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ABSTRACT 

A discrete time optimal control forestry model is built and a shooting 

method solution algorithm identified. The appl icabil ity of the model and 

algorithm to public policies that affect forestry resources is demonstrated 

in an application of the model to examine the development of wood process

ing capacity in Southeast Asia. The necessary conditions of the optimal 

control model are manipulated to identify a difference equation problem 

with initial and terminal conditions. The solution to this boundry value 

problem is identified using a search routine that repetitively, numerically 

evaluates (shoots) the difference equations. The solution is the tra

jectory that satisfies the initial and term{nal conditions. 



Introduction 

Many nations that have extensive forest resources use public policy to 

achieve specific objectives. Analysis of the achievement of these object

ives is complicated by the stock-flow characteristics of the resource. In 

the near term the forest resources are relatively fixed but over the longer 

run the forests are renewable. The pol icies, therefore, have impacts on 

the utilization of current stocks, regeneration of the forest, and the 

util ization of these regenerated forests. These topics can be analyzed 

both theoretically and numerically using discrete time optimal control 

(DTOC) theory. In this paper we introduce a new method to numerically 

solve this problem and apply it to the public policy of developing a wood 

processing capacity in Southeast Asia. 

Traditionally, Southeast Asia has been a source of tropical hardwood 

logs which have been processed into lumber and plywood elsewhere. In this 

paper we use a control theory model to examine the effects of the 

implementation of a log export ban upon the accumulation of domestic 

processing capital stock (plywood production capacity). The intertempor~l 
-sF-__ _ _ ________ -_- -------- . --- - --- - ---- - - -. ------.- - ---:--. 

imp-1 icatio-ns of such a pol icy on mi 11 wood prices and harvests are al so 

examined. Such a policy is of interest because Indonesia, the region's 

largest single source of commercial tropical hardwoods, has recently 

imposed such an export ban. Other Southeast Asian countries are also 

considering similar actions to limit log exports. 

The hectares of timber by age group and the stock of plywood produc-

tion capital are state variables in our DTOC model while the annual har-

vests, annual expenditure on variable factors of plywood production and 

annual investment in plywood production capital are the control variables. 
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The first order conditions from the maximum principle are manipulated 

to give a set of difference equations which are solved using an iterative 

shooting technique. While the DTOC theory has been applied to timber 

harvest scheduling problems, these studies use different solution 

techniques. 

DTOC theory has been app 1 i ed to the forest ut i 1 i zat ion prob 1 em by 

McDonough and Park (1975), Cohan (1982), and Lyon and Sedjo (1983). 

McDonough and Park developed an optimal control forestry model and wrote 

a gradient method algorithm to implement their model. They implemented 

their model using illustrative data originally used by Walker (1971). 

Thei r pri mary purposes were to show the useful ness of a new computer 

language and the usefulness optimal control theory. 

David tohen (1982) developed a detailed theoretical model of forest 

management and timber supp ly us i ng opt i rna 1 contro 1 theory. Hi s model is 

solved using a two-step procedure which first sele~ts total harvest 

quantities and management activities and "second selects actual harvests 

to minimize costs. The algorithm uses an approach known as generalized 
~ - - - --- -"--- -. 

e q u"i 1 i b r i urn mod e 1 fn g- w h i chi s e sse n t i all y a for m 0 f s u c c e s s i ve 

approximations with relaxiation to solve systems of nonlinear 

simultaneous equations. 

Lyon and Sedjo (1983) developed and applied a Supply Potential 

Optimal Control (SPOC) model which examines the potential long-term 

supply of timber harvest using a discrete time optimal control techique. 

Their model incorporates features that allows it to deal with the 

problems of finding the economically optimal rate of drawdown of 

existing old growth stands, as well as to project the optimum harvest 

levels after the transition has been completed and a steady state 



achieved. The problem was solved by using an optimal control theory 

algorithm which uses a gradient technique. 

Below the DTOC forestry model that we use will be developed, the 

difference equation problem will be identified from the necessary 

conditions, our application of the shooting technique described and 

finally our application to Southeast Asian forests presented and dis

cussed. 

Model Description 

3 

The obj ect i ve funct i on of th i s model is the di scounted present val ue 

of the stream of net surpl us (i .e., consumers' and producers' surpl us) for 

the plywood industry. The function is maximized subject to a set of 

constraints. The constraints include the initial conditions, the laws of 

motion for the system, and the production function of plywood. The initial 

conditions are hectares of forest by ag~ group and capital stock in the 

plywood industry • 

. ______ .- . __ .The _.Jaws .. _of _- J1lotion for· .... the __ system <.~ i.ncJ ude a difference equatio.n that .~_. __ _ 

controls the aging of age groups of trees. In addition, because a 

selective harvesting scheme is used, the commercial stand of trees is 

naturally regenerated from the trees that are left; thus, hectares of trees 

harvested in one year become hectares of newly regenerated trees in the 

next year. The other 1 aw of mot i on is a di fference equat i on that deter

mines the evolution of plywood processing capital stock as a function of 

depreciation and gross investment. 

The state variables are hectares of trees by age group and the capital 

stock in the plywood industry, and the control variables are the harvest 

levels, the production of plywood, and the level of investment in the 

plywood industry in each year. 
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We structure the problem so that it evolves to the stationary state; 

hence, the computer program of optimization first solves for the optimal 

length of the rotation period, the mill-wood price of timber, the volumes 

of harvested timber, the quantity and price of produced plywood, the level 

of capital stock and investment for the plywood industry, and the shadow 

value of processing capacity in the stationary state. Then the optimal 

time profiles of these same variables are calculated for the transition 

period. This is done by solving the difference equation problem identified 

by the laws of motion, the first order conditions, the initial conditions, 

and the terminal conditions. The initial and terminal conditions are 

hectares of forest by age group, and capital stock in the plywood industry 

for the initial and terminal years, respectively; where the initial 

conditions were determined by past events, and the terminal conditions are 

to be determined by the stationary state sDlution which was mentioned 

above. 

The role of discrete optimal cQntrol theory lies in the identification 
"-- -- - - ' ~ .. - .. ------...,.-:'~--~ .-----~ - -" 

oft he l'a W s 0 f mot ion and t ne e qua t ion san d e q u a.l i tie s for the n e c e s s a r y 

conditions. These are used to identify the difference equation problem 

that is iteratively solved to numerically solve the problem. 

Model Formulation 

The model used is a modification of the Supply Potential Optimal 

Control model developed by Lyon and Sedjo (1983), which examines the 

potential long-term supply of timber harvest. The new model includes an 

activity that accounts for developing the plywood industry in the region 

over time, and a different solution technique. 

The net surplus in year j can be written as 



Lj 

Sj = f D(n)dn - Cj 

o 
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(j = 0,1, ••. ,J-1) 

where L j is the quant i ty of pl ywood produced in year j, and is a funct ion 

of capital stock, timber production, and a composite input; D(Lj) is the 

inverse form of the demand function for plywood in year j; and Cj is the 

total cost (expenditures) in year j. 

The total costs are the sum of harvesting and transportation cost 

(CH), and plywood production expenditures (CL). Harvesting and trans

portation costs in year j depend on the total volume harvested (Tj ), 

CHj = f(Tj). 

The plywood production expenditures in year j can be written as 

CLj = Vj + Yj 

where Vj is both the expenditure on and the level of the composite input in 

plywood production. This equality of expenditure and level exists because 

we _ s~_aJe . the composite input so -thaH·ts price · is one -dollar. In addition, 

Yj is the level of investment in the plywood industry. It is a scalar 

control variable. 

Xj is a state vector of hectares of trees in different age groups. 

Its elements Xij indicate the hectares of trees in year j that were 

regenerated i years ago. For notational simplification, call Xij the 

hectares of trees in age group i in year j. The length of the x vector is 

M with M equal to or greater than one plus the longest rotation period in 

any year. In addition, let Xj be a diagonal matrix of the elements of Xj. 

The control variable of harvesting timber is Uij which denotes the 

portion of age group i harvested in year j. The control vector of these 

elements is denoted by Uj. 
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In this model, the yield of merchantable volume of timber in cubic 

meters per hectare is a function of age of tree. The vector of yield by 

age is denoted as t. 

Using all these definitions, we can write the equation for the volume 

of timber produced in year j as 

The quantity of plywood produced in year j can be written as 

- a I-a 
where g(kj,vj) = A kj Vj ,Vj is the level of the composite input, and kj 

is the total capital stock for the plywood industry in year j. The 

selection of this production fttnction and the calculation of the parameters 

in this composite fixed-variable proportion production function will be 

described in the application section. The maximization problem can be 

wri tten --as 

Maximi ze 

* So[xo,ko,u,T,v,y] = So + pSI + ... + pJ-l sJ _1 + pJSJ[xJ,kJ] (1) 

subject to a set of constraints 

(a) the laws of motion 

Xj+1 (A + BU·)x· (j = 0,1, • .,J-1) J J 

kj+l = (1 - cS ) k· + y. (j = 0,1, . . ,J -1 ) 
J J 

(b) the composite fixed-variable proportion production 

plywood 

a I-a = A k· V· J J 

(2) 

(3) 

function of 

(4 ) 



The production function can be written as a pair of constraints 

T· 
J _ L. 0 J ~ ,or 

b 

(c) the additional constraints are 

kj ~ 0 

ymx ~ Yj ~ 0 

(4b) 

(4c) 

(Sa) 

(Sb) 

(Sc) 
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(Sa) states that the portions of hectares harvested are constrained to be 

nonnegative and less than or equal to one, (Sb) shows that the capital 

stock is constrained to be nonnegative, and (Sc) states that investments in 

the plywood industry are constrained t? be nonnegative and less than 

maximum gross investment (ymx). ymx is included so that the growth rate of 

capital stock in the plywood industry may be constrained. 

In the above statement of the problem, p is the discount factor, which 

is equal to exp(-r), where r is the market rate of interest; <5 is the 

depreciation rate of capital in the plywood industry. So(·) states that 

the present value of net surplus stream at time zero depends upon the 

initial conditions (xo,k o ) and the time paths for the control variables 

(u,T,v,y). The super asterisk is used to indicate optimal quantities; thus 

the constrained solution at time zero would be denoted by S~(xo,ko)' and 

the term S~(xJ,kJ) is an optimal terminal value function and can be viewed 

S* as 0 was. In addition, 
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0 0 0 0 1 1 

1 0 0 0 -1 0 0 . 0 1 

a 1 a a a -1 a a 1 

A a 0 1 a B = 0 a -1 a e = 1 

a a 

. a a 

a a a a a a 1 a a a a a a a -1 0 1 

where A, B, and U are M-square matrices, Uj is a diagonal matri x using the 

elements of Uj. 

The product Ax-J moves Xij to xi+ j ,j+l· Each year each age group 

becomes older by one year. The product BUjxj subtracts the area harvested 

from the redefined quantities, and places them in the one-year old category 

(newly regenerated category). 

In each time period, the following Hamiltonian is maximized l with 

respect to Uj. yj' and Vj subject to the constraints (equations 4b, 4c, 5a, 

5b, and 5c). 

where 

The Hamiltonian for year j is 

L -
Hj =cfJO(n)dn - f(Tj) - (Vj + Yj) + Aj+l[(A + BUj)xjJ 

).- = p 
J 

+ tlJ j+l[(l - <5 )kj + YjJ 

* dS j (Xj ,kj ) 
(j 1, ... , J) 

dXj 

using the envelope theorem we get 

* * * * ).j = p[-f'(Tj)Ujt + (A + BUj)' Aj +1 +<P jUjtJ 

* * * = P [<pj -f'(Tj)JUjt + (A + BUj)')'j+l 

(8a) 

(9a) 

\ 
\ 

I 
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In addition, 

* 

Wj = P 

dSj(xj,kj) 

dk j 

which by the envelope theorem is 

(9b) 

where <Pis the Langrangean multipl ier for equation (4b) and is the shadow 

value of timber delivered at the processing mill (mill-wood price), and n 

is the Langrangean multiplier for equation (4c) and is the shadow value of 

the processing capacity. The derivatives with respect to a vector are 

gradient vectors. The Aj and the tJJ j are costate variables. They identify 

the shadow val ues of the hectares of the forest in each age group, and the 

capital stocK of the plywood indu-stry, res-pectively, in year j. 

Since the Hamiltoni~~ __ is m~xim_ i _~e~_in !,e~r _ j ove~ Uj' __ Yj' Lj.,_ and Vj _ 
-- . _. 

subject to equations (4b-Sc), the Langrangean function and the Kuhn-Tucker 

conditions of this problem are relevant. These are 

a I-a 
Lj = Hj + <Pj{Tj - bLj) + fl.j{Akjvj Lj) + ~j{e - Uj) 

+ Yj{ymx - Yj) 

Lj 

= J D{n)dn f{ujXjt) - (Vj + Yj) + Aj+l[(A + BUj)Xj] 

o 

+ ~. (e - u·) + y. (ymx - y.) 
J J J J 

(10) 



dL . 
J 

duo 
J 

aL ' 
(_J_) U;j = 0 

aU;j 

aL ' 
_J = 0 (l , ) - ¢J'b - nJ' ~ 0 
ale J 

J 

aL ' 
J 

(-)lj = 0 
al ' J 

aL ' J 
- = -1 + IJJj+1 - Y < 0 
aYj 

aL j - a -a 
_ = -1 + nj(1 - a)Akjvj ~ 0 
av j 

aLj 
(-)Vj = 0 
av j 

aLj 
- = Tj -bl j ~ 0 
a¢j 

aL . 
J 

(-)c1>j = 0 
ac1> ' J 

aLj - a I-a - = Ak 'v, - l· > 0 J J J -an . J 
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(1Ia) 

( 11 b) 

(11 c) 

(11 d) 

(11 e) 

(11 f) 

(11 g) 

(1Ih) 

(IIi) 

(11j) 

(11 k) 



aL. 
_J=e-u·)O 
a~. J -

J 

aL. 
J 

- = ymx - Yj ~ 0 
ay. 

J 

aL. 
(_J)y. 0 

ay. J 
J 

11 

(111) 

(11m) 

(lIn) 

(110) 

(11 p) 

These Kuhn-Tucker conditions, the laws of motion for the state variables 

(equations 2 and 3), and the laws of motion for the costate variables 

(equations 9a and 9b) identify the two-point boundary value problem to be 

The Difference Equation Problem 

The Difference Equations 

The difference equations to be solved are Equations (2), (3), (9a), 

(9b), and an equation derived from (IIa) and (lIb). Equations (2) and (3) 

are the laws of motion for hectares of forest by age group and capital 

stock for the plywood industry, respectively. These have initial 

conditions dictated by the starting point of the problem. Equations (9a) 

and (9b) are the laws of motion of the costate variables (shadow values of 

the state variables). Note that these are backward moving difference 
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equations, with the calculations beginning in the terminal time period, J, 

and move backward through time to the first time period. These have 

terminal conditions identified by the stationary state because we build 

this in as the end point of the evolution of the system. 

Manipulation of Equations (lla) and (lIb) yield a difference equation 

for the net price or stumpage price (shadow value) of timber. This 

difference equation will have a terminal condition identified by the 

stationary state. We use a shooting technique to select the initial value 

of the stumpage price of timber such that equations (2), (3), (9a), (9b), 

(llc) through (lIp) and the initial and terminal conditions are 

simultaneously satisfied. 

To identify the difference equation for the stumpage price of timber, 

write the elements of equation (lla) as 

p-x- -t- + x- -(AI -+1 - A-+1 -+1) - ~- < 0 J lJ 1 lJ ,J 1 ,J J - (12 ) 

where 

Pj = <Pj - f' (Tj) 

with Pj the stumpage price of timber. It is equal to the shadow value of 

timber delivered at the processing mill (<P j ) minus the marginal harvesting 

and transportation cost of timber [f'(Tj)J. With a concave yield function 

the oldest trees will be harvested first; thus there will be a youngest age 

group of trees harvested in year j. Call it m. 

In equation (12) Al,j+1 is the shadow value of trees that are 1 year 

old in year j + 1, i.e., trees regenerated in year j. Examination of 

equation (9a) indicates that it is the discounted value of the actual 

harvest of these trees in the future. The costate variable Ai+1,j+1 is the 

discounted value of age group i from next year. For age group m it can be 

written (see Appendix A for details). 

Am+1,j+l = [A1,j+2 + Pj +1 tm+1 J 
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which states that the opportunity cost of harvesting m year old trees in 

year j is the discounted value of the trees that could be regenerated a 

year in the future and the stumpage price of timber next year times the 

volume of timber on that hectare one year in the future. From this 

equation and equation (12) we can derive 

Pj+1 = (Pjtm + A1,j+1 - PA1,j+2 - ~mj/xmj)/ptm+1 (12a) 

which is the other difference equation. 

Terminal Conditions 

We assume that the system evolves to the stationary state (55) because 

this state is as reasonable as any other terminal state and it can be 

identified. We define the 55 to have the characteristic that all years are 

alike. The solution for the 55 is found by first solving the differential 

equations for the costate variables where all years are alike then we 

simultaneously solve the laws of motion .for the state variables and the 

first order conditions for the cantrol var·iables. For details see Appendix 

B. ~-

The solution to the 55 problem identifies the terminal conditions for 

all of the difference equations. 

501ution Algorithm 

We find the "sol ution" time paths for the control, state, and costate 

variables using a three-step procedure. The first finds an initial 

feasible time path of control and state variables but not the costate 

variables, which are calculated using a backward moving difference equation 

that requires a feasible time path of the state variables. This is 

achieved by solving a difference equation problem that excludes the costate 
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variables. This problem includes in the place of equation (12a) the 

difference equation 

Pj+1 =-
ptm+l 

(13 ) 

which is derived from equation (12) by ignoring the shadow value of 

hectares of trees harvested in the future. In addition, the laws of motion 

for the costate variables are dropped, and capital is held at its 

stationary state value. The adjusted system of equations is used to 

determine the initial time path of the state and control variables from the 

initial conditions to a long-run equilibrium. This difference equation 

problem is solved using a shooting method which is described below. 

Us i ng the time profi 1 es of the state vari abl es, the next step is to 

calculate the costate variables moving from long-run equilibrium backward 

to year one by using the backward moving laws of motion, equations (9a) and 

(9b) • 

__ Based on the resul ts of the second step, we -sol ve, --us-i ng --a-shooti ng 

method, the difference equations (12a), (2), and (3) subject to the 

necessary conditions, equations (llc) through (lIp), to determine the new 

time profiles of state and control variables from the initial conditions to 

a long-run equilibrium. These last two steps, which calculate the costate 

variables in the second step and determine the new time profiles of state 

and control variables in the third step, can be repeated until a 

satisfactory "solution" is determined. 

The shooting method is a search for a particul ar element of a set of 

solutions to the difference equations and initial conditions. This element 

is the one that satisfies the terminal conditions. 
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The first step is to arbitrarily select the mill-wood or stumpage 

price of timber at the first time period. The mathematical relationships 

given by the first order conditions, equations (llc) through (lIp), are 

then used to calculate the static market clearing values of the plywood 

produced, the composite input for the plywood industry, timber harvested, 

the price of plywood, and the shadow value of the processing capacity. 

This static problem in a particular year can be solved by recognizing the 

plywood demand function and the plywood production function. Based on the 

information of the forest initial conditions and the timber yield function, 

we harvest the oldest age group of trees first, and determine the hectares 

of trees harvested and the youngest age group harvested. Having these 

results, we can iteratively solve the difference equation problem. 

Evaluation of the difference equations yields calculations of the hectares 

of trees by age group, inc 1 ud i ng tho se in the newly regenerated class and 

the capital stock in the plywood industry ,from one time period to the next. 

This process of statically solving the first order conditions and 

dynamically evaluating the difference equations yields a time profile of 

price. The process is iterated until a particular time period when we 

realize that the price in the initial time period is too low or too high, 

or unt i 1 the time hori zon is reached. If the time profi 1 e of price over 

(under) utilizes the forest resources, the price in the initial time period 

was too 10\'1 (hi gh). In thi s case, the process needs to be repeated. A new 

price in the initial time period is calculated by selecting the midpoint 

between the lowest price that is known to be high, and the highest price 

that is known to be low. 

The iterative process stops when the difference between the two levels 

of price which bracket the optimum level becomes sufficiently small that 

continued iterations yield no significant information. 



16 

Figure 1 shows the flow diagram of the shooting method implemented in 

thi s model. 

Application to Southeast Asian Forests 

We appl ied the model and algorithm to the forests of Southeast Asia 

assuming a log export ban that is completely effective. All processing is 

assumed to take the form of plywood production. We report below the 

resulting time profiles of some of the variables for two scenarios. We 

report time profiles for plywood production capital stock, the mill-wood 

price of timber and volume of timber harvested. These variables allows one 

to monitor an important characteristic of the plywood industry, the value 

of units of the base resource, timber, and the harvests of this resource. 

The scenarios differ only with respect to the allowed rate of change 

of the capital stock. In the constrained capital, CC, scenario we 

constrain the growth rate of capital, and "in the perfectly mobile capital, 

PMC, scenario we allow instantaneous capital flows into or out of the , 
--~ .- _. .. - . - - - - _.-_. _.- -

region. The model identifies potential values of the variables that would 

be forthcoming from price-taker firms; thus, the scenarios identify 

potential time paths for different systems of constraints. Even though 

these scenarios probably are not precisely correct, they serve to 

illustrate the impacts upon the potential harvests of poli-cies that affect 

the mobility of plywood production resources. Policies that adversely 

affect this mobil ity such as tarrifs, taxes, and the security of capital 

will yield predictions like those "of the CC scenario. 

Technical Data 

The forests included are those of Malaysia (Peninsular Malaya, 

Sarawak, and Sabah), the Philippines (Luzon, Visayas; Mindanao, and 
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Figure 1. Flow diagram of the shooting method·. -...,J 
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Palawan), and Indonesia (Sumatra and Kalimantan). These forests supply a 

large part, 80 percent in 1978, of the world's harvest of tropical 

hardwood. The harvesting is carried out using a selective cutting system 

where only trees over 50 centemeters in diameter at breast height are 

harvested. The remaining trees of the commercial species are left to grow 

and generate the subsequent harvest. 

The yield function incorporated in the model is 

t = ao exp{bo/age2) 

where age is length of time since the last cutting, and exp( ) is the 

natural exponential function. The exponential function was selected 

because it fits yield data well [Kao and Brodie (1980) and Lyon and Sedjo 

(1983)J. The parameters, ao and bo were selected to give an optimum 

rotat i on of 40 years and to yi e 1 d a mean annua 1 increment one cub i c meter 

per hectare at age 40. According to Keil (1978) and Ross (1983), the 

rotation period used i-n these forests is 35 years with a yield of one to 

two cubic meters per hectare per year. The numbers sel ected are on the 

conservative side. The value~ed are ao, 108.72, and bo, -1600. 

The inventory data for hectares of trees by age group were constructed 

from inventory data reported by FAO (1981) for total hectares of forests 

and logged-over hectares of forests and from harvest data reported by FAO 

(1945-1981). We assumed the logged-over hectares were distributed through 

time in the same way as were the harvesters. 

The parameters of the plywood production function, equation (4), were 

calculated from data reported by Takeuchi (1982). The input-output ratio, 

b, was calculated from the average wood recovery rate for the region, and 

the exponents in the Cobb-Douglas production function were calculated using 

the fact that these exponents are factor shares in total costs of 

processing. The values used are b, 2.01, A, 0.0073, and a, 0.2. 
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For the harvesting and transportation cost functions we assumed 

constant marginal costs at $20 and $5 per cubic meter, respectively. Kei1 

(1978) reported logging costs of between $25 and $28 per cubic meter of 

logs harvested. 

We assumed a linear demand function for plywood with parameters that 

yielded prices in the range $245 to $318 per cubic meter of plywood and had 

an elasticity of -2.34 at the stationary state solution. The price range 

is consistent with the prices reported by Takenchi (1982) which range from 

$256 to $290. The resulting mill-wood price per cubic meter of timber 

ranged from $42 to $73 while Takenchi (1982) reported a range of $45 to 

$80. 

We report the results for a 4 percent real interest rate; however, we 

also used a 6 percent interest rate. As expected the higher interest rate 

with its associated higher implicit user cost of capital yielded a lower 

level of capital stock in each time period. The relative shapes of the 

time profiles of the variables, however, were not altered by the choice of 
.. ¥ - - - - - .~- _w. .. -- • - .- - - . -- --- -

the interest rate; thus, either interest rate could be used to make the 

points we make below. 

The Time Profiles of the Variables 

Application of the model yielded time profiles for the control, state 

and costate variables in the model. In executing the algorithm a time 

horizon of 200 years was used; however we report only the first 100 years. 

Figures 2,3, and 4 show the time profiles of plywood processing capital 

stock, the mill-wood price of timber, and the volume of timber harvested, 

respectively. 

To facilitate the dicussion of the time profiles, we divide the 100 

year reported time horizon into three consecutive subperibds with dividing 
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years of 23 and 70. The first subperiod is the most interesting of the 

three with the shape of the time profiles being dominated by the harvesting 

of the old-growth forest and the capital stock constraint. This constraint 

affects capital accumulation, the harvests and the value of the forests. 

Ouri ng the second subperi od a 11 three of the time profi 1 es or both 

scenarios have a damping oscillatory characteristic, and after about year 

70 all of the time profiles continue in an oscillatory version of the 

stationary state. The oscillations are caused by the discrete nature of 

both the difference equations and the variables. 

The perfectly mobile capital (PMC) scenario has an immediate jump in 

the capital stock followed by a declining time path through the first 

subperiod. The constrained capital (CC) scenario however, has capital 

increasing rapidly during the first eleven years then decreasing for the 

remainder of the first subperiod. With the completely effective log export 

ban and a 1 arge mature forest of tropical h-ardwood the shadow val ue of 

plywood production capital is high, and in both scenarios the capital stock 

-"'~~-i ncr-eases rapi d 1 y. 

The time profiles of the mill-wood price of timber are dominate~ by 

the 01 d growth forests. Ouri ng the fi rst subperi od the mi ll-wood pri ce 

rises rapidly. This rise is due to the role of the mill-wood price as 

rat i oner of the inventory of mature timber. For the ha rvest s of mature 

timber to be spread over time the increase in mill-wood price must be 

sufficiently large to reward the owner to hold the inventory. The two 

scenarios have the same stationary state mill-wood price; however, during 

subperiods 1 and 2 the PMC scenario has the higher mill-wood price 

indicating that the value of the base resource is higher for this scenario. 

The value of the timber is adversely affected by policies that impede the 

mobility of capital. 
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The time profiles of timber harvested have the same general shape as 

those for capital for the respective scenarios. The harvests are initially 

higher for the PMC scenario; however, by year eleven the harvests from the 

CC scenario have surpassed those of the PMC scenario. The harvest levels 

evolve along oscillatory time paths to a common stationary state level. 

The cumulative harvests over, say, the first 60 years are the same for the 

two scenarios. Only the timing is different with those for the PMC 

scenario yielding the higher value of timber and higher present value of 

net surplus. 

Summary 

A shooting method for solving discrete time optimal control forestry 

problems has been identified and demonstrated. The application analyzed 

effects of a log export ban in Southeast Asi a to demonstrate the 

applicability of the model and algorithm to the analysis of public policy 

analysis. 

'-·---~- ~....--'-"""""''''''''''-- The:'''''maximum principle of' optimal co"ntrol the6~ry 'was used t{) ~' ;dentify a 

difference equation problem to be solved to identify the optimal time 

profiles of the state variables, hectares of trees by age group and plywood 

production capital stock, and the control variables, timber harvested, 

gross investment in the plywood industry, and the level of the composite 

input. We find the solution time profiles using a three-step procedure. 

The first finds an initial feasible time path for the control and state 

variables Second, the costate variables are calculated using backward 

moving difference equations that require a feasible path of the state 

variables. Third, a solution to the boundary value problem is found by 

repetitively evaluating (shooting) the difference equations until a 

trajectory that satisfies the initial and terminal conditions is found. 
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The model results indicate the optimum rates of capital accumulation 

under constrained and nonconstrained conditions. The results indicate that 

different time paths of capital accumulation can have profound effects on 

the 1 eve 1 s of harvest and mi ll-wood pri ces in the near term. However, in 

the longer term, the two systems converge. 

--?----
.-~-.~ -
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Appendix A 

The Laws of Motion for A, wand P 

If we define 

a j = [4> j - f (T j ) ] U j t (AI) 

then from equation (9a) we can write 

(A2a) 

(A2b) 

(A2c) .- -

Since the old.est trees wi 11 be harvested first, there will be at 

most for each year one Uij that is not either zero or one. Let m be age 

of the youngest age group harvested in year j and let Uij = 1 for i > m. 

This exp1 ains that we are harvesting in year j all existing trees for 

which the age is greater than m. We can express Uj as 



o 

o 

1 

and (A + BUj)' as 

o 1 

001 

o 

(A + BUj)' = Umj 0 

1 

1 0 

o 0 

o 

o 0 

o 

o 

o 
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(A3a) 

(A3b )-
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Thus, 

o o o 

0 0 0 

a· = <lm,j = 
J Et> j f'(Tj)Jum+l,jtm PjUmjtm (A3c) 

am+l,j [4> . -
J f'(Tj)Jtm+l Pjtm+l 

where Pj is cal led net price or stumpage price (shadow value) of timber. 

Using equations (A2b), (A3b), and (A3c) we get 

Aij = PAi+l,j+l for i < m (A4a) 

* 
since for i < m the upper partition of matrices aj and.(A + BUj) are 0 

•. ..-p--~,y. , .• ' and 1, respect i ve 1 y. 

(A4c) 

since for i > m, Uij = 1 

From equation (9b), if we define 

(A5) 
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where Bj is the value of marginal product of capital, ~ is the shadow 
- a-I 1-.a 

value of the plywood processing capacity, and aAkj Vj 1S the marginal 

product of capital, then equation (9b) can be written as 

then 

tPJ 
dSJ 

= p-
dkJ 

W. = p[8j + (1 - <5 )Wj+lJ J 

WI p [81 + p (1 - <5 ) 82 + p 2 ( 1 - <5 ) 283 + ••• + 

dS 
p J - 2 (1 _ <5 ) J - 2 8J -1 + p J -1 (1 _ <5 ) J -1 (_J ) J 

dkJ 

Since the element 

- a-I I-a a· = ·aAk· v· J J J J 

(A6a) 

(A6b) 

(A6c) 

(A7) 

- dS . 
Using the same techniques, the el ements of -- in equation (lla) 

can be derived as 
dUj 

I I 



Since 

X1j 0 

0 X2j 

I I 

X·B = 
J 

0 

o 

o 

then 

XM,j o 

o 

o 

1 

1 

1 

1 

-XM-l,j 

o -

-1 0 

0 -1 

o 

o -XM-1,j 

o 

0 

0 

-1 

o 

Al,j+l 

A2,j+l 

AM,j+l 

30 

= 
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Xlj(~l,j+l) - Xij(~2,j+l) Xlj(~l,j+l - ~2,j+l) 

X2j(~1,j+l) - X2j(~3,j+l) X2j(~1,j+l - ~3,j+l) 

= = 

XM-l,j(~l,j+l) - XM-l,j(~M,j+l) XM-l,j(~l,j+l - ~M,j+l) 

XM,j(~I,j+l) XM,j(~I,j+l) 

Therefore, the elements in equation (lla) can be written as 

PjXijt + Xij(~l,j+l - Ai+l,j+l) - ~j i 0 
(A8) 

Substituting equation (A4c) into (A8), letting i equal m, and sol veing 

for Pj+l yields 

Pj+l = (Pjtm + Al,j+l - PAl,j+2 - ~ mj/xmj )/ptm+l (A8a) 
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Appendix B 

Terminal Conditions 

To identify the terminal conditions we solve for the solution 

values of the control variables in the stationary state. To achieve 

this we let all years of the current analysis be in the stationary 

state; and to prevent further compl ications of the notation, we let the 

time periods range from 1 to J as we did above. 

In the stationary state we let m be the age of the youngest age 

group harvested and let U;j = 1 where the asterisk indicates solution 

value. The relevant equations for this state can be simplified since 

* * * * * * * * Uj = Uj+l' aj = aj+l' Yj = Yj+1' and Bj = Bj+l for all j and j+l in the 

stationary state. 

Equation (14c) can be modified as 

* . * 
Al = p[I + p(A + BUj)' + p2 (A +. BUj)' 2 + 

* * p2 {(A--+-BU j) 1 }_4_+ ••• -••• + pJ-2. -{A -+ BU j) 1- J-2]aj 

* * dSJ + p [ p J -1 { (A + B U j ) I} J -1 (_) ] ( B 1 ) 
dXJ 

where years 1 through J are assumed to be in the stationary state. 

Since 0 ~ p ~ 1 and J is very large, we can ignore the last term of 

equation (B1). 
* 

Since u*. = 1, and p[pJ-1{(A + BUJ~)'} J-l
dS

J J = 0, then equation (B1) mJ 
dXJ 

can be written as 



p6<lmj 

p(6 - I)~j + pam+l,j 

where ~j are defined in equation (A3c), and 

6 = I + pm + p2m + ••••• 

(mth row) 

Thus if m and y* were known, Al could be calculated. 

In the stationary state, equation (A6c) can be modified as 

lJlI = pel + p(1 - 0) + p2(1 - 0)2 + p3(1 - 0)3 + 
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(82) 

(83) 

As in the case above, the last term will be dropped; therefore, then we 

can write equation (83) as 

If we define 

we get 

n = ___ I __ 

I - p(1 - 0) 



Equation (84) becomes 

tPl = P 
I - p(1 -0 

B· J 

WI can be calculated if m and y* were known. 
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(85) 

We now examine the determination of m by combining equations (A8), 

* (82) and (A3c), where Umj = 1 implying~ = o. Thus, we get from equation 

(A8) 

We assume that Xij > 0 for i equal m and m+1, and, substituting the 

values of Aj from equation (82), we get 

substituting the values of aj from equation (A3c) 

and 

Pjtm + p
m6Pjtm - p(6 - l)Pjtm - PPjtm+1 i 0 

tm+1 
Pjtm[l + pm6 - p{6 - 1) - ~J < 0 

tm 

tm+2 
Pjtm+1[1 + pm+16 - p(6 - 1) - ~J > 0 

tm+1 

(86) 

This 1 ast equation dictates that we wi 11 harvest all hectares in age 

group m+I. 

We can calculate k* and v* using equations (lIe), (85), (AS), 

(1Ig), and the results of equation (86). 

We now turn our attention to k* and v* which are calculated using 

the stationary state rotation period (m). Using the stationary state 



35 

rotation period (m) calculated from equation (B6), we can calculate the 

volume of timber produced in the stationary state (Ts) from 

T = Total Hectares . t 
s m (B7) 

m 

The volume of plywood produced in the stationary state (Ls) can be 

calculated using modified equation (4b) 

Ts 
L =

s b 

From equation (lIe) 

1JJ j+ 1 - 1 i 0 

subst i tute the va 1 ues of 1JJ 1 from equat ion (B5) 

__ --L:...P __ a j - 1 < 0 
1 - p(l - <5 ) 

and then substitute the values of Bj from equation (A5) to get 

.... a-I I-a 
__ ---I:..

P __ nj aAk j v j 1 = 0, 
--1- - p (1 .;,- 0 -) 

From equation (1Ig) 

(B7a) 

(B8) 

(B9) 

and equation (11k), where we substitute the value of plywood produced in 

the stationary state, we get 

- a I-a 
Ak . v . - L = 0 J J s (BI0) 

The solution values of v, k, and n in the stationary state can be solved 

using equations (B8), (B9), and (BI0). 
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Finally, we can calculate the level of investment in the stationary 

state (y*) by using equation (3) 

k j+ 1 = (1 - 6 ) k j + y j 

then we get 

y* = 0 k* 

It is obvious that the gross investment is equal to the 

depreciation in the stationary state. 

From equation (B10) 

Aka I-a L = a ·V· -J J s 

we get 

ka Ls 
= 

A I-a v. 
J 

k = [ Ls ]l/a = [~ va_I]l/a 

Av~-a A 
J 

Substitute the value of k from equation (Blla) into equation (B9) 

Ls -a 
nj(l - a)A • Vj - 1 = a 

A- I-a v. 
J 

v· = n·(1 - a)L J J s 

Substitute the value of k from equation (Blla) into equation (B8) 

L a-I I-a 
__ --'--p __ .aA[ s Ja v· -1 = a 
1 - p (1 - c ) J I-a J A v. 

J 

(Blla) 

(Bllb) 



I-a-I a-I -(l-a)(a-I) + (I-a) 
a p n -aA 

I - p + pO J 

1. a-I -(a-I) 
-a a a 

__ .z;;..p __ njaA Ls Yj = 1 
1 - p + pO 

a-I 1 a-I --a 
P 

-a a 
Y- = n -aA L J 1 + po J - p 

a 1 
a-1-~a-l 

Y- = [ P n-a] A Ls J J 1 - p + po 

Equating equations (BIlb) and (BIle) 

a 1 
a-I a-I 

-(I - a)L = [P nJ-a] A Ls' 
J s 1 p + po 
_ 1 _a __ a __ 1_ 
a:r 1 a-I a-I_ a-I 

nj . '- = (I-a)- ( P ) a A 
1 - p + pO 

a-I a 
~ = (1 - ~) [ 1 - P + ~O] 

A ap 

Substitute equation (BlId) to equation (B11b) 

a-I a 
Y- = [(1 - a) (1 - p + PO) J(l - a)Ls 

J -A 

Y
J 

ap 

a a L 
(1 - a) (1 - P + PO) -}-

ap A 
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= 1 

(BIle) 

(Blld) 

(BIle) 
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Substitute equation (BIle) to equation (BI1a) 

1 
l a a -

k· = [~([1:aJ [1 - e + eO] Ls )a-1]a 
J A A ap 

a-I o a-I ls 
k· = (1 - a) [1- -e + e ] ~ (BIIf) 

J ap A 

Therefore, we can calculate Ts ' ls' ks' vs ' and ns in the 

stationary state. 

Using the demand function for plywood, we can calculate the price 

of plywood in the stationary state. Then using equation (lIe), we can 

calculate the shadow value of timber delievered at the processing mill 

(mill-wood price) in the stationary state (¢s) 

¢s = 
ns 
b 

(BI2) 
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Footnotes 

lIn general, the necessary conditions require only that the 
Hami 1 tonian be stationary (Jackson and Horn 1964, p. 390); however, a 
stationary value wi 11 be a maximum value subject to the constraints 
because the constraints are linear and equation (8a) is quasi-concave at 
a stationary point, i.e., at a point where the quasi-sadd1e-point 
conditions of the associated Lagrangean function are satisfied. 
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