, the
difference equation problem will be identified from the necessary
conditions, our application of the shooting technique described and

finally our application to Southeast Asian forests presented and dis-

cussed.

Model Description

The objective function of this model is the discounted present value
of the stream of net surplus (i.e., consumers' and producers' surplus) for
the plywood industry. The function is maximized subject to a set of
constraints. The constraints include the initial conditions, the laws of
motion for the system, and the production function of plywood. The initial
conditions are hectares of forest by age group and capital stock in the
plywood industry.

~_The laws of motion forwthe,system-inqlude a difference equation that _
controfs the aging of age groups of trees. In addition, because a
selective harvesting scheme is used, the commercial stand of trees is
naturally regenerated from the trees that are left; thus, hectares of trees
harvested in one year become hectares of newly regenerated trees in the
next year. The other law of motion is a difference equation that deter-
mines the evolution of plywood processing capital stock as a function of
depreciation and gross investment.

The state variables are hectares of trees by age group and the capital
stock in the plywood industry, and the control variables are the harvest

levels, the production of plywood, and the level of investment in the

plywood industry in each year.



We structure the problem so that it evolves to the stationary state;
hence, the computer program of optimization first solves for the optimal
length of the rotation period, the mill-wood price of timber, the volumes
of harvested timber, the quantity and price of produced plywood, the level
of capital stock and investment for the plywood industry, and the shadow
value of processing capacity in the stationary state. Then the optimal
time profiles of these same variables are calculated for the transition
period. This is done by solving the difference equation problem identified
by the laws of motion, the first order conditions, the initial conditions,
and the terminal conditions. The initial and terminal conditions are
hectares of forest by age group, and capital stock in the plywood industry
for the initial and terminal years, respectively; where the initial
conditions were determined by past events, and the terminal conditions are
to be determined by the stationary state solution which was mentioned

above.

The role of discrete optimal control theory lies in the identification

i e SRS .

of the Taws of motion and the equations and equalities for the necessary
conditions. These are used to identify the difference equation problem

that is iteratively solved to numerically solve the problem.

Model Formulation

The model used is a modification of the Supply Potential Optimal
Control model developed by Lyon and Sedjo (1983), which examines the
potential long-term supply of timber harvest. The new model includes an
activity that accounts for developing the plywood industry in the region
over time, and a different solution technique.

The net surplus in year j can be written as



L;

Sj = / D(n)dn - Cj (j =0,1,. . .,J-1)

(o}

where Lj is the quantity of plywood produced in year j, and is a function
of capital stock, timber production, and a composite input; D(Lj) is the
inverse form of the demand function for plywood in year j; and Cj is the

total cost (expenditures) in year j.

The total costs are the sum of harvesting and transportation cost
(CH), and plywood production expenditures (CL). Harvesting and trans-

portation costs in year j depend on the total volume harvested (Tj),

CHj = f(Tj).

The plywood production expenditures in year j can be written as

CLj =%+ 35

where Vj is both the expenditure on and the level of the composite input in
plywood production. This equality of expenditure and level exists because
we scale the composite input so that=its price is one dollar. In addition,
Yj is thé level of investment in the plywood industry. It is a scalar
control variable.

Xj is a state vector of hectares of trees in different age groups.
Its elements X indicate the hectares of trees in year j that were
regenerated i years ago. For notational simplification, call Xqj the
hectares of trees in age group i in year j. The length of the x vector is
M with M equal to or greater than one plus the longest rotation period in
any year. In addition, let Xj be a diagonal matrix of the elements of Xj+

The control variable of harvesting timber is Ujj which denotes the

portion of age group i harvested in year j. The control vector of these

elements is denoted by uje



In this model, the yield of merchantable volume of timber in cubic
meters per hectare is a function of age of tree. The vector of yield by

age is denoted as t.

Using all these definitions, we can write the equation for the volume

of timber produced in year j as

Tj = quJ-t

The quantity of plywood produced in year j can be written as
13
Lj = m1n[g(kj,vj),-g—]

~ a l-a
where g(kj,vj) = Akj vj

> Vj is the Tevel of the composite input, and kj
is the total capital stock for the plywood industry in year j. The
selection of this production function and the calculation of the parameters
in this composite fixed-variable proportion production function will be

described in the application section. The maximization problem can be

writtenlas — —~
Maximize
J-1 " Mg
SolXgskgsUsT,sV,y] = 5o + psy + oo + pY 4551 + pYSylxy,ky] (1)
subject to a set of constraints
(a) the Taws of motion
XJ'+1 = (A + BUJ')Xj (J =10 e = .,J—l) (2)
kJ-+1 = (1 -G)kj + 'yj (j = 0,1,. . .,J—l) (3)

(b) the composite fixed-variable proportion production function of

plywood

13
L = minLg(kj,v;), E_] (4)
~ a l-a
where g(kj,VJ) = A kj vj



The production function can be written as a pair of constraints

T.

—J-‘ LJ'_>_0. or

b

Tj i bLJ' b 0, and (4b)
~ a l-a

A kJ VJ' = LJ > 0. (4c)

(c) the additional constraints are

e>u; >0 (5a)
kj 2 0 (sb)
ymx > y; > 0 (5¢)

(5a) states that the portions of hectares harvested are constrained to be
nonnegative and less than or equal to one, (5b) shows that the capital
stock is constrained to be nonnegative, and (5c) states that investments in

the plywood industry are constrained t@ be nonnegative and less than

maximum gross investment (ymx). ymx is included so that the growth rate of

capital stock in the p]ywood'indh;fry méy be constrained.
In the above statement of the problem, p is the discount factor, which

is equal to exp(-r), where r is the market rate of interest; 6 is the

depreciation rate of capital in the plywood industry. S,(*) states that

the present value of net surplus stream at time zero depends upon the
initial conditions (xo,ko) and the time paths for the control variables
(u,T,v,y). The super asterisk is used to indicate optimal quantities; thus
the constrained solution at time zero would be denoted by Sg(xo,ko), and
the term SS(xJ,kJ) is an optimal terminal value function and can be viewed

* - 2w
as SO was. In addition,
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where A, B, and U are M-square matrices, Uj is a diagonal matrix using the
elements of uje

The product ij moves Xjj to Xi+j,j+1° Each year each age group
becomes older by one year. The product BU; x5 subtracts the area harvested
from the redefined quantities, and places them in the one-year old category
(newly regenerated category).

In each time period, the following Hamiltonian is maximized! with
respect to Ujs ¥j» and Vj subject to the éonstraints (equations 4b, 4c, 5a,
5b, and 5c). e

The Hamiltonian for year j is

L
Hy =J ID(n)dn - £(Tj) - (vj + yj) *+ ajerL(A + BUj)x;]

* V50001 -8 )k5 + y5] (8a)
where
*
dS;(x;,k:)
= g I TR |
dXJ'

using the envelope theorem we get

*  * * *
: o[-f (TJ')UJ't + (A + BUJ') )‘J"*l +¢jthJ
*

p Lo -f'(T3)IU5t + (A + BU3) '2j4p _' (9a)



In addition,

which by the envelope theorem is

1 1-a
J

~a—
Vi = e[njaAky vy o+ (1 -8 )yj41] (9b)

where ¢ is the Langrangean multiplier for equation (4b) and is the shadow
value of timber delivered at the processing mill (mill-wood price), and n
is the Langrangean multiplier for equation (4c) and is the shadow value of
the processing capacity. The derivatives with respect to a vector are
gradient vectors. The Aj and the wj are costate variables. They identify
the shadow values of the hectares of the forest in each age group, and the
capital stock of the plywood industry, reépective]y, in year j.
Since the Hami];onian is maximizedjin year J over uj, ¥j, Lj,iand Vj

subject to equations (4b-5c), the Langrangean function and the Kuhn-Tucker

conditions of this problem are relevant. These are

a l-a

Lj = Hj + ¢’J'(TJ' - bLJ') + ”j(Aijj - LJ) + EJ(e - UJ)
+ Y5(ymx - yj)
Lj 1 1
= S D(n)dn - f(uJ-XJ-t) - (VJ * yJ) + Aj+1[(A =+ BUJ')XJ']
0
5 “a l-a
+ ViDL -8 Dky + y] + 05(T5 - bLy) +nj(Akjvy - L)

t E5(e - uj) + vj(ymx - yj) (10)
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de ; :
B g T I LIRS
duJ-
= [¢J - f'(TJ')]XJ't + XJB'XJ+1 - E;J <0 (11a)
3L ;
(—1) uj5 =0 (11b)
auij
3L
_‘]_=D(LJ-) - ¢5b-nj <0 (1lc)
aLJ-
ol ;
(—)L; =0 (11d)
BLJ'
3L
e wygy - YO (1le)
9Yj
oL ;
., | yj= 0 (11F)
3Yj i
oL 3 . -a
23 o1 wng(1 - a)Akgy; <O (119)
3Vj
3L ;
(—)v; = 0 (11h)
3Vj
3L ;
—J= 15 -bLj 2 0 (111)
3¢j
L 3
i
(g5 =0 (113)
8¢j
aLj ~ 1-
I my;t- 20 . (11k)
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(E;—Jfg =0 (111)
")
aLJ
——=e-u;>0 (11m)
Bﬁj
BLJ'
—)&; =0 (11n)
3£j
BLJ
o = ymx - y; 20 (110)
J
BLJ
5;—)Yj =0 (11p)
J

These Kuhn-Tucker conditions, the laws of motion for the state variables
(equations 2 and 3), and the laws of mdﬁion for the costate variables

(equations 9a and 9b) identify the two-point boundary value problem to be

e
B~ > T N

solved.

The Difference Equation Problem

The Difference Equations

The difference equations to be solved are Equations (2), (3), (9a),
(9b), and an equation derived from (11a) and (11b). Equations (2) and (3)
are the laws of motion for hectares of forest by age group and capital
stock for the plywood industry, respectively. These have initial
conditions dictated by the starting point of the problem. Equations (9a)
and (9b) are the laws of motion of the costate variables (shadow values of

the state variables). Note that these are backward moving difference
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equations, with the calculations beginning in the terminal time period, J,
and move backward through time to the first time period. These have
terminal conditions identified by the stationary state because we build
this in as the end point of the evolution of the system.

Manipulation of Equations (1la) and (11b) yield a difference equation
for the net price or stumpage price (shadow value) of timber. This
difference equation will have a terminal condition identified by the
stationary state. We use a shooting technique to select the initial value
of the stumpage price of timber such that equations (2), (3), (9a), (9b),
(11c) through (1lp) and the initial and terminal conditions are
simultaneously satisfied.

To identify the difference equation for the stumpage price of timber,
write the elements of equation (1la) as

PjXijti * Xi5(A1, 41 - Aj+1,j+1) - & <0 (12)
where

Pj = ¢5 - f'(Tj)
with Pj the stumpage price of timber. It is equal to the shadow value of
timber delivered at the processing mill (¢j) minus the marginal harvesting
and transportation cost of timber [f%Tj)]. With a concave yield function
the oldest trees will be harvested first; thus there will be a youngest age
group of trees harvested in year j. Call it m.

In equation (12) *1,j+1 is the shadow value of trees that are 1 year
old in year j + 1, i.e., trees regenerated in year j. Examination of
equation (9&) indicates that it is the discounted value of the actual
harvest of these trees in the future. The costate variable A4 j41 1s the

discounted value of age group i from next year. For age group m it can be

written (see Appendix A for details).

A1, 41 = [A1,5+2 * P+l tmerd
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which states that the opportunity cost of harvesting m year old trees in
year Jj is the discounted value of the trees that could be regenerated a
year in the future and the stumpage price of timber next year times the
volume of timber on that hectare one year in the future. From this
equation and equation (12) we can derive

Pj+1 = (Pjtm * A1 j+1 - oML, 42 - “mj/*mj)/otmel (12a)

which is the other difference equation.

Terminal Conditions

We assume that the system evolves to the stationary state (SS) because
this state is as reasonable as any other terminal state and it can be
identified. We define the SS to have the characteristic that all years are
alike. The solution for the SS is found by first solving the differential
equations for the costate variables where all years are alike then we
simultaneously solve the Taws of motion for the state variables and the

first order conditions for the control variables. For details see Appendix

B L ~ - — e e e -

The solution to the SS problem identifies the terminal conditions for

all of the difference equations.

Solution Algorithm

We find the "solution" time paths for the control, state, and costate
variables using a three-step procedure. The first finds an initial
feasible time path of control and state varieables but not the costate
variables, which are calculated using a backward moving difference equation
that requires a feasible time path of the state variables. This is

achieved by solving a difference equation problem that excludes the costate
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variables. This problem includes in the place of equation (l12a) the

difference equation

pjtm
Pj+¢1 = ; (13)

G|

which is derived from equation (12) by ignoring the shadow value of
hectares of trees harvested in the future. In addition, the lTaws of motion
for the costate variables are dropped, and capital is held at its
stationary state value. The adjusted system of equations is used to
determine the initial time path of the state and control variables from the
initial conditions to a Tong-run equilibrium. This difference equation
problem is solved using a shooting method which is described below.

Using the time profiles of the state variables, the next step is to
calculate the costate variables moving from long-run equilibrium backward
to year one by using the backward moving laws of motion, equations (9a) and
(9b) .

Based on the results of the second step, we solve, using a shooting
method, the difference equations (12a), (2), and (3) subject to the
necessary conditions, equations (llc) through (1l1p), to determine the new
time profiles of state and control variables from the initial conditions to
a long-run equilibrium. These last two steps, which calculate the costate
variables in the second step and determine the new time profiles of state
and control variables in the third step, can be repeated until a
satisfactory "solution" is determined.

The shooting method is a search for a particular element of a set of
solutions to the difference equations and initial conditions. This element

is the one that satisfies the terminal conditions.
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The first step is to arbitrarily select the mill-wood or stumpage
price of timber at the first time period. The mathematical relationships
given by the first order conditions, equations (1l1c) through (11p), are
then used to calculate the static market clearing values of the plywood
produced, the composite input for the plywood industry, timber harvested,
the price of plywood, and the shadow value of the processing capacity.
This static problem in a particular year can be solved by recognizing the
plywood demand function and the plywood production function. Based on the
information of the forest initial conditions and the timber yield function,
we harvest the oldest age group of trees first, and determine the hectares
of trees harvested and the youngest age group harvested. Having these
results, we can iteratively solve the difference equation problem.
Evaluation of the difference equations yields calculations of the hectares
of trees by age group, including those in the newly regenerated class and
the capital stock in the plywood industry from one time period to the next.
This process of statically solving the first order conditions and
dynamically evaluating the difference equations yields a time profile of
price. The process is iterated until a particular time period when we
realize that the price in the initial time period is too lTow or too high,
or until the time horizon is reached. If the time profile of price over
(under) utilizes the forest resources, the price in the initial time period
was too low (high). In this case, the process needs to be repeated. A new
price in the initial time period is calculated by selecting the midpoint
between the Towest price that is known to be high, and the highest price
that is known to be low.

The iterative process stops when the difference between the two levels
of price which bracket the optimum Tevel becomes sufficiently small that

continued iterations yield no significant information.
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Figure 1 shows the flow diagram of the shooting method implemented in

this model.

Application to Southeast Asian Forests

We applied the model and algorithm to the forests of Southeast Asia
assuming a log export ban that is completely effective. All processing is
assumed to take the form of plywood production. We report below the
resulting time profiles of some of the variables for two scenarios. We
report time profiles for plywood production capital stock, the mill-wood
price of timber and volume of timber harvested. These variables allows one
to monitor an important characteristic of the plywood industry, the value
of units of the base resource, timber, and the harvests of this resource.

The scenarios differ only with respect to the allowed rate of change
of the capital stock. 1In the constrajned capital, CC, scenario we
constrain the growth rate of capital, and in the perfectly mobile capital,
»PﬂC, scenario we allow instantaneous capital flows into or out of the
region. .The model identifies potential values of the variables that would
be forthcoming from price-taker firms; thus, the scenarios identify
potential time paths for different systems of constraints. Even though
these scenarios probably are not precisely correct, they serve to
illustrate the impacts upon the potential harvests of policies that affect
the mobility of plywood production resources. Policies that adversely
affect this mobility such as tarrifs, taxes, and the security of capital

will yield predictions Tike those of the CC scenario.

Technical Data

The forests included are those of Malaysia (Peninsular Malaya,

Sarawak, and Sabah), the Philippines (Luzon, Visayas, Mindanao, and
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Palawan), and Indonesia (Sumatra and Kalimantan). These forests supply a
large part, 80 percent in 1978, of the world's harvest of tropical
hardwood. The harvesting is carried out using a selective cutting system
where only trees over 50 centemeters in diameter at breast height are
harvested. The remaining trees of the commercial species are left to grow
and generate the subsequent harvest.

The yield function incorporated in the model is

t = ao exp(bo/age?)
where age is length of time since the last cutting, and exp( ) is the
natural exponential function. The exponential function was selected
because it fits yield data well [Kao and Brodie (1980) and Lyon and Sedjo
(1983)]. The parameters, ao and bo were selected to give an optimum
rotation of 40 years and to yield a mean annual increment one cubic meter
per hectare at age 40. According to Keil (1978) and Ross (1983), the
rotatioﬁ period used in these forests is 35 years with a yield of one to
two cubic meters per hectare per year. The numbers selected are on the
conservative side. The values used are ao, 108.72, and bo, -1600.

The inventory data for hectares of trees by age group were constructed
from inventory data reported by FAO (1981) for total hectares of forests
and logged-over hectares of forests and from harvest data reported by FAOQ
(1945-1981). We assumed the logged-over hectares were distributed through
time in the same way as were the harvesters.

The parameters of the plywood production function, equation (4), were
calculated from data reported by Takeuchi (1982). The input-output ratio,
b, was calculated from the average wood recovery rate for the region, and
the exponents in the Cobb-Douglas production function were calculated using
the fact that these exponents are factor shares in total costs of

processing. The values used are b, 2.01, A, 0.0073, and a, 0.2.
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For the harvesting and transportation cost functions we assumed
constant marginal costs at $20 and $5 per cubic meter, respectively. Keil
(1978) reported logging costs of between $25 and $28 per cubic meter of
logs harvested.

We assumed a linear demand function for plywood with parameters that
yielded prices in the range $245 to $318 per cubic meter of plywood and had
an elasticity of -2.34 at the stationary state solution. The price range
is consistent with the prices reported by Takenchi (1982) which range from
$256 to $290. The resulting mill-wood price per cubic meter of timber
ranged from $42 to $73 while Takenchi (1982) reported a range of $45 to
$80.

We report the results for a 4 percent real interest rate; however, we
also used a 6 percent interest rate. As expected the higher interest rate
with its associated higher implicit user cost of capital yielded a lower
level of capital stock in each time period. The relative shapes of the
time profiles of the variables, however, were not altered by the choice of
the infe?est rate; thus, either interest rate could be used to make the

points we make below.

The Time Profiles of the Variables

Application of the model yielded time profiles for the control, state
and costate variables in the model. In executing the algorithm a time
horizon of 200 years was used; however we report only the first 100 years.
Figures 2, 3, and 4 show the time profiles of plywood processing capital
stock, the mill-wood price of timber, and the volume of timber harvested,
respectively.

To facilitate the dicussion of the time profiles, we divide the 100

year reported time horizon into three consecutive subperiods with dividing
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years of 23 and 70. The first subperiod is the most interesting of the
three with the shape of the time profiles being dominated by the harvesting
of the old-growth forest and the capital stock constraint. This constraint
affects capital accumulation, the harvests and the value of the forests.
During the second subperiod all three of the time profiles or both
scenarios have a damping oscillatory characteristic, and after about year
70 all of the time profiles continue in an oscillatory version of the
stationary state. The oscillations are caused by the discrete nature of
both the difference equations and the variables.

The perfectly mobile capital (PMC) scenario has an immediate jump in
the capital stock followed by a declining time path through the first
subperiod. The constrained capital (CC) scenario however, has capital
increasing rapidly during the first eleven years then decreasing for the
remainder of the first subperiod. With the completely effective log export
ban and a Targe mature forest of tropical hardwood the shadow value of

plywood production capital is high, and in both scenarios the capital stock

““increases rapidly.

The time profiles of the mill-wood price of timber are dominated by
the old growth forests. During the first subperiod the mill-wood price
rises rapidly. This rise is due to the role of the mill-wood price as
rationer of the inventory of mature timber. For the harvests of mature
timber to be spread over time the increase in mill-wood price must be
sufficiently large to reward the owner to hold the inventory. The two
scenarios have the same stationary state mill-wood price; however, during
subperiods 1 and 2 the PMC scenario has the higher mill-wood price
indicating that the value of the base resource is higher for this scenario.

The value of the timber is adversely affected by policies that impede the

mobility of capital.
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The time profiles of timber harvested have the same general shape as
those for capital for the respective scenarios. The harvests are initially
higher fof the PMC scenario; however, by year eleven the harvests from the
CC scenario have surpassed those of the PMC scenario. The harvest levels
evolve along oscillatory time paths to a common stationary state level.
The cumulative harvests over, say, the first 60 years are the same for the
two scenarios. Only the timing is different with those for the PMC

scenario yielding the higher value of timber and higher present value of

net surplus.

Summary

A shooting method for solving discrete time optimal control forestry
problems has been identified and demonstrated. The application analyzed
effects of a log export ban in Southeast Asia to demonstrate the

applicability of the model and algorithm to the analysis of public policy

analysis.

The maximum principle of optimal control theory was used to identify a
difference equation problem to be solved to identify the optimal time
profiles of the state variables, hectares of trees by age group and plywood
production capital stock, and the control variables, timber harvested,
gross investment in the plywood industry, and the level of the composite
input. We find the solution time profiles using a three-step procedure.
The first finds an initial feasible time path for the control and state
variables Second, the costate variables are calculated using backward
moving difference equations that require a feasible path of the state
variables. Third, a solution to the boundary value problem is found by
repetitively evaluating (shooting) the difference equations until a

trajectory that satisfies the initial and terminal conditions is found.
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The model results indicate the optimum rates of capital accumulation
under constrained and nonconstrained conditions. The results indicate that
different time paths of capital accumulation can have profound effects on
the levels of harvest and mill-wood prices in the near term. However, in

the longer term, the two systems converge.
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The Laws of Motion for A, ¥ and P

If we define

aj = [¢J -f (TJ')]UJ't (A1)
then from equation (9a) we can write
ds,
AJ = p — (A2a)
dXJ
)\J- = p[aj + (A + BUj)l)‘j‘f'l] (AZb)
A = plog + p(A + BUJ)'ap + p2(A + BUJ)' (A + BUy) ‘a3 +
oo + 0J72(A + BU)' (A + BUp)' .. (A +BUjp)'agq +
J-1 dS
il — e W3 BUI)'(A + BUz)' eee (A + BUJ_I)(T)] (A2c)
X
J

Since the oldest trees will be harvested first, there will be at

most for each year one Ui j that is not either zero or one. Let m be age

of the youngest age group harvested in year j and let ujj = 1 for i > m.

This explains that we are harvesting in year j all existing trees for

which the age is greater than m. We can express uj as
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us = umj (A3a)

and (A + BUj)' as

— pes

g 1 0 D 0
S ¢ S ! 0
0 Mo b SR S
(A = BUJ)' = Umj 0 . . . ° (I—Umj) . o ° . . (A3b)
1
0
1 -0 . 0 O 0




Thus,
0 B 0
0 0
Gj = am’j = Ebj = fl(Tj)]Um+1’jtm =
am+, j ;- £'(T5)Itpe
ay_j o - f'(T5) 1ty
B - L 2

pjumjt

Pjtm+l

Pjtm

-
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- (A3c)

-

where Pj is called net price or stumpage price (shadow value) of timber.

Using equations (A2b), (A3b), and (A3c) we get

Xij - pAi+1,j+1 for i <m

(Ada)

*

since for i < m the upper partition of matrices aj and (A + BUj) are 0

and 1,.respective1y.

mj = PLOAL, 41 * Pitmumj * (1 - Umj)Amer, j+1]
Xij = p[ll’j+1 + pjti] for i > m

since for i > m, Ujj = i

From equation (9b), if we define

a-1 1-a
Bj = NjahAkj v

for i

=m (Adb)

(Adc)



where Bj is the value of marginal product of capital,

29

. is the shadow

a-1 1-
value of the plywood processing capacity, and aAkj Vi {2 the marginal

product of capital, then equation (9b) can be written as

dsS,
V) = p —
dky
Vi = olsj + (1 -6)%41]

W = olB) + o(1 - 6)Bp *+ p2(1 - 6)%63 + ... +
dS,

p972(1 - §)9-2g)_; + o971 (1 - §)9-1()]
ko

Since the element

QO

~a-1 1-a
jaAk : VJ‘

™
(78
]
[

~a-1 1-a
Y = p[fﬁaAkj vi * (1 - 5)¢5+1]

di;

(A6a)

(A6b)

(A6c)

(A7)

Usiﬁé the same techniques, the¢e1ements of._g_in equation (11la)

dUJ'

can be derived as

[¢J - f (Tj)]th + XJB Aj*‘l - EJ <0



Since

then

M

XjBlj+1 =

ij .
-X1j 0
0 —ij .

le

ij

M-1.7

XM, J

-le
0

XMQJ

—XZJ

-1 0 .
0o -1
g —t
0
-XM—lsj
0

I

. 0

, =l

. 0

F Al,j+1
A2,j+1
AM, j+1

30



31

xjiag,gen) - Xije,ja) [ [0, - Agg0)
x23(A1,j+1) - x23(x3,5+1) x2i(A1, j+1 - A3,j+1)
xo1,5(A1,5+1) = xM-1,5(Am,5+1) xM-1,3(A1, 541 - A, j+1)
xM,j(A1,5+1) xm,j(A1,j+1)
Therefore, the elements in equation (11a) can be written as
pjxijt + xij(A1, 341 = Mi+1,j+1) - & £ 0 (A8)

Substituting equation (A4c) into (A8), letting i equal m, and solveing

for pj+1 yields

Pi+1 = (Pjtm * A1, j+1 = PAL,§+2 ~ Emj/ *mj)/Ptm+1 (A8a)
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Appendix B

Terminal Conditions

To identify the terminal conditions we solve for the solution
values of the control variables in the stationary state. To achieve
this we let all years of the current analysis be in the stationary
state; and to prevent further complications of the notation, we let the

time periods range from 1 to J as we did above.
In the stationary state we let m be the age of the youngest age

group harvested and Tlet u;j = 1 where the asterisk indicates solution

value. The relevant equations for this state can be simplified since

* * * - s -
ug = Uj4l> @5 = @j4]s yg = y§+1, and 83 = 33+1 for all j and j+1 in the

stationary state.

Equation (14c) can be modified as
b 2 B 2
A1 = oI + o(A +BU;j)" +p° (A +BU;)" <+

92{(A +vBU;)'}3-+ cevee. + 972 (A + BU;)t J-Zjaj
*
dsS
+ olpd"1{(A + Bu;)'}d-l(_")] (B1)
dXJ

where years 1 through J are assumed to be in the stationary state.

Since 0 < p <1 and J is very large, we can ignore the lTast term of

equation (B1).
*
i * \J—]. % , J_ldSJﬁ )
Since up; = 1, and alo¥ "+ (A + BUJ) } ——J =0, then equation (B1)
dXJ

can be written as
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(mth row) (B2)

p(a - ”“mj + pay j

— oy

where op; are defined in equation (A3c), and

A=1+ M+ p2Mmy .

Thus if m and y* were known, A could be calculated.
In the stationary state, equation (A6c) can be modified as
by = o[l +p(1-6) +p2(1-6)2+p3(1-6)3+ ...

*
: dSJ
p9-2(1 - G)J’ZJBJ + o[pd-1(1 - 5)9-1] 5 (B3)

As in the case above, the last term will be dropped; therefore, then we

can write equation (B3) as

01 = o[l + p(1 - 6) + p2(1 -8)2 + ...+ o972(1 - §)J-2]g, (84)

If we define

1+ p(1 -6) +p2(1 -8)2+ 31 -8)3+ ...,

te)
1}

we get

1 -p(1-35)
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Equation (B4) becomes

V. = P 8 : BS
bl oe1-8) 9 8%

Y1 can be calculated if m and y* were known.

We now examine the determination of m by combining equations (A8),
*
(B2) and (A3c), where Unj = 1 implying& = 0. Thus, we get from equation
(A8)

PjXijt + Xi5(A1 541 = Aj41,5+41) £ O

We assume that Xij > 0 for i equal m and m+l, and, substituting the

values of Aj from equation (B2), we get

pjtm + [pmAamj - p(a - l)amj - pam+1,j] <0

substituting the values of @; from equation (A3c)

Pjtm * APty - p(8 - 1)pjty - opjtmsy £ O

pe tmtl
Pjtmll + o"a - p(a - 1) - p——1<0 (B6)
. tm
and
m+1 Em2
Pjtmerll + 0™ 8 - p(a-1) - p——]>0
S|

This last equation dictates that we will harvest all hectares in age

group m+l.

We can calculate k* and v* using equations (lle), (BS), (A5),

(11g), and the results of equation (B6).

We now turn our attention to k* and v* which are calculated using

the stationary state rotation period (m). Using the stationary state
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rotation period (m) calculated from equation (B6), we can calculate the

volume of timber produced in the stationary state (TS) from

- Total Hectares . e (B7)
m

T

S

The volume of plywood produced in the stationary state (Ls) can be
calculated using modified equation (4b)

Tg
[ Sade (B7a)
b

From equation (1lle)

Vi -1<0

substitute the values of ¥, from equation (B5)

P BJ—].iO
1 -p(1 -6)

and then substitute the values of B from equation (A5) to get

~a-11-
: njakkj vj 1-0, (B8)
1" --p(1-=67) -

From equation (11g)

~a -a
nj(l - a)Akjvj - 1 =0, (B9)

and equation (11k), where we substitute the value of plywood produced in

the stationary state, we get

~a l-a
Akjvj “ fg =0 (B10)
The solution values of v, k, and n in the stationary state can be solved

using equations (B8), (B9), and (B10).
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Finally, we can calculate the level of investment in the stationary
state (y*) by using equation (3)

k’+1 = (1 -d)k\j +_yJ

J
then we get
y* =6k*

It is obvious that the gross investment is equal to the

depreciation in the stationary state.

From equation (B10)

~a l-a
AV Lg = 0
we get
L
ka = >
Avi-a
J
L L ]
k= [ Jl/a = S ya-131/2 . (Bl1a)
Avl-a A
J

Substitute the value of k from equation (Blla) into equation (B9)

B Ls -a
nj(l - a)A - . Vi - 1 =0
Avi-a

J

. _ - = y.v.
“J(l a)lg v Vivj

Vj = nj(l = a)LS (Bllb)

Substitute the value of k from equation (Blla) into equation (B8)
L. a-1ll-a

18 vy <1=0

p jaﬂ[
T-p1-6) 7y 1o
J
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l1-p+p§

a=1-;
¥ = el Tiit ] A L (Bllc)
J J S
l-p+p6§

Equating equations (Bllb) and (Bllc)

i
a-1_a-1
j(l - a)LS = LB nja] A LS'
1 -p+p6 .
=3 I W TR e
| 1 a-1 a-1_a-1
nj = {l-a)"* [ —P8 _—2)=a _A ik
1 -p+p6§
a-1 a
n - (1-a) l-pted (B11d)
A ap

Substitute equation (Bl1ld) to equation (B1llb)

= {l- EVH (l-p* Pé)am - a)L

Vi =
J ap S
a al
vy = (1 - a) (l_:_a_i_eg) ..
ap A (Blle)
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Substitute equation (Blle) to equation (Blla)

1
L a a 3
kj = [—([1zal [1-p* pd) )a-l]
A A ap
a-1 5 a-1 L
kj=(1-a) [L-e*teoy 2 (B11f)
ap A

Therefore, we can calculate | PP kg, Vg, and ng in the

S»
stationary state.

Using the demand function for plywood, we can calculate the price
of plywood in the stationary state. Then using equation (11c), we can

calculate the shadow value of timber delievered at the processing mill

(mill-wood price) in the stationary state (¢g)

e D(LS) ) :E
b

b

(B12)
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Footnotes

1In general, the necessary conditions require only that the
Hamiltonian be stationary (Jackson and Horn 1964, p. 390); however, a
stationary value will be a maximum value subject to the constraints
because the constraints are linear and equation (8a) is quasi-concave at
a stationary point, i.e., at a point where the quasi-saddle-point
conditions of the associated Lagrangean function are satisfied.
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