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Abstract

Optimization of Strongly Nonlinear Dynamical Systems Using a Modified Genetic

Algorithm with Micro-movement (MGAM)

by

Xing Wei, Master of Science

Utah State University, 2009

Major Professor: Dr. Edmund A. Spencer
Department: Electrical and Computer Engineering

The genetic algorithm (GA) is a popular random search and optimization method

inspired by the concepts of crossover, random mutation, and natural selection from evo-

lutionary biology. The real-valued genetic algorithm (RGA) is an improved version of the

genetic algorithm designed for direct operation on real-valued variables. In this work, a

modified version of a genetic algorithm is introduced, which is called a modified genetic

algorithm with micro-movement (MGAM). It implements a particle swarm optimization

(PSO)-inspired micro-movement phase that helps to improve the convergence rate, while

employing the efficient GA mechanism for maintaining population diversity. In order to test

the capability of the MGAM, we first implement it on five generally used test functions.

Then we test the MGAM on two typical nonlinear dynamical systems. The performance of

the MGAM is compared to a basic RGA on all these applications. Finally, we implement

the MGAM on the most important application, which is the plasma physics-based model

of the solar wind-driven magnetosphere-ionosphere system (WINDMI). In order to use this

model for real-time prediction of geomagnetic activity, the model parameters require up-

dating every 6-8 hours. We use the MGAM to train the parameters of the model in order to

achieve the lowest mean square error (MSE) against the measured auroral electrojet (AL)
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and Dst indices. The performance of the MGAM is compared to the RGA on historical ge-

omagnetic storm datasets. While the MGAM performs substantially better than the RGA

when evaluating standard test functions, the improvement is about 6-12 percent when used

on the 20D nonlinear dynamical WINDMI model.

(57 pages)
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Chapter 1

General Search and Optimization Algorithms

1.1 Introduction

Random search and optimization methods, also called global search heuristics, are a

category of algorithms that include methods like the genetic algorithm (GA) [1] and particle

swarm optimization (PSO) [2]. The genetic algorithm is a widely implemented optimization

method for tuning system parameters or finding solutions of complex equations. These two

methods are capable of solving complicated nonlinear equations with a large number of

variables (dimensions), especially when the mathematics is intractable. The goal for these

methods is to locate a good approximation to the global minimum of a given cost function

in a search space, with all variables in the cost function tuning the system.

1.2 Original Genetic Algorithm

The genetic algorithm is one of the most popular random search and optimization

methods. It is inspired by the concepts of chromosome crossover, random mutation, and

natural selection from evolutionary biology. It is widely used in engineering and physics as

a general optimization method. Computer simulations of evolution started as early as in

1954 with the work of Nils Aall Barricelli in Princeton, New Jersey. The genetic algorithm

was later made popular through the work of John Holland in the early 1970s.

In the GA, a population of some size is constructed. Every individual within the

population becomes a candidate solution for a particular application. Simulating a gene

chromosome, an individual is a string representing the application variables cluster. The

population will evolve to survive, following the evolutionary rules of biology. Individuals

will survive or be discarded by a selection process, and new offspring data will be produced.
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Ability to solve an application will be improved by the reproduction process. The final

solution will be produced at the end of a certain number of generations.

In general, a normal genetic algorithm can be divided into the following sequence of

steps. This is shown in fig. 1.1.

1. Initialization

2. Evaluation of fitness

3. Crossover

4. Mutation

5. Repeat step 2 to 4 until stopping criteria is achieved

6. Ending the algorithm

1.2.1 Initialization

The initialization step is to generate the first generation of individuals for starting the

algorithm. To initialize the algorithm, every variable of an individual will be randomly

generated within their defined range. The range of the initial population will have to cover

the entire space of possible solutions. In addition, depending on the nature of the problems,

the population size can be from several to hundreds. Typically, because of the convenience

of coding, the population number usually is in the form of 2n (n is a positive integer).

To produce the first generation G1, we first define the minimum and maximum values

that each variable sij is allowed to take. In this work, i = 1...N is the index over the number

of parameter sets in G1; and j = 1...M is the index number of variables. The minimum and

maximum values are denoted, respectively, as sijmin and sijmax. We choose a resolution value

n, which is a necessary setting parameter because of the conversion between real values and

binary values. The formula for each initial sij as

sij = sijmin +

(
sijmax − sijmin

2n

)
mij , (1.1)
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Fig. 1.1: Flow chart of genetic algorithm.

where mij is an integer that can take values from 0 through 2n − 1. Each variable is then

set by randomly choosing mij for all j to construct each si and then for all i to construct

G1.

1.2.2 Evaluation of Fitness

This is the step which mainly focuses on the application demands. Since the genetic

algorithm is a generally implemented method, it should be able to deal with different targets

of optimization applications without changing the basic structure of the algorithm. A

fitness function (or called cost function) will be defined here, which depends on particular

application aim. Typically, the fitness function could be a lowest mean square error (MSE)

or a normalized L2 norm of the simulated value against the target value. A carefully defined
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fitness function helps the genetic algorithm to better accomplish its mission of optimization.

1.2.3 Selection

As one of the evolution progress steps, the proportion of the existing population is

selected to breed a new generation during each successive generation. Usually, individual

solutions are selected through a fitness-based process, which means fitter solutions as mea-

sured by a fitness function are more likely to be selected. However, there are other selection

methods like a weighted random sample of the population. Different selection methods are

the results of different reproduction policies.

It is also very important for most selection methods to be patially stochastic so that

a small proportion of less fit solutions are selected. This is because of the importance

to keep the diversity of the population large, preventing premature convergence on poor

solutions. Roulette wheel selection and tournament selection are two of the most popular

and well-studied selection methods.

In this work, we keep half of the existing population and discard the other half in every

generation. The selection we implement is also based on a fitness-based process by ranking

the fitness of the individuals.

1.2.4 Crossover and Mutation (Reproduction)

The reproduction step consists of crossover and mutation process. It will produce new

born ‘children’ solutions which share the characteristics of their ‘parents’ solutions. The

‘parents’ solutions will come from those individuals selected to survive from last generation.

The ‘children’ solutions will be first generated by crossover process.

In the crossover process, all the variables of an individual solution will be clustered

and converted into a binary form with ones and zeros, which become the ‘parents’ genetic

sequence solutions. One or more crossover point on both ‘parents’ organism strings is

randomly selected. All data beyond that point in either organism string is swapped between

the two ‘parents’ organisms (fig. 1.2). The ‘children’ will be the resulting organisms.
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Fig. 1.2: One-point crossover process.

Different crossover methods, such as one-point, two-point, and uniform crossover, have

different rules on how the ‘children’ solutions inherit the characteristics from their ‘parents’.

The purpose of mutation is to prevent the premature convergence on poor solutions.

In the classic genetic algorithm, the mutation operator involves an arbitrary bit in a genetic

sequence having a probability to be changed from its original state. That is to flip some

random part of the genetic sequence from ‘0’ to ‘1,’ or from ‘1’ to ‘0’ described in fig. 1.3.

A parameter of mutation rate will be defined so that the higher the rate is, the more likely

the ‘children’ will mutate.

The newborn individual data will be evaluated by the fitness values after the repro-

duction process.

1.2.5 Termination

The reproduction process will keep repeating until one of the conditions to end the

algorithm has been achieved. Usually, the ending criteria will be one of the following:

1. A solution is found that satisfies the minimum criteria,

2. A fixed number of generations reached,
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Fig. 1.3: Mutation process.

3. Allocated budget (computation time/money) reached,

4. The highest ranking solution’s fitness is reaching or has reached a plateau such that

successive iterations no longer produce better results,

5. Manual inspection,

6. Combinations of the above.

The fixed number of generations will usually be an easy ending criteria, which is what

we implement in this work. That is because, for a complicated case with a large amount

of variables and equations, it is very difficult to achieve a final optimum. Also, it is very

difficult to estimate how much time to take to converge for many applications. A fixed

generation number will not only help to end the simulation within some definite time,

but it also could be easier to compare convergence results and efficiency between different

algorithm.

1.3 Real-Valued GA

In this originally conceived form, the genetic algorithm involves binary genetic se-

quences that are converted from real-valued variables. [1, 3, 4]. This results in extra effort

on conversion between binary and real values, as well as unavoidably facing a problem of

comparison with other algorithms, for example, the PSO [2]. The resolution of accuracy
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of every individual solution will be difficult to decide. Therefore, a more robust version of

the GA has been widely implemented. It can handle real-valued variables directly while

processing both the crossover and mutation process. It is named the real-valued genetic

algorithm (RGA). By using an RGA, every individual solution retains a machine specific

bit precision. The flow chart of an RGA is demonstrated in fig.1.4.

1.3.1 Initialization of RGA

Since the RGA operates on real-valued numbers directly, there will be no resolution

requirement when we set up the initial generation. A initial individual solution now is a

dataset of some random values chosen within the range of the variables, as eq. (1.2). The

resolution is automatically set by machine precision.

sij = sijmin +
(
sijmax − s

ij
min

)
mij , (1.2)

where mij is an random number that can take values from 0 through 1. Each variable

is then set by randomly choosing mij for all j to construct each si, and then for all i to

construct the first generation.

1.3.2 Crossover and Mutation of RGA

In the RGA, we cannot cluster all variables to form some data strings and randomly

exchange some part of them like the binary GA. This is because different parameters could

have entirely different length of decimal bits and precisions. Therefore, different crossover

methods for the RGA have been published [5, 6].

For real data, particular variables have to crossover among themselves. There are

three main rules for any kind of RGA crossover to follow. First, the offspring must retain

the good properties (fitness-based good characteristics) from the ‘parents’. Second, the

‘children’ must be different from their ‘parents’, as well as from each other. Third, the

‘children’ should be produced randomly; their distribution of them will have to cover a

large enough range. These are all very important rules to simulate evolution, while trying
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to avoid premature convergence on poor solutions.

In this work, we will use the method below to process the real-valued crossover. Let

the ‘parents’ be s1 and s2, then s1j and s2j are the jth element of s1 and s2, respectively.

We implement mean value to produce new generations.

S1j = (1 + r1)(k1s1j + (1− k1)s2j), (1.3)

S2j = (1 + r2)(k2s1j + (1− k2)s2j), (1.4)

where k1 and k2 are random numbers between 0 and 1. Then S1j and S2j are the jth

element of ‘children’ of s1 and s2. r1 and r2 are two random range factors between 0 to

1 for randomly enlarging the offspring data range. In this method, the offspring of the

individuals with best fitness from last generation will inherit good information from their

‘parents.’ The ‘children’ data will randomly combine the genetic information from their

‘parents’ by k1 and k2 and will be different from each other. The range of the ‘children’

data will cover a larger space by using (1 + r1) and (1 + r2), instead of only covering the

range between ‘parents’ data. However, this might bring up an offspring value which is

born outside of the range. If this happens, we will reproduce the child within the range.

For example, in the jth generation, if S1js or S2js are born out of the data range, we use

the following two equations to substitute the ‘children’ data to fix the data inside of their

appropriate range.

S1j = k1s1j + (1− k1)s2j (1.5)

S2j = k2s1j + (1− k2)s2j (1.6)

By using this method of crossover, the RGA can follow the same spirit of the original

binary GA, as well as meeting the required rules above. It still utilizes the Darwinian

principle of survival of the fittest. The offspring data will retain the higher normalized

fitness of genes from the previous generations, which is more likely to achieve a better



9

Fig. 1.4: Flow chart of RGA.

solution.

The mutation process of RGA has to produce a random new individual in its particular

variable range, the same way as in the first generation individual in eq. (1.2). Because of

the mechanism of the mutation process, the mutation rate values of the RGA has different

scales from the binary GA.

1.4 Sinusoidally Changing Rate Mutation

With a fixed minor portion of mutation probability parameter µ, the RGA code will

process the mutation on selected ‘children’ solutions. However, the fixed small mutation

rate will not be sufficient to help the population to escape local minimums, especially when

the code has already been running for a very long period of generations, but the best fitness

in the population still has not improved. A relatively higher mutation rate will help the

individuals to have a higher possibility to jump out of the local minimums. However, to

converge to a better fitness, the mutation rate cannot be persistently high.
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Therefore, we implement a fixed-to-sinusoidally changing mutation rate for the RGA.

The mutation rate will stay at a small value like µ = 0.15 at the beginning. A counter of

cost function value counts the number of generations to keep track of how long the best

fitness value has not improved. If the counter has reached a threshold value of generation

number, a sinusoidal format of mutation rate will be activated. The mutation rate µ will

then be changed into the following sinusoidal format as eq. (1.7).

µ = 0.15 + α ∗ sin(m/2πM), (1.7)

where the α is a scale factor which could be customized depending on different applications.

Here we use α = 0.30, giving the mutation rate maximum as 0.45. The M is the total period

of the sinusoid changing rate, set as 80 generations in our tests. The m is a counter value,

which is counting the generation numbers of reproduction after the sinusoidal mutation rate

has been triggered. It will be reset as 0 after reaching the maximum value of M and the

count begins again.

1.5 Introduction of Particle Swarm Optimization

1.5.1 Overview of PSO

The particle swarm optimization (PSO) [2, 7] is another popular random search algo-

rithm. It simulates a kind of social optimization. As an optimization algorithm, if a problem

is given, there will be some way to evaluate a proposed solution if it is given in the form of

a fitness function. A communication structure or social network is defined in PSO, which

share common information among members of the society. Then a population of individu-

als defined as random guesses of the problem solution is initialized. These individuals are

candidate solutions, or called particles in a swarm. They will first start at random positions

in the search space and move in a random direction with a random velocity in order to

search for an optimum. Most importantly, an iterative process to improve these candidate

solutions is set in motion. The particles iteratively evaluate the fitness of the candidate so-
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lutions and remember the location where they had their highest success. The best solution

is called the local best or particle best. Each particle makes this information available to

the society and a temporary global best position will be conveyed to everyone. Movement

through the search space are affected by these successes. Every particle has a trend to move

towards the local best and global best position. But not necessarily all individuals go at the

correct speed and in the right direction, because of a random component added to every

individual’s velocity. With a trend towards the best position, the population will converge,

by the end of a trial, on an optimum solution for a particular application.

1.5.2 Searching Processing of PSO

In a PSO problem, the ‘best’ value simply means the position with the smallest ob-

jective function value (or the smallest fitness value). The swarm is typically modeled by

particles in multidimensional space that have a position and a velocity. These particles

move all over the search space and have two essential reasoning capabilities: memory of

their best position and knowledge of the global best position. Therefore, members of a

swarm communicate good positions to each other and adjust their own positions and ve-

locities based on the information. So a particle in PSO has the following information to

change its position and velocity:

1. A global best that is known to all particles and immediately updated for every itera-

tion, when a new best position is found by any particle in the swarm,

2. The local best, which is the best solution that the particle has seen.

Below, we can use the simple equations about particle position and velocity update

equations to show the basic iteration loop contents of PSO. However, to prevent the pre-

mature convergence, every particle will have a third component with a random velocity. By

this random part, every particle possesses their own scale of velocity and direction, trying

to keep the diversity of the swarm, just as mutation in GA.
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vi,j = c0vi + c1v1 (gbj − xj) + c2v2 (lbi,j − xi,j) , (1.8)

xi,j = (xi,j + vi,j) , (1.9)

where gb, lb, and nb are global best, local best, and neighborhood best, respectively. c0, c1,

and c2 are velocity scale which can be customized for the particular application. vi is the

random part added to the total velocity. As the swarm iterates, the fitness of the global

best solution improves (decreases for minimization problem), and finally converges.
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Chapter 2

A Modified Genetic Algorithm with Micro-Movement

(MGAM)

2.1 Introduction of MGAM

The genetic algorithm is capable of searching for the global optimum. However, when

the search space is huge and the number of variables is great, it will still have problems

with premature convergence on poor solutions and the speed of convergence to a good

approximation. This is a common problem that most other general search and optimization

algorithms, etc., the PSO and the simulated annealing, have. As a result, new ideas on

modifications of these algorithms and hybrid approaches have been published.

Some have proposed hybrid approaches combining GA and PSO inspired by the mech-

anisms of these two algorithms [6, 8, 9]. In order to take advantage of both, these hybrid

algorithms basically use two ways to hybridize the GA and PSO. One is to take the result

solutions of the GA as the initial solutions of the PSO. Individual solutions will experi-

ence both evolution from GA and particle movement from PSO in every generation. The

other way is to divide the population into a GA function part and a PSO function part by

a certainty proportion, and evaluate the fitness values of individuals by the end of every

generation.

Some improved optimization effects have been achieved by these approaches. However,

such methods do not fully integrate the advantages of the two methods, because they are

a simple combination or stack of the two algorithms. Furthermore, such a combination of

methods will further complicate the algorithm, as well as sacrificing the computing speed

and consuming more resources.

To better exploit the real-valued genetic algorithm, we further analyzed its mechanism.
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The most powerful concept within the GA to prevent premature convergence on poor so-

lutions is the mutation process inspired from chromosome mutation in biology. It has an

advantage over many other general searching optimization algorithms like PSO. The mu-

tation process helps the population to keep diversity, preventing a temporary best solution

misleading the whole population. However, we found out that there is one unsatisfying

feature of RGA. As soon as the newborn ‘children’ are produced from crossover and mu-

tation, they will be ranked with their ‘parents’ to form the new population. It is possible

that a mutated ‘child’ solution is produced around an even better solution than the current

temporary best. But since the application could be nonlinear, if the newborn individual is

not extremely close to the exact point of the new minimum location, it might be ranked

with less fitness, and later could possibly be eliminated by the selection process. Actually,

not only ‘child’ solutions have this problem, an even better solution might also be close to

a temporary ‘parents’ solution without being discovered.

In order to prevent this from occurring, we require a method to better explore the

neighboring area of individual solutions. Here we propose a new modified genetic algorithm

specifically focusing on more efficiently searching the variables space. This approach will

follow the basic structure of the real-valued GA described in the previous chapter, but with

a new feature to make the algorithm more robust and powerful. After the reproduction and

the re-evaluation step of the genetic algorithm, every individual solution will experience

an extra random position movement. These movements send individuals to search around

their neighboring area and explore possible better solutions.

This extra movement is inspired from the particle movements of PSO, with actions

similar to the micro-scale movement of a little particle. Therefore, we name this algorithm

a modified genetic algorithm with micro-movement (MGAM). The flow chart of the MGAM

is shown in fig. 2.1.

2.2 Specification of MGAM

The following equation will demonstrate the mechanism of the micro-movement.
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Fig. 2.1: Flow chart of MGAM.
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Gen1j = gen1j +ms ∗ signv ∗ r1, (2.1)

where gen1j is the newborn offspring data in jth generation, while Gen1j is the offspring

data after micro-movement happened. The ms is a factor with value 0.0001 or even smaller,

controlling the micro-movement scale. The signv is a random sign number, which randomly

becomes 1 or -1. The r1 is a random number taking values between 0 and 1. In other words,

the second term of the right-hand side of this equation adds an extra small value (which

could either make it greater or smaller) to the offspring data, in order to execute the

movement around the immediate area.

There are several parameters here in the micro-movement equation controlling the

specifics. Therefore, with careful control on its behavior, this extra movement could be

more efficient and powerful.

2.3 Scale of Micro-Movement

The extra movement at a ‘micro’ scale is playing a great role in its original inspiration.

Actually, if the extra movement is executed under a large scale (letting ms in eq. (2.1) be

as large as 0.1 or 0.01), all individual solutions will move around within a very large part of

the entire search space. These will make the movement have the similar effects of random

mutation process, which is unnecessary and pointless since a higher mutation rate could be

more efficient to accomplish this job. Thus, we usually set the mr in the equation as small

as 0.0001 or 0.00001.

2.4 Iteration of Micro-Movement

The micro-movement process is a random search process for the individual solutions.

It repeats several times during every generations in order to possibly obtain a better solu-

tion position in the search space. The iteration numbers of the micro-movement in every

generation depends on different requirements of the applications, with different convergence

features.
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It is very important to notice that the micro-movement process also consumes the

same computing resources as a reproduction process. That is because every time a micro-

movement has occurred, we need to re-evaluate the fitness. A tradeoff between the repeats of

micro-movement and its exploration thoroughness is then crucial for this algorithm. Thus,

the micro-movement process will occur only during particular generations. Usually it is

reasonable for it to take place when the best fitness of the population has not improved

for a long time. Besides, in order to save computing time, the micro-movement will not

continuously be activated for many generations.

2.5 Selection of Micro-Movement Results

After the micro-movement process, we still have to decide whether to keep the moved

individuals or discard them. We have different choices for particular strategies. Consid-

ering the importance of keeping diversity of the population, we will discard all the moved

individuals unless any improvement of the best fitness occurred.

2.6 Flow of Micro-Movement

As explained in previous sections, the micro-movement process will have the following

steps.

1. Micro-movement exploration

2. Fitness re-evaluation

3. Comparison with former fitness

4. Keep or discard the moved individuals

5. Repeat steps above

6. Ending the micro-movement process for this generation after several repeats.

A flow chart of the micro-movement process is demonstrated in fig. 2.2.
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With a condition controller in the simulation code, MGAM is able to select the partic-

ular iteration numbers (or also called generations) to perform the micro-movement phase,

aiming to improve efficiency in exploring the search space, while retaining computing speed.

A trigger is needed here to decide during which generation the micro-movement take

place. This trigger of the micro-movement utilizes a counter monitering the generations

during which the fitness value has not improved. Once a better fitness has been found, the

counter will be reset and start counting again. The micro-movement will not happen until

the next time the counter has triggered the process.

Since we are not activating the micro-movement continuously, we set another counter

to count how often we activate the micro-movement. Once it reaches a threshold number,

which means the particles are trapped in local minimums for a certain period, the micro-

movement will be paused for several generations. Meanwhile, the same counter changes

to count the number of generations that the micro-movements have paused. Later, this

counter will activate the micro-movement again by achieving a certain value.

If any improvement of best fitness is obtained by the micro-movement process, the two

counters above will both be reset and start the count again. In other words, every time the

reset happens, a better solution has come out through the micro-movement process.
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Fig. 2.2: Flow chart of micro-movement.
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Chapter 3

MGAM Optimization of Standard Test Functions

The genetic algorithm can be examined by being implemented on different test func-

tions. With various convergence features, standard test functions help to testify the op-

timization ability of the GAs. In this work, we ran simulations of five test functions [7],

which are widely used for testing of random search algorithms, on both MGAM and RGA.

Although there is no single algorithm that can promise to have ideal performance on all

applications, the MGAM turns out to have an obvious advantage over the usual RGA on

these five test functions.

To have a ideal approximate of the optimum, the result of all these test functions

are objectively aiming to have a accuracy of 0.00001. The result might be far from this

precision target, which depends on different properties of applications. The MGAM here

can reasonably have the total number of generations as the same as, or less, than RGA.

The total number of generations means the micro-movement iteration numbers for the whole

population added up to reproduction generation numbers of the MGAM.

3.1 Test Functions Comparison Result

We uniformly configure both RGA and MGAM to optimize all these test functions.

For the RGA, it runs with a fixed-to-sinusoidally changing mutation rate. Is starts with a

fixed mutation rate of µ = 0.15. Later, the sinusoidal mutation rate is triggered when 120

generations have been reproduced yet there is still no improvement on the best fitness. The

sinusoid period of the mutation rate is 80 generations.

The MGAM has the same mutation rate type as RGA. The micro-movement will be

triggered when 800 generations have been evolved, but still no improvement on the best

fitness. The micro-movement will repeat four times within one generation, with a movement
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scale of 0.0001, and it will activate for seven continuous generations. If there is still no

improvement of fitness, the micro-movement will pause for 50 generations and start again.

By these settings, the MGAM actually only have a relatively small number of generations

with micro-movement process activated, aiming to save computation time.

3.1.1 Application on Tripod (2D)

The Tripod equation has only two variables, given by

f(x1, x2) = p(x2)(1 + p(x1)) + |x1 + 50p(x2)(1− 2p(x1))|+ |x2 + 50(1− 2p(x2))|, (3.1)

with p(u) = 1 if u >= 0,p(u) = 0 if u < 0.

This function is theoretically easy, but misleads many algorithms, which are easily

trapped in one or other of the local minima. Every variable in the test are set to have a

range of [-300 300]. Table 3.1 shows the results of best fitness value acheived by both RGA

and MGAM, which both simulate the optimization on Tripod five times. The RGA run

80,000 generations of reproductions. The MGAM, targeting to spend less time to converge,

was set to run for 50,000 generations with no more than 20,000 micro-movement generations.

We can tell from Table 3.1 that the MGAM has a dominantly better performance over

RGA for this test function. This result is the best example that demonstrates the micro-

movement capability to better search the neighborhood of individual solutions. The Tripod

function has a shape looks like many up-side-down house roofs with several minimums

on the very buttom of the deepest ‘roof.’ The micro-movement of MGAM will send the

individuals to move around those roofs to get to a deeper place, while the RGA is not able

to search around. This will be the reason why the MGAM is greatly improve the genetic

algorithm performance on this test function.

3.1.2 Application on Alpine (3D)

f(xd) =
∑
|xd sin(xd) + 0.1xd|, (3.2)
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Table 3.1: Results for Tripod (2D) test function.
RGA MGAM

case of tests 80000 generations 50000 + (20000-) generations
1 0.2130 0.0004
2 0.2930 0.0001
3 1.0022 0.0003
4 0.3723 0.00007
5 1.6011 0.0001

Average fitness 0.6965 0.0003

with d = 1, 2, 3.

The Alpine function has many local and global minima of zero value. The surface of

space is not completely symmetrical compared to the origin. Here the MGAM have 50000

generations. While we let RGA have 80000 generations to have more mutation chances to

get a better result. Variable range here is again [-300 300].

With 30000 more generations of reproduction, the RGA still has a worse performance

of fitness searching in Table 3.2. We further consider the micro-movement as a reproduction

process, since it also need to evaluate the fitness for every individual solution. With the

setting of parameters we previously described, the MGAM has less than 30000 times of

micro-movement process occurred in all the cases of tests. This means with a totally

less than 80000 generations of reproduction, the MGAM have over 10 times better result

of fitness than RGA. The mechanism of micro-movement is playing a great role to help

individuals to find best fitness around.

3.1.3 Application on Parabola (5D)

f(xd) =
∑

x2
d, (3.3)

with d = 1, 2, 3, 4, 5.

The Parabola function has only one minimum globally. The target optimal value for

this function will be difficult to achieve because of the very low convexity in the area around

the minimum. We increase the size of dimensions as 5D to testify the optimization ability
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Table 3.2: Results for Alpine (3D) test function.
RGA MGAM

case of tests 80000 generations 50000 + (30000-) generations
1 0.5136 0.0230
2 0.3417 0.0263
3 1.3035 0.0326
4 0.3757 0.1867
5 2.2584 0.1637

Average fitness 0.95858 0.08646

Table 3.3: Results for Parabola (5D) test function.
RGA MGAM

case of tests 60000 generations 50000 + (500-) generations
1 1.4260 0.1712
2 0.0629 0.1604
3 0.2387 0.0042
4 1.0322 0.5843
5 0.2944 0.6662
6 0.7250 0.0260

Average fitness 0.6299 0.2687

of the MGAM on higher dimensional probelms. The variable range here we implement is

[-20 20].

From the results in Table 3.3, we can see that this test function will be more challenging

for both RGA and MGAM. And we found out that the MGAM with the same parameters

setting as previous tests has much less micro-movement activated than the previous tests.

Because of the parabola shape of space, it will be easier for the individuals to search a

better fitness but with a relatively higher fitness value. Thus the micro-movement will not

be activated too often since the best fitness keeps improving. The very low convexity of

area that around the global minimum leads to the relatively higher fitness value for both

RGA and MGAM. However, the MGAM still succeeds to have a better performance than

RGA in this test. The exact number of iterations of activated micro-movement turns out

to be so important for the result.
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3.1.4 Application on Ackley (3D)

f(xd) = −20 exp(−0.2

√∑
x2
d

3
)− exp(

∑
cos(2πxd)

3
) + 20 + e, (3.4)

with d = 1, 2, 3.

The Ackley function apparently looks like Alpine. But it actually is more difficult,

even with the same dimensionality, as other test functions. Here the function has a variable

range [-30 30]. The very narrow and focused deep bottom of the space, where the global

minimum lies, decreases the effectiveness of random replacement. However, the MGAM

with micro-movement will be able to search the small region of the minimum once any one

of the individuals have been placed in that region. This will greatly improves its effectiveness

on this sort of problem. That is why, with less than 10000 generation of micro-movement

process, the MGAM succeed to find an over 100 times better fitness than RGA with 80000

generations of reproduction (Table 3.4).

3.1.5 Application on Griewank (3D)

f(xd) =
∑

(xd + 100)2

4000
−
∏

cos(
xd − 100√

d
) + 1, (3.5)

with d = 1, 2, 3.

The Griewank function (simulation result demonstrated in Table 3.5) is more difficult

for these searching algorithms, because the global minimum 0 is almost indistinguishable

from many closely packed local minima that surround it. Here it has a variable range [-300

300].

This test function activates micro-movement process more frequently than the Parabola

function, because those many close local minmum all over the search space easily traps

individual solutions. With less than 15000 generations of micro-movement, the MGAM

again has an obvious better fitness searching ability than RGA with 80000 generations



25

Table 3.4: Results for Ackley (3D) test function.
RGA MGAM

case of tests 80000 generations 50000 + (16000-) generations
1 2.1278 0.00095
2 1.8164 0.00059
3 1.1887 0.00039
4 2.1467 0.00093
5 1.8101 0.00078

Average fitness 1.8180 0.00073

Table 3.5: Results for Griewank (3D) test function.
RGA MGAM

case of tests 70000 generations 50000 + (15000-) generations
1 0.1724 0.0117
2 0.1473 0.1600
3 0.1128 0.0897
4 0.1607 0.1008
5 0.1096 0.1095

Average fitness 0.1405 0.0943

reproduction. The mutation process of the genetic algorithm helps the individuals to get

rid of the local minimums and reach to a better fitness value position after they are mutated.

3.2 Tests Conclusion

The five test functions are very good demonstrations of the advantageous mechanism

of micro-movement. Depending on different properties of these test functions, the MGAM

has different levels of improved performance than RGA. We could find out that the micro-

movement process has especially impressive performance when the test function of fitness

has one very deep minimum among the many local minimums like Ackley, or when there

are many separately distributed, but respectively concentrated minimums, such as Tripod

and Alpine.
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Chapter 4

Optimization of Nonlinear Dynamic Systems with the

MGAM

Nonlinear dynamic systems application will be a very suitable application field for

MGAM optimization. Because of the complication of variables relationship and intractable

property, a complicated nonlinear dynamic system will be tough for most of general search

algorithms, especially when the system has a strong nonlinear property, the minimum value

of the fitness function could be very difficult to find out. The MGAM could be tested during

running optimization on this kind of application.

4.1 Using the MGAM on the Second Order Van der Pol System

Van der Pol equation, which is also called the Van der Pol oscillator equation (named for

Dutch physicist Balthasar Van der Pol), is a type of nonconservative oscillator with nonlinear

damping [10]. It evolves in time according to the second order differential equation. It is

one of the most famous and typical example of nonlinear dynamical system.

d2x

d2t
+ µ(x2 − 1)

dx

dt
+ x = 0 (4.1)

The Van der Pol equation has the position coordinate variable x, time variable of t, and

µ is a scalar parameter indicating the strength of the nonlinear damping. We can transform

this second order differential equation into two first order equations.

dy1

dt
= y2 (4.2)

dy2

dt
= µ(1− y1

2)y2 − y1 (4.3)
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The Van der Pol equation will not be intractable, but its complication will be a suit-

able level for a primary test on nonlinear dynamical systems. To implement MGAM for

these equations, we select a certain µ, get its corresponding frequency f . Then, we use

both MGAM and RGA to optimize the equation for the target frequency f . The result µ

parameter from the optimization will be compared with the known µ to check how close

the MGAM and RGA can get.

Here in the tests, we use target frequency as f = 0.0524Hz, with the already known

µ = 10. And we are optimizing the Van der Pol equation for the µ within a range of [0 50].

Results of Table 4.1, from both RGA and MGAM, are close enough for our target.

The RGA (fig. 4.1) is able to find an approximate µ, but not as good as MGAM because of

getting stuck in a local minimum. In fig. 4.2, MGAM is showing its ability to better search

nearby regions and get rid of local minimum traps. As we expected from theory analysis,

although the Van der Pol is simple, this test is still informing us that the MGAM is able

to solve a nonlinear dynamical system problem as good as or even better than RGA, most

importantly, within a less number of generations.

The simulation result shows that both RGA and MGAM can handle the Van der Pol

oscillator equation quite well within certain generation of reproductions.

4.2 Using the MGAM on the Third Order Lorenz System

The Lorenz oscillator (named for Edward N. Lorenz), is a 3D dynamical system that

exhibits chaotic flow [11]. With three first order differential equations, the Lorenz equation

has a much more complicated structure and much stronger nonlinear variable relationship

than the Van der Pol oscillator.

dx

dt
= σ(y − x), (4.4)

dy

dt
= x(ρ− z)− y, (4.5)

dz

dt
= xy − βz, (4.6)
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Fig. 4.1: Simulation result of Van der Pol equation for RGA.

Fig. 4.2: Simulation result of Van der Pol equation for MGAM.
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Table 4.1: Results for Van der Pol oscillator equation.
RGA MGAM

best fitness 0.00011 0.0000015
best µ result 10.0449 10.0204

generation numbers 200 100
micro-movement generations NA 23

where σ is called the Prandtl number, ρ is called the Rayleigh number, and ρ, σ, β > 0.

This system exhibits a chaotic behavior for a certain ratio of these three parameters,

which will have two equilibrium points for the limit cycles. For example, σ = 10, β = 8/3,

and ρ = 28 .

Our application target here is to find the equilibrium point in 3D space for the Lorenz

attractor. For a meaningful test, the range of these three parameters will have to be carefully

selected to have very low damping within certain time span. The chaotic status should be

avoid since then it will have more than one equilibrium point and become undistinguishable.

By using analysis method, we can confirm the coordinator of equilibrium point for

a particular set of the three parameters. Then we will implement the RGA and MGAM

targeting the known equilibrium point to search for an approximate set of parameters to

have a comparison. To obtain the right combination of parameters we want, the result of

fitness have to possess a high precision. That is because multiple combinations of the three

parameters could achieve a very close result to our target equilibrium point. From the tests,

the objective accuracy is shown to be at least 10−4.

Letting σ = 10, β = 8/3, and ρ = 18, the Lorenz oscillator will move in a limit cycle

with very low damping. By letting all the left hand side of the three first order equations

to be zero, we can solve the equations and get the solution for the equation x = −6.733,

y = −6.733, and z = 17.

The result of simulation for Lorenz oscillator is more obvious for demonstrating the

advantageous performance of MGAM (Table 4.2). MGAM is able to find a more accurate

approximate coordinator, with precision of 0.0001, and thus its result is approximately the

right equilibrium point we expected. The RGA is not able to achieve a close enough result
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Table 4.2: Results for Lorenz oscillator equation.
RGA MGAM

best fitness 0.0213 0.00013
generation numbers 40000 30000

micro-movement generations NA 6784
best ρ obtained 17.9631 17.9998
best β obtained 2.7134 2.6655
best σ obtained 15.0401 10.0047

of the equilibrium point, which leads to a different the combination of the three parameters

from what we expected.

The strongly nonlinear property of the Lorenz attractor is displaying a very interesting

example of optimization. Although, the RGA provides a small fitness value of 0.0213, the

corresponding parameter set is far from our actual target. The only way to get a satisfactory

result is to find a fitness with a very high precision such as 0.0001, which is shown by MGAM.



31

Chapter 5

MGAM Optimization on WINDMI Model

The previous chapters of applications simulation repesent some basic tests checking

the functionality and convergence of the MGAM. A high-dimensional nonlinear dynamical

system called WINDMI model is introduced in this chapter, and the MGAM is implemented

to optimize this model.

5.1 WINDMI Model Description

5.1.1 Differential Equations of the Model

The plasma physics based WINDMI model uses a voltage Vsw derived from solar wind

parameters and the interplanetary magnetic field (IMF) as the input to drive eight ordinary

differential equations describing the transfer of power through the geomagnetic tail, the cen-

tral plasma sheet, the ionosphere, and the ring current [12,13]. The model gives a predicted

Dst and predicted AL as output. The geometry of the WINDMI model is demonstrated in

fig. 5.1.

The largest energy reservoirs in the magnetosphere-ionosphere system are the plasma

ring current Wrc and the geotail lobe magnetic energyWm formed by the two large solenoidal

current flows producing the lobe magnetic fields. Both these energy components are of the

order of a few peta Joules. These energies are stored as particle kinetic energy in the ring

current and a lobe inductance L in the case of Wm.

A second current loop is the I1 R1 FAC current that is associated with the westward

auroral electrojet. This current has an associated magnetic energy 1
2L1I

2
1 where L1 is

the self-inductance of the region 1 current loop. The area enclosed by the loop contains

magnetic flux ΦMI through mutual inductance M with the larger (∼ 20 times) geotail
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Fig. 5.1: Geometry of the WINDMI model.

cross-field current loop I.

Both current loops have associated voltages V , VI driven by the solar wind dynamo

voltage Vsw(t). The resultant electric fields give rise to E ×B perpendicular plasma flows

whose energies are stored in the capacitances C and CI . There is parallel kinetic energy

K‖ due to mass flows along the magnetic field lines.

The energy components V , K‖, and p in the central plasma sheet are not shown in

fig. 5.1. Aeff is an effective aperture for particle injection into the ring current. Irc is the

ring current whose energy is Wrc given by eq. (5.8). A second current loop is the I1(t) R1

FAC current associated with the westward auroral electrojet and has the associated voltage

VI . The area enclosed by this loop contains a magnetic flux through mutual inductance

with the larger geotail cross-field current loop I(t). The field aligned current at the lower

latitude that closes on the partial ring current is designated as I2.

The high pressure plasma trapped by the reversed lobe magnetic fields gives the thermal

energy component Up = 3
2pΩcps, where Ωcps = LxLyLz is the volume of the central plasma

sheet. The partial ring current I2 transfers energy along magnetic field lines from the

ionosphere to the ring current. The ring current is also energized by particle injection

across the effective aperture Aeff in the transition region [12]. The result is a set of eight

nonlinear ordinary differential equations:
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L
dI

dt
= Vsw(t)− V +M

dI1

dt
, (5.1)

C
dV

dt
= I − I1 − Ips − ΣV, (5.2)

3
2
dp

dt
=

ΣV 2

Ωcps
− u0pK

1/2
‖ Θ(u)− pV Aeff

ΩcpsBtrLy
− 3p

2τE
, (5.3)

dK‖

dt
= IpsV −

K‖

τ‖
, (5.4)

LI
dI1

dt
= V − VI +M

dI

dt
, (5.5)

CI
dVI
dt

= I1 − I2 − ΣIVI , (5.6)

L2
dI2

dt
= VI − (Rprc +RA2)I2, (5.7)

dWrc

dt
= RprcI

2
2 +

pV Aeff

BtrLy
− Wrc

τrc
. (5.8)

The nonlinear dynamics of the model traces the flow of the dynamo generated power

by electromagnetic and mechanical means through the eight pairs of transfer terms. The

remaining terms describe the loss of energy from the magnetosphere-ionosphere system

through plasma injection, ionospheric losses, and ring current energy losses. The system of

eight ordinary differential equations that make up the model follows the conservation rules

of network theory.

In the differential equations, the coefficients are physical parameters of the magnetosphere-

ionosphere system. The quantities L, C, Σ, L1, CI , and ΣI are the magnetospheric and

ionospheric inductances, capacitances, and conductances, respectively. Aeff is an effective

aperture for particle injection into the ring current. The resistances in the partial ring cur-

rent and region2 current I2 regions are Rprc and RA2, respectively, and L2 is the inductance

of the region2 current. The coefficient u0 in eq. (5.3) is a heat flux limiting parameter.

The confinement times for the central plasma sheet, parallel kinetic energy, and ring

current are τE , τ‖ and τrc. The effective width of the magnetosphere is Ly and the transition

region magnetic field is given by Btr. The pressure gradient driven current is given by

Ips = Lx(p/µ0)1/2 where Lx is the effective length of the magnetotail.
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The pressure unloading function Θ(u) = 1
2 [1 + tanhu], where u = (I − Ic)/∆I in eq.

(5.3) is specified by a critical current Ic and the interval ∆I for the transition to loss of

plasma along newly opened magnetic field lines with a parallel thermal flux q||. It changes

from zero to unity as a function of I compared to Ic. The unloading function follows from

current gradient driven tearing modes or cross-field current instabilities [14].

The parameters are combined appropriately into a vector Pd where d = 18. They can

be estimated using semi-analytical techniques, or they can be considered as variables that

need to be optimized within physically allowable ranges to fit the data for a given storm.

Here we approximated the parameters analytically using the Tsyganenko magnetic field

model and then defined a range of allowable values over which each parameter is allowed to

vary. In Tables 5.1 and 5.2 we give the calculated estimates and a short description of the

major parameters in the WINDMI model (calculations are detailed in [12, 15, 16]). Some

parameters listed in Tables 5.1 and 5.2 occur only as combinations, such as the effective

aperture Aeff , transitional region magnetic field Btr, and the dawn-to-dusk width of the

magnetosphere Ly.

5.1.2 Solar Wind Input

The solar wind driving voltage Vsw in eq. (5.1) is the input time series for the nonlinear

driven-dissipative system. The driving voltage Vsw is calculated in two ways. The first is to

use the standard rectified vBs formula, given by Vsw = vswB
IMF
s Leffy where vsw is the x-

directed component of the solar wind velocity in GSM coordinates, BIMF
s is the southward

IMF component, and Leffy is an effective cross-tail width over which the dynamo voltage

is produced. The second method is to use the formula [18–20] for the coupling of the solar

wind to the magnetopause using the solar wind dynamic pressure Psw to determine the

standoff distance. The resulting formula for Vsw = Vsw(nsw, ~vsw, ~BIMF ) is given by

Vsw(kV ) = 30.0(kV ) + 57.6Esw(mV/m)P−1/6
sw (nPa), (5.9)

where Esw = vsw(B2
y + B2

z )1/2 sin( θ2) is the solar wind electric field with respect to the
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Table 5.1: WINDMI nominal parameters.
L (90 H) Inductance of the lobe cavity surrounded by the geotail cur-

rent I(t). The nominal value is L = µ0A`/L
eff
x in Henries

where A` is the lobe area and Leff
x the effective length of the

geotail solenoid. Computation of L as function of the IMF
from the Tsyganenko model are given in [16].

M (1 H) The mutual inductance between the nightside region 1 cur-
rent loop I1 and the geotail current loop I.

C (50000 F) Capacitance of the central plasma sheet in Farads. The nom-
inal value is C = ρmLxLz/B

2Ly where ρm is the mass density
in kg/m3, LxLz is the meridional area of the plasma sheet,
Ly the dawn-to-dusk width of the central plasma sheet and
B the magnetic field on the equatorial plane. Computations
of C are given in [15].

Σ (8 S) Large gyroradius ρi plasma sheet conductance from the
quasineutral layer of height (Lzρi)1/2 about the equatorial
sheet. The nominal value is Σ = 0.1(ne/Bn)(ρi/Lz)1/2. Com-
putation of Σ is given in [17].

Ωcps (2.6×1024

m3)
Volume of the central plasma sheet that supports mean pres-
sure p(t), initial estimate is 104R3

E .
u0 (4 ×
10−9)/m/kg1/2

Heat flux limit parameter for parallel thermal flux on open
magnetic field lines q‖ = const×v‖p = u0(K‖)1/2p. The mean
parallel flow velocity is (K‖/(ρmΩcps))1/2.

Ic (1.78 × 107

A)
The critical current above which unloading occurs.

Ips(p) and α The geotail current driven by the plasma pressure p confined
in the central plasma sheet. Pressure balance between the
lobe and the central plasma sheet gives B2

` /2µ0 = p with
2LxB` = µ0Ips. This defines the coefficient α in Ips = αp1/2

to be approximately α = 2.8Lx/µ
1/2
0 .



36

Table 5.2: WINDMI nominal parameters.
τ‖ (10 min) Confinement time for the parallel flow kinetic energy K‖ in

the central plasma sheet.
τE (30 min) Characteristic time of thermal energy loss through earthward

and tailward boundary of plasma sheet.
L1 (20 H) The self-inductance of the wedge current or the nightside re-

gion 1 current loop I1(t)
CI (800 F) The capacitance of the nightside region 1 plasma current

loop.
ΣI (3 mho) The ionospheric Pedersen conductance of the westward elec-

trojet current closing the I1 current loop in the auroral (alti-
tude ∼ 100 km, 68◦) zone ionosphere.

Rprc (0.1 ohm) The resistance of the partial ring current.
τrc (12 hrs) The decay time for the ring current energy.
L2 (8H) The inductance of the ring current.
RA2 (0.3 ohm) Resistance of the region 2 footprint in the Auroral Region.
Btr (5×10−9T) The magnetic field in the transition region.
Aeff (8.14 ×
1013 m2)

The average effective area presented to the geotail plasma for
plasma entry into the inner magnetosphere, estimated to be
2R2

E .
Ly (3.2 × 107

m)
The effective width of the Alfven layer aperture, estimated
to be 5RE .

∆I (1.25 × 105

A)
The rate of turn-on of the unloading function.
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magnetosphere and the dynamic solar wind pressure Psw = nswmpv
2
sw. Here mp is the

mass of a proton. The IMF clock angle θ is given by tan−1(By/Bz). The solar wind flow

velocity vsw is taken to be approximately vx. In addition, the position of the ACE satellite

introduces a time delay for the solar wind to transit from the L1 point to the nominal

coupling region at X = 10RE . This time delay is approximately 1 hour. For this work we

use

td(V,X, Y ) =
X −X0

V
, (5.10)

where td is the time delay, X0 = 10RE , V is the solar wind bulk speed where we get V = vx.

The solar wind input voltage is translated to become Vsw(t− td) at the coupling region.

5.1.3 WINDMI Output

Numerical solution of the eight differential equations gives the state vector X(t) and

the associated eight energy components. The Auroral AL index now follows as a magnetic

field perturbation ∆BAL from the ambient terrestrial field due to the westward electrojet

current I1 that flows in the E-layer (∼ 100km) in the nightside ionosphere. We estimate

the relation between I1 and the AL index by assuming for simplicity that the current I1

is related linearly to the AL index by a constant of proportionality λAL[A/nT ], giving

∆BAL = −I1/λAL.

To get λAL, we used the estimated parameters to run the WINDMI model for each

of the storms to obtain the ratio between the mean of the AL index and the mean of I1.

The result is shown in Table 5.3. This average value for each storm was then used in all

subsequent analysis. The Dst signal is given by ring current energy Wrc (∼ 3− 8× 1015J)

through the Dessler-Parker relation, which is

Dst = −µ0

2π
Wrc(t)
BER3

E

, (5.11)

where Wrc is the plasma energy stored in the ring current and BE is the earth’s surface

magnetic field along the equator.
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Table 5.3: Evaluation of λAL in A/nT to determine the scaling factor between the westward
Auroral Electrojet index AL and the current I1.

GEM Storm λAL with VBs Input λAL with Siscoe Input Average λAL

Oct 2000 3193 3358 3275
Apr 2002 2340 2937 2638

5.2 MGAM for WINDMI Model

Because the WINDMI model is a complicated nonlinear dynamic model with large num-

ber of dimensions, details about the genetic algorithms (RGA and MGAM) implementation

on WINDMI model are described here.

5.2.1 Initialization

The 22 variable coefficients in the WINDMI model are L, β, M , C, Σ, Ωcps, u0, Ic,

Aeff , Btr, Ly, τE , τ‖, LI , CI , ΣI , L2, Rprc, RA2, τrc, α, and αF. These parameters are

constrained to maximum and minimum physically realizable and allowable values. This

results in a 22D search space S over which the optimization is to be performed. Here, a

single set of parameters corresponds to a point s ∈ S.

To produce the first generation G1, we implement the same method described as eq.

(1.2).

5.2.2 Evaluation of Fitness and Regeneration

The selection of an appropriate cost function or fitness metric is critical, since the

features of an optimized solution depends on the cost function. Different cost functions are

used to investigate the quality of solutions returned by the algorithm. Following are the

cost functions used in this work:

1. A normalized L2 norm

2. The correlation coefficient

3. The ARV.
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The formulas for the norms are:

||Y ||l2 =
1

sup|yi|
[
Σi(xi − yi)2

]1/2
. (5.12)

The average relative variance (ARV) and correlation coefficient (COR) are calculated

here as well. Their formulae, respectively, are

ARV =
Σi(xi − yi)2

Σi(ȳ − yi)2
, (5.13)

COR =
Σi(xi − x̄)(yi − ȳ)

σxσy
, (5.14)

where xi are model values and yi are the data values. In order to have a close match between

the model output and measured data, ARV should be close to zero. The cost function is

calculated for I1 as x versus the AL Index as y. For the ARV measur, which is less than one,

(1−ARV )× 100% of the variation of the data is explained by the model. For a stationary

data set, which is not the case for data sets with large storm events, the ARV and COR

are related by COR = 1 − ARV . Also, a model giving ARV = 1 is equivalent to use the

average of the data for the prediction.

5.2.3 Crossover

In this work, the process of natural selection is accomplished by simply retaining the

best half of a generation forming Gbestq based on the fitness metric. To perform crossover

at the qth generation, we randomly pair off the best parameter sets in Gbestq . Given a pair

of parameter sets sx and sy, we produce two offspring following the real-valued crossover

process described in sec. 1.2.4.

5.2.4 Mutation with Automatic Sinusoidally Changing Mutation Rate

Since we are implementing the RGA and MGAM to optimize the WINDMI model, the

automatic sinusoidally changing mutation rate is suitable for the purpose to increase the

opportunity for individual solutions to search for an undiscovered area. The simulation will
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implement the mutation rate format described as sec. 1.4. A 120 generations long period

with no improvement of best fitness, will activate the sinusoidal mutation rate.

5.2.5 Ending the Algorithm

The convergence condition of the optimization for WINDMI application could be

achieved in two ways. One is to set a fixed number of reproduction generations to run.

The other is to set a fixed best finess as the goal. The simulations in this work are all

using the first method as the ending criteria. With an expected numbers of reproduction

generations, a clear comparison of performance can be shown between any algorithms.

5.3 Simulation Result with Comparison and Analysis

5.3.1 Optimization Objective

Since the genetic algorithm is a random search and optimization algorithm, the con-

vergence will spend a period of time (many generations of reproductions) to finish. The

result of the optimization from less generations might be unstable. The best fitness value

will turn out to be different depending on different cases of tests. Our target here is to

focus on a good approximate of the minimum within reasonable reproduction generations.

For the WINDMI model, the previous work has tested the cost function minimum

after 50,000 generations, which spend over 36 hours to finish [21]. The ARVal = 0.45 and

ARVdst = 0.19 is the best value ever achieved of October 4, 2000 storm case. For April

22, 2002 storm, ARVal = 0.62 and ARVdst = 0.38 is the best obtained. Spending a long

period of time to converge will be meaningless for the space weather system, since the space

weather is changing swiftly in hours scale. Usually an ARVal less than 0.52 within 20,000

generations can be consider a good result. Here we compare the MGAM with the RGA for

two different storm events, in order to check the performance of the MGAM implemented

on the WIDNMI model.



41

5.3.2 Result Figures Comparison

The RGA has a faster pattern of crossover and mutation, which could be more efficient

than binary GA. Our version of RGA could reach a relatively good result of optimization

as ARVy < 0.50 and ARVdst < 0.26 within 16, 000 to 18, 000 generations. The MGAM is

expected to have progress over the RGA by its improved search mechanism.

Considering there are three main items in the list of comparison, ARVal, ARVdst, and

generation numbers, it will be clearer and convinient to employ a weighting function here.

Equation (5.15) is providing us a weighting index Pind, which is a conclusive fitness value

of the measured performance.

Pind =
αAal + βAdst + γ

GenMM +Genrep

GenRGA

α+ β + γ
, (5.15)

where α, β, and γ are the weight coefficients for the items of ARVal, ARVdst, and generation

numbers. GenMM is the micro-movement iteration number of the MGAM (also called the

generation number of micro-movement). Genrep is the reproduction generation number of

the MGAM. GenRGA is the largest amount of total generations of RGA. To make a fair

comparison, the generation number of micro-movement should also be counted, consider-

ing the amount of resources are consumed by the micro-movement phase. This equation

produces the final fitness of the result data. A smaller value of Pind indicates a better

optimzation overall.

Usually we treat the three items with the same importance. The final fitness results in

Tables 5.4, 5.5, and 5.6 are calculated when all α, β, and γ equal to one.

For the storm event in October 4th of 2000, Tables 5.4 and 5.5 show us that the

MGAM has a overall better weight function value than the RGA. Comparing different

reproduction generation numbers of the RGA, the MGAM is providing us a relative good

and stable performance with less total generation numbers. In fig. 5.2, the whole number of

generations is 15377, which is less than 16000 generations of the RGA test in fig. 5.3, while

it produces an obvious fitter convergence.

For the storm event in April 17, 2002 (Table 5.6), the time span of that event is much
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Fig. 5.2: MGAM in 12000 generations for WINDMI storm event in October 2000.
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Fig. 5.3: RGA in 16000 generations for WINDMI storm event in October 2000.
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Table 5.4: Results for WINDMI storm event in October 2000 with 16000 generations of
RGA.

test functions RGA MGAM
cases Al DST GenRGA Pind AL DST Genrep GenMM Pind

1 0.51 0.25 16000 0.587 0.51 0.22 12000 1951 0.534
2 0.48 0.22 16000 0.567 0.48 0.23 12000 2117 0.531
3 0.48 0.21 16000 0.563 0.51 0.24 12000 2155 0.545

Table 5.5: Results for WINDMI storm event in October 2000 with 18000 generations of
RGA.

test functions RGA MGAM
cases Al DST GenRGA Pind AL DST Genrep GenMM Pind

1 0.48 0.25 18000 0.577 0.50 0.24 12000 2734 0.520
2 0.47 0.22 18000 0.563 0.48 0.23 12000 3017 0.515
3 0.49 0.22 18000 0.570 0.46 0.23 12000 3377 0.515

longer than the October 2000 case. In order to reduce the time consumed, we will restrict

the reproduction within 16000 for both RGA and MGAM. The result contrast of this storm

event is not as obvious as the October, 2000 case. This is because the optimization for this

storm event has already become saturated within less than 20000 generations. However,

with around 1000 to 700 less generations, we are still able to get a slightly better result

from the MGAM, which is also shown in figs. 5.4 and 5.5.

With the results above, the MGAM is proved to be capable of solving complicated

application of nonlinear dynamical system, and its performance is shown to be better than

the RGA as expected.

Table 5.6: Simulation results comparison for WINDMI storm event in April 2002.
test functions RGA MGAM

cases Al DST GenRGA Pind AL DST Genrep GenMM Pind

1 0.72 0.39 16000 0.670 0.63 0.40 12000 3757 0.672
2 0.64 0.40 16000 0.680 0.62 0.40 12000 3135 0.655
3 0.64 0.39 16000 0.677 0.62 0.39 12000 3417 0.658
4 0.64 0.39 16000 0.677 0.63 0.39 12000 2930 0.651
5 0.63 0.40 16000 0.677 0.63 0.40 12000 3580 0.668
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Fig. 5.4: MGAM in 12000 generations for WINDMI storm event in April 2002.
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Fig. 5.5: RGA in 16000 generations for WINDMI storm event in April 2002.
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Chapter 6

Conclusion and Future Work

In this work, we purpose a modified version of genetic algorithm with micro-movement

(MGAM). We incorporate a learning, or experience gained by individuals in a population

at each generation. This will increase efficiency by reducing the reliance on improvement

only from generation to generation via offspring created through crossover and mutation.

We compare the performance of both the real-valued GA and MGAM for five standard test

functions (Tripod (3D), Alpine (3D), Parabola (5D), Griewank (3D), and Ackley (3D)). We

also have two nonlinear dynamical systems implemented as our test applications, which are

Van der Pol oscillator and Lorenz attractor. The most important and interesting applica-

tion for the MGAM is the WINDMI model of space weather system, which have a great

complication of nonlinear related variables and a large size of variable dimensions (22D).

The MGAM is shown to be competent for optimizing all the applications above, as well as

having an advantageous fitness searching ability over RGA.

Our future work will implement the MGAM on more interesting applications, such

as other space weather models and strategic game theory. We are also looking for other

methods of movement patterns to optimize our current algorithm.
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