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ABSTRACT

Symmetry Analysis of General Rank-3 Pfaffian Systems in Five Variables

by

Francesco Strazzullo, Doctor of Philosophy
Utah State University, 2009

Major Professor: Dr. Ian M. Anderson
Department: Mathematics and Statistics

In this dissertation we applied geometric methods to study underdetermined second order scalar
ordinary differential equations (called general Monge equations), nonlinear involutive systems of two
scalar partial differential equations in two independent variables and one unknown and non-Monge-
Ampere Goursat parabolic scalar PDE in the plane. These particular kinds of differential equations
are related to general rank-3 Pfaffian systems in five variables. Cartan studied these objects in
his 1910 paper. In this work Cartan provided normal forms only for some general rank-3 Pfaffian
systems with 14-; 7-; and 6-dimensional symmetry algebras.

In this dissertation we provided normal forms of all general rank-3 Pfaffian systems in five
variables with a freely acting transverse 3-dimensional symmetry algebra. We applied our normal
forms to

[i] sharpen Cartan’s integration method of nonlinear involutive systems,

[ii] classify all general Monge equations with a freely acting transverse 3-dimensional symmetry
algebra, of which many new examples are presented, and

[iii] provide a broad classification of non-Monge-Ampere Darboux integrable hyperbolic PDE
in the plane.

We developed a computer software, called FiveVariables, that classifies general rank-3 Pfaffian

systems. FiveVariables runs in the environment Differential Geometry of Maple, version 11 and later.

(235 pages)
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CHAPTER 1
INTRODUCTION

The subject of this dissertation falls within the geometric study of differential equations. The

dissertation consists of four parts. The first part (Chapters 2, 3, and 4) deals with the general theory

of rank-2 and rank-3 Pfaffian systems on a 5-dimensional manifold and its relation to the problem

of solving certain special types of partial differential equations. In the second part (Chapters 5 and

6), we carry out a detailed symmetry analysis of general rank-3 Pfaffian systems. The third part

provides an application of our results to the theory of Darboux integrable hyperbolic second-order

scalar PDE in the plane (Chapter 7). In the last part (Chapter 8), we describe how we implemented

the equivalence method of Cartan for GR3D5 Pfaffian systems with a computer algebra system.

The diagram in Figure 1.1 summarizes the structure of this dissertation.

nonlinear

involutive
pair of

PDE

Goursat
parabolic
PDE

Ch General Symbolic
. 6 rank-3 implementation
PS of Cartan 1910

Ch. 5 Ch. 3

Classification of GR3Ds

with transverse free actingJ NG Monge equations

3-dim symmetry

Ch. 7 Cartan 1910

CNon—Monge—Ampére Darboux integrable hyperbolic PDE) @im Sym € {6,7, 14D

Fig. 1.1: Dissertation overview.
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This dissertation started from the study of Elie Cartan’s famous five variables (or 1910) paper
[10]. In this lengthy article, Cartan considers five main topics.

[A] The analysis of rank-2 and -3 Pfaffian systems on a 5-manifold (§II).

[B] The application of geometric methods to the integration of involutive systems of PDE and
Goursat parabolic PDE in the plane (§III to §V).

[C] The application of the equivalence method to compute the fundamental invariant of general
rank-3 (or GR3Ds) Pfaffian systems in five variables (§VI).

[D] The distribution of GR3D5 Pfaffian systems into six main classes (§VII to §XI).

[E] The analysis of some special classes of GR3D5 Pfaffian systems (§XII to §XIV).
A recent exposition of these topics can be found in Stormark [38].

In Chapters 2 and 3, we provide a detailed account of topic [A]. We formalize the definition of

a general rank-3 Pfaffian systems in five variables, as follows.

Definition 1. A rank-3 Pfaffian system I defined on a 5-manifold is said to be general and denoted
GR3Ds, if and only if the derived type of I is [3,2,0] (see Definition 2.2.7). ]

Our main contribution to topic [A] is the following Theorem 1, which was only cited by Cartan

as a consequence of Goursat’s work [26].

Theorem 1. A rank-3 Pfaffian system I defined on a 5-manifold is a GR3Ds Pfaffian system if
and only if I is locally realized by an underdetermined second-order ordinary differential equation
0’H

Z'=H(X,Y,Z,Y' Y") for which W # 0.

The equations of the type considered in Theorem 1 were called (general) second-order Monge equa-
tions by Gardner [18, page 148]. The proof of this theorem provides an algorithm, which we called
Monge Algorithm 3.5.8, that is repeatedly used in Chapter 5.

We can say that topic [B] is the goal of the 1910 paper. Every system of two PDE in the plane
gives rise to a rank-3 Pfaffian system in 6-variables, say I5. Cartan proved that such systems are
involutive if and only if they admit a unique Cauchy characteristic directional field. Consequently
I5 can be reduced to a rank-3 Pfaffian system in five variables. In Chapter 4 we summarize this

result, obtaining the following.

Theorem 2. Let z = z(x,y) be a scalar function on the plane and let

Zow = R(X,Y, 2, 20, 2y, 2yy)s Zay = S(2,Y, 2, 2o, 2ys Zyy), (1.1)
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be an involutive system. Assume that I5 is the Pfaffian system generated by (1.1) and that C is a

Cauchy characteristic of Is. Then I5 is reduced by C' to a GR3Ds Pfaffian system if and only if
%S
— #0.

O0zyy

In Chapter 4, combining Theorems 1 and 2, we arrive at an integration method for nonlinear
involutive systems, which was one of the goals in topic [B].

The simplest example we can use to illustrate the general theory developed in Chapters 2
through 4 is the following. In terms of the standard notation (p,q,, s,t) = (24, 2y, Zza, Zzy, Zyy), the

system of scalar PDE in the plane
1 1
= _¢3 = _¢2 1.2
r=t 5=t (12)

is of the kind treated in Theorem 2. The system (1.2) gives rise to the rank-3 Pfaffian system

dz—pdx —qdy,

3 t2
I =4 dp— 3 dx — 5 dy, (1.3)
2

t
dq — 5 dxr —tdy,
on the 6-manifold Mg with local coordinates (x,y, z,p, ¢,t). A Cauchy characteristic of (1.2) or I

is
3 £2

Czamftaer(pfqt)5'2758},758(1. (1.4)
A complete set of invariants for C' is
t3 t2 t3
=t P=y+tz, 2=p+ A =g+, 2° :z—i—ExQ—i—txq—xp. (1.5)
x

Consequently, I5 is reduced to the rank-3 Pfaffian system I

daz® — ztda?,
12
I'=< dz% - x—de (1.6)
2 b

dz* — 2zl da?,

on the quotient manifold M5 with local coordinates (z?,...,z%). Cartan proved that I is realized

A a2y \?
X~ (w) ' .7

by the Hilbert-Cartan equation
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Using the solutions of (1.7), we can construct the 2-dimensional integral manifold s : (X, u) € R? —

Mg of (1.2). Indeed, in Example 4.1.14, we see that the integral manifold of (1.2) is given by
v=p, y=Xp+F" 2= —é;ﬁX?’ + (F - ;XQF”> - % (G FXF? 2F’F”) ,(1.8)
for every solution Y = F(X) and Z = G(X) of (1.7). For instance, from the solution
Y = iX?’, 7= Lxs +k, k= const. (1.9)
12 12

of (1.7) we obtain the solution

P —— (1.10)

of (1.2).

This integration method outlined by Cartan requires the realization of (1.6) as the rank-3
Pfaffian system in five variables generated by (1.7). Although such a realization always exists, its
explicit computation is quite complicated. In Chapter 4 we apply this integration method to a family
of nonlinear involutive systems for which (1.2) is particular (see Theorem 4.1.13).

It turns out a similar procedure can be applied to Goursat parabolic PDE in the plane which
are non-Monge-Ampere equations (or simply general Goursat equations). Indeed, following Cartan’s
topic [B] in Chapter 4, we show that there is a bijective mapping between general Goursat equations

and nonlinear involutive systems (see Section 4.3). For instance, the general Goursat equation
3253 — 12t%s% + 9r? — 36rts + 12rt® = 0, (1.11)

is associated to (1.2) (see Example 4.3.2). We display this example in the diagram of Figure 1.2
(page 5).

While developing topic [C], Cartan proved that all GR3 D5 Pfaffian systems have a finite di-
mensional symmetry algebra, namely of dimensions 14 or less than 8. Cartan then provided normal
forms for those G R3 D5 Pfaffian systems with symmetry algebra of dimension 14 or 7, and some nor-
mal forms for those with 6-dimensional symmetry algebra. No normal forms were given for GR3 D5
Pfaffian systems whose symmetry algebra is 5-dimensional or smaller. In Chapter 5 we provide nor-
mal forms for all the GR3 D5 Pfaffian systems with a transverse free-acting 3-dimensional symmetry

algebra. We summarize the results of Chapters 5 in the following theorems and tables, where a



Involutive system Goursat parabolic PDE

@233 —12t25%2 + 92 — 36rts + 121t = 0)
dz® — 2%dx

2
)
12

da® — % da3, |—> Cartan 2-tensor

da* — 2t da?.

<14—dim symmetr@

Fig. 1.2: Example of the theory in Chapters 3 and 4.

reference to the proof of each entry is provided.

Theorem 3 (GR3Ds5 symmetry normal forms). Let I be a GR3D5 Pfaffian system on a 5-manifold
M. Assume that I admits a 3-dimensional symmetry group G which acts freely and transversely on
M and denote by I' a set of infinitesimal generators of the action of G on M. Then about each point
of M there are local coordinates (a,b, c,u,v) such that I and T can be expressed in one of the normal
forms of Table 1.1 (page 8). There, [g] denotes the algebraic type of T' according to [36], F = F(u,v)
is a differentiable function and K = K (u,v, F) is subject to the constraint D, [K] # 0.

The Monge Algorithm 3.5.8 that we elaborated together with Theorem 3 provide the following.

Theorem 4 (General Monge normal forms). Let

0*H
Z1 :H(X,Y, Z,Yl,YQ), W #0, (112)
2
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be a general second order Monge equation on the 5-manifold N, with local coordinates (X,Y, Z,Y1,Ys).
Assume that (1.12) admits a 3-dimensional symmetry group G which acts freely and transversely on
N and denote by T' a set of infinitesimal generators of the action of G on N. Then (1.12) and T
can be expressed as in Table 1.2 (page 9). There, [g] is the algebraic type of T' according to [36] and
h is a differentiable function depending only on two arguments, which is non-zero for the algebraic

type Az 9 while for all the other algebraic types h is such that D[QQ}h #0.

As we already mentioned, obtaining the general Monge normal form of a G R3 D5 Pfaffian system
is not easy task. The assumptions about the symmetry algebra in Theorem 4 make this task more
accessible. These results combined with that of Chapter 4 sharpen Cartan’s integration method for

nonlinear involutive systems. To illustrate this point, we give the following theorem.

Theorem 5. Let I be the reduction by the Cauchy characteristic of the Pfaffian system generated

by a nmonlinear involutive system

r=R(z,y,2,pqt), s=8(xy,2pqt). (1.13)

Assume that the Heisenberg algebra is a symmetry algebra of I, acting transversely and freely. Then
the integral manifolds of (1.13) are expressed in terms of two independent variables, & and X,
one generic function Y = f(X), its derivatives Y’ and Y, and a function Z = G(X) such that
Z'=Y +hY"Y").

One future work is the implementation in a computer algebra system of this theory and our
algorithm, in order to create a solver for involutive systems.

Another conclusion obtained in topic [C] is the construction of the Cartan 2-tensor F; associated
to every GR3 D5 Pfaffian system I. This is a homogeneous fourth degree polynomial in 2-variables.
G R3 D5 Pfaffian systems can be classified according to the root type of Fj, as Cartan did in topic
[D]. In Chapter 6 we provide many examples of inequivalent GR3Ds Pfaffian systems for each root
type, which are new to the literature.

In Chapter 7, Theorem 7.2.2, we provide another application of our symmetry analysis of
GR3D; Pfaffian systems (Theorem 3). This is based upon the recent work of Anderson, Fels,
and Vassiliou [3], which allows a broad classification of all non-Monge-Ampere Darboux integrable

hyperbolic PDE in the plane. For instance, we derive the following



Theorem 6 (Heisenberg Darboux integrability). Let

F(x,y,z,p,q,r,s,t) =0 (114)

be a non-Monge-Ampere Darboux integrable hyperbolic PDE in the plane with Vessiot algebra the

Heisenberg algebra. Then (1.14) is the quotient of two copies of

7 =Y +h(Y",Y")

by the diagonal action of
I'= <8z, Ox, Oy + Xaz>

Conversely, every such quotient gives rise to a non-Monge-Ampére Darboux integrable hyperbolic

PDE (1.14) with Heisenberg Vessiot algebra.

In topic [C] Cartan actually constructed two invariants of a GR3D; Pfaffian system I. One
is Fi(z1,22), and the other is a homogeneous fourth degree polynomial in 3-variables G; such that
Gr(x1,22,0) = F;. The computation of the Cartan tensors is very complicated; Cartan himself
could provide only few explicit expressions. In Chapter 8 we summarize the basic steps of topic [C].
With an important contribution of Hsiao [29], we implemented the equivalence method for GR3 D5
Pfaffian systems and nonlinear involutive systems. We briefly describe the program Five Variables
that we developed in order to compute the Cartan tensors and the root type of F;. This program

works under the Differential Geometry package of Maple (version 11 and later).



Table 1.1: Symmetry normal forms. D,, [K] # 0.

(9] T I; K. Prop.
db—uda,dc—vda— Fdu,
34 —04, =0, —O0,. 5.3.2
da+ F,du; K =F.
da—adc+ Fdu+dv,db—udec,
A1 D A2 —e€ 8a, —86, —61). 5.4.2
dc+ F,du; K =F.
db—adc+ Fdu,dc—uda — dv,
A3 1 —6b, —8a — Cab, —85. 5.5.2
’ da+ F,du; K =PF.
— e 0y, —€° 0y — ce° O, db—(a+b)dc+ Fdu+ dv,
Az 5.6.2
' — 0. da—adc+du,dc+ F,du; K =F.
AS 5 da—adc+du, db—ebdc+ Fdu+dv,
3 —e€ 0y, —€5 0y, — 0. @mace “ e " ! 5.7.2
e#0 edc+ Fydu; K =F.
A0a+ B0y, Ay — B da, da—edb+ (ezb—bf 26(1) dc+ Fdu+ dv,
A€ = Oc- eda—|—db—|— (a—e2a—26b) dec+ du,
3,7 e (esinc — cosc) 5.8.2
€e>0 - 1+ e2 ’ d(’— ((F €)du+ dv);
€C 3
g_¢ (ecosc+sinc) K, ( e)Fv P,
1+ €2
da—bdc+ Fdu+ dv,
— 04 —2b0y + 2¢0,, e 2db—b?e 2 dc+ du,
A Do + (1 + 2¢b) 0y — 2 0., 5.9.2
sar | cOut (142h) B —e €2 dc — (1 FF) du— F, dv;
Oe. 2
K,=FF,—v—F,.
— 8y — 200y + 2¢O, e 22db—b%e 2de+ Fdu+dv,
1
As g c0q + (14 2cb) Oy — 20, | €2*dec+du, da—bde — §Fv du; 5.9.5
Oc- K=F+2
AcOa+ Be Oy + Ce O, da —sinbdc+ du,
Ay + B0+ C e, =0 cosadb+ cosbsinadc+ F du+ dv,
Az —sine , 5.10.2
:7b’B:_COSC’ cosbcosadc —sinadb+ FF,du+ F, dv;
cos

C = Asinb.

K, =FF,+v—F,.




Table 1.2: General Monge normal forms. Z; = H and Hy,y, # 0.

[g] T H Prop.
3A; Ox, Oy, 0. h(Y1,Ys) 5.3.3
AL D Ay (92, Z 0z — X 0x, Oy. X72h(XY1,X2Y’2) 5.4.3
Ag’l 0z, 0x, Oy + X 0. Y + h(Yl,Yg) 5.5.3
0z, In X 07 + X Oy
A ' ’ X2V + X 2h(Y — XY;, X2V, 5.6.3
2 79y — X Ox. ( ! 2)
As X'y, 0
55 v LX2R(eXY) — Y, X%Ys + E2XY; — V) 5.7.3
e#£0 €(Z0z — X 0x). ‘
. X sin X Oy,
A5 7 X 2
-0 — e cos X Oy, h(Z,Y2—2€Y1+6 Y+Y) 5.8.3
€
- - Ox.
2X dx — 20y,
A378,1 2X 6)/ — X2 ax, €Y h(Z, YQB_QY — %Y126_2Y) 5.9.3
Ox.
92X dx — 27 0y, v oy s
Asgo (142X2)0; — X%0x, | 224+ Y;° h(Y, 2;21) 5.9.6
dx. !
cos X
—— (Y1 0x + 0y ),
V1-Y; Yy? Y,
A —sin X 1-Y;? ZY — 10.
3,9 : YQ(Y18X+8Y)7 fl +1—Y12h( , +arctan1_Y12> 5.10.3
vi-"1

Ox.
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CHAPTER 2

PRELIMINARIES

In this Chapter we report the basic notations and definitions used throughout this dissertation.
We will assume familiar to the reader some basic concepts of differential geometry, like those
treated in the first chapters of [40], [6], and [37, v. I]. The first two chapters of [7] are our guiding

light and [30] has been a useful source.

2.1 Preliminary definitions and properties

For the most part of this section we will refer to Gardner [16], [17], and [18], for definitions
and proofs. Our goal is to share with the reader our notation and those properties that we give for
granted.

We will be consistent with the following notation. M or M,, denote a differentiable m-
dimensional manifold (or m-manifold); C*°(M) is the ring of real smooth functions on M; X(M)
is the C°°(M)-module of vector fields on M; Q(M) is the algebra of differential forms on M, with
QF(M) denoting the module of k-forms on M; TM is the tangent bundle; 7*M is the cotangent

bundle and A*(M) = A*(T*M) is the bundle of k-covectors.

Definition 2.1.1. The hook operator (or interior product or contraction) is the map
— X(M) x QL (M) — QF (M)
defined by
[XA (U} (Xl,...,Xk) :w(X,Xl,...,Xk).

In particular, if w is a 1-form on M then X = w = w(X) € Q°(M) = C®(M).

The annihilator of a vector field X is defined as X+ = {w € Q'(M) | X = w = 0}. |

Proposition 2.1.2. Let M be a manifold.

[i] Ifwe QM) and X; € X(M), then X1 = (Xo— w) = —X3— (X1~ w).
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[ii] The hook operator is an antiderivation, that is, if w € QF(M), n € /(M) and X € X(M),
then

X = (wAn) = (X~ w) An+ (~DFw A (X = n)

Remark 2.1.3. Let X € X(M) and consider the (local) flow FIX = {F1*};c_. of X. Then
around every point p € M the function FltX is a local diffeomorphism (see [37, v. I, pages 238-

318], [6, page 27, 130], and [40, page 70]).

Definition 2.1.4. The Lie derivative is the map
L:X(M) x QF(M) — QF(M)

defined b
y .
FIi; (wpix, () —wp

L(X,w), = [Lxw], = lim ;.

Proposition 2.1.5. The following are some properties of the Lie derivative.
[i] Lixw=fLxw+df N(X—w).

[ii] Lx(wAn)=(Lxw)An+wA(Lxn).

[iii] LxY 2 w) =Y = Lxw+ (LxY) - w.

[iv] Lixyiw = Lx(Lyw) — Ly (Lxw).

Here X, Y € X(M), w,n € Q(M) and f,g € C*(M).

Definition 2.1.6. The exterior derivative on M is the operator d : Q% (M) — QF+1(M) defined by

k+1
dw ()(17 [N 7Xk+1) == Z (—I)H_IXZ‘ (w (X17 e ,Xﬁ [N ,XkJrl))
=1 (2.1)
+ Z (—1)i+jw ([Xi,Xj],Xl,...,Xi,...,Xj,...,Xk+1>,
1<i<j<k+1

where w € QF(M) and Xi,..., Xgpr1 € X(M). In particular, if w is a 1-form, then (2.1) becomes

dw(X,Y) = X ((Y)) - Y (X)) - w([X, Y]). n

Proposition 2.1.7. The following are some properties of the exterior derivative on M.
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[i] If f: M — N is smooth and w € Q(N) then dy(f*w) = f*dyw.

ii] Let w € Q(M) and X € X(M) then the following Cartan’s formula holds
[ii]

Lxw=d(X-w)+X—-dw. (2.2)

2.2 Pfaffian systems, their numerical invariants and basic properties
In this section we define Pfaffian systems, their numerical invariants and some of their basic

properties.

Definition 2.2.1. Let M be an m-manifold. Z C Q(M) is an exterior differential systems
(EDS) on M if
[i] Z is an algebraic ideal of Q(M), that is,
i.a] feC®(M),ael= fa€el,
[ib]ot,...,a* €T =37 a' €T,
[i.c] o €Z,8€ QM) = aAnpeT (and thus by [i.a] we have A« € T);
[ii] Z is differentially closed, dZ C Z, that is, if o € Z then da € 7.
We denote the set of (homogeneous) k-forms in Z by Z% = T N Q¥(M). We assume that I° = 0.

A solution (or integral manifold) of Z is an immersion ¢ : N — M such that ¢*Z = 0. [ |
We will deal with the following special kind of EDS.

Definition 2.2.2. A Pfaffian system of rank-s on an m-manifold M is an EDS 7 on M alge-
braically generated, in a neighborhood of each point of M, by a set of s linearly independent 1-forms
I = {#,...,0°} and the set of their exterior derivatives dI = {d@',...,d6°}. A minimal set of
(1-forms) generators I is called a basis of the Pfaffian system Z. We shall often identify a Pfaffian
system Z with one of its bases I C Q'(M). The rank of a Pfaffian system I is denoted by dim I,
while the integer p = m — s = codim [ is called the corank of I. A Pfaffian system K such that

K C I is called a subsystem of I. [ |

Given a rank-s Pfaffian system I = {01, ceey 05} on M,,, we can complete the basis I to a local

coframe 01,..., 6%, 0°T1 ... 0™ on M. For each 0 € I, the exterior derivative d¢’ is a 2-form on
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M and therefore df? is uniquely expressed as a linear combination of 2-fold wedge products of the

1-forms 01, ...,0™, that is,
do' = AL6T NOF, G ke{l,...,m}. (2.3)

Here we have A;k € C*°(M) and we use the Einstein’s notation for summation. The expressions
(2.3) for ¢ = 1,...,s are called the structure equations of I with respect to the local coframe
0! ,0m.

PIE

Definition 2.2.3. Let Z be a rank-s Pfaffian system on M, I = {91, . ,93} abasis of Z, 01, ..., 6%,
g5t ..., 0™ a local coframe on M, and w',w? € Q(M). We define w! = w? modI if and only if

w' — w? is in the algebraic ideal generated by I.

One can prove that w! = w? mod{917 . ,03} if and only if ' A ... A 0% A (w! —w?) = 0. We

suggest [7, Chapters 1 and 2] and [30, Chapter 1 and Appendix B] for more details.

Remark 2.2.4. Let Z be a rank-s Pfaffian system on M, I = {91, ceey 93} a basis of Z, and
6',...,0% 0%t ... 0™ alocal coframe on M. With the previous definition we can write the structure

equations (2.3) as
do’ EA;-kHj/\Ok modl, jke{s+1,....m}, i=1,...,s.

Consider § = ;0" € I, then df = 0 mod I if and only if * A... A0° Adf = 0. Consequently df =0
mod [ if and only if about every point of M we have )\iA;k = 0. We assume that this linear system

in the variables \; has constant rank on M.

Definition 2.2.5. Let I be a Pfaffian system.

[i] The derived system of I is the Pfaffian system (with basis) I’ = {0 € I |d8§ =0 modI}
(see Remark 2.2.4).

[ii] The derived series of I is the flag of Pfaffian systems I(® D ... D I(™) recursively defined
by IO =1, IG+) = (I0) = {§ € 1™ | d§ =0 mod I} for i > 0.

[iii] The derived length of I is the smallest integer N such that I(N+1) = (V) [ |
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Definition 2.2.6. Let I be a Pfaffian system on a manifold M.

[i] The space of Cauchy characteristics of I is the distribution
Cau(I)={X e X(M)| X—=0=0,X—=do eI, VocI}.
[ii] The Cartan system of I is the Pfaffian system CS(I) with basis
(Cau(I))* = {a € Q' (M) | Cau(l)~ a =0}.

[iii] The class of I is the integer class(I) = dim CS(I) = codim Cau(I).

[iv] The Engel-rank of I is the smallest integer Eng(I) = r > 0 such that (dG)[TH] =0 mod/
for all § € I. Here we use the power notation for the wedge product, that is, for any form o we
define ol = a and al"+ = all A q.

[v] The Cartan-rank of I is the smallest number Car(l) = v of linearly independent 1-forms

o, w0 e QY (M) /T such that dO AT A ... A7T° =0 modI for all § € I. [ ]
We can now list the fundamental numerical invariants of a Pfaffian system.

Definition 2.2.7. Let I be a Pfaffian system with derived length N. The following numerical
sequences of length N + 1 are the fundamental invariants of I.

[i] The derived type is DT(I) = [dim I,dim IV, ... dim I(N)].

[ii] The Cauchy type is Cau(I) = [dim Cau([),dim Cau(IV), ..., dim Cau(I™)].

[iii] The Engel type is Eng(I) = [Eng(I),Eng(IM),... Eng(1M)].

[iv] The Cartan type is Car(I) = [Car(I), Car(I(V),..., Car(I(M)]. ]

We will consider only Pfaffian systems whose numerical invariants are constant on M.
Now we turn to the properties of these invariants. First let’s notice that the Cauchy charac-
teristics, the Engel-rank and the Cartan-rank of a Pfaffian system I can be determined simply in a

basis.

Proposition 2.2.8. Let I be a rank-s Pfaffian system with [ = {0',... 0%} and I' = {#',... 0%}

(s1 < s). Then the following properties hold.
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i| Cau(/l) = € =0 =0,X~- eI, i=1,...,5,j=1,...,s1}. In particular

i] Cau(l XeX(M)| X=20=0,X-do#V €l,i=1 1 I 1
Cau(I) C Cau(I").

11 n = r if and only if r i1s the smallest integer such that 2N = 0 mo or

[ii] Eng(]) if and only if r is the smallest integer such that (d67)" ™" = 0modT f
t=s1+1,...,s.

1

[iii] Car(I) = v if and only if there are v linearly independent 1-forms 7',..., 7¥ € QY(M)/I

such that dé? A7 A... A" =0 modI for j =1,...,5;.

A rank-s Pfaffian system I on an m-manifold M such that I’ = I is called Frobenius or
completely integrable. Trivially, if s > m — 1 then I is completely integrable. A Frobenius system

I has derived length N = 0, and hence all the numerical invariants of I have only one entry, namely,
DT(I)=[s], Cau(l)=[m—s], Eng(I)= Car(I)=[0]. (2.4)

We shall encounter many normal forms of Pfaffian systems in this dissertation. The first is that

of a completely integrable Pfaffian system, given in the following theorem.

Theorem 2.2.9 (Frobenius). Let I be a rank-s Frobenius Pfaffian system on an m-manifold M.

Then about every point of M there exists a coordinate system (xl, ezt ,xm) such that
I={dz",... .da"}. (2.5)

In particular, all rank-s Frobenius systems are locally equivalent.

From [16, page 515] we recall the following.

Remark 2.2.10. Let [ be a rank-s Pfaffian system on an m-manifold M such that dim Cau(I) =
m—c. The Cartan system CS(I) is the smallest completely integrable Pfaffian system {dx',... dz°}

containing I such that locally the forms in I can be expressed in terms of functions of z',...,x

and the 1-forms dz!, ..., dz°. |

Example 2.2.11. Consider the rank-2 Pfaffian system H = {du—u'dt,dv—v'dt} on a 5-manifold.
The smallest completely integrable Pfaffian system containing H is the rank-3 Pfaffian system L =

{du, dv, dt}. But L has two Cauchy characteristics, namely 9,, and 9,,. Thus L can not be the
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Cartan system of H, which is CS(H) = {dv’/, dv’,du, dv, dt} (see also Example 3.1.2 and Remark

3.1.6). ]

Before proceeding to specific examples, let’s cite from [16, pages 516-518] and [7, page 46] some

of the relations between the numerical invariants of a Pfaffian system.

Proposition 2.2.12. Let I be a rank-s Pfaffian system on a m-manifold. Assume that [i] the

derived length of I is N, [ii] dim Cau(I) = m — ¢ and [iii] p = ¢ — s. Then the following inequalities

hold.
Eng(I) < Car(I) < 2 Eng(I). (2.6)

car(1<7?+1>) < car(z(i>), i=0,...,N—1. (2.7)

2Eng(I) < p < Eng(I) (1 +dimT — dim I") . (2.8)

dim I’ > s — @. (2.9)

We will be concerned with rank-2 and -3 Pfaffian systems on a 5-manifold. Therefore we give

here the following application of (2.9).

Example 2.2.13. Let’s consider a rank-s Pfaffian system I on 5-manifold M, with s <5 —1=4.
Assume dim Cau(I) = 0, that is I has no Cauchy characteristics. Therefore, with the notation of
Proposition 2.2.12, we have c =m = 5 and thus p =5 — s.

[Rank-1] We have s = 1 and p = 4. From (2.9) one obtains dim I’ > 1 — 6 = —5, so that there is

no constraint on dim I’. There are two derived types, namely,

[, [1,0]. (2.10)

[Rank-2] Here s = 2 and p = 3. From (2.9) one obtains dim I’ > 2 — 3 = —1 and, as before, there

is no constraint for dim I’. In this case there are four derived types, namely,

2], [2,1], [2,1,0], [2,0]. (2.11)
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[Rank-3] We have s = 3 and p = 2. This time (2.9) gives dim I’ > 3 — 1 = 2. Consequently, there

1

exist two linearly independent 1-forms w', w? in I such that {wl,wQ} C I'. We can conclude saying

that in this case there are five derived types, namely,
B, 3,2, [3,21], [3,2,1,0], [3,20] (2.12)

In particular, such Pfaffian systems can not have derived type [3,1,...] nor [3,0]. [ ]

We conclude this section with a tool that will be frequently used in the next chapters, that is,

the quotient by a vector field.

Definition 2.2.14. Let M be an m-manifold. Assume X € X(M) to be non-singular and denote

by Flf{ the local flow of X (see Remark 2.1.3). The relation ~X on M defined by
p1 ~~ po if and only if there exists t € (—¢, €) such that py = FltX (p1),

is an equivalence relation. The equivalence classes [p].x of ~X are called orbits of the flow of X
and their set is denoted by N = M/~%. Then on N there is a uniquely defined (m — 1)-manifold
structure such that the natural projection q : p € M — [p].x € N is a submersion (see [34, Theorem

3.18]). With this structure, N is called the quotient manifold of M by (the orbits of) X. |

Theorem 2.2.15. Let I be a rank-s Pfaffian system on an m-manifold M and C € Cau(I). Then
there is a unique rank-s Pfaffian system I on the quotient manifold N such that q*I = I (see [7,

Theorem 2.2 and Corollary 2.3]).

The Pfaffian system I of Theorem 2.2.15 is called the reduction of I by a Cauchy characteristic.
Some arguments of the proof of Theorem 2.2.15 are reported in the following remark (see [7, page

31]).

Remark 2.2.16. Let I be a rank-s Pfaffian system on an m-manifold M and C € Cau(I). Then
on M there exists a local coframe 61,..., 0% 7! ... 7™~ 5 such that I = {#*,...,0°}, C— ¢ =
C— ml =0, and C—~ n = 1. Moreover, this local coframe can be chosen so that the structure
equations of I are

do* = §a3’k7r] AP modI, i=1,...,s, (2.13)
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where the functions aé . are invariants of the quotient q by C.
By the rectifying Theorem [40, Proposition 1.53], there are local coordinates (X!, ..., X™~1 X™)
on M such that C = dxm. Take local coordinates (x!,...,2™~1) on the quotient manifold N, then

the projection by C', q: M — N, is locally defined by

In these terms, we can say that there is a local coframe on M satisfying the structure equations
(2.13), for which the functions az-k do not depend upon X™ and the 1-form d X™ does not appear

s 1 m—

in any of the 1-forms 8',..., 0%, «! ..., 7™ 5~ Consequently, writing q*@ = w, one easily checks

that the reduction I = {#',...,0°} of I by C satisfies the structure equations

L TATE modI, i=1,...,s. (2.14)

Here @}y, = aly (¢, ..., 2™ 1) = afp (X1, X1,
This construction can be carried on for each C; € Cau(l) (which we assume non-singular).

Assume dim Cau(I) = m — n to be constant on M. Then the rank-s Pfaffian system I on the

m-manifold M reduces to a uniquely defined rank-s Pfaffian system I on the n-manifold N. |

Corollary 2.2.17. Let I be a Pfaffian system and I the reduction of I by some Cauchy character-

istics of I. Then DT(I) = DT(I).
Finally, combining Remark 2.2.10 and Corollary 2.2.17, we can state the following.

Corollary 2.2.18. Let I be a rank-s Pfaffian system on an m-manifold M such that dim Cau(I) =
m —n < m. Then there exists a submanifold s : N — M such that dim N = n and s*CS(I) is a

coframe on N. Moreover, I = s*I is the reduction of I by Cau(I) and Cau(l_) = 0.

It is customary to identify I and I, or in other words to consider Pfaffian systems without Cauchy
characteristics.
We can now move on to more generic examples, always providing specific examples concerning

5-dimensional manifold.
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2.3 Rank-1 Pfaffian systems

In this section we want to show how the problem of finding the normal form of a rank-1 Pfaffian
system is solved. This is known as the Pfaff problem. If I = {a} is a rank-1 Pfaffian system, then, in
view of Proposition 2.2.8, the definitions of Engel and Cartan ranks of I can be expressed as follows.
[Engel-rank] Eng(e) = Eng(I) = r if and only if (de)" ™ Aa =0 and (de)" A a 0.
[Cartan-rank] Car(a) = Car(I) = v if and only if v is the smallest number of linearly independent
1-forms 7!, ..., 7¥ such that 7' A... AT Aa#0and da AT  A...AT° Aa=0.

Remember that the numerical invariants are assumed constant.

Theorem 2.3.1 (Pfaff normal form). Let « be a 1-form on an m-manifold M such that Eng(a) = r.

1

Then there are local coordinates (x ,...,xr,z,pl,...,pr,wl,..wm*(z”l)) on M and a non-zero

smooth function a € C*°(M) such that

aa:dz—Zpidxi (2.15)
i=1

When the local expression of « is (2.15), then « is said to be in Pfaff normal form (see [7, page

38)).

Corollary 2.3.2. Let I be a rank-1 Pfaffian system such that Eng(I) = r. Then I admits the Pfaff

normal form I ={dz—Y,_, pidz'}.

A contact form is a 1-form « on an odd dimensional m-manifold M, with m = 2r +1 > 3,
such that a has maximal Engel-rank, that is, Eng(a) = r. A manifold with a contact form is said
to have a contact structure. Here we list some lower dimensional examples of contact structures.

[dimM = 3] r = 1, then da A a # 0 and there are coordinates (x,u,u;) such that aa =
du —u dz.

[dim M = 5] r = 2, then da A da A @ # 0 and there are coordinates (x,y, z,p, q) such that
aa=dz—pdxr —qdy.

[dim M = 7] n = 3, then da Ada A # 0 and there are coordinates (zt, 22, 23, 2, p1, p2, p3) such

that ac = dz — p1 dat — pay da® — ps da®.
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2.4 Jet spaces, PDE, and Pfaffian systems
For this section, we cite the nice and short introduction given by Gardner [18, §3] and the one
by Ivey [30], to which we refer for details.
Let m, k > 0 be integers, we say that a k-tuple J = (ji1,...,jx) such that 1 < j; < ... <jr <m

is a multi-index of order at most k on m-indexes. We denote by AJ* the set of such multi-indexes.

m!
)= B (m— k)

One can compute |A| = (7'

Definition 2.4.1. The space of k-jets with m-dimensional source and n-dimensional target
over the real numbers is the differential manifold J*(R™, R") with the following properties:

[i] dim J*(R™,R") = m + n("™}").

k
[ii] There exist natural coordinates (x,z,p) on J*(R™ R"), such that x = (z!,...,2™), z =
(Zlv o "Zn)5 and pP= (p%a T 7p71n7 e 7p?a cee apnmap%h R ap%rrm s 7p%l. . m)
k—ti

[iii] Let F : R™ — R" be a smooth function with z* = F'(x). Let J = (j1,...,js) € A" be any

multi-index of order at most & on m-indices, so that 1 < s < k and 1 < j; < js < m. Then the
O F?
G TR

jet of F. |

mapping pj, ;. defines a smooth function j*(F) : R™ — J*(R™,R"™) called the s-th

In particular, J°(R™,R") = R™ x R™ and a change of coordinates in the first m + n-natural

coordinates of J¥(R™,R™) induces a canonical change in p.

Definition 2.4.2. The contact system on J*(R™ R") is the Pfaffian system C’fn’n generated by

{a € QLJFR™,RY)) | j*(F)*a =0, YF € C%(R™,R")}.

By definition all k-jets are integral manifolds of the contact system Cﬁln A basis for Cfmn is

m
9j:dzj—2pgdxi7 ji=1,...,n
i=1

j=1,...,n,
| . l<s<k (2.16)
9} = dp) prgﬁJ dz*,
i=1 J: (jla"'vjs) EAZL7
iﬂ‘]:(jl,“'aia"'vjs) EAZL
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k—1 k—1
1
Therefore dim Ck,  =n | 1+ E (m) =n|1l+m! E 7 |- Several examples of contact
' —\s sl (m—s)!

systems will be provided in the next sections.

We can now rephrase Corollary 2.3.2 in the context of contact systems.

Theorem 2.4.3 (Pfaff normal form, Jet). Let I be a rank-1 Pfaffian system on an m-manifold M.
Assume DT(I) = [1,0] and Car(I) = Eng(I) = [r,0]. Then Cau(I) = [m — (2r + 1), m| and about
every point of M there is a coordinate neighborhood U and a submersion ¢ : U — JY(R",R) such

that I = ¢*Cl ;.

Following [1], let A = 0 be a system of k-th order partial differential equations (PDE) in m-
variables and m-unknown functions. We assume that this system is of maximal rank p, that is,
A = 0 consists of p functionally independent equations. Therefore we think of such a system as a
(0),
which is an embedded submanifold ¢ : Ma — J*(R™,R") (by inclusion). The PDE system A =0

submersion A : J¥(R™, R") — RP. The equation manifold of the PDE system is Ma = A

ts canonically associated to the Pfaffian system I = L*C]fnm defined on Ma. Usually one
refers to I as to the contact system restricted to Ma. A solution of A = 0 is a smooth map
F: N — M such that F*I =0 and F*(dz! A ... Ada™) # 0. Tt is therefore crucial to find a way
of characterizing the contact systems so to be able to identify which jet space (if any) describes the

solutions of a given system.

2.5 The jet space J!(R™,R")
With respect to natural coordinates (z',...,2™,2,p1,...,pm) on JH(R™ R), the expressions

(2.16) give the contact system

C71n,1 = {dZ — P dxl — -7 Pm dxm} (217)

Therefore C}, ; is the Pfaff normal form of rank-1 Pfaffian system I with Eng(I) = m. This was

treated in Corollary 2.3.2.
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Example 2.5.1. We are going to show the importance of obtaining a normal form for a Pfaffian

system associated to a given PDE. Consider the single first order PDE in the plane
Uy + Uy = 0. (2.18)

With natural coordinates (x,v,z,p,q) on J*(R% R), we have C%}l = {dz — pdx — qdy}. On the
equation manifold M we take coordinates (z,y,u,u,) and Cj; restricts to I = {0}, where 6 =
du —uzdx + uy dy = du — uy, (dx — dy). Since df = (dx — dy) A duy, we have df A 6 # 0 (thus
I’ = 0) and for dimensional reasons it is (d8)['*'1 A § = 0. Applying Proposition 2.2.8 we conclude
that DT(/) = [1,0] and Eng(/) = [1,0]. Notice that X = d, + 0, is the only Cauchy characteristic
of I on M, thus dim Cau(I) = 1 and Cau(I) = [1,4]. Consequently we can apply Theorem 2.4.3.

Take natural coordinates (¢, s,v) on J'(R,R) and define ¢ : M — J*(R,R) by
t=x—vy, S=uU, UV=1Ug.

Then C}; = {ds —vdt} and I = ¢*Cj ;. Therefore the solutions of (2.18) are parameterized by a

smooth map ¢g:t € R — s € R, that is, u = F(z — y). ]

On JY(R™,R™) use the natural coordinates (z,..., 2™, 21, ... 2" pi,...,p"), then (2.16) gives

the contact system

Chon={dz’ =) plda’, j=1,...m} (2.19)
i=1

For instance, on J*(R,R?) with natural coordinates (¢,u,v,u’,v") the contact system (2.19) is
Cly={du—u'dt,dv—v dv}.

The following result is due to Robert Bryant [7, Theorem 4.4].

Theorem 2.5.2 (Bryant normal form). Let I be a rank-s Pfaffian system on an m-manifold M. If

DT(I) =[s,0], Car(I)=Eng(l)=1[r0], Cau(l)=[m-—-(s+rs+r),m], s>3, (2.20)
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then about every point of M there is a coordinate neighborhood U and a submersion ¢ : U —

JHR",R®) such that I = ¢*C} .

When s = 1, actually Theorem 2.5.2 is equivalent to the Pfaff Theorem (2.17). In the case
s =2 and m = 5 we will show a counter example for which the numerical invariants of C%,Q are not

enough to characterize C} ,, see Section 3.3.

2.6 The jet space J*(R,R)
This case has been classically treated for k = 1 (Pfaff), k¥ = 2 (Engel), and k& > 3 (Gour-
sat). We already considered the Pfaff case, in the previous section. Let’s take natural coordinates

(2,90, Y1, .,yx) on J¥(R,R). From (2.16) the contact system is
Ciy={0=dyi1 —yidz, i=1,... k} (2.21)
For instance when k = 2 we have
Ci,=1{0"=dyo—yidx, 6*=dy —y2da}.

In general (C’il)(k) =0 and (C’il)(k_i) ={0,...,0"} fori =1,...,k. Thus DT(CIfJ) = [k, k —
1,...,2,1,0].
A famous example due to Giaro, Kumpera, and Ruiz [22], shows that the derived type alone

does not characterize C’f,l. We work it out here.

Example 2.6.1. The jet space J?(R,R) has dimension 1 + 1(1'g3) = 144 = 5. The natural

coordinates (x,y,y1, Y2, ys) in (2.21) give
C‘Z”l ={0' =dy —y1dx,0? = dyy —y2dx,0° = dys — yzdx}.
Now, on J3(R,R) consider the Pfaffian system

I = {771 =042 =020 =ysdys —dx}.
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There is not any neighborhood of y3 = 0 on which Cil pullbacks to I. The structure equations of

C:f,l with respect to the local coframe 01, 2, 63, 0* = dys, 7' = —dx are

dot = 0* A7t

do* =03 N7t

dg® =6* Amt.
The structure equations of I with respect to the local coframe n', 2, n®, n* = —dys, 7 = —dys
are

dn' =n* A (ys 7 + %),
dn® = n* A,
dn® =n* Amt
Then I = {p',n?}, I® = {n'}, and I® =0, and thus DT(I) = [3,2,1,0] = DT(C},).
Let’s compute the other numerical invariants, using Proposition 2.2.8. It is not too hard to

compute Cau(I) = [0,1,2,5] = Cau(C3 ;). From the structure equations of C%; we notice that for

1 =0,1,2 one can write

40>~ £0 mod(C? )",

‘ (2.22)
d0" A7t =0 mod(C3 )Y, h=1,...,3-i
Therefore Car(C% ;) = [1,1,1,0]. For I we have a similar situation, that is, for i = 0,1, 2
do*~"#£0 modI®,
(2.23)

doh ATP =0 modI(i), h=1,...,3—i, P=rt=x% 12=yn?+1n°

and thus we have Car(I) = [1,1,1,0] = Car(C{ ).

Finally, for i = 1,2,3 we have df' A df° = 0 and dn® A dn® = 0, thus Eng([) = Eng(Cil) =
[1,1,1,0].

Therefore we can not distinguish I and C$ ; by means only of their numerical invariants. To solve
this problem Giaro et al. introduced the notion of weak derived systems. Alternatively, following

Tilbury and Sastry [39], we point out a visible difference between (2.22) and (2.23). Equations (2.22)
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1

show that at every step of the derived flag of C‘il, the same 1-form 7" can be used to compute the

Cartan-rank. In (2.23), I does not admit such a unique 1-form. [ |

Definition 2.6.2. Let I be a rank-s Pfaffian system on M,,. Assume that DT(I) = [s =
50,51,---,5n]. An adapted basis of I is a basis {#',...,0°} of I such that 1) = {',... 0%}
for 0 < i < N. Obviously one has IN) = {0} when sy = 0. A local coframe 0',...,60%, ...,0™ is

said an adapted coframe of I if {#',... 6%} is an adapted basis of I. |

The characterization of the contact system C’il is given in the following two theorems (see [7,

Theorems 5.1 and 5.3]).

Theorem 2.6.3 (Engel normal form). Let I be a rank-2 Pfaffian system on a 4-manifold M.
Suppose DT(I) = [2,1,0]. Then about every point of M there is a coordinate neighborhood U and a

submersion ¢ : U — J*(R,R) such that I = ¢*Cil.

It is instructive to remark that the Engel normal form is obtained by first writing the derived

system I’ = {#'} in Pfaff normal form.

Theorem 2.6.4 (Special Goursat normal form). Let k > 2 and I be a rank-k Pfaffian system on a

(k + 2)-manifold M. Assume that

DT(I) =[k,k—1,k—2,...,2,1,0], (2.24)

and that {0',..., 0¥} is an adapted basis of I. Furthermore, assume that there exist two linearly

independent 1-forms 0*+1 7 € QY (M) /I such that

do' =0 A mod I, i=1,... k. (2.25)

Then we have

Car(I) = Eng(I) =11,1,...,1,0], Cau(l)=10,1,...,k—3,k]. (2.26)

Moreover, about every point of M there is a coordinate neighborhood U and a submersion ¢ : U —

J¥(R,R) such that I = ¢*C§ ;.
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The denomination of “special” is in Goursat [26]. For completeness, we just notice that for the
basis of induction of Theorem 2.6.4, which is the Engel normal form, condition (2.24) implies the so
called Goursat congruences (2.25).

We end this section by simply recalling a generalization of Theorem 2.6.4, which does not need
the codimension-2 requirement. Gardner and Shadwick in [21] studied Pfaffian systems which admit
a Brunouvsky normal form, that is, which are locally a partial prolongation of C},n. In Murray [33]
these systems were called Pfaffian system with special extended Goursat normal form. The Goursat
congruences (2.25) in this “extended” case consist of more than one congruence at each step, since
the derived type is not assumed to be a step-1 sequence.

The special extended Goursat normal form and the characterization of the contact system on
the general jet space J*(R™,R") are beyond our subject of studies, 5-dimensional manifolds. We

refer to [41] for further studies on the general jet space.

2.7 Frobenius, Bryant, and special Goursat normal forms on a 5-manifold

Let’s now summarize the results so far presented for Pfaffian systems on a 5-manifold. We
already noticed that rank-4 and -5 Pfaffian systems on a 5-manifold are Frobenius. If I is a rank-s
Frobenius Pfaffian system on a 5-manifold, then I admits the normal form I = {dz!, ..., dz*}, with
DT(I) = [s] and Cau(I) =[5 — s].

Now, we apply the results exposed in this chapter to the remaining derived types listed in
Example 2.2.13, and thus we obtain Table 2.1 (page 27), where we provide an adapted basis for the
Pfaffian systems 1.

For the derived type [3,2,1,0] we assume the special Goursat normal form can be obtained,
according to Theorem 2.6.4.

We can not consider yet the derived types [2,0] and [3,2,0], to which none of the previous
theorems apply. In particular, the tools developed in this chapter do not provide a characterization
of Ci g ={da® —z*dat, da’ —2° da'} = {du—'dt,dv —v' dt}. We will treat both derived types

in the next chapter.



Table 2.1: Jet-related normal forms on a 5-manifold. Fy is a rank-s Frobenius Pfaffian system.

DT(I) Cau(l) | Ck , 1 Reference

[1,0] [2,5] CHR%R)+ Fy | da? — 23 dat 2.2.18 and 2.4.3
[1,0] [0, 5] C'(R% R) da® — 3 dx! — 2t da? 2.4.3 (Pfaff)
[2,1] [1,4] CR,R)+ F, | da* da? —23da! 2.2.18 and 2.4.3
[2,1,0] [1,2,5] C?(R,R) da? —z3dzt, dx® — 2t dat 2.6.3 (Engel)

3, 2] [0, 3] C'R,R)+ F, | dab dat da® — 22 da! 2.2.18 and 2.4.3
(3,2,1] [0,1,4] C?*(R,R)+ F, | da®,dx?® —x3dx',dz® — z*dx! | 2.2.18 and 2.6.3

. da? —23dat, da® — 2t dat,
[3,2,1,0] | [0,1,4,5] | C3(R,R) 2.6.4 (Goursat)

da* — 2® da!

27
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CHAPTER 3

RANK-2 AND -3 PFAFFIAN SYSTEMS ON A 5-MANIFOLD

In this chapter we define the main object of our study, general rank-3 (or GR3Dj5) Pfaffian
systems in five variables. We will provide new proofs of some results obtained by Cartan [10] and
Goursat [26]. An algorithm will be described to write any GR3 D5 Pfaffian system in general Goursat
normal form and in general Monge normal form. This algorithm will be widely used in Chapter 5.

Sections 3.2 and 3.3 are devoted to the characterization of those rank-2 Pfaffian systems on a
5-manifold to which one can not apply the Bryant normal form Theorem 2.5.2.

In Sections 3.4 through 3.6 we define and characterize G R3 D5 Pfaffian systems.

Section 3.7 is a summary of all the normal forms of rank-2 and -3 Pfaffian systems in five

variables obtained in Chapters 2 and 3.

3.1 Antiderived systems
We begin by providing an example of two inequivalent rank-2 Pfaffian systems on a 5-manifold
with identical numerical invariants (see also Example 2.6.1). This will motivate the introduction of

a new notion, that of an antiderived system of a Pfaffian system.

Remark 3.1.1. To construct the desired example, we first consider the Hilbert-Cartan equation,
which is the underdetermined ODE

2=y (3.1)

With respect to the coordinates (x,y, z,y’,y”) on the equation manifold M, (3.1) generates the

rank-3 Pfaffian system
0! =dy —y' da,

I=130=dy —y"dx, (3.2)

0 =dz—y" dx.
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We shall compute the numerical invariants of I. Another basis for I, more suitable for our

calculation, is given by

wl = -0 =y dz — dy,

1 1 1

UJ2 _ = 93 . y// 92 — Zds— y// dy' + 7y//2 dx, (33)
2 2 2

Wwi=02=dy —y"dx.

1

We complete (3.3) to a coframe w!,w? w3 w1, 72 on M by setting 7! = dz and 72 = dy”. The

structure equations of I are then

dw' =dy Ndx = (dy —y"dx) Ndx = A7t
dw? = —dy" Ndy +y" dy" Ndz = (dy' — " dz) Ndy' = w3 Ar?, (3.4)

dw® = —dy" Ndz = A7

Therefore the derived systems are I(Y) = {w', w?} and I® = 0, so that {w’,w? w3} is an adapted
basis for I (see Definition 2.6.2) and DT(I) = [3,2,0].

Now we prove that Cau(I) = [0, 0, 5], by using Proposition 2.2.8. Let the local basis of vector
fields dual to our coframe be J,1,0,2,0,3,0;1,0,2. From the first equation in (3.4), we see that
Cau(l(l)) C (,2,052) but, by definition, 9,2 — w? =1 # 0, and thus we have Cau(I(l)) C (Op2).
From the second equation in (3.4), we see that d2 — dw? = —w® ¢ I1). Therefore we have
Cau(IW) = 0. Similarly, from the first and second equations in (3.4), we see that Cau(I) C
(0p1,052). But we have (9,1 + kOy2) — dw? = 72 — k7! ¢ I and therefore Cau(I) = 0. We have
thus proved that

DT(I) = [3,2,0], Cau(I) = [0,0,5]. (3.5)

Next, we calculate the Cartan and Engel ranks of I and I"). Because I # I(!), the Pfaffian
system I is not Frobenius and, by (2.4), we have both Car(I) > 0 and Eng(I) > 0. On the other
hand, applying Proposition 2.2.8, the conditions dI A 7t = 0 mod[ imply Car(/) < 1 and thus

Car(I) = 1. Consequently Eng(/) = 1, since, by (2.6), we have Eng(I) < Car(I).
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In the same way, because 1) # I® and dI™M A w? = 0, one has Car(I(l)) = 1 and thus

Eng(I™) = 1. Then we can conclude

Car(I) = Eng(I) = [1, 1,0]. (3.6)

At this point we can turn to our example.

Example 3.1.2. From Remark 3.1.1 let’s consider the first derived system of I. Set K = I’ =

{w!,w?}. From equations (3.5) and (3.6) we get

DT(K) = [2,0, Cau(K)=[0,5, Car(K)=Eng(K)=[1,0]. (3.7)

We show that equations (3.7) do not characterize the rank-2 Pfaffian system K.
On J!(R,R?) with natural coordinates (¢, u,v,u’,v), the (rank-2) contact system is
nt = du— ' dt,
H = C%,Q = (3'8)
n? =dv—v dt.
Setting n® = dt, 7' = du/ and 72 = dv’, we have the coframe n',n? 73, 71,72 on J'(R,R?). The

structure equations of H are
dnt =’ AT
(3.9)
dn? =3 A2
The arguments leading to (3.7) from (3.4) apply to (3.9) as well. Therefore the numerical invariants

of H are the same as those of K, that is

DT(H)=1[2,0], Cau(H)=10,5], Car(H)=-Eng(H)=]I1,0]. (3.10)

Nevertheless we can distinguish K and H in the following way. In accordance with Car(K) =
Car(H) = [1,0], there exist 1-forms w® € Q(M)/K and n* € Q(J'(R,R?))/H such that d K Aw? =
mod K and dH An® = 0 modH. Consider the Pfaffian systems obtained by adjoining each of

these 1-forms to their respective rank-2 Pfaffian systems. In the case of K we obtain the rank-3
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Pfaffian system I, which is not Frobenius. In the case of H we obtain the rank-3 Pfaffian system
L = {n',n% n3}, which is completely integrable since dn® = 0. These constructions are invariant

under diffeomorphism and thus H and K can not be equivalent. |

The example we just worked out motivates the construction of another invariant structure for

Pfaffian systems. The following definition formalizes that given by Stormark [38, pages 35, 454].

Definition 3.1.3. An antiderived system of a Pfaffian system K is a Pfaffian system J such
that

[i] K C J;

[ii] K =0 modJ;

[iii] if I is a Pfaffian system such that K C I C J and d K =0 mod I, then I = J;

[iv] if J is a Pfaffian system satisfying conditions [i] to [iii] then dim.J = dim J.

When K has a unique antiderived system, we denote it by K1), |

Example 3.1.4. On the 5-dimensional jet space J!(R2 R) with natural coordinates (z,v, z, p, q)

consider the Pfaffian systems

K ={dz—pdx — qdy},

J1={dz—pdzx — qdy,dz,dy} = {dz,dy,dz},
Jo ={dz —pdz —qdy,dq,dp},
J3={dz—pdx —qdy,dx,dq},
Jy={dz—pdx —qdy,dy,dp}.

It is easy to check that Car(K) = 2 and that every J; is an antiderived systems of K. For every i,

J; is Frobenius and K # J;'. [ ]

Returning to Example 3.1.2, we see that K and H have respectively antiderived systems I and
L. Tt is the goal of this section to prove that these are indeed the uniquely defined antiderived

systems K(-V = and HY = L.
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Proposition 3.1.5. Let K be a rank-s Pfaffian system on M and Car(K) = r. Assume K =
{0%,...,0 andlet 71, ... 7" € QY(M)/K be such that d@* AmtA.. A" = 0mod K, fori =1,...,s.
Then the following hold.
[i] J={6',...,6° «',... ,«"} is an antiderived system of K.

[ii] If J is an antiderived system of K, then dim J = dim K + Car(K) and K C J'.

Proof. [i] By hypothesis and the Proposition 2.2.8, {n! ..., 7"} is a minimal set of linearly in-
dependent 1-forms such that J = {#',...,0%,7',..., 7"} is a rank-(s + r) Pfaffian system and
dOAT A AT =0modK, fori=1,...,s.

Clearly K C Jand dK =0 modJ. Moreover, if K C I C Jand dK =0 mod I, then I has
to be generated by a basis of K together with some of the 7’. By the minimality of r = Car(K) it
follows I = J. Therefore J is an antiderived system of K.

[ii] By the last defining condition of antiderived systems we have dim J = dimJ =s+r =
dim K + Car(K). By definition of antiderived system we have K C J and d K = 0 modJ and thus

KCJ. O

Remark 3.1.6. Example 3.1.2 shows that an antiderived system of H = {du — v’ dt, dv — v’ dt}
is the Frobenius system L = {du, dv, dt}, while H # L' = L, that is, the derived system of an
antiderived system is not necessarily the original Pfaffian system. We considered H, L, and CS(H)

in Example 2.2.11 as well. |

Theorem 3.1.7. Let K be a Pfaffian system with numerical invariants

DT(K) = [2,0, Cau(K)=0,5]. (3.11)

Then K has the following properties.
[i] K is a rank-2 Pfaffian system defined on a 5-manifold.

[ii] Car(K) = Eng(K) = [1,0].
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[iii] There exist a local coframe w', w? w3 w* W® on M and a function a € C(M) such that

K = {wh,w?}, I = {wh,w? w3} is an antiderived system of K, and

dw! = wd Aw? mod K,
dw? = WP A Wb mod K, (3.12)

dow? =aw?* Aw® modl.

[iv] There is a unique rank-3 antiderived system K1),
[v] KU is Frobenius if and only if about every point of M there is a coframe as in [iii] for which
a = 0. This is equivalent to the condition K # (K(=VY’.
[vi] K=Y s not Frobenius if and only if about every point of M there is a coframe as in [iii] for
which a = 1, that is, if and only if there exists a local coframe w',w?, w3, w*, w® on M such that

K = {w'w?}, KD = {w! w? w?} and

dw' =W Aw? mod(wh,w?),
dw? =W Aw® mod(w!h,w?), (3.13)

dw? =w' Aw® mod(wh,w? w?).

This is equivalent to the condition K = (K(=DY’.

Proof. [i] Trivially, the Cauchy type and the derived type dictate K to be a rank-2 Pfaffian system
defined on a 5-manifold M. Let K = {wl,w2}.

[ii] Let’s prove that Car(K) = Eng(K) = [1,0]. First, since K’ = 0, then Eng(K’) =
Car(K') = 0. Now, let’s use Proposition 2.2.12. We have that s = 2 and Cau(K) = 0; more-
over, we just proved that m = 5. Therefore ¢ = codim Cau(K) =5and p=c—s=5—2 = 3. Hence
(2.8) becomes

2Eng(K) < 3 < 3Eng(K), (3.14)

thus Eng(K) = 1 and we therefore proved Eng(K) = [1,0].

We want to prove that Car(K) = 1. The inequality (2.6) becomes

1< Car(K) < 2. (3.15)
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On account of (3.15) and Proposition 2.2.8, we only need to show that there exists w® € QY (M)/K
such that dw* Aw? =0 modK for i = 1,2.

3 is a local coframe on M. Then one

Let’s take three 1-forms 7!, 72, 73, so that w!,w?, 7!, 72, 7
has

dw'

DN | =

3
Z ai; 7 Am modK, (3.16)
ij=1

where A = [a;;] is a skew-symmetric 3 x 3 matrix. If A =0 then
dw'=0 modK, (3.17)

which implies w! € K’. But K’ = 0, thus (3.17) is not possible and A # 0. By our regularity

assumption, one must have r = rank A # 0 on M. A well known theorem of linear algebra states

0 1 0
that r is even, thus » = 2 on M. This means that A is conjugate to the matrix | —1 0 0 |,
0 0 0

therefore there is a change of local coframe on M which is the identity on K and which turns (3.16)
to

dw' =7] A7} modK, (3.18)

2

where 7} and 77 are independent 1-forms in {7!, 72, 73}. By similar arguments, there are indepen-

dent 1-forms 7}, 73 € {r!, 7%, 73} such that

dw? =71y A1 mod K. (3.19)

Clearly, the set of 1-forms {71, 7%, 71,72} is dependent. Without loss of generality we can assume

1 2

=7l 7?2 = 72, 72 = 73 to be independent, and set md = by 7w + by w2 + by w3, so that we can
1 s> M1 s N2 ’ 2 )

rewrite (3.18) and (3.19) as

dw'=m' A7? modK,
(3.20)
dw? = (bt +bom® +b3m) A7 = (by 7! + o) Am® mod K.

Again, since K’ = 0, it follows that b;% + by # 0. By means of scaling 73 and/or interchanging 7!
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and 72, we can assume b; = 1 and thus dw? = (7! + by 72) Am® mod K. Let’s set w® = m! + by 72,

so that w!, w?, w3, 72, 13 is a local coframe on M. Equations (3.20) become

dw! =W A1? modK,
(3.21)
dw? =W A7r® modK.
As we claimed, there is w? € Q'(M)/K such that dw’ Aw® =0 modK for i = 1,2 and therefore

Car(K) < 1. By (3.15) we can conclude that Car(K) =1 and the proof of [ii] is completed.

[iii] We have established in [ii] that there exists w® € Q'(M)/K such that

dwAw?=0 modK, forallwelK.

2

By Proposition 3.1.5, the rank-3 Pfaffian system I = {w!, w? w3} is an antiderived system of K.

From (3.21) it follows that there is a coframe w!, w?, w?, w*, w® on M such that
dw! =w? Aw? modK,
(3.22)
dw? =w? Aw® modK.
For dimensional reasons we have

dw® =aw* Aw® modT (3.23)

for some a € C°°(M). Thus [iii] is proved.
[iv] We must prove that I = {w! ,w? w3} is the unique antiderived system of K, which we
denote by K(=1). Using Proposition 3.1.5, let’s suppose that J = {w',w?, 7} is another antiderived

system of K, so that

dw'A7T=0 modK,
(3.24)

dw?>A7m=0 modK.

We want to show that 7 = bw® modK.
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5

With respect to the local coframe w',...,w® we must have m = b3 w? + by w* + bs w® mod K, so

that (3.22) and (3.24) give
0=w? AW A (b3w?® + byw +b50°) = bsw® Aw? Aw® modK,

(3.25)
0=wd AW’ A (b3w? +byw? +b50°%) =byw® AW’ Aw? modK.

1 w? w? w* and w® are independent, (3.25) implies by = b5 = 0. Therefore we have 7 = bs w?

Since w
mod K, as claimed. Thus K=Y = T = {w',w? w?} is uniquely defined.

[v] K=Y is Frobenius if and only if K(-1) = (K(=1)’. From (3.12) we see that K(-1 = (KDY
if and only if dw® =0 mod K=, that is, if and only if a = 0 on M.

[vi] Let’s assume that K=Y is not Frobenius, which implies a # 0. Starting from the local coframe

of [iii], we can therefore define a new local coframe by replacing w? with @? = aw? and w® with

&% = aw®. Consequently K = {w',&?}, KV = {w!, &% w3} and the congruences (3.12) become

dw' = w? Awt mod K,

do? =d(aw?) =da Aw? + adw?

=adw? =aw® AW° (3.26)
=wdAG° mod K,
dw? = w* A& mod KV,
We obtain the desired result dropping the tildes. O

3.2 Characterization of the contact system 0%72
As noticed in Section 2.7, the Bryant normal form Theorem 2.5.2 does not characterize the
contact system Cj , = {du — v’ dt, dv —v'dt} on J'(R,R?). The results proved in Section 3.1 will

enable us to resolve this case.

Theorem 3.2.1 (Characterization of Ci ). Let K be a Pfaffian system on M such that DT(K) =

[2,0] and Cau(K) = [0,5]. Then the antiderived system K~ is Frobenius if and only if there are
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local coordinates (T, U, V,U', V") on M such that
K={dU -U"dT,dV —V'dT}. (3.27)

Equivalently, K~V is Frobenius if and only if about every point of M there exist a coordinate

neighborhood W and a local diffeomorphism ® : W — J*(R,R?) such that ®*Ci, = K.

Proof. By Proposition 3.1.5 the antiderived system K(~1) is uniquely defined.
[<] If K = {dU-U"dT,dV —V'dT} = ®*Ci,, then by Example 3.1.2 the Pfaffian system
KD = @*(C%’z(fl)) is Frobenius.
[=] By the Frobenius Theorem 2.2.9, K (=1 is Frobenius if and only if there are local coordinates
(X',...,X®) on M such that K=Y = {d X', dX?, dX?}.

First, we prove that K = {d X%+ H?>d X", d X3 + H3d X'} for some H?, H3 € C*°(M). Since
K c{dX', dX? dX3}, then K = {n? = F}dX' + F§dX?>+ F}dX3 n® = F}dX'+ F§dX? +
F$dX?} for Fj € C*°(M). Since n* and 7 are independent, then we must have

WA = (FEF3 — F3FY)dX' NdX? + (FEF} — FiFHdX' ndX?
(3.28)
+ (FFy — F2F3)dX* NdX? #0,

so that the 2 x 3 matrix [F]’] has maximal rank 2. By means of a change of coordinates which
fixes X% and X°, we may assume F7 = 1 and F§ = 1. Thus n? = dX? + FdX! + F?dX? and
P =dX3+ FpdX!' + F3d X2

Define

02 =n? —Fin*=(1 - F}dX?+ (F} - FiF})dX' =G3dX? + G2 d X",

0= —F3n?=(1—-F)dX?+ (F} — F3F?)dX' =G3d X3+ G} d X",

so that K = {62,0%}. With the same computations as in (3.28), we have

PN = —G2G3dX  NdX? + G2G3dXT NdX? + GEGSd X2 Nd X3, (3.29)
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By (3.29), the hypothesis K’ = 0 implies that

0£dOP NP> NO® = G3(G3dG? —G2dGA NAX NdX? NdX3,

(3.30)
0£dP NN =GA(GadG3 — GIdGH NAX  NdX? Nd X3,
therefore G3G3 # 0 and, as claimed, there are H?, H € C°°(M) such that
K={0*=dX*+H?*dX", 0> =dX*+ H*dX"'}. (3.31)

We now prove that H2 and H? complete X!, X2, X3 to a coordinate system. Let’s rewrite

(3.30) as
0£dO* NP NP =dH* NdXP NdX?ANAX3,
(3.32)
0#£dP NN =dH] NdXP NdXEANAX3,
from which we infer that H? and H? are not constants and each of them is functionally independent
from X', X? and X3. Suppose H? and H? are functionally dependent. Without loss in generality,

we can assume that there exists h € C°°(M) such that d H? = hd H3. Because H? and H? are not

constants, h # 0 and @ = 02 — h 63 is a non-zero 1-form in K. Using (3.31) we compute

d=dH*NdX' —dhANO® —hdH* NdX' = (dH? —hdH*) NdX'=0 modK,

which implies that § € K’, contrary to our hypothesis K’ = 0.
This proves that H2 and H? complete X', X2, X3 to a coordinate system. Define the coordinate

change ¢ : M — M by

T=X' U=X? V=X’ U=-H, V =-H

according to which

¢*K ={dU —-U"dT,dV —V'dT}. (3.33)

This proves (3.27). O
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3.3 GR;D5 Pfaffian systems
In this section we obtain a local normal form for rank-2 Pfaffian systems K in five variables for
which K’ = 0. From this normal form we calculate and characterize the antiderived system K (1.
Then we define the notion of general rank-2 Pfaffian systems in five variables.

We start from the following lemma, see [26, §76].

Lemma 3.3.1. Let K be a Pfaffian system on M such that DT(K) = [2,0] and Cau(K) = [0, 5].

Then there are local coordinates (yl, . ,y5) on M such that

dy? —y?dy! € K. (3.34)

Proof. From Theorem 3.1.7 we know that Eng(K) = 1 and therefore (Definition 2.2.6) there exists
a 1-form 6 € K such that Eng(f) = 1, that is, 8 AdO Adf = 0 and § A df # 0. By the Pfaff
Theorem 2.3.1, there exist coordinates (yl, e ,y5) on M such that the Pfaffian system {6} has

basis {dy? — y® dy'}, which implies dy? — y3dy' € K. O

Remark 3.3.2. Let’s recall how to obtain {6} = {dy?—y®dy'} in a coordinate system (y',...,y°),
as described in [11, page 261] or [7, page 38]. This will be the first step of the Goursat Algorithm
3.4.5.

[1.1] Let K = {w',w?} as in Theorem 3.1.7 and suppose 6 = f1 w! + fow? € K to be such that

Eng(0) = 1, then

OANdOAdO =0
(3.35)

O AdO 0,

and the functions f1, fo € C°°(M) can not both be zero.
By interchanging w! and w? (and thus w* and w®) in (3.12) if needed, we can assume that
f1 # 0. Normalizing, we may as well assume that § = w! + kw? € K for some function k € C*°(M).
Write § = w! + kw? in a coordinate system (zl, ceey 25) and let g = ¢ (zl, ceey 25). Equation

(3.35) assures that the system

ONdONdg=0 (3.36)
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admits three functionally independent solutions (see [7, page 38] for details). Call one of these
solutions y!.

[1.2] Consider the PDE system in g given by

ONdy' Ndg = 0. (3.37)

The system (3.37) admits two functionally independent solutions, one of which is the function y!;
call the other solution %2, so that the functions y' and y? are independent solutions of (3.36).

[1.3] The algebraic equation for g given by

oA (dy* —gdy') =0

admits a unique solution ®. Now we have three independent solutions of (3.36), namely the functions
y', y?, and y°.
[1.4] Complete y!, 32, and 3> to a coordinate system (yl, e ,y5) on M. Writing K in these

coordinates we have K = {dy2 — 3 dyt, wz}. |

Proposition 3.3.3. Let K be a Pfaffian system on M such that DT(K) = [2,0] and Cau(K) =

[0,5]. Then there are local coordinates (z!,2?, 23, z*,2°) on M and f € C°(M) such that

K ={d2* —2*dz', da*—2°da® + fda'}. (3.38)

Proof. By Lemma 3.3.1 there are local coordinates (y',...,y°) on M such that

K= {91 = dy? —y3dy17w2}.

Let’s proceed as follows.

[2.1] In the (y',...,y") coordinate system we can write

W =Y dy' + YZdy? +Y3dy? + Yrdyt + VP dyP. (3.39)
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Define 2 = w? — Y2 0!, so that K = {#',62} with
0 0 0
02 =Yhdy' + Y3dy® + Y dy* + YO dyP. (3.40)

[2.2] Let’s prove that Y4* + 5% 0.
Assume Y* = Y® = 0. Then 03 = Y'dy' + Y3dy? and K = {dy? —y3dy', Y'dy' + Y3dy?}. If
Y3 =0, then dy' € K'. But K’ =0, therefore Y # 0 and K = {dy* — y®dy’, 03 = dy® — Y dy' }.
Then

dot =dy' ANdy? =dy* AO3 =0 modK,

which is again contrary to our hypothesis that K’ = 0. Hence Y4 4 ys? # 0.

We can thus define o = Y4 dy* + Y° dy® # 0 so that
02 =Y'dy' + Y3dy® + o

[2.3] Let’s prove that there exists dU — V! dy' —V3dy® € K. Consider a non trivial integrating

factor A of «, that is, a function A = A (yl, e ,y5) # 0 such that

% =AY,
‘ (3.41)
U _ gy
oyd ’
for some function U = U (yl, e ,y5). Such an integrating factor A always exists. Using the notation
U
U, = 87/“ we have
Aa=Usdy* + Usdy® = dU — Uy dy* — Uy dy?® — Us dy®. (3.42)
From (3.40) and (3.42) one obtains
AQ2 =dU — (U, — AYY) dy' — Uy dy® — (Us — AY3) dy?
=dU — (U1 — AV, + Uay®) dy' — (Us — AY3) dy® — U 0" (3.43)

=dU - Vidy' = V3dy® - U, 6,
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where we have set V! = U; — AY; + Usy® and V3 = Uz — AY;. Then
02 = A0+ Us 0" = dU — Vidy' — V3dy?, (3.44)

and K = {6',6%}.
[2.4] Here we will prove that U together with either one of V! or V3 complete y!, y%, y3 to a

coordinate system.
0

%%OorUg,:

By construction A # 0, thus, looking back at (3.41), we must have Uy = 3
Y

ou
£ # 0. In either case we have
Y

dy' Ady* Ady? AdU # 0.

In particular, the vector field C = Us 94 —Uy 05 is non singular. We clearly have C— o' = C—6% =0.

Moreover, from df' = dy' A dy?, we can conclude that C — d@' is the zero 1-form. Finally, let’s

compute
do? = —dVI Adyt —dV3 Ady?
= —dy® A (Vo'dy' + V3'dy®) — (VP = Vi) dy' A dy® (3.45)
—dy* A (Vidy' + Vidy®) — dy® A (Vidy' + Vidy?),
so that

C—do* = (UsVE — UsV}) dy' + (UVE — UsVE) dy. (3.46)

By hypothesis dim Cau(K) = 0, consequently (3.46) implies that we have UsVil — UsV}! # 0 or
UsVE — UsVE # 0. By means of interchanging y' and 3%, and consequently y* and 3°, we may

assume that UsVE — UsV2 # 0, which implies

dyt Ady?> Ady? AdU AdV? #0.

We can thus define a new coordinate system by
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In these new coordinates we have
0t = da? — 23 dat,
0% = da* — 2® da® + fda?,
where f is the expression for —V! in terms of (9c17 e ,x5). O

Remark 3.3.4. Let’s provide explicit equations for the functions U, V! and V3 appearing in (3.44).

[2.3bis] Given the expression (3.39), a solution of (3.41)

Uy = AY4,
(3.47)
Us = AYS,
will provide the function U. From the equation
WO+ Aw? =dU —Vidy' —V3dy?,
we obtain the relations
W =U, — AYZ,
V3 =U; - AY?3, (3.48)
Vi=U +y*(Us — AYY) — AYY,
which provide the required V! and V3. |

We can now obtain a normal form crucial to Section 3.4 and Chapter 5.

Theorem 3.3.5. Let K be a Pfaffian system on M such that DT(K) = [2,0] and Cau(K) = [0, 5].
Then there are local coordinates (xl,xz,xS,m4,x5) on M and a function f € C°(M) such that

K = {w',w?}, we have a uniquely defined antiderived system K=V = {w!, w? w?}, and
wl =daz?® — 23 dat,
w? =da* —2°da® + fdat, (3.49)

WP =da® — fusdal.

Moreover, K= is Frobenius if and only if f is linear in x°
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Proof. We recall from Theorem 3.1.7 that DT(K) = [2,0] and Cau(K) = [0, 5] implies that K (=1
is unique.

By Proposition 3.3.3 there are local coordinates (gcl, 22, 23, 14, m5) on M and f € C*°(M) such

that
wl =da? — 23 dat,
K =
w? =dz* — 2% da® + fdat

The 1-form w? = d23 — f,s dz' is not in the Pfaffian system K, since
W AW AW =da? Adat Ada 4% # 0.

1

We can define a local coframe w?, ..., w% on M by setting

wt = —da?,

WP =da’ + fpsdal.
The structure equations of K with respect to this coframe are

dw! =dz* Ndz® = dazt Aw?
=w Aw ,
dw® = —d2® Nda® + (fo da' + frod2® + fus da® + foada® + foo d2®) Ada!
=—dz® NP + (fmz dz? + fus da® + fra d;v4) Adz! (3.50)

— (dm5 + fa3 dxl) AW + frewt Adat + fraw? Ada?

w3 Awd — (f$2w1+f$4w2) Awt

WP AW modK.

These prove that K(—1) = {w!, w?,w?} is the antiderived system of K.
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Let’s compute

dw? = dat A (fxlxs dzt + fr225 dz? + o325 dz® + Sotzs dz* + Sfr525 d$5)
= fy2gs dzt Nda® + fras dat Ada® + fpags dat Adat + foss dat Ada®
(3.51)
= frras Azt ANw? + frogs dat Aw® + frags dat A (w? + 25 W) 4 fusps dat Adad

= —fopswt AW mod K=Y,

Equations (3.50) and (3.51) show that K (=) is Frobenius if and only if f,s,5 = 0, that is, f is linear

in 2. [
This last theorem justifies the following.

Definition 3.3.6. A general rank-2 Pfaffian system in five variables, or simply a GRyD5
Pfaffian system, is a Pfaffian system K with numerical invariants DT(K) = [2,0] and Cau(K) =

[0, 5], and whose antiderived system is not completely integrable. |

As a consequence of the results proved in this section and Section 3.1 we obtain the following

characterization of GRs D5 Pfaffian systems.

Remark 3.3.7. Let K be a rank-2 Pfaffian system on a 5-manifold M. The following conditions
are equivalent.
[i] K is a GRy D5 Pfaffian system.
[ii] There exists a coframe w!,w?, w3 w* w® on M such that
fa] K = {w!,w?),
[b] the antiderived system K1 = {w! w? w?} is not Frobenius,
[c] dw! = w3 Aw? and dw? = w3 Aw® modK.
[iii] There are local coordinates (z',z2, 2%, 2* %) on M and f € C°°(M) such that
la] K = {da? —23dat, da*—aPda®+ fda'},

[b] Jasas # 0. u

3.4 GRj3D5 Pfaffian systems and their general Goursat normal form
In this section we first consider an application of the results obtained in the Section 3.3. Then

we define the main object of our study, that is, the notion of general rank-3 Pfaffian systems in five
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variables. Finally, we obtain the (local) general Goursat normal form of such systems and, at the

same time, we describe an algorithm for obtaining this normal form.

Proposition 3.4.1. Let K be a GR, D5 Pfaffian system on M. Then the antiderived system K(—1)
has the following properties.

[i] K-V is a rank-3 Pfaffian system defined on a 5-manifold.

[ii] (K-V)Y =K.

[iii] DT(KY) = [3,2,0] and Cau(K V) =[0,0,5].

[iv] Car(K(=Y) = Eng(K (V) = [1,1,0].

Proof. [i] This is a trivial consequence of Theorem 3.1.7.

[ii] According to Definition 3.3.6 K (=1 is not Frobenius, consequently, as shown in Example
2.2.13, we must have dim (K(-Y)" = 2. By Proposition 3.1.5, one has K C (K(-1)". However
dim K = 2 and thus (K(-V)" = K.

[iii] From [ii] and the hypothesis K’ = 0 we have DT (K(~V) = [3,2,0]. Because K C K~V
and Cau(K) = 0, we have Cau(K(’l)) = 0. Thus, again from the definition of K, we have
Cau(K~Y) = (0,0, 5].

[iv] This is an easy consequence of (3.13). O

Definition 3.4.2. A general rank-3 Pfaffian system in five variables, or simply a GR3D5
Pfaffian system, is a system I defined on a 5-manifold M with numerical invariants DT(I) = [3, 2, 0]

and Cau(I’) = 0. Note that Cau(l’) = 0 is equivalent to Q(M) = CS(I') = CS(I). |
The following will clarify the relation between GRs D5 and GR3 D5 Pfaffian systems.

Proposition 3.4.3. [ is a GR3Ds Pfaffian system if and only if I’ is a GRyDs Pfaffian system.

Equivalently, K is a GRyDs Pfaffian system if and only if K(-1) is a GR3D5 Pfaffian system.

Proof. Let’s prove the first form of our statement.

[=] By Definition 3.4.2, we have DT(I) = [3,2,0] and thus DT(I") = [2,0]. Moreover, by the
same definition, Cau(I’) = 0 and because I is defined on a 5-manifold and I” = 0, then Cau(I”) = 5.
Thus Cau(I’) = [0,5]. Finally, because dimI’ < dim I, I is not Frobenius and therefore I’ is a

G Ry D5 Pfaffian system.
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[«] This is a consequence of Remark 3.3.7. O

Theorem 3.4.4 (General Goursat normal form of GR3Dj5). Let I be a GR3D5 Pfaffian system on
M. Then there are local coordinates (;vl, e 7:r5) on M and a function f € C®(M) with fus . # 0

such that

0! = da? — 23 da?,
I=46%=dz* —25da®+ fda', (3.52)
0% = da® — fysdat.

An adapted coframe of I (see Definition 2.6.2) is given by

wl =da? —23dat,

w? = —fu5 5 (dat —2°da® + fdab),

w? =da® — fus da', (3.53)
4

wt = —dat,

W’ = — f5 25 (dCCS + fo3 d:L‘l),

for which the structure equations of I (see (3.13)) are

do' =W Aw? mod(w!h,w?),
dw? =W Aw® mod(w!,w?),

dw® = w* Aw® mod(wh,w? Ww?).
Proof. This is a consequence of Theorem 3.3.5 and Proposition 3.4.1. O

The adapted coframe (3.53) is said to be a normalized adapted coframe of the GR3Ds5
Pfaffian system I.

I is said to be in general Goursat normal form when written as in (3.52). The general
Goursat normal form of a GR3 D5 Pfaffian system is of great relevance to Chapter 5. By collecting
the results and proofs of Sections 3.1 and 3.3, we arrive at the following algorithm, which will be

used in the next chapters.
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Algorithm 3.4.5 (Goursat). To obtain the general Goursat normal form

I={ds?* —23dat, da* — 2°da® + fdat, da® — fos da'}

of a GR3Ds5 Pfaffian system I we can proceed as follows.

[0] Write I in an adapted basis {n',7% 13}, that is, a set of 1-forms such that I = {n',n% n3} and
I'={n"n}.

[1] Compute dy? — y®dy' € I’ in a coordinate system (y',...,y°) (Lemma 3.3.1).

[2] Obtain a coordinate system (z',...,2°) in which the two generators of I are ' = da? — z% da!
and 02 = dz* — 25 da® + f dz! for some function f = f (ml, . x5) such that f,s,5 # 0 (Proposition
3.3.3).

[3] Set 62 = dx® — f,5 dz' to obtain I = {6*,62 63} (Theorem 3.3.5).

Example 3.4.6. As a consequence of Example 3.1.2 and Proposition 3.4.3, the Hilbert-Cartan

equation 2’ = y’? considered in Remark 3.1.1 gives rise to a GR3Ds Pfaffian system, namely

n' =dy -y dz,
I = 772 = dy/ — y” dx, (354)

P =dz—y" da.

Now we can start the Goursat algorithm.

[0] Tt was proved in Remark 3.1.1 that I’ = {#',0?}, where here we set

' =n! =dy—y dz,
(3.55)

72

0> =0 -2 =dz— 2" dy' +v"" dz.

[1] Consider the change of coordinates

v =z, =y, v=y, y'=2 =9,
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according to which we have
91 — dy2 _y3 dyl,
(3.56)
0% = dy* — 2° dy? +y52 dyt.

[2] Here the change of coordinates described in the proof Proposition 3.3.3 is quite simple, since we

only have to set

dl=yt, 22 =2 =B, at=yt, 2P =20
25
In view of these new coordinates, we can define the function f = L whose expression in the
2
2 5
previous coordinates was f = ( Zil) = y52. Therefore

0! = da? — 23 da?,
I' = (3.57)
0% = da* — 2°da® + fda.

5
X
[3] Because fs = 5 we set

02 = da® — fosdat.

Thus we obtain I = {01, 62, 93} in general Goursat normal form. |

3.5 Monge equations and GR3D5 Pfaffian systems

In this section we will consider second order Monge equations which give rise to GR3 D5 Pfaffian
systems. We shall show, conversely, that any GR3D5 Pfaffian system is locally the realization of a
general Monge equation. Some terminology introduced here is taken from control theory. Motivated

by [18, page 148], we give the following.

Definition 3.5.1. An n-th-order Monge equation is an underdetermined n-th-order ordinary
differential equation in one independent variable x and two unknown functions y = f(z) and z = g(x)
of the form
2= H(ac, Y, 2,9, ... ,y(”)). (3.58)
An equation (3.58) is said to be a n-th-order general Monge equation if ;if; # 0, that is, H
Y

is an expression nonlinear in y(™. |
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A well known example of an autonomous second order general Monge equation is the Hilbert-

Cartan equation (see for instance [13, p. 13] and [7, p. 57])
2=y (HC)

We considered this equation in Remark 3.1.1 and in Example 3.4.6. The “prime” or “dot” notations
in equations like (HC) are cumbersome. Henceforth we shall use jet notation. On the split jet space

J™1(R,R?), with natural coordinates (X,Y, Z,Y1, Z1,Ys,Ys,...,Y,), the equation (3.58)
Z = H(X7KZ7Y17"'7YTL>7

defines an hypersurface N, 3, of dimension (n + 3). Restricting the contact ideal of J™!(R,R?) to

N,13, we obtain the rank-(n 4 1) Pfaffian system
pl=dYy — Y1 dX,

J= ' (3.59)
ut = dY, , — Y, dX,

' =dZ - HdX.

Example 3.5.2. Consider the linear second order Monge equation z’ = y”. In terms of the above

notation, this Monge equation can be written as

7 = Ys. (3.60)

This gives rise to the rank-3 Pfaffian system

pt=dY — Y, dX,
J=1{ 2 =dY, - YedX, (3.61)

w=dZ -Y,dX,
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on the 5-manifold N = N5. Another basis for J, more suitable for our calculation, is given by

0' =’ —p® =d(Z -11),
0> =p' =dY — Y1 dX, (3.62)

02 =p? =dY, — Yo d X.

Because
et =0,

do? =dX A63, (3.63)
do® =dX NdYs,

the numerical invariants of J are DT(J) = [3,2,1] and Cau(J) = [0,1,4]. Consider the change of
variables

=X, 22=Y, 3=V, 2*=Y,, H=7-Y. (3.64)

With respect to these new variables, we have

J={dx® da?® — 23 da' da® — 2 da'}, (3.65)

in accordance with Table 2.1. Now, using (3.64) and (3.65), we can express the closed form general
solution of (3.60) by

V=f(X), Z=/f(X)+k, (3.66)
where f is any differentiable function and k any constant. |

Example 3.5.3. Consider the second order Monge equation

7y =Y, + Y12 (3.67)



The rank-3 Pfaffian system associated to this equation is

pl=dY —YidX,
J=49 P =dY, - Y2 dX,

pr=dzZ — (Yo + 11?1 dX,
In this case, the structure equations of J are

dpt = dX A p?,
dp?> =dX ANdYs,

dp? =dX NdYs +2Y1dX A p.

As usual, we define an adapted basis of J by

0" = i — p? +2v1 4,

92 _ _2/1117
2
93 _ _ = 2
Y, B,
with structure equations
dot =dY, A O? mod 6*,
de? =dy, A 63 mod (', 6%),

2
de® =dy; nd <Y) mod J.
2

92

(3.68)

(3.69)

(3.70)

(3.71)

It is clear from (3.71) that we have DT(J) = [3,2,1,0]. Moreover, on account of (3.71), we can

apply Theorem 2.6.4 to conclude that J admits the special Goursat normal form of a rank-3 Pfaffian

system, that is, J is locally the contact ideal on J3(R,R). The following local expression of (3.70)

unveils this geometric structure:

0' =d(Z -Y1)+2v1dY - Y12 dX
=d(Z -V +2V1Y —Y1?°X) - 2(Y — Y1 X)dY,
0 = —2dY +2Y1dX =d(2(Y - V1X)) — 2X dY7,

2
3 =d(2X) - =—dY;.
0° = d(2X) Y2d1

(3.72)
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With respect to the new variables
=Y, 2?=Z-Y1+2V1Y —-Yi?X, 22 =2y —-V1X), z'=2X, 2°=_- (3.73)
we have
J={d2® —23da',da® — z*da', da* — 2° da'}, (3.74)

as expected. As we described in Section 2.4, we can write down the solutions of (3.67) using the

normal form (3.74) and the change of variables (3.73). Indeed, using the inverse of (3.73), namely

1 1 1 2
X=—-x4, Y= 7(35375011:4), ZZ*IQ+I1(7§I1I4+I3), Y1 = x4, Y2:7;7
5

we can write the solutions of (3.67) in the parametric form

X:f//, Y::ffuff/, Z:fo”*fo/Jer,

where T is a parameter and f = f(Z) is a generic function. |

We consider the second order Monge equation

7, = H(X,Y, Z,Y1,Ya). (3.75)

On the 5-manifold N = N5, with natural coordinates (X,Y, Z,Y1,Y3), (3.75) determines the rank-3

Pfaffian system
pl=dYy — Y dX,

J=1q 2 =dY, - YedX, (3.76)
w=dZ - HdX.
We are particularly concerned with Monge equations for which (3.76) is a GR3Ds5 Pfaffian

system. To this end, our next goal is the computation of the structure equations of J.
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Since we want (3.75) to be of the second order, we assume Hy, # 0, where we start using the

subscript notation for the partial derivation. Then we can define a new basis for J and write

' = —pul =V, dX —ay,
J=860?=4>—Hy, > =dZ — (H — Y3Hy,)dX — Hy, dYi, (3.77)

03 = p? =dY, — Yo d X.
It is easy to see that 8%, 62, 83, d X, and dY5 constitute a local coframe on N. Let’s compute

d0? = — [(Hy — YaHy,y)dY + (Hz — Y2Hy,7z)dZ + (Hy, — YoHy,y,) dY;
~YoHy,y, dYs) ANd X
— (Hy,x dX + Hy,y dY + Hy,zdZ + Hy,y, dY1 + Hy,y, dYs) A (8% + Yo d X)
= —(HydY + HzdZ + Hy, dY1) NdX
— (Hy,x dX + Hy,y dY + Hy,z dZ + Hy,y, dY1 + Hy,y, dY3) A 6?
=—[-Hy 0"+ Hz (0° + Hy,dY1) + Hy, dYy — Hy,x 0*] NdX
—{Hy,y (Y1dX —0") + Hy,7 [(H — Y2Hy,) dX + Hy, dY1]
+Hy,y, dYi + Hy,y, dYs} A 63
= (Hy0' —Hz0*)NdX
— [Hz Hy, + Hy, — Hy,x — Y1Hy,y — Hy,z (H — Y3Hy,)] 03 NdX
— [=Hy,y 0" + (Hy,zHy, + Hy,y,)Y2d X + Hy,y, dY>| A 6°
= Hy,y ' NO> + (Hy 0" — Hz 0*) NdX + Hy,y, 0° AdYs
— (HzHy, + Hy, — Hy,x — Y1Hy,y — HHy,7 — YoHy,y,) 0> Nd X
=Hy,y 0" NO* + (Hy 0" — Hz0*) NdX + Hy,y, > NdYs — LO> Nd X,

where we set

L=HzHy, + Hy, — Hy,x —Y1Hy,y — HHy,7 — Y2 Hy,y,.
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Finally, the structure equations of J are

do' =3 Nd X,
d0* = Hy,y 0" N3 + (Hy 0* — Hz 0*) NdX + Hy,y, 0> NdYs — LO> Nd X, (3.78)

do® =dX AdYs.

From these we see that 8% ¢ J(1) and that J) = {4, 62}

Concerning the second derived system J(?), we prove the following.

Proposition 3.5.4. Let J be the rank-3 Pfaffian system defined at (3.77). Then J*) = 0 if and

only if Hy,y, # 0.

Proof. First we notice that since J() = {91, 02}, one has J? = 0 if and only if there is a pair of
smooth functions k; and kg on N such that k1% + ko # 0 and ki 0 + ko 62 € J@). Using (3.78) we

can compute

A (k1 0" + k2 0%) = k1 dO" + ko d 6>

= (ky — koL) 03 Nd X + ko Hy,y, 0> AdYs modJW,

By definition k1 0 + ko 62 € J@) if and only if d(k; 0* + k2 6%) =0 modJ™®) and hence

k10 + ko0 € J? o ki = koL and kyHy,y, = 0. (3.79)

Let’s consider each case.

[<] If Hy,y, # 0 and ki 0! + k2 6% € J@) | then from (3.79) it follows that ks = 0 and thus k; = 0.
Consequently we have J2) = 0.

[=] If Hy,y, = 0, plugging k> = 1 in (3.79) we would have a non zero 1-form in J?), that is to say

J®@ £0. O

Remark 3.5.5. Definition 3.5.1 and Proposition 3.5.4 combine to show that a second order Monge
equation Z; = H(X,Y, Z,Y1,Ys) gives rise to a GR3 D5 Pfaffian system if and only if it is general,

that iS, Hy2y2 75 0. |
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Remark 3.5.6. According to equations (3.78) and as shown in the proof of Theorem 3.1.7.[vi],
the GR3D5 Pfaffian system J associated to a general second order Monge equation admits the

normalized adapted coframe

wl=Y1dX —ay,

1
w? = (dZ — (H — YoHy,)dX — Hy, dY7),
Hy,y,

WP =dY; — Yo dX, (3.80)

wt=dX,

w’ =dY; + (Hy,x +Y1Hy,y + YaHy,y, + HHy,z — HzHy, — Hy,) d X,

Y2 Yo

which satisfies the structure equations (3.13). |

The relation between Monge equations and general rank-3 Pfaffian systems in 5-dimensions is

described by the following consequence of Theorem 3.4.4.

Theorem 3.5.7. Fvery GR3Ds Pfaffian system I on a 5-manifold M is locally the realization of
a general second order Monge equation Zy = H(X,Y,Z,Y1,Y3). In other words, there exist local

coordinates (X,Y, Z,Y1,Y2) on M and a function H(X,Y, Z,Y1,Y2) € C°°(M) such that

pt=dY —YvidX,
I'=< 12 =dY; —YsdX, (3.81)
pw=dZ -HdX.
and Hy2y2 # 0.

We will call (3.81) the Monge normal form of the GR3Ds Pfaffian system I.

Proof. According to Theorem 3.4.4, we can write I in its general Goursat normal form, that is, there

are local coordinates (l‘l, . ,a:5) on M such that

wl =da? — 23 dat,
I'=1¢w?=da* —25da® + fda', (3.82)

W =da® — fus dat,
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for some f € C*°(M) with f,5,5 # 0. Another basis of T is

V= ol =da® — 2% dat,

=
Il

p? =wd =da — fusdat, (3.83)

p? = w? + 2’ =dat — (2% fs — f)dat.

Define the mapping ¢ : M — M by
X=z', Y=2% Z=2z* Yi=2 Yo=fps.
Since the Jacobian determinant of ¢ is f 5,5 # 0, ¢ is a local diffeomorphism. Set
H=2"fis—f, H=Ho¢ ', (3.84)

where the function H is just the expression of H in the (X,Y,Z,Y1,Y2) coordinates. At this point,
from (3.83) we see that the local expression of I is (3.81), that is, I is the realization of a second order
Monge equation Z; = H(X,Y, Z,Y1,Y3). Consequently, by Remark 3.5.5 one must have Hy,y, # 0.

This last property can also be checked by direct computation. O

Motivated by Theorem 3.5.7, we can add another step to the Goursat Algorithm 3.4.5, so as to

arrive at an algorithm which can be used to obtain the Monge normal form of I.

Algorithm 3.5.8 (Monge). To obtain the Monge normal form
I={dY —-Y1dX,dY1 - Y2dX,dZ — HdX},

of a GR3Ds5 Pfaffian system I we can proceed as follows.
[0] Write I in an adapted basis {n',n% 13}, that is, a set of 1-forms such that I = {n',n% n?} and
I'={n"n*}.
[1] Compute dy? — y®dy' € I’ in a coordinate system (y',...,7°) (Lemma 3.3.1).
1

[2] Obtain a coordinate system (z',...,2%) in which two generators of I” are ' = da? —2® dz' and

0?2 = dz* — 25da® + fda' for some function f = f (wl, e ,:105) such that f 5,5 # 0 (Proposition
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3.3.3).
[3] Set 62 = dx® — f,5 dz' to obtain I = {6*,6% 63} (Theorem 3.3.5).

[4] Write I in the new basis

ulzwlzd 2—$3d$1,
p?=w? =da® — fosdat,

3 =w? + 2% =dat — (25 fs — f)dat.

Then define the local coordinates
X=z' Y=2% Z=z' Yi=23 Yo=fs.

Finally, the desired Monge equation is Z; = H(X,Y, Z,Y1,Y3), where H is the expression of the
function

H (a:l,xQ,m3,:E4,x5) =2 fs — f
in the (X,Y, Z,Y1,Y3) coordinates (Theorem 3.5.7).

Example 3.5.9. On a 5-manifold M with local coordinates (a, b, ¢, u, v), consider the Pfaffian system
locally defined by
nt =db—uda,

I={1n*=dc—vda—2Vvdu, (3.85)

1
n® =da+ — du,
v

NG

on a neighborhood where v > 0. Now we start the Monge algorithm.
[0] Let’s complete the basis of I to a coframe by adjoining du and dv. With respect to this coframe,

the structure equations of I are

dnt =daAdu=n®Adu,

1
dn* =daNdv+ —=duAdv
v

Vo (3.86)

=03 Adv,

dn® = Ldu/\dv.

2Vv
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From (3.85) we see immediately that I’ = {n', n?}, hence I is already expressed in an adapted basis.

[1] Consider the change of coordinates
y'=a, y¥=b, y=u y'=c y=v

according to which we have

nt=dy* —y*dy',
I={ n*=dy* +2/y5dy® —y° dy’, (3.87)

1
n® =dy' + —=dy°.

VP

[2] Here we only have to perform the change of coordinates

52

In these new coordinates, we can define the function f = —%, whose expression in the previous
2
2./5
coordinates is f = —% = —1°. Therefore
o' =n' =da? — 2*dat,
257
I'=46%=n? :dx4—m5dﬂc3—de1, (3.88)

2
n® =dat + = da®.
xd

5 5
[3] Because f,5 = f%, we set 02 = dx? — fosda! =da® + % dx'. Then we have I = {6*,62,6}

in the general Goursat normal form

o' = da? — 23 da?,
52
I'=40%=das* —25da® — % dxt, (3-89)

5
0% =daz® + %dwl,

25° 1
where f = T and fys5,5 = —3 # 0.
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[4] Consider the function

Write I in the new basis

w=w?+2’w? =da* — Hda? :dx4—|—%dac1.

Define the local coordinates

0

X=z' Y=2% Z=z Yi=2% Yo=/[fp =-5
The expression of H = f% in the (X,Y, Z,Y1,Y3) coordinates is H = —Y52. Since

pl=dY — Y dX,
I'=q 4?2 =dY; —YsdX, (3.90)

pd=dZ —Ys?dX,

we conclude that I is locally the realization of the Monge equation Z; = Y52, which is the Hilbert-
Cartan equation. We can express the initial local form (3.85) of I in the form (3.90) by the change
of coordinates

X=a, Y=b Z=c Yi=u Y,=—u. (3.91)

3.6 Cartan tensors and particular normal forms obtained by Cartan
In this section we briefly review an invariant of GR3Ds Pfaffian systems which is used to
partially distinguish them. Then we provide some of the few general Monge normal forms obtained

by Cartan in his 1910 paper.
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The equivalence method applied in [10] was first introduced by Cartan in [12]. Many works
have been dedicated to its foundations and applications, among which we mention Gardner [19],
Hsiao [29], and Stormark [38]. We shall provide a few details about the equivalence method in
Chapter 8. Using this method, Cartan [10] proved that any GRsDs Pfaffian system I has two
fundamental invariants. The first one is a fourth degree homogeneous polynomial in two variables

Fir(x1,x2), expressed by

.7:] = A19314 + 4A2I13$2 + 6A31‘121‘22 + 4A4931I23 + A51‘24.

With an abuse of language, we call F; the Cartan 2-tensor of I. The other invariant is a homoge-
neous polynomial Gr(x1,xe,x3) of the fourth degree in three variables such that Gr(x1,22,0) = F;

and whose expression is

g[ = .7:] +4 (Bl.’E13 + 3321'121'2 + 3B3£L’1£E22 + B4£L’23) X3

+ 6 (leL‘lQ + 2052120 + 031622) 1'32 +4 (Dl,’El + DQ!EQ) 1'33 + E$34.

We call G; the Cartan 3-tensor of I.

Explicit formulas for F; and Gy are apparently impossible to provide, except for very special
cases. Starting from Hsiao’s paper, we were able to implement a Maple package, called Five Variables,
that computes both Cartan tensors (see Chapter 8).

If two general rank-3 Pfaffian systems I and J are equivalent, then their Cartan 2-tensors Fi
and F; have the same types of roots, that is, the root type of F; is an invariant of I. However,
we must remark that if F; and F; have the same root type, then I and J need not be equivalent
(unless Fr = 0).

A GR3D;5 Pfaffian system I must have one of the following root types:

[0o] Fr has infinitely many roots, that is, F; = 0;

[4] F; has a root of multiplicity four;

[3,1] F has one triple root and one simple root;

[2,2] F; has two double roots;

[2,1,1] F; has one double root and two simple roots;
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[1,1,1,1] F; has four simple roots.

We note that the root types [3,1] and [2,1,1] were treated simultaneously by Cartan [10, §VII]
(Stormark did not mention the type [2,1,1]). In Chapter 6 we will provide many examples of Pfaffian
systems for all the root types.

In [10] upper bounds for the dimensions of the symmetry algebra Sym of a general rank-3
Pfaffian system I are given. In particular, every GRsDs Pfaffian system has a finite dimensional
symmetry algebra and the dimension is either 14, or less than or equal to 7. In Table 3.1 (page 63)
we report the general Monge normal forms and the data about Sym that Cartan obtained using the
root type of I.

Cartan treated the root type [2,2] in [10, §XI, page 172]. In this case I is determined, up to
equivalences, by a constant 8 and Sym is either of dimension 5 or 6. If dim Sym = 6, then, for
special values of 3, Cartan proves that Sym is the direct sum of two 3-dimensional algebras, one of

which is semisimple, or Sym = SE(3) = SO(3) x R3.

3.7 Summary of non-Frobenius rank-2 and -3 Pfaffian systems in five variables
Here, Table 3.2 (page 63) summarizes the normal forms for non-Frobenius rank-2 and -3 Pfaffian

systems I on a 5-manifold, for which Cau(I) = 0. An adapted basis of I is provided.



Table 3.1: General Monge normal forms in Cartan 1910 [10].

Type Sym Monge normal form Z; = H
dim Sym = 14
(od] im Sym v,2,
and Sym ~ go
Sym is solvable and either 1 10
— (V2 + =Y+ (L + K2 — R Y2>,
[4] dim Sym =7 2(2 3 ( )
or dlmSym =6 where k = ]C(X)
Sym is not solvable. . )
[2,2] ; ) only two for special cases when dim Sym = 6.
dimSym = 6 or dimSym =5
3,1]
(2,1,1) dimSym <5 none provided.
[17 ]" ]‘5 1]

Table 3.2: Normal forms of non-Frobenius rank-2 and -3 Pfaffian systems on a 5-manifold.

f=f(at,...,2%) and f,s,5 # 0.
DT(I) I
2,0], Cl, {d2? — 23 dat,da* — 2° dx'}
[2,0], GR2Ds {d2? — 23 dat,da* — 2° d2® + fdal}
3, 2] {dx®, dx*, dz3 — 2? da'}
[3,2,1] {da®,dax? — 23 dat,da® — 2t dat}
[3,2,1,0] {da? — 23 dat,dad — 2t dat,da* — 25 dat}
[3,2,0], GR3D5 | {da? — 23dat,da* — 25 dad + fdat,dad — fus dat}

63
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CHAPTER 4
CARTAN INTEGRATION METHOD FOR NONLINEAR INVOLUTIVE SYSTEMS OF PDE

AND GENERAL GOURSAT EQUATIONS

In this chapter we shall show how the geometric study of general Monge equations is closely
related to that of two different kinds of partial differential equations.

The first kind we deal with is given by the nonlinear involutive systems of two PDE in two
variables and one unknown, considered in Section 4.1. An integration method of these nonlinear
involutive systems will be discussed. The core of this method is the proof that the reduction by
the Cauchy characteristic of the Pfaffian system Is, generated by a nonlinear involutive system, is
indeed a GR3Ds Pfaffian system I. Therefore the general Monge normal form of I will relate an
underdetermined ordinary differential equation to the initial pair of PDE. This integration method,
implicitly described by Cartan in [10], is quite effective when the PDE at hand has a 3-dimensional
symmetry algebra, not containing the Cauchy characteristic, in which case we can use the general
Monge normal forms that we will compute in Chapter 5. The general solution of a particular family
of nonlinear involutive systems of PDE in the plane will be computed using this integration method,
and some examples will be provided.

The second kind of PDE considered consists of a class of non-Monge-Ampere parabolic PDE in
the plane, referred to by Cartan as Goursat equations. This kind is studied in Section 4.2.

In Section 4.3 we will analyze a bijective mapping between these two types of PDE, which is
defined by means of a particular parametric representation of them.

Section 4.4 is devoted to the elaboration of a canonical procedure to associate a nonlinear

involutive system to a given GR3D5 Pfaffian system.

4.1 Involutive systems and GR3Ds Pfaffian systems
In this section we describe how, in his five-variables paper [10], Cartan resolves a problem

considered by Goursat in [25, Chapter VI] and [23], namely, the integration of an involutive system
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Ss of two scalar partial differential equations of the second order in the plane.

We will provide a convenient parametric realization of nonlinear involutive systems S;. The
general solution of nonlinear involutive systems for which this parametrization is especially simple
will be given, together with some examples.

A system of two scalar second order PDE in the plane has two independent variables x and y,
and one dependent variable z. Using the standard notation (2, 2y, Zzz, Zzy, 2yy) = (P, 4,7, 5, 1), such
a system can always be written as

r = R(x,y,2p,q,t),

s=S(x,y,2,p,qt).

This system defines the rank-3 Pfaffian system

dz—pdx — qdy,
Iy={dp— Rdx— Sdy, (4.2)

dqg—Sdz—tdy,

on the 6-manifold Mg with local coordinates (z,y, z,p, ¢, t).
The general definition of involutive Pfaffian systems (with independence condition) is beyond
the purpose of this section. We refer, for instance, to Griffiths and Jensen [27, page 43] or to

Ivey [30, page 176]. Given for granted this general definition, we can give the following.

Definition 4.1.1. An involutive system of two PDE in the plane Ss is a system (4.1) which
gives rise to an involutive Pfaffian system I» (4.2). Such a system of PDE is said to be linear if it

is linear in ¢, that is, Ry; = 0 and Sy = 0. |

We content ourselves with the following characterization of involutive systems of two PDE in
the plane, which is proved by Cartan [10, §III]. Here and in the following pages we will use the

differential operators

Dy =0, +p0.+R0,+S0,, D,=08,+q0.+S0,+1t0,. (4.3)
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defined on Mg.

Theorem 4.1.2. Let Sy be a system of two PDE in the plane (4.1). Let I be the rank-3 Pfaffian
system (4.2) defined by Sa on Mg. Then the following properties are equivalent.

[i] S2 is involutive.

[ii] I> admits a (Frobenius) rank-5 antiderived system, that is, the Cartan-rank of I is Car(I3) = 2
(see [10, equation (4) at page 123]).

[iii] dim Cau(lz) = 1.

[iv] The functions R and S satisfy the conditions

Ry =S}, and D,(S)= Dy(R)—S;Dy(S). (4.4)

[v] I is reduced by its Cauchy characteristic

CQ = 833 — St 8y + (p — qSt) 6z + (R - SSt) 3p + (S — tSt) 8q + Dy(S) 8t (45)

to a rank-3 Pfaffian system on a 5-manifold.

Proposition 4.1.3. Let Sy be an involutive system of two PDE in the plane given by (4.1). Then

Sy is linear if and only if S = 0.

Proof. The first of conditions (4.4) implies Ry = 25;S¢:. Consequently, if Sy; = 0, then Ry = 0 and

Sy is linear. 0

Proposition 4.1.4. Let Sy be a system of two PDE in the plane

r=R(t), s=5(). (4.6)

Then Sy is involutive if and only if R; = S,2.

Proof. This is just a trivial application of Theorem 4.1.2, because (4.6) reduces (4.4) to R; = S;>. O
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Henceforth, we will consider an involutive system of PDE in the plane (4.1). Let’s examine
closely the structure equations of I, and the consequences of Theorem 4.1.2. First, let’s consider

another basis for Is, writing

a=dz—pdzr—qdy,

o' =dp—Rdx—Sdy— S, (dg— Sdx —tdy)
I

|
—
=
3
S~—"

—dp—S;dg— (R—SS;)dz — (S — tS;) dy,

a?=dq—Sdx—tdy.
Let’s complete this basis of I» to a local coframe «, o', a?, 7,0, on Mg by setting

m=dy+S;dr, o=dt—Dy(S)dz, n=dx.

We readily see that the Cauchy characteristic considered in (4.5) is actually Cy = 0;,. Next, define

the operator

Vy = [81571_)1/] — Dy o 8t = 8tDU — 2Dy8t

As shown in [10, pages 122-124], condition (4.4) implies that the structure equations of Iy are

da=d’Arw mod (o, o),
da' = a? A (Vy(S)m — Sip o) mod (e, al), (4.8)
do’> =1 Ao mod (a, o, o?).

From (4.8) we see that I’ = {a,a'} and that = = {a,a',0? 7,0} = 9," = CS([»). In
particular, 0, is also a Cauchy characteristic of 2. Consequently, as we discussed in Corollary
2.2.17, I is reduced by 0, to a rank-3 Pfaffian system I, on the quotient manifold Ms, such that
DT(l;) = DT(I), and thus DT(IQ’) =DT(I').

Moreover, because of (4.8), we know that both I’ and I are non-Frobenius Pfaffian systems on
Ms5. Applying the results of Example 2.2.13 concerning rank-3 Pfaffian systems on a 5-manifold, we
conclude that

DT(IZ) € {[372a1]a [37231’0]3 [37270]} (49)
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. . . . "
In order to further characterize involutive systems, we now consider I5".

Lemma 4.1.5. Let I be the rank-3 Pfaffian system (4.7) associated to an involutive system (4.1).

Assume ko + ko' € I is a 1-form. Then we have
k4 k1V,(S) =0,
ka+kia' € L"—{0} & ¢ kS, =0, (4.10)
k% 4+ k12 #0.

Proof. Because o and a! are independent, § = ko + ki o' is non-zero if and only if k% + kq2 #0.

According to (4.8), we have

d0=kda+ ki da*
(4.11)
=a? A [(k+k1V,(S))m — k1S o]  mod (a,at).
Because a?, 7, and ¢ are independent, we conclude, from (4.11), that (4.10) holds. O

Using Lemma 4.1.5 and the results of Chapter 3 we obtain the following two propositions.

Proposition 4.1.6 (Linear Involutive Systems). Let Sz be an involutive system of two PDE in the
plane (4.1). Let I be the rank-3 Pfaffian system (4.7) defined by Sz on Mg. Then the following
properties are equivalent.

[i] S is linear in ¢ (see Proposition 4.1.3).

[ii] DT (I2) € {[3,2,1], [3,2,1,0]}.

[iii] About every point of Mg there are local coordinates (X1,..., X X©) such that Iy can be

written in one of the following normal forms

I, ={dX% dX? - X3dX", dX* - X*dX'}, (4.12)

or

I ={dX?-X%dX", dX?® - X*dX', dX* - X°dXx'}. (4.13)
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Proof. Before proving the series of implications, let’s first recall, from Proposition 4.1.3, that Ss is
linear in ¢ if and only if Sy = 0. Moreover, by (4.9), we know that DT(I3) € {[3,2,1], [3,2,1,0]} if
and only if I,” # 0.
[i = ii] Assume Sy = 0. Then in (4.10) we may choose k1 = —1, and k = V,(5), so that
0 el #0.
[i < ii] Assume I,” # 0. Then (4.10) holds for some k, k; € C°°(Ms) such that k2 + k;* # 0.
If k1 = 0 then, from the first equation on the right-hand-side of (4.10), one has k = 0, thus we must
have k1 # 0. Consequently, by the second equation on the right-hand-side of (4.10), we conclude
that Sy = 0.
[ii « iii] By Corollary 2.2.17, there are local coordinates (X1,..., X5 X©) on Mg such that
1

a Cauchy characteristic of I is dxs. Moreover, take local coordinates (z',...,z°) on the quotient

manifold Ms, then the standard projection q : Mg — Mj is locally defined by

Now, it is enough to pullback the normal forms in Table 2.1 by q in order to obtain (4.12) and

(4.12). The converse is trivial. O

Proposition 4.1.7 (nonlinear Involutive Systems). With the same hypothesis and notation of
Proposition 4.1.6, the following properties are equivalent.

[i] S is nonlinear in ¢ (see Proposition 4.1.3).

[ii] DT(I2) = [3,2,0], that is, the reduction I of I is a GR3D; Pfaffian system.

[iii] About every point of Mg there are local coordinates (X!,..., X% X6) and a function F =

F(X',...,X5) € C>°(Ms) such that I can be written in the general Goursat normal form

L={dX?-X%dX' dX* - X°dX?*+ FdX"', dX® - FxsdX"'}, Fxsxs #0. (4.14)

[iv] About every point of Mg there are local coordinates (X,Y, Z, Y7, Y2, X®) and a function H =

H(X,Y,Z,Y1,Ys) € C(Ms) such that Iy can be written in the Monge normal form

L={dY —Y1dX,dY, —Y,dX,dZ — HdX}, Hy,y, #0. (4.15)
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[v] The general solution of Sy can be expressed in terms of an arbitrary function F'(X), its derivatives

F'(X) and F”(X), and the function G(X) such that

G'(X) = H(X, F(X), F'(X), F"(X), G(X)).

Proof. [i < ii] This is just a consequence of Propositions 4.1.3 and 4.1.6 together with (4.9).

[ii & iii < iii] These equivalences are proved by considering the projection q : Mg — Mj5
defined by 0, and any of its sections s : Ms — Mg. When [ is written in one of the normal forms
proved in Section 3.4, respectively the general Goursat or the general Monge, then I = q*I has the
desired local expressions. Conversely, if I admits one of the local expressions in (4.14) or (4.15),
then I = s*I; is a GR3 D5 Pfaffian system.

[v < iv] Evidently one is a restatement of the other. O

Remark 4.1.8. The proof of Theorem 3.1.7 showed us how to obtain a normalized adapted coframe
when the structure equations are as in (4.8). Because we are assuming Sy # 0, we can define the

change of local coframe

-1
o— —V,(S)m—Spo)=dt — Yu(S) dy — (StVy(S) + Dy(S)> dz,
St St St
1
al - ——al.
Stt

We thus consider the local coframe

a=dz—pdr—qdy,

1
ol = TS [dp— Sedq— (R —55;) dw — (S —15;) dy],
tt
(4.16)
™= dy + St d.’L',
o=dt— Vy(S) dy — (StVy(S) +Dy(5)> d,
Sit St

n=dxz,



with respect to which we have the structure equations

da=ao’ A7 mod(a,al),
do'=a* Ao mod(a,al),
da’=7ANo  modl,

dmr =0 mod {a, o', a? 7w, o},

do=0 mod {a, at,a? w0}

These prove that (4.16) is a normalized adapted coframe of I5.
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(4.17)

The final goal of this section is to obtain an alternative parametric realization of nonlinear

involutive systems Ss. This parametrization is not only useful for examples and calculations, but it

will relate nonlinear involutive systems to a special class of parabolic PDE in the plane, as we will

see in Sections 4.2 and 4.3.

Theorem 4.1.9. A system of two PDE in the plane
r=R(z,y,z,p,q,t) and s=S(z,y,2,p,q1),

is monlinear and involutive if and only if it can be written in the parametric form

r= =2+ 2)\) — A%,
s = *¢+>\1/%
t=—1.

.0
Here ﬂj = 1/)(557%2729,(],)\), 7/} = %}

and Y satisfies the conditions

2 (y +ave — (6= M)y = Ghq) = e + My + (0 M) 6z — (20— M) 4 — i

and

¥ #0.

Before proving this theorem, we first consider some useful remarks.

(4.18)

(4.19)

(4.20)

(4.21)
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Remark 4.1.10. [i] Eliminating A from (4.19) one obtains (4.18).

[ii] The system (4.19) is equivalent to the equation
7+ 2Xs + N2+ 24 = 0, (4.22)

together with its first two derivatives with respect to .

[iii] Suppose a parametric realization (4.19) is obtained in terms of z,¥, z,p, ¢, and A, say

r=p(x,y,2,0,qN),
s=o0(z,y,2,p,qN),

t=7(x,y,2,p,qN).

Then we do not need to solve differential equations to compute v, since by (4.22) we have
1 2
¢:f§(p+2)\o+/\ 7). (4.23)

Proof of Theorem 4.1.9. [=] We start from (4.18) and derive (4.19). Let’s recall that, by Proposition

4.1.7, the system (4.18) is assumed to satisfy the conditions
Ry =S% Sy #0. (4.24)

On account of the second condition at (4.24) (S # 0), we can define a new coordinate system

(X7Y7ZaPaQ7>\)OnM6by
X=x, Y=y Z=z P=p, Q=q, A=-5. (4.25)

Using the inverse of (4.25), we can express ¢ in terms of (X, Y, Z, P,Q,)\),sayt =7(X,Y,Z, P,Q, \).

Then, express the functions R and S of the system (4.18) in these new variables by

R=T(X,Y,Z,P.Q.\), S=3%(XY,ZP,Q,N). (4.26)
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Next, let v = ¢(X,Y, Z, P,Q, \) be the function on Mg such that

0?1

1 .
_W7 ¢|>\:0 = _§T|)\:07 w‘)\:() = _Z‘)\:(), (427)

o=

where Y| =0 = ¥(X,Y, Z, P,Q,0). In particular we have

or

o= UHO. (4.28)

Applying the chain rule to the second expression in (4.26) we get

9s 9T O\

A= T T o

hence, from (4.28), we have ¥ = \i). Integrating by parts once we end up with
)\ aee .. )\ . .. . .
E—Z‘\,\:o:/ Azpd)\:)\w—/ YdA=Ap — 1+ P|r=0. (4.29)
0 0
By the definition (4.27) of ¥, we have
S=%=\)— . (4.30)

Analogously, from the first of (4.24), we obtain

_OR 9T dX

2 P —
A= at ~ oX o’

which gives T = —A2¢). Integrating by parts twice we have

A A A
T7T|,\=0:f/ )\Zzb"dA:f/\212}+2/ /\@Ed/\:f)\21l}+2>\¢—2/ Yd\
0 0 0 (4.31)

= A2 + 20 — 20 + 24| r=0.

Using the definition of 1) once more, we have

R=" ==\ +2\) — 2. (4.32)
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At this point it has been shown that there exists a function v = ¢(X,Y, Z, P,Q, A) such that

P #0,

while, gathering equations (4.27), (4.30), and (4.32), we can rewrite the nonlinear involutive system

(4.18) as
= =2 + 2\ — A%,

s = —1) + A\,
t=—y,
which is (4.19).
It remains to derive (4.20), which we shall prove by using the Cauchy characteristic of the given
involutive system. In the local coordinates (X,Y, Z, P, @, \) the involutive system (4.19) gives rise

to the rank-3 Pfaffian system
a=dZ—PdX —Qdy,
L= a'=dP — (=22 + 2X¢ — 2¢) d X — (M) — ) dY, (4.33)

o? =dQ — (M) — ) dX + 1 dy.

Let’s define the operators

Dy = 0x + POy + (20 + 2\ — A2) 9p + (M) — ) Do,
(4.34)

Dy =0y + Q0z + (M) — ¢) 0p — ¢ 0g.

By Theorem 4.1.2, the involutive system (4.33) has a unique Cauchy characteristic directional field,

namely

Co=0, — 8,0, + (p—qSi) 0- + (R — 5S;) 9, + (S — tS4) 9y + Dy(S) 0. (4.35)

This vector field in the local coordinates (4.25) is written as

Cy=0x + A3y + (P +AQ) 0z + (M) — 2¢) p — ¢ D + P Dy (M) — 1)) O». (4.36)
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Imposing the condition Cy € Cau(I) and knowing that b # 0, we obtain the following

Dx (1)) = Dy (M) — 2), (4.37)

or equivalently

2Dy () = [Dx + ADy] (4). (4.38)

In view of (4.25), we can use to the small case variables and denote ¢ = ¥ (z,y, z,p, ¢, \). With this

abuse of notation we write (4.38) explicitly
2 (wy + q — (&= XD) by — B0hg) = o+ Xy + (0 + A0 — (20 = M) by, — b,

which is (4.20).

As a final consideration, we notice that (4.38) (or (4.20)) is equivalent to the commutativity of
the vectors (4.34), that is, [Dx, Dy] = 0.

[«<] As noticed in Remark 4.1.10, (4.19) is a parametrization of a system of two scalar second-
order PDE in the plane. This system is involutive according to Theorem 4.1.2 because, by means of

(4.20), it admits the Cauchy characteristic (4.36). O

As noticed earlier, the parametrization in Theorem 4.1.9 in many instances simplifies the in-
tegration of a nonlinear involutive system, as we shall show in a particular case at the end of this

section. First, let’s consider the following.

Remark 4.1.11. Let S, be a nonlinear involutive system parameterized by (4.19). Then we can say
that on the 6-manifold Mg with local coordinates (z,y, 2, p, g, A), So gives rise to the rank-3 Pfaffian

system

a=dz—pdxr—qdy,
Ly=IL=1a'=dp— (=N +2\) — 2¢)dz — (M) — ) dy, (4.39)

o?=dqg— (M) —)dx+dy.
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By Theorem 4.1.9, ) # 0 and we can define the local coframe on Mg

a=dz—pdx—qdy,

o = (dp+adg+ (20— M) da + P dy),

a?=dq— ()\1/)71/)> dz + ¢ dy,

(4.40)
T=dy—Adx
o=~ (A = (Yo = Moy — 20y + X34y ) da — (= My ) dy)
n=dx.
With respect to this local coframe, I5 . satisfies the structure equations
da=ao?> Am mod(a,al),
do' =a® Ao mod(a,al), (4.41)

da*=n Ao modly,.

From these we see that Zy y = {a, al,a? O’} is a rank-5 antiderived system of I . Moreover,

we see that
Oy = 0p + A0y + (p+aN) 0+ (M= 20) 9, = 0, +2 (g — M) O, (4.42)

is a Cauchy characteristic of both I, and Zs 4. [ |

The following Theorem is the result of our own analysis of Cartan’s [10, page 137 and §XII].

First a small remark.

Remark 4.1.12. Any function ¢ = () is a solution of (4.20). Indeed, when we plug such an

expression, equation (4.20) becomes the tautology 0 = 0.
Theorem 4.1.13. Let Sy be a nonlinear involutive system parameterized by
r= =2+ 2X\) — N,

o= b+, (449

t:7¢7
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where ) = (\) and 1) # 0 (see Theorem 4.1.9). The following properties hold.

[i] The Cauchy characteristic 0, (see (4.42)) defines the projection q : Mg — Ms

X=X Y=(y—)+q\+p+22¢,

Vi=(y— o) +q+ap, Yo=(y— M), (4.44)

1 A .1 .. .
Z = —3 (z — 2% —ap+ 22\ — §y21/) + zyA — §x2x\2¢ —qy — xyzb) ,

which reduces Iz to the GR3Ds Pfaffian system generated by the general Monge equation
[ii] The 2-dimensional integral manifold s : (\, i) € R? — Mg of S is given by

F"

TAVEE b2 2kF
z:_uszr(F—Z.)u—Q(GJF%Q _$>7 (4.46)

YF

i[(w_wp_w]m q:_ww_j,

p= (A —2¢)p—
(G
where F = F()\) and G = G()\) are related by the equation 1) G = P

Before proceeding to the proof, let’s first present some applications of this theorem.

Example 4.1.14 (Hilbert-Cartan). By Proposition 4.1.4, the nonlinear system of PDE in the plane

r=R(t) = §t3,
Sy = 1 (4.47)
s=85(t) = =t*
is involutive, because R; = 2 = S;. From the proof of Theorem 4.1.9, let’s set A = —S, = —t.

To calculate ¢ we substitute ¢ = —A in (4.47) to obtain

1
=2\
r 3 5

= % A2 (4.48)
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Plugging (4.48) in (4.23) we arrive at

1,1 1
Y= —5(—5)\3 + A=A = 6)\3’ (4.49)

so that we have ¢) = 1. Applying Theorem 4.1.13, the solution of (4.47) is expressed in terms of
solutions of the Monge equation

G=1I", (4.50)

which is the Hilbert-Cartan equation. Specifically, from (4.46),
. 1 1 .. 1 . D
r=pu, y=u+FE z:fg,ﬂxu (FQ/\QF),uQ <G+)\F272FF), (4.51)

is the solution of the involutive system (4.47). For instance, consider the solution of (4.50) given by

F(X\) = 523, and G(A) = 53+ k, where k is a constant. We have F= 1A% and F= 1), and thus

(4.51) gives
11 1 1)\3>__)\3(2:c+1)2_k

1 1 1 1
= Az + =) = ——x2\3 4 A3 N — = [ =Nk + -\ — = =
y=Artgh 2= e AN (G - e g [ g Rt 1 24 2

On a neighborhood of x # —%, we find A = 2511 and thus we obtain

3
Y k
_ _k 4.52
T30+ 2 (4.52)
which is a closed form solution of the involutive system (4.47). |

Example 4.1.15 (Goursat-Cartan). Assume m ¢ {0, %, 1} and consider the system

t2m71
5 r = R(t) = (21711)_7%17; (4.53)

Because R, = t>(™~1) = 5,2 we can apply Proposition 4.1.4, thus the system (4.53) is involutive.
In this case we can set

A=—8; = —(—1)mtm ! = (=)™ tgm (4.54)
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m—1)

thus we can express t = —\1/( and we obtain the following parametric expression of (4.53)

/\(Qm—l)/(m—l)

T T ot
Ay (4.55)
m 7
t = —)\V/(m-1)
Using (4.23) we find
P = M)\(Qm—l)/(m—l) (4.56)
m(2m — 1) ’ '

according to which we have ¢) = ﬁ)\@_m)/(m_l). Now, applying Theorem 4.1.13, the solution of

(4.53) is expressed in terms of solutions of the Monge equation
G = (m — A=/ (m=1) i (4.57)

Note that for m = 2 this conclusion agrees with that of Exercise 4.1.14. Using (4.46) as showed in
Exercise 4.1.14, given a value of m (that is a choice of ), for every solution of the Monge equation
(4.57) we can compute the corresponding closed form solution of the involutive system (4.53).

A system similar to (4.53) is considered by Cartan in [10, page 113] (and Stormark in [38, page
473]), but the expression of v is not provided there. We chose a different normalization to allow

continuity with Example 4.1.14. |
With this little motivation, we can proceed to the proof of Theorem 4.1.13.

Proof of Theorem 4.1.13. To prove both parts [i] and [ii], we first built a quotient by the Cauchy
characteristic, in order to reduce Iy to a GR3Ds Pfaffian system I. Then we use the Monge
Algorithm 3.5.8 to obtain the general Monge normal form of I and thus the equation ¥ Z; = Y52.

To begin, when ¢ = 1 (\), the Cauchy characteristic (4.42) of the Pfaffian system I, (see
(4.40)) is

8y =0 + N0y + (0 +qN) D: + (Az/;—w) By, — 1 8.



80
A complete set of invariants for 0, is easily checked to be

=N 2=y - Az, 23=p+2x1/}—x)\¢, z4=q—|—x¢,
(4.58)

25 =z 42— x(p+ 229 — :17)\7,/)) —xzA(g+ m/})
Let’s set 2% = z, which together with (4.58) defines a change of local coordinates 746 : Mg — M.
Because z' = ), we can write ¥(z!) = 1)(\) = 1 and still set ¢) = %. In particular, the inverse

change of coordinates is

Tﬁjé oz =2% y=2242120 =25 - 2820 — 23 — 2l
(4.59)
p=23 25020 - 21), q=2z*—25), N=:.
Let’s recall the adapted basis of I 4 at (4.40)
a=dz—pdx—qdy,
al = dp+Adg+ (2¢—w) dz + 9 dy, (4.60)

a?=dqg— (/\z/)—w> dz +dy,
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1

where o is considered without the normalizing factor . In these new coordinates we can express

a=d[5 — 2525 — 28 — 212Y)] = [2% — 25(20 — 219)] d20 — (2* — 259) d (22 + 2'2)
=dz® — (% — 2% — 212 d 20 — 2O d (S — 2 — 2t — [2° — 2529 — 2Y)]d =
— (2" = 25Y) d2? — 2 (2t — %)) d 20 — 2O(2t — 259) d 2t
=dz® — (24— 25)d2? — 252 — 25 d 2t
—[50 — 23 — 212t 4 2% — 282y — 2Yeh) + 21 (2t — 2%) + 254 d 2O
— z62¢ dz' +2%d2% + 2420 d2t + 2120 d 2t
= (25 — 2N d2® + 25d25 + 2125 d 2t + d 2P,
ol = d[2% = 2820 — 22P)] + 2t d(2* — 259) + (20 — 21) d 28 + Y d (2P + 21 25)
=dz? —2° (21/} — ) — zlz/J) dz' — (2 — zlz/)) dz5 + 2 (d2* - S d2t — z/}dzﬁ)
+ (20 — 219) d2° + 4 (d22 + 20 d2t 4 21 d20)
=d®+d?+ 2t d2?,
o =d(z* = 259) — (2 — ) d2® + P d (2 + 2125)
=dz* — 2 dzt —pdzS — (2Y) — ) d8 + ) (d2? + 20 d2t + 21 d=5)
=dz* +4dz2
Therefore we have
= (% — 24 d2® + 25d23 + 2125 d 2t + d 2P,
Ly =1 o' =dz®+4¢ dz? + 21 d2*,
o? =dzt +1pdz2

6

Now, we just tweak a little bit the basis of I5 4, defining a® = o — 25 a! so that

¥ =dz® —24d2?,
Iy =4 o' =dz® +4 d2> + 21 d2*,

a?=dz*+ @dzz.
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As we expected, I>, does not depend on 8.

Let M5 be the quotient manifold with local coordinates (i!,...,7°). Using (4.58), the standard

projection qg,5 : Mg — Ms by 0, is locally define by

Q5: Y =2, i=1,...,5 (4.61)

ss6: 20=p, =7y, i=1,...,5 (4.62)

Consequently, if we let ¥(g') = 1(\) =+ denote the function qg 5 o 7, the reduction of I, is the

rank-3 Pfaffian system I = s56*(I2,y) given by

Nt =ss6al = dy® + ¢ dy? + gt dyt,

I'=9n=s56"" =dy° - g* dy”, (4.63)

To arrive at transformations (4.44) and (4.46), we now follow the steps [0] to [4] of the Monge
Algorithm 3.5.8.

[0] By Proposition 4.1.7, we know that I is a GR3D5 Pfaffian system and by the above manip-
ulations we know that (4.63) is an adapted basis for I.

[1] We want to built a 1-form 6! in I’ = {n',n?} whose Engel-rank is 1, that is such that
0' = dy?> — y3dy' for independent functions y', y2, and y3. The form n? would work, but we
want A to be the independent variable of the Monge equation (4.45), therefore we wish to set

y' = §' = qp5(A). Here it is what we can do. Let’s rewrite

0t =dy® +dWy?) - ) dyt +dgtyt - gt dygt = d(G® + 9+ 5'yt) — 20 - §t) dg

Now define the change of coordinates 751 : M5 — Ms

51 Yy =9, =0+t +9'y, P =9-7". =9, =7, (4.64)
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with inverse 75_11 : My — My
mi =y, =y, P=y-d+y' -8, gt =y -y P =yt (4.65)
With respect to the local coordinates (4.64) (considering ¥ (y') = () = 1) we have

Nt =dy* -y’ dy',
I'= (4.66)
n* = dy' =y —y’) dy’.
[2] In view of Proposition 3.3.3 and Remark 3.3.4, in this step we want to construct a 1-form

dU —V3dy? —Vidy! = Wnl + An? € I'. From (3.47), we need an integrating factor A for which

the PDE system
oU

=41

oy’ ’

a% o (4.67)
A —

e (Y°Y —y°),

can be easily solved. We see that for A = 2 we have the solution U = 2y* + 213¢° — y5212}, note that
¥ = ¥ (y*). Remembering the notation n? = Y dy! + Y2 dy? + Y2 dy? + Yidy* + Y° dy® used in

Proposition 3.3.3, the expressions (3.48) become

ou

W=—-2.0=0
0y? ’
ou

Vie — —2.0=2¢° :
P Y, (4.68)
ou oUu 9

Vie 4¢3 (5 —-2:0)-2-0=—y"".
oy! <3y2 ) v

Indeed, we can directly check that
AU — V3dy® — Vidy' = d(2y* + 2y3y° — y°°0) — 2P dy® + v D dy' = 292 € I (4.69)

Using U and V3 we define a new change of coordinates Ts,2 1 Ms — Ms

ma: wl=yl, 2=y P =¢b at =2t 20 — PN, 2P = 2P (4.70)
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The inverse change 75 21 : M5 — Ms5 is given by
1 x52 . 25
7—57,21 : yl = J*‘17 y2 = $25 y3 = .’1,‘3, y4 = 5 374 — 333375 + T’(/J 5 y5 = ? (471)

Again, we can consider ¢ = ¢(x') = ¢()), thus in the coordinates (4.70) we have

wt=daz? —23dat,

I'=
o 3552
w2 =da* — 2% da® + Td) dxzt.
. . . 52 e
In particular the dz'-component of w? is the function f = .

[3] We can compute f,5 = "”—251/) and write the 1-form in [
3 3 1 5 &0 g
w? =da’ — fpsdax” =dx —?’L/de.

Then I can be written in the general Goursat normal form

wl =da? — 22 dat,
25’
I'=9 w?=da* —2°da® + de!ﬂl,

1‘5
W =da® - ?w dat.
[4] In view of (3.84), we set

2
57 ..

52
~ X5 - x
H = 5 — = 5— _— = —
R R e ]
so that I can be written in the new basis

_ 1l _g.2_ 371
w =w =dz* —z°dz,

5
I=qp?=wd=da’— x—zn/fdxl, (4.72)
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Finally, remembering that we have v # 0, we define the change of local coordinates 75 4 : M5 — Mj5

5
e X=2l, V=2 Z=2z', Vi=z' Y=,

whose inverse 7 i:M5 — My is
Tgi: =X, 22=Y, 2=V, '=2 =2

Completing the application of (3.84), we set

_ -1 7 _
H—7'5740H—

Therefore, according to (4.72) and (4.74), we obtain the Monge normal form of 1

pl=dY —YidX,

I={ p?=dY, - YodX,

3 Yy’

In this way we see that I is locally realized by the Monge equation

This concludes the Monge Algorithm.

(4.73)

(4.74)

(4.75)

(4.76)

Now let’s go back to the initial involutive system. [ is the reduction of I, by means of the

projection q = 75407520751 0dg,5 © Te,6 : Ms — Ms

q: X=X\ Y =(y—A)+q\+p+ 2z,

Vi=(y— o) +q+ad, Y= (y— ),
1 .

Z=—; (z —ap — ap + 22\ — %y% + zy\) — %xsz —qy — fvyw> :

This proves [i].

(4.77)



86

Asectionofqisgivenbys:TG_ﬁlos57607—5:11075_721075_1i:Mg,HMG

F
S A:Xa T = W, y:AM—"_E?

o, o | B2 9FE
pf@wfw)ufﬁ[(wFwa)AfuzF]w, 4= —lp+F -

In summary, for every choice of ¢ = 1(\) (such that ¢/ # 0), a given solution Z = G(X) = G(\)
and Y = F(X) = F()) of the Monge equation (4.76) provides the 2-dimensional integral manifold

of the nonlinear involutive system (4.43)

B B F o, OF 1 bE?  2FF
T = p, y—)\/ﬁ‘f‘g, Z——M¢+<F—¢-~>M—2<G+ N —w");

which proves [ii]. O

4.2 Goursat equations and GR3D5 Pfaffian systems

In this section we study scalar second order PDE in the plane

F(z,y,2,p,q,1,81) =0, (4.79)

which are parabolic, that is, for which

F,> —4F.F, = 0. (4.80)

A geometric definition of parabolic equations will be given, followed by that of Goursat parabolic
equations. Then the main object, Goursat parabolic equations of general type, or simply general
Goursat equations (as in [10, page 140]), will be considered. Stormark [38, Chapter 16] notices that
this is the class of parabolic PDE in the plane with complete Monge characteristics.

As in [4] and [8], we give the following.

Definition 4.2.1. A parabolic Pfaffian system is a rank-3 Pfaffian system I; defined on a 7-

dimensional manifold M, for which there exists a local coframe o, o', a2, ©!, o', 7%, 2 such
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that

i L = {Oé,Oél,OéZ}, T A2 #0, and

[ii] the following structure equations are satisfied

da=ad' At +a? An® mod(a),
do' =G> Ant + 72 Ao? mod(a,al), (4.81)
do?=nt N2+ Aot mod Iy,
where G € C°(M7). [ |

Theorem 4.2.2. [8, page 0.6] Let I be a parabolic Pfaffian system on My and let ¢ : My — My
be a diffeomorphism. Assume I, = ¢* I, then the following properties hold.

[i] I, is a parabolic Pfaffian system.
1

2 1 =1

[ii] Assume &, &', a2, 7', 61, 7%, 52 is a local coframe adapted to I, with da' = G a®> A7l + 72 NG?

mod I, and define I = {a,a'}. Then
o*IF = {a,a'}, G =k(Go¢) with k € R —{0}. (4.82)

The function G is called the Goursat invariant of I.

Because of (4.81), a parabolic Pfaffian system I; has the following antiderived systems:

EO = {a7a17a2aﬂ-2702}7
== {Ol,()(l,OéQ,ﬂ'l,ﬂ'2},
= = {a,al,az,ol,az}.

Theorem 4.2.3. [10, pages 130-132] Let I, be a parabolic Pfaffian system on M7 and assume that

a, at, a2, 7w, ob, 72, 02 is a local coframe adapted to I,. Then we have.

[i] 20 = CS(Ill) is the Cartan system of It and, in particular, O, € Cau([ll).
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[ii] G =0 if and only if (4.81) reduces to

da=a' At +a? An? mod (a),

do' =71* Ao mod (o, at), (4.83)

da? =t Ao? + 72 Aol modIh,

see also [10, page 132].
[iii] G =0 if and only if dim Cau(I{) = 2.

[iv] 2o is completely integrable if and only if G = 0.

Definition 4.2.4. = is called the Monge system associated to the parabolic Pfaffian system I;.
A Gowursat parabolic Pfaffian system I; has Frobenius Monge system =g, or equivalently G = 0.
We say that a PDE in the plane is a Goursat parabolic equation if it gives rise to a Goursat

parabolic Pfaffian system. |

Proof of Theorem 4.2.3, sketch. Part [i] is an easy consequence of equations (4.81).

Part [ii] can be inferred by applying Theorem 4.2.2 to the structure equations (4.81).

Part [iii] is a consequence of [ii]. Indeed, because of (4.83), one has G = 0 if and only if there
exists an adapted coframe for which Cau (Ill) = (On1,041).

The proof of part [iv] is based on the construction of an adapted coframe such that

dn? =0 mod =g,
(4.84)

do?=—-Gr' Aot modZE.
One can derive these equations by taking the exterior derivative of (4.81), or alternatively by using
a local coordinate formulation. We use this last approach. In [10, §IV] and [8, page 0.3], it is shown
that every parabolic Pfaffian system is locally realized by a parabolic PDE in the plane. Moreover,

every parabolic PDE in the plane can be written in the form

T:E(J?,y, vaaQ757t)a (485)



where one has

ES2 +4E, = 0.
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(4.86)

On the 7-manifold M; with local coordinates (z,y,z,p,q, s,t), the PDE (4.85) defines the rank-3

Pfaffian system

I ={dz—pdx —qdy,dp— Edx — sdy, dqg— sdx — tdy}.
Define on M7 the differential operators

Dy =0, +p0.+E0d,+s0,, D,=0,+q0,+s0,+td,.

Then a local adapted coframe of Iy, for which (4.81) holds, is given by

a=dz—pdr—qdy,
1

al =dp— Edz —sdy — §Es(dq—sd$—tdy),
a?=dq—sdx—tdy,
! = —duz,
ol = —dt,

2 1 2
s :—dy—Esdx—iEssa ,

1 - _
02:7d5+§Esdt+Dy(E)dx+ Dy(Es) o,

1
2

Then (see [4, equation (6)] as well) the Goursat invariant of I; is explicitly given by

1 1 -
G =E,+-E.E, + -E,D,(E,) —

_ 1 _
D,(E,) — ~E..D,(E).

DO =

By direct computation we see that (4.84) holds.

(4.87)

(4.88)

(4.89)

(4.90)

O

Example 4.2.5. Consider the special class of parabolic PDE in the plane r = E(x,y, z,p). Then

the Goursat invariant is G = 0.

On the other side, consider the heat equation z;, — 2, = 0 (here y is the time-variable). With the
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notation used previously we would write this parabolic PDE as r = q. Then the Goursat invariant

for this equation is G = 1. [ |

This example motivates the standard terminology, which calls dispersive those parabolic PDE
in the plane which are non-Goursat, that is, such that G # 0.

At this point we just want to remark that if I; is a parabolic Pfaffian system, then I} is
not the derived system of Iy, since I;' = {a}. We have DT(I;) = [3,1,0], Cau(l;) = [0,2,7],
DT(I{) = [2,0], and Cau(l{) = [2,7]. Moreover, because Cau(I{) = (9r1,0,1), we can reduce
I} to a rank-2 Pfaffian system I} on a 5-manifold. The results of Chapter 3 can then help us to
characterize a Goursat parabolic Pfaffian system I; by means of its invariant subsystem I{. This is
the goal of the rest of this section.

Authors like Cartan [10, section IV], or Goursat [24, page 93], [25, page 166], and [23, section
IV], or Stormark [38, section 16.1]), carry out quite few differential algebra computations to provide
another useful coordinate representation of Goursat parabolic equations. We show their results in

the following statements, whose proofs we just sketch.

Theorem 4.2.6. §; = F(z,y,z,p,q,7,8,t) = 0 is a parabolic equation if and only if it can be written

in the parametric form
r = A2t + 2\ — 24,
(4.91)
—\t — 1),

»
Il

where QZ} = w(x7y7z7p7q7)\) and dj = %

Proof. Starting from the form r = E(z,y, z,p, ¢, s,t) of Sy (see (4.85)), where one assumes E;E; # 0,
we obtain the parametrization (4.91) by setting
1
)\ == _§ES;
. (4.92)
P = —5(}3 + 25\ + tA?).
The actual change from the coordinates (z,y, 2z, p, q, s, t) to (z,y, z,p,q, A\, t) can be worked out with
the same steps as those in the proof of Theorem 4.1.9.

Conversely, we can obtain the parabolic equation S; by eliminating A from (4.91). O
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Note that (4.91) is equivalent to the equation
T4 2Xs + A%t + 21 = 0, (4.93)

together with its first derivative with respect to A, that is,

T4 2X\s + A%t + 21 = 0,
(4.94)

S+ X+ = 0.

Theorem 4.2.7. I is a parabolic Pfaffian system on My if and only if there exist local coordinates

(z,9,2,p,q,\,t) on M7 such that

a=dz—pdr—qdy,
L=< a'=dp+Adg— (M) — 2¢) dz + ¥ dy, (4.95)

o =dq+ (M+)dx—tdy.

Here v = ¢(x,y,2,p,q,\) and 7/} = %'

Proof. We already mentioned [10, §IV] and [8, page 0.3], according to which every parabolic Pfaffian
system is locally generated by a parabolic PDE in the plane. Consequently, in view of Theorem
4.2.6 and expression (4.94), I; is a parabolic Pfaffian system on M7 if and only if there exist local

coordinates (z,y, z,p, ¢, A, t) on M7 such that

a=dz—pdr—qdy,
Li=4q a) =dp— (Nt 42\ — 2) dx + (M + ) dy, (4.96)
o? =dg+ (M +)dz —tdy.
Defining

o =al+ a? =dp+Adqg— (M —20)dx + ¢ dy,

we obtain (4.95). O
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Remark 4.2.8. Let I; be a parabolic Pfaffian system with local expression (4.95), then clearly
0, € Cau (Ill) Using Corollary 2.2.17, let Mg be the qoutient manifold of M; by 9; and denote I}
the reduction of I}. We can choose local coordinates (z,, z, p, g, A) on Mg, so that
a=dz—pdr—qdy,

Il = (4.97)
al = dp+Adg— (M — 2¢) dx + 4 dy.

We can still denote ¥ = ¥(z,y,2,p,¢,\) and ¢ = g—f. From Corollary 2.2.17, we know that

DT(I_ll) :DT(Ill) =[2,0]. |
Now we can characterize our Goursat parabolic scalar partial differential equations in the plane.

Theorem 4.2.9. Let I} be a parabolic Pfaffian system with local expression (4.95). With the notation
of Remark 4.2.8, the following conditions are equivalent.
[i] I is a Goursat parabolic Pfaffian system.

[ii] The function = ¥ (z,y, 2, p,q, \) in Theorem 4.2.7 satisfies the second-order PDE in 6-variables
G+ My + (0 Aq) U — (20 = MDYy — by — 2 (0 + avz — (& = M)y — ) = 0. (4.98)

[iii] dim Cau(I{) = 1. In particular, we have
By + A0y + (p+q)\) 0, + (w - 2¢) By — 0y +2 (g — Mby) Oy € Cau(T}). (4.99)

Proof. [i < ii] In view of Theorems 4.2.3 and 4.2.7, one has to prove that (4.98) is equivalent to
the condition G = 0. This can be shown, for instance, by using the local expression (4.90) together
with the change of coordinates pointed out in the proof of Theorem 4.2.6.
[i < iii] According to Theorem 4.2.3, I is a Goursat parabolic Pfaffian system if an only if
dim Cau(]ll) = 2. Because of Remark 4.2.8, this last condition is equivalent to dim Cau(fll) =1.
We would like to note that, by direct computation, one can show that (4.99) is a Cauchy

characteristic of I} if and only if 1 satisfies (4.98). O

We can finally obtain our goal.
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Theorem 4.2.10. Let I; be a Goursat parabolic Pfaffian system. Then I} is reduced by its two
Cauchy characteristics to a rank-2 Pfaffian system (on a 5-manifold) which is either the contact
system C%,Q or a GRyDs Pfaffian system.
In particular, using the notations of Remark 4.2.8, only two cases are possible.

[Monge-Ampére] ¥ =0, I} is reduced to C%,Q and I is generated by a Monge-Ampére equation

Si=(r+A)(t+C)—(s+ B’ =0, (4.100)

where A, B,C are functions of x,y, z,p,q such that ¥ = %C/\2 + BA+ %A satisfies (4.98).
[General] ¥ # 0, I} reduces to a GRyDs Pfaffian system and I, is generated by a non-Monge-

Ampére equation.

Proof. As a consequence of Remark 4.2.8, I1 is reduced by one of its Cauchy characteristics to the
rank-2 Pfaffian system
- a=dz—pdr—qdy,
I =
&' =dp+Ndg— (M) —2¢)dx + P dy,
on the 6-manifold Mg and DT(K) = DT(I}) = [2,0].
By Theorem 4.2.9, we have dim Cau(fll) = 1, so that I} has a 5-dimensional Cartan system

CS (I_ 11), which we shall now determine. Define

a’=dq— (M — ) dz + P dy,

T

dy — Ndz,
(4.101)

Qi
Il

dX — (2% — My — 2\, + A%/}p) dz — (¢q . Azz}p) dy,

dz,

=
I
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which complete I} to a local coframe on Mg. Then we have the following structure equations

da=0 mod {a,a', a’},

da' =0 mod {a, a',a?},

da* =47 A5 mod{a,a',a’}, (4.102)
d7T =0 mod {a, a',a?, 7,5},

dg =0 mod {a, a',a? 7,5}

Therefore we have CS(I_ll) = {a,a',a% 7,5} and, by the first two equations of (4.102), I =

{a,al,a?} is an antiderived system of I}. Moreover, in accordance with (4.99), we see that
Oy = 00+ X0y + (p+ ) 0 + (M —20) 8, — 0, +2 Yy — M) O € Can(T1).

Another consequence of (4.102) is that 1) is an invariant of d; (this can be checked using (4.98)).
We can conclude that I7 (and thus I}) reduces to a rank-2 Pfaffian system K on a 5-manifold Mj
such that DT(K) = DT(I{) = [2,0] and Cau(K) = [0,5].

Consequently, we can apply Proposition 3.1.5 and say that K has a unique antiderived system
K1 | which implies that K1) is the reduction of I. The results of Sections 3.2 and 3.3 apply and
only two cases are possible.

[Monge-Ampére type] One can have ¢ = 0 and equivalently the systems I and K(—1) are

completely integrable. By Theorem 3.2.1 (page 36), we can conclude that I! is equivalent to the
p y g y pag ) 1 q

contact system C%,2. Accordingly, I can be reduced to the normal form
I={dU-U"dT,dV —V'dT,dT}. (4.103)

Moreover, because 1) = 0, then ¢ = %C’)\Q + B + %A, where A, B, and C, are some functions

depending on z, y,z,p, and ¢, such that (4.98) holds. Plugging this expression in (4.93) we obtain

Si=@r+A)(t+C)—(s+B)? =0,
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that is, a parabolic Monge-Ampere equation, which can be solved by quadratures as shown by
(4.103).

[General type] We can have ¥ # 0. Equivalently the systems I and K(—1) are not completely
integrable, thus by Remark 3.3.7 (page 45) K is a GR2 D5 Pfaffian system and I; is not generated

by a Monge-Ampere equation. O

Following Cartan’s terminology, [10, page 140], we call general Goursat equations those
Goursat parabolic equations which are not Monge-Ampere equations.
We end this section with a final remark. Looking at Remark 4.1.11 (page 75) and at the Pfaffian

system

a=dz—pdx —qdy,
I=1{a'=dp— (-3 +2X) — 2¢) da — (M — ¢) dy,
&’ =dq— (M) —¥)da + P dy,
constructed in the proof of Theorem 4.2.10, we can see that if S; is a general Goursat equation then

I = Iy, that is, every general Goursat equation can be associated to a nonlinear involutive system.

This relation is the subject of the next section.

4.3 A special bijection
As anticipated in sections 4.1 and 4.2, here we will look closer at the relation between nonlinear
involutive systems and general Goursat equations. A clear statement of this relation is given and

some examples are provided. What follows is stated in [10, §IV.24].

Theorem 4.3.1. There is a 1-to-1 correspondence between nonlinear involutive systems of two
second order PDE in the plane S, general Goursat parabolic equations Sy, and the solutions ¢ =

U(x,y, 2,p,q,A) of the PDE in 6-variables
2 <¢y +qy. — (¢ - )\¢> Up — &wq) = ¢x + )\ﬁy +(»+ Ag) ¢z - (2¢ - )\¢) ¢p - ¢¢q (4.104)

for which ) = g‘%}f #0.
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Proof. We just have to recall Theorem 4.1.9 for So (see page 71) and Theorems 4.2.6, 4.2.9 and
4.2.10 for S; (see pages 90 and 92). In particular, let ¢ = ¥ (x,y, 2,p, ¢, ) be a solution of (4.104)
for which ¢/ # 0. Then we can proceed as follows.

[1] Eliminating A from the system

= =2 + 2\ — A%,
5= —1h + A, (4.105)

t= _1;7
we obtain a nonlinear involutive system Ss.
[2] Eliminating A from the system

=A%+ 20\ — 20,
(4.106)

5= =\ — 1,
we obtain a Goursat equation S;, which is general because ) # 0.
The choice of v is thus a bijective mapping between nonlinear involutive systems and general

Goursat equations. O

We will say that Ss is the involutive system associated to the general Goursat equation &; and
conversely.

Let’s show some example.

Example 4.3.2 (Hilbert-Cartan). From Example 4.1.14, let Sy be the nonlinear involutive system
(4.107)

which is parameterized by ¥ = %)\3. In order to find the general Goursat equation associated to

(4.107), let’s write (4.106) for 1) = ;A

1 1 2
r=Nt+ 2A§)\2 — §A3 =\t + §A3,
(4.108)

Lo
s-—At—§)\.
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Combining (4.108), we have 3r + 4s\ = —tA?, then solving the second equation for \, we obtain the

general Goursat parabolic equation &y
(3r — 6ts + 2t3)2 — 4(t? — 25)3 = 0,
which can be written as
3253 — 12t%s% + 9r? — 36rts + 12rt> = 0. (4.109)

Conversely, we can, for instance, write S7 in the form
2 . )
r= E(x,y, z, P4, S7t) = 7§(t3 —3ts+ (tz - 25)3/2)'

1
Using (4.92), we can set A = —2E, = —t — V/t> — 25 and compute ) = —§(E + 25\ + tA2%). After

few steps, one finds ¢ = %)\3, as expected. |
A generalization of the previous example is the following.

Example 4.3.3 (Goursat-Cartan). Starting from Example 4.1.15, let m ¢ {0, %, 1}, then

t2m71
r=_——,
?Tl)—mltm (4.110)
S=——"—",
m

is a nonlinear involutive system parameterized by 1) = %)\(2"@_1)/ (m=1) " Plugging this function

in (4.106) we obtain

_ 1)/\(2m—1)/(7n—1) 2(m _ 1)2
I CAP NGl _ \(@m—1)/(m—1)
" + mA m(2m — 1) ’

(m _ 1))\(2m71)/(m71)

(4.111)

s= -\ —

mA\ ’

which is the parametric expression of the general Goursat parabolic equation associated to (4.110).

It is not an easy task to eliminate A from (4.111). A little manipulation shows that A is a root of

2tmA% + \s + (1 — 2m)r = 0. (4.112)
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If we take m = 2 then we have the previous Example 4.3.2. It can be shown that for m € {:l:?, j:%}
the Cartan 2-tensor is identically zero and the general Goursat equations obtained are (contact)

equivalent to (4.109).

4.4 Lifting GR3D5 Pfaffian systems to a 6-manifold

In the previous sections 4.1 and 4.2 we saw how to canonically associate a GR3Dj5; Pfaffian
system to both nonlinear involutive systems and general Goursat equations. Moreover, in Section
4.3 we presented a 1-to-1 mapping between these last two. In this section we will close the loop,
showing how a nonlinear involutive system can be constructed starting from a GR3Ds; Pfaffian
system.

Roughly speaking, we outline the procedure for canonically lifting a GR3D5 Pfaffian System
to a nonlinear involutive system of two PDE in the plane. We start from Cartan’s considerations
at [10, page 142].

Let I be a GR3D5 Pfaffian system on Ms, with local coordinates (z', 22,23, 2%, 2°). Assume

that w',...,w® is a local coframe on My adapted to I and set

dw! =at Awt + a2 Aw? + WP Aw?,
dw? = A + 0?2 Aw? + Wi AWP, (4.113)
dwP=c AN+ AN+ ENDP +wt AW,

for some 1-forms a’, b, and ¢, on Ms. If we consider M5 immersed in Mg = M5 x R, where

local coordinates (z%,...,25 2%) are chosen, then I is “lifted” to the rank-3 Pfaffian system I=
{w!,w?, w3} on Mg. Our goal is to show that I is generated by an involutive system of two PDE in

the plane.

Proposition 4.4.1. The 1-form ag = w' + 25w? € I’ has Engel-rank Eng(a) = 2.
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Proof. By means of Proposition 2.2.8 (see page 14), all we need to prove is that 0 # o A (dag)? =

2+41]

ag A dag A dag, since for dimensional reasons we have ag A (d ozo)[ = 0. Indeed, we have

dag = dw' + 25 dw? + da® A w?
= (a1 + 25 bl) Aw' + (a2 +250% + dx6) Aw? +wd A (w4 + 8 ws) (4.114)
=AW+ B2 A+ WP A (w4+$6w5),

where we define

51:a1 +l’6b1, 62:a2+:17662+dx6.

In particular, (4.114) can be written as
dag =B Nag + (B2 —2° Y Aw? + WP A (w4 + 25 w5) , (4.115)

which proves already that we have o € I’. Let’s continue our computations, starting from (4.114).
(dag)? = (B Aw! + B2 Aw?) Aw? A (w? + 2% 0P)
= (Bl Aag + (6% — 2581 /\w2) Awd A (w4+x6 5).
Therefore
ao A (dog)l? = (B =2° ) AW Aw® A (w4 + 2% W)
= (d:c6 ta?+28b — 284 — 28° bl) Aw' Aw? Aw? A (w* + 2% w) (4.116)
=da® Nw' AW Aw? A (w! + 2°0%) + (terms without df).

1

Because by construction w!,...,w® and d2°, are independent, equation (4.116) proves that ag A

(dag)® #£ 0. O
Consequently, by the Pfaff normal form Theorem 2.3.1, we have the following.

Remark 4.4.2. There are five functionally independent functions x, y, z, p, ¢ on Mg such that

a=dz—pde—qdyel, (4.117)
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and a = f(z!,...,2%) ag. [ ]

Moreover, as a consequence of (4.115), we can write
da=aj A (de +a?+2%b2 — 28! — 2% bl) +ag A (w+2°0%) moda, (4.118)

where a} = —fw? and o2 = fw?, thus I = {a, o, a?}.

Let’s now define 7! = dz® + a2 + 2802 — 28! — 25%p! and 72 = Wt + 28 w°. Then we can write
da=ajy Art +ai A7? moda. (4.119)

With computations similar to those in the proof of Proposition 4.4.1 and using (4.113), one proves
that the rank-5 Pfaffian system = = {a,a}, a3, 7!, 7%} is completely integrable and, because of
(4.117), we have E = {dz,dy,dz,dp,dq} (see [10, page 142]). Consequently, there are four functions

R,S.S, and T, depending on x!,..., 2%, such that

a=dz—pdr—qdy,
I={a'=dp— Rdz— Sdy, (4.120)

a?=dqg—Sdx—Tdy.

At this point, because the condition a € I’ is equivalent to the equation da A o A al A o? = 0, we
can conclude that S = S.

Finally, we prove the following.

Theorem 4.4.3. Let I be a GRsDs Pfaffian system. Assume I is the lifted rank-3 Pfaffian system
on the 6-manifold Mg constructed above. Then I is locally generated by a nonlinear involutive system

of two PDE in the plane.

Proof. Continuing the above construction, assume that 7 completes z, vy, 2, p, ¢, to a local coordinate

system on Mg and assume R, S, and T, are expressed in these new coordinates. Then we already
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proved that I admits the local expression

a=dz—pdr—qdy,
I={a'=dp— Rdx - Sdy, (4.121)

a?=dg—Sdx—Tdy.

Now, since we are on a 6-manifold and z, y, 2z, p, and ¢, are functionally independent, then the
functions R, S, and T, are related by two independent equations. Without loss in generality we can
assume T' = 7. Taking standard coordinates (z,y, z,p, q,r, s,t) on J*>(R?,R), we can conclude that

(4.121) is generated by a pair Sy of PDE in the plane

after the obvious mapping x =z, y =y, 2 =2, p=p,q=q, t =T.
Finally, because I has a unique Cauchy characteristic, namely 0,6, by Theorem 4.1.2 the system
S, is involutive, and because I reduces to the GRsD5 Pfaffian system I then by Proposition 4.1.7

Sy is nonlinear. ]

In order for our lifting to be considered “canonical,” we rephrase the following (unnumbered)

Theorem at [10, page 144].

Remark 4.4.4. Let S, and Sy be two nonlinear involutive systems of PDE in the plane. Assume
that I and I are the GR3 D5 Pfaffian systems respectively associated to Sy and S;. Then S, and S,

are contact equivalent if and only if I is transformed to I by a change of coordinates.

In particular, different lifting of a fixed GR3 D5 Pfaffian system will produce equivalent nonlinear

involutive systems of PDE in the plane.
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CHAPTER 5
NORMAL FORMS OF GR3Ds; PFAFFIAN SYSTEMS WITH A 3-DIMENSIONAL

TRANSVERSE AND FREE SYMMETRY ALGEBRA

In this chapter we provide normal forms for all GR3D5 Pfaffian systems with a transverse free-
acting 3-dimensional symmetry algebra, see [15]. We shall use the classification of the 3-dimensional
real Lie algebras given by Patera and Winternitz in [36]. We shall focus on two kinds of normal
forms, one in coordinates related to a particular representation of the symmetry algebra and one
related to general Monge equations. To obtain this latter kind, we shall use the Monge Algorithm
3.5.8, which will provide the Goursat normal form as well.

Section 5.1 is divided in two parts. In the first we introduce some new notations which will go
along with those used in Chapters 2 and 3. Using these notations we describe the procedure that
will take us first to the symmetry normal form and then to the general Monge normal form, for each
algebraic type. The second part is dedicated to a more detailed formalization of our assumptions.

In Section 5.2 we relate the matrix realization of 3-dimensional Lie algebras that we shall use
to the classification provided in [36].

From Section 5.3 through 5.10 we implement the forementioned procedure to obtain our normal

forms.

5.1 Gauge formalism

The main purpose of this section is the description of the procedure that will lead us to the
desired normal forms computed from Section 5.3 on. We formalize our assumptions and introduce
some notations about moving frames, mainly following [34], [28], and [14].

Let I a GR3 D5 Pfaffian system on the 5-dimensional manifold M and let I = {6',62 63} be an

adapted basis, that is, the derived flag of I is I’ = {#*,6%}, I = 0. In particular, from Chapter 3
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we know that the following derived flag conditions must be satisfied

do* N0 NG NG =0, (5.1a)
dO? Ao NG NG =0, (5.1b)
do® NO* NO2 NG £, (5.1¢)
(k1d0" + ko d6*) NO* ANO* =0 = ky = ko = 0. (5.1d)

We then assume that on M is defined a free action of a 3-dimensional symmetry group G of
I. This is equivalent to assume that about every point of M the action of G admits three linearly
independent infinitesimal generators E, Fs, F3 and that the Lie algebra associated to GG, denoted

g = (E1, Ea, E3), is such that
L, I={Lx0|Xecg, 0cI}CI.

Finally we assume that this action is transverse to I, that is, about every point of M the matrix
[F] = [E; — 67] has maximum rank three, which in this case means det [F7] # 0.

This assumptions and their consequences are resumed in the following.

Proposition 5.1.1. Let I be a GR3D5 Pfaffian system on M. Assume the following are true.
[i] g is a 3-dimensional symmetry algebra of I.
[ii] g generates a free action on M by means of the group of local transformations G.
[iii] The action of G is transverse to I.

Then the following are true.
[Step 1] Locally M = G x R? and a local coordinate system on M is given by (a,b, ¢, u,v), where
a, b and ¢ provide a parametrization of GG, and u, v are invariants of the action of G.
[Step 2] Let w’ = A’da + B'db+ C'dc for i = 1,2,3 be the left-invariant Maurer-Cartan forms
on G. Assume that O = {E},..., E,} is an optimal list of 1-dimensional subalgebras of g. Then an
adapted basis of I is

0" =Tj(u,v)w’ +a', i=1,2,3, (5.2)

where T/ (u, v) are such that (I')* € O and o' = U’(u,v) du + V*(u,v) dv are such that (5.1) hold.
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[Step 3] Let the action of U € G fix the conjugation-class (I’)*. Define H = (ozl,ozz,a?’)T and
T

— (1 2 3T ; _ 9T; oT; : .
K= (7’ ST, T ) , where 7° = 52 du + 5> dv. Then we can use the vectorial mapping

gu:H—H=MN"!(K+M 'H), (5.3)

to reduce (5.2) to a normal form. Here M and N are defined by the change in the w! components

exerted by U (see (5.5) and (5.6)). ]

In Section 5.2 we provide the optimal list of 1-dimensional subalgebras according to [36]. In
each of the Sections 5.3 to 5.10 we will follow [Step 1] to [Step 3] in order to arrive at the symmetry
normal forms, then we will proceed with the following.

[Step 4] Apply the Monge Algorithm 3.5.8 to change the symmetry normal form obtained at [Step
3] in to a general Monge normal form.

For the convenience of the reader, we resumed these normal forms in Theorems 3 and 4.

Proposition 5.1.1 and its prove can be formalized in the context of connections on fiber bundles,
which are defined by expression like (5.2), then (5.3) can be interpreted as a gauge transformation.
We call (5.3) an admissible gauge transformation. In some case, like for the abelian type
3A1, the exploitation of the gauge transformation to reduce the connection to a normal form is not
complete, meaning that there still could be some gauge transformation which leave the normal form
invariant and which will change only the expression of generic function. We called this the residual
freedom in gauging. We did not explore this part.

The next paragraphs are intended to roughly prove Proposition 5.1.1. We refer to [14, Appendix
1] for details.

To start, about every point of M there are defined two functionally independent invariants of
the action of G, that is, locally we have M = G x R? (M is a trivial principal fiber bundle). Thus
about every point of M there are defined coordinates (a, b, ¢, u, v), where v and v are invariant under
the action of G (see [34, Theorem 2.18]). This will allow us to define a canonical coframe on M
which will be used to provide our normal forms for I.

For every 3-dimensional algebraic type [g] in [36], we shall provide a matrix realization, that

is, we will consider every G and g respectively a Lie subgroup of GL(R,3) and a Lie subalgebra
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of gl(R,3). In this way we will provide a canonical local coframe on M. Indeed, because locally
M = G x R? we can consider the action of G on M as exerted by matrix multiplication. More

precisely, we denote the right action of G by

p:(UsAju,v) € G X M — py(A,u,v) = (AU, u,v) € M,
and the left action by

A (U A u,v) € Gx M — Ag(UA,u,v) = (AU, u,v) € M.

We will use the same notation for the actions of G on itself. In this case, we let g, and g be
respectively the algebras of the right-invariant vector fields and of the left-invariant vector fields
(which are isomorphic).

Now, let (a, b, ¢) be a coordinate system on the Lie group G. Then a generic 3 x 3 matrix A € G
depends on the three parameters a, b, c. We easily check that the matrix of 1-forms Qpyc = A~ dA
has left-invariant 1-forms as entries. Indeed take a U € G (for which the coordinates are given),

then we have

NQuve = (UA) " d(UA) = A'U™! (dUA +UdA) = A"'U'UdA

=A"1dA = Qraic.

It follows that the entries of e must be linear combinations of three left-invariant 1-forms
whw? w? € Q*(G), which are called Maurer-Cartan forms. These forms satisfy the structure

equations (equations of Maurer-Cartan)

1 .

P~ 7 k
dw =50 AW,

where the c; i are the structure constants of g. Let Ry, Ry, R3 be the vector fields dual the Maurer-
Cartan forms, that is R; — w’ = 6;, then the R; are infinitesimal generators of the right action of G
on itself, that is, (R1, Ra, R3) = gx. Let I3 be the unit matrix in G and let X be a vector field on G.

Then exp (tX) = FI;* (I3) is a 1-parameter subgroup of G (see [34, Proposition 1.48]). In particular
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G is generated by the three subgroups U; = U;(¢;) = exp (¢t; R;), for ¢ = 1,2,3 and ¢; € R, and

right-action of the R; on G is exerted by the multiplication on the right by U;. In particular t;, ¢5
and t3 constitute a coordinate system on G.

If we set V; = V,(t;) = Uy(—t;) = Ui_l, then the multiplication on the left by the V; defines

the left action canonically associated to the right action of the R;. The infinitesimal generators of

this left action are vectors fields Ly, Lo, L3 on G such that exp (¢; L;) = V,;(t;) and

[Rj7 Rk?] = C;"k Ria
[Lj7 Lk} = Cé,k L;,

[Liij} =0,

for i,j,k € {1,2,3}. In particular, the vector fields L; are right-invariant and thus g ~ g, =
(L1, Ly, L3). Most important, we have £r.w’ = 0, that is g is a symmetry algebra of the Maurer-
Cartan forms.

At this point we go back to M and use the Maurer-Cartan forms w!, w?, w3.

Remark 5.1.2. On M we can define a local coframe 0', 02, 03, du, dv adapted to I by setting

0" =Tj(u,v)w +U"(w,v)du+V*(u,v)dv, i=1,2,3. (5.4)

The Lie algebra of right-invariant vector fields g = (L1, Lo, L3) is a 3-dimensional transverse sym-

metry algebra of I which acts freely on M. |

In the following part of this section we focus on two points. First, the possible choices of the
functions T} (u,v), U*(u,v) and V*(u,v) which gives rise to a GR3Ds Pfaffian system, that is, for
which conditions (5.1) are satisfied. Second, how the action of G is going to change the forms (5.4).

The first point consists of two problems, that are, the construction of the adapted basis (5.4)
and the analysis of the inequivalent (under the G-action) Pfaffian systems generated by (5.4). We
shall start considering this latter problem.

According to Remark 5.1.2 two Pfaffian systems I and J with bases as in (5.4) are equivalent

if and only if there is U € G such that p{;J = I. Because we assume I and J to be GR3Ds Pfaffian
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systems, the derived systems I’ a J’ are rank-2 invariant subsystems (see Section 3.4). This means
that I and J are equivalent if and only if there is U € G such that pf;(J’) = I’, that is, if and only
if pu,(J)* = (I')*. Because dim I’ = 2, (I')* is a 1-parameter subalgebra of g. We can conclude
that I and J are equivalent if and only if (I')* and (J')* are conjugated. Finally, then, we can say
that inequivalent G Rz D5 Pfaffian systems are associated to non-conjugate 1-parameter subalgebras
of g. We denote by O = {Fy,..., E,} an optimal list of 1-dimensional subalgebras of g, that
is, O is a maximal set of representative of conjugation-classes of vectors.

The next task is then to check which vectors E; € O give rise to GR3 D5 Pfaffian systems I such
that E; € (I')*. Now, the condition FE; € (I')* applied to (5.4) is equivalent to a choice of functions
Tj(u,v). The derived flag conditions (5.1) will provide constraints on the functions U*(u,v) and
Vi(u,v).

Now we are going to derive (5.3). The idea is to consider those 1-parameter subgroups which
fix the conjugation class E; € (I')*. We recall that the conjugation map defined by U € G is the
automorphism

conjy : A€ G —UAU €@,

Consequently conjy(A) = Aupy-1(A) = py-1Au(A), and thus the conjugation class of a left-
invariant vector field Fj; is fixed only by U € G such that py-1,X = X. That is way we now
consider the right-action of G.

The matrix Qpyc must have at least three linearly independent entries QEK/[C, with (i,7) €
Jo = [(i1,71), (i2, j2), (i3, 3)] a list of three ordered pairs of indices, such that the w’ are linear
combinations of the Qilj\/[c (see [35, page 73]). Therefore we can build the 3 x 3 matrix of 1-forms
Q) whose entries are zero 1-forms except for the Jy entries, for which we define Q% = w*. In this
way we can say that for some Ay, By € GL(R,3) we have Qrve = AgQ2Bg. Let U = U;(¢;) be a

1-parameter subgroup of G, then dU # 0 and

pEQme = (AU) ' d(AU) = U'A~! (dAU 4+ AdU)

=U ' Qmc U+ U1 4U.
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Consequently we have
P = pu* (Ag ' QUmeBy ') = Ay (pu*Qme) By = Ayt (U Quuc U+ U1 dU) By? 65
5.5

=A;'UT Qe UBy ! + AU AU B, .

From (5.5), setting A; = A;'U™!, By = UB;! and K = A; dUU'By, we see that Q is changed
by p}; as subject to an “affine transformation” py;Q2 = A;QB; + K. We can look at the Jy entries
of both © and Q = P58 and define the column vectors of 1-forms Q= (wl,wQ,w?’)T and Q such
that OF = Qixdk = Wk and QF = Qixdr, The J, entries of the matrix Q) = A;QB; are combinations

. = = Sinjk
2 w3 and we could represent these entries as a column vector Q of 1-forms QF = Q"% in

of wh,w
such a way that Q = NG for some N € GL(R, 3) depending on the 1-parameter subgroup U and the
matrices Ag, Bg. The Jy entries of the matrix K = Ao_lU’1 dU BO_1 are 1-forms (depending on the
1-parameter subgroup U and the matrices Ag, Bp), which can be represented by a column vector

K= (71772, 73)T such that 7% = K%Jr. Therefore we can describe the action of py on €2 as the

vectorial mapping

toll]

w:0—-0=0+K=N0+K (5.6)

for which we will drop the arrow notation when this does not lead to confusion.

We considered an optimal list 1-dimensional subalgebras of g, O = {E}, ..., E,}. Then for any
E € O we have E = o/ R; for some (column) vector @ = (a17a27a3)T € R3 — {0}. We can now
consider the annihilator of E on G. This is a 2-dimensional space of forms on G, say E+ = (01, 6?),
such that E— 67 = 0 (j = 1,2). We can complete 6',6% to a coframe on G by choosing a 1-
form 63 such that £ — 63 = 1. Since the Maurer-Cartan forms are another coframe on G, then
there is a matrix M = (T}) € GL(R,3) such that §' = T} w/. Introducing the vectorial notation
Oy = (91,92,93)T and Q = (wl,wQ,wg)T then Oy = MQ. Because E — 0° = a" Ry, — mt wk =
amt R, — wk = ahmi sk = mia”, the definition of the §* implies Ma = (0,0, n’.

To obtain our connection (5.2), we have to add to ©y an horizontal component H = (a*, o2, a3)T

and consider T} = T (u,v). Then (5.2) has the vectorial expression © = Oy + H = MQ + H. A
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gauge transformation (5.6) will then act on our connection as

0 —06=MQ+H=M(NQ+K)+H=MNQ+ (MK + H)

We can then normalize © in order to get just a transformation of the horizontal component, that is,

we can write this transformation as © — © = MQ + I. Indeed, we take

O =M(MN)"'O=MQ+M(MN) ' (MK +H) = MQ 4+ MN"'M~" (MK + H)

=MQ+MN™! (K+M'H)

which defines (5.3).

5.2 The list of the 3-dimensional real Lie algebras

We used the classification of the 3-dimensional real Lie algebras given in [36]. In this article,
Patera and Winternitz labeled a basis by ey, es,e3 and reported the structure equations. In this
dissertation we preferred to change basis to some E7, Eo, E3, for which the structure equation sim-
plified our computations. In this section we provide the change of basis (if any) we applied and then
we compare the optimal list of 1-dimensional subalgebras Oy of [36] with the “specialized” one O we
are going to use. The parameters used here are ¢, h, t and s, with 0 < ¢ <, h =+1 and t,s € R,
while in [36] they use h =€, t =z and s = y.

Finally, there are two continuous families of algebras depending on a parameter a in [36], namely
A3 5 and A§ ;. In this dissertation we set € = a and write these families as A§ 5 and AS ,.

[3A41] This is the abelian Lie algebra. There is none change of basis, E; = ¢;, and the optimal

lists are

00:[Eg,E2+tE3,E1+tE2+SE3], t,s € R,

0= [El,EQ,Eg,El +tEy, By +tFEs, By +tEs, Fq +tE2+SE3,], t#0,s#0.
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[4; ® As] This is the decomposable solvable Lie algebra. We perform the change of basis is

FEy = ey, E5 = —eq1, F3 = e3 and the optimal lists are

O = [E1, E1 + h B3, —cos ¢ B + sin ¢ Es],

0= [E3,E1 +tE3,E2+tE3].

[A31] The nilpotent Lie algebra (Heisenberg). There is not a change of basis, E; = e;, and the

optimal lists are

Op = [E1,cos ¢ B + sin ¢ Fs]
O = [Ey1,E, E3, Ey +t E3)
[As,2] This is the parameter-free solvable Lie algebra. We did not change basis, E; = e;, and

the optimal lists are

Oop = O = [E, Es, Es]

[A5 5] This is a 1-parameter family of solvable Lie algebras. While in [36] they set 0 < [¢] < 1,
here we let be ¢ = £1, so that A§75 = A3 3 and A;é = As 4. We did this because in each case the

connections were the same. There is not a change of basis, E; = e;, and the optimal lists are

O} = [F3,cos ¢ Ey +sin ¢ Ey],
Oy ' = 0§ = B, Es, B3, By + h By,

O =[E,Ey,Ex+tE,E3], t#0.

Note that in O} the vectors Ey, Fy and cos ¢ E; + sin ¢ E are conjugated.
[A5 7] This is the other 1-parameter family of solvable Lie algebras. While in [36] they let € > 0,
here we allow ¢ = 0, so that Ag,7 = A3 . We did not change basis, E; = e;, and the optimal lists

are

06 - O == [El,Eg]
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[A3 5] This is the semisimple Lie algebra sly. The change of basis is By = —2 ez, F2 = €1, and

FE3 = e3. The optimal lists are
O = [Es, By, Es + E3],

O = [Ey, By, By — Es).
[As,0] This is the semisimple Lie algebra soz. We did not change basis, E; = e;, and the optimal

lists are

OO == [El] 5 O - [Eg] .

5.3 3A;: the abelian algebra

5.3.1 Step 1

3A; is the Abelian Lie algebra with structure equations

[Ey, Eo] = [Ey, Es] = [Es, Es] = 0.

We realize this algebra as associated to the group G = D(3) of the diagonal 3 x 3 matrices

e 0 0
A=1 0 ¢ 0 (5.7)
0 0 e

Their structure equations are

dw' =dw? =dw® = 0. (5.9)

The left-invariant vector fields are

Rl = aaa R2 = aba RS = ac~



The generators of the associated left action are

Ly =—04, Ly=-0p, Lz=—0,.

5.3.2 Step 2
Proposition 5.3.1. An adapted basis for I can only be given by
0' = tw! —w? + ot
I'=40*=swt—uw®+a?
0° =w' +a?,
where t = t(u,v) # 0, s = s(u,v) # 0 and
do' =dt A o?
do? =dsAa?

do® #0

dtNds#0

Proof. An optimal list of 1-dimensional subalgebras is

O =[E1,Ey,E3,E1 +tEy, By +tFE3,Es +1E3, E1 +t Es + s Es, ],

t4£0,
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(5.10)

(5.11)

(5.12a)
(5.12b)
(5.12¢)

(5.12d)
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Considering R; = E;, the choices of E; = (I')* produce the following seven cases.

Case 1: Ol =w?+at, 2 =w+a% =0+

Case 2: O'=w'+al, ?=w®+a% 6 =w?+0as

Case 3: O'=w'+al, 0?=w?+0a% 6 =uwd+as

Case 4: O'=wd+al, P =tw' —w?+0a? 6 =w'+ao

Case 5: ' =w?+al, P =tw' —w?+a? =0+

Case 6: O'=w'+al, 2 =tw?—wd+0a? 0 =w?+a

Case 7: ' =tw'—w?+al, P =swt—w?®+a? FB=wt+a’
Here o' = U'(u,v)du + Vi(u,v)dv, t = t(u,v) # 0 and s = s(u,v) # 0.

In Cases 1 to 6 we have I"" # 0, that is condition (5.1d) is not satisfied. Concerning Case 7, by

the definition of the optimal list we have t = t(u,v) # 0 and s = s(u,v) # 0. Moreover, the first
three derived flag conditions in (5.1) are respectively equivalent to da' = dt A o, da? = ds A o®

and da?® # 0. Finally, condition (5.1d), because we have da?® # 0, is equivalent to dt A ds # 0.

Hence we have (5.12). O

5.3.3 Step 3

Proposition 5.3.2. Let I be a GR3 D5 Pfaffian system on a 5-manifold M. Assume that I admits
a 3-dimensional symmetry group G which acts freely and transversely on M and denote by I' a set
of infinitesimal generators of the action of G on M. Assume that I' has algebraic type 34;. Then

about each point of M there are local coordinates (a, b, ¢, u,v) such that I' = (—9,, —0, —0.) and

6' = uda — db,
I=196%>=vda—dc+ Fdu, (5.13)

02> = da+ F, du,

where F' = F(u,v) is a differentiable function subject to the constraint

Fyy # 0. (5.14)
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Proof. Any gauge transformation is admissible since the adjoint action is trivial. Setting U =

UsUxUy with U; = exp (fi(u,v) R;), we have

efr(ww) 0 0
U= 0 of2(u0) 0 . (5.15)
0 0 efs(wv)

From (5.3), the effect on o, a?,a? is

ol - at =aol +tdfi —dfs,

o - a’=a’+sdf —dfs, (5.16)

The whole (5.12) is easily seen to be unchanged by (5.16). Now we just have to use (5.16) in order
to simplify the expressions of a', o2, and a?.

Because of (5.12d), that is, dt A ds # 0, there is a change of coordinates (a,b,c,u,v) —
(a,b, ¢, u,v) such that t(u,v) = @ and s(u,v) = 0. Rewriting (5.11) and (5.12) in terms of these new

coordinates and dropping the tildes, we have

0! = uw! —w? 4+ al,
I'=16?=0vw! —w?+a?, (5.17)

6% =w' + ad.

where the o satisfy the following relations (we used (5.12d))

do! = du A a?, (5.18a)
do? =dv A o?, (5.18b)

da® # 0. (5.18¢)
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These are preserved by any gauge transformation (5.16) with mappings

ol wal =aot +udfi —dfs,
o wat=ao’+vdf, —dfs, (5.19)

a3—>@3:a3+df1.

Using (5.19), we can choose fi1(u,v), fa(u,v) and f3(u,v) such that a* = 0, a*> = F(u,v) du and
a® = C1(u,v) du + Ca(u,v) dv, for arbitrary functions F(u,v), Ci(u,v) and Cz(u,v) subject to the
constraints given by (5.18).

From (5.18b) we find C; = F, and from (5.18a) we get C2 = 0. Consequently (5.18¢) is
equivalent to F,, # 0.

Finally, the GR3 D5 Pfaffian system I can be written as

' = uw! — W2

I'=46*=vw' —w’+Fdu (5.20)
0% =w! + F,du

with F' = F(u,v) subject to the constraint F,, # 0. We express (5.20) in the local coordinates used

at (5.8) and thus we obtain (5.13). O

In this case we can consider the residual freedom in gauge. Using (5.7) and (5.15), the gauge

transformations 7 : M — M are defined by

&:a—l—fl(u,v), B:b+f2(uvv)a 6:c+f3(u,v), u = u,

<
I
<

Considering (5.19), we want to preserve our normal form by setting

7 (0du) = udf; — dfs
T (Gda) =Fdu+vdf; —dfs

T (G@ dﬂ) = F,du+df;
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that is f1, fo and f3 must be solutions of the system

0 :udf1 —dfg
Gdu=Fdu+vdfi —dfs (5.21)

Gvdu: E)du+df1

where G = G o 7. Therefore there are two arbitrary functions in one variable f(u) and g(u) such

that ~
fi=1f
fo=uf —f
(5.22)
fa=g
G _ F+Uf// _ gl
5.3.4 Step 4

Using the Monge Algorithm 3.5.8, we prove the following.

Proposition 5.3.3. Let Z; = H(X,Y,Z,Y1,Y3), be a second-order Monge equation such that
0’H
Yy?
and transversely. Denote by I' a set of infinitesimal generators of this action and assume that I is

# 0. Assume that this equation admits a 3-dimensional symmetry group G which acts freely

of algebraic type 34;. Then I' = (Jx, dy, Jz) and

Z1 = h(Y1,Ys), with hy,y, # 0. (5.23)

Proof. By Theorem 3.5.7 the general Monge equation Z; = H(X,Y, Z,Y1,Ys) defines a GR3Ds5
Pfaffian system I on the manifold N with local coordinates (X,Y, Z,Y7,Y>). By Proposition 5.3.2

we have local coordinates (a, b, ¢,u,v) on N such that I' = (—=0,, —0, —0.) and

n' =uda — db,
I'=<Sn?*=vda—dc+ Fdu, (5.24)

n® =da+ F,du,
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where F' = F(u,v) is a differentiable function subject to the constraint

F,, # 0. (5.25)

Now we just have to apply steps [0] to [4] of the Monge Algorithm 3.5.8 to obtain (5.23).

[0] By construction, (5.24) is an adapted basis of I, that is, I’ = {n',n?}.

[1] In I’ we must find a 1-form 6! with Engel-rank Eng(6') = 1 and then provide local coordi-
nates (y!,...,y°) such that 0! = dy?—y> dy'. With respect to the change of coordinates 7, : N — N

defined by

we have 010" = db— uda = —n', and in particular

01 —_ dy2 7y3 dyl7
I = (5.26)
0=y’ dy' —dy' + Fdy’,
where we set F' = F(y®,y5) = F(u,v), and thus Fys,s # 0.
[2] In view of Proposition 3.3.3 and Remark 3.3.4, in this step we want to construct a 1-form
02 =dU-V3dy?—Vidy! = W'+ An? € I'. The dy* and dy® components of n? are respectively

Y4 = —1and Y® = 0. The PDE system (3.47) becomes

ou

- = 4 e

gyi —AY' =4

oU (5.27)
— = AY® =0.

Oy° 0

We see that for A = —1 we have the solution U = y*. Remembering the notation n? = Y dy' +

YEdy? +Y3dy® + Y*dy* + Y? dy® used in Proposition 3.3.3, the expressions (3.48) become

W:TZF_AYO :O,

W:ST%fAY?’:oJrF:F, (5.28)
ou

Vl _ 7+y3(U2_AYE)2)_AY'01 :y5.

=5y
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Using U and V3 we define a new change of coordinates 75 : N — N

Note that the determinant of the Jacobian matrix of 75, that is, |J,,| = Fs = F,, is non-vanishing

by (5.14). The diffeomorphism 7o defines the mapping

and by the inverse function theorem we can defined f = f (z3,25) on N such that

form=—¢°

Consequently we have

o' = da? — 2% da?,
I' = (5.29)
0% = da* — 2® da® + fda?,

which is the general Goursat normal form of I’. By Theorem 3.4.4 we have f;5,5 # 0.

[3] We can complete I’ to a basis of I by setting

63 = da® — fos dat.

Then I can be written in the general Goursat normal form

0t = da? — 23 da?,
I'=40*=da*—2°da® + fdat,

0% = da® — f,sdal.

[4] Here we obtain the Monge normal form. In view of (3.84), we set

fI:x5f$5—f:f~I(x3,x5),



and define the change of coordinates 74 : N — N by

X=z1, Y=o, Z=um4, Yi=u3 Yo=fa.

The inverse 7, * : N — N is defined by

=X, x=Y, m3=Y, wi=2, a5=7Ff(V1,Ya),

where f o7y = fz;. Our Monge equation is then given by

Zy=H=Hor,' =h(Y1,Ys).
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(5.30)

The condition hy,y, # 0 is satisfied a priori, but one can derive it by this construction and the

constraint F,, # 0.

Finally, we have constructed a local change of coordinates 7 = 7401 071 : N — N given by

1
X:a, Y:b7 Z:C, 5/1:1,1,’ }/QZ—F7
and with inverse 7! given by
a=X, b=Y, c=27 u=Y,, v=FYY).

According to these, I' = (=0, — 0, —0,) is T-related to (—dx,—0y,—0z) = (9x, Oy, 0z).

5.4 A ® As: the decomposable solvable algebra

5.4.1 Step 1

We take the Lie algebra A; @& A, with structure equations

[E1, B3] = [Es, B3] = 0,

[E1, E>] = E;.
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This is associated to the group G of the 3 x 3 matrices

e 0 O
A= 4 1 0
0 0 e

G is indeed a group, because the identity matrix has coordinates (a, b, c) = (0,0,0) and

e 0 0
A = —gee 1 0 €G
0 0 e®
The Maurer-Cartan forms are
wl=da—ade, w?>=de, w?=db, (5.31)
and their structure equations are
dw! = —w! AW?,
(5.32)
dw? = dw® = 0.
The dual to (5.31) are
Rl :8LL3 R2 :a6a+ac; R3 zab'
The associated right invariant vector fields are
Ly =—¢e0y, Lo=—0., L3=—0
5.4.2 Step 2
Proposition 5.4.1. An adapted basis for I can only be given by
o' =w +al,
I'=¢6?=tw?—w+a? (5.33)

93

I
&
o
+
Q
o
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where t = t(u,v), and

da' =o' Ao, (5.34a)
do? = dt Ao, (5.34b)
da® #0, (5.34c)
al Adt #0. (5.34d)

Proof. An optimal list of 1-dimensional subalgebras is given by

O:[Eg,E1+tE3,E2+tE3], t:t(u,v),

and thus the E;- produce the following three cases.

Case 1: O'=wl+al, ?=w?+0o? 0 =w’+a
Case 2: O'=w?+al, 0> =tw'—wd+a? B =w'+a’

Case 3: A'=w'+al, 2 =tw?—wd+0a? B =w?+a

In Cases 1 and 2 we have I” # 0. Concerning Case 3, condition (5.1a) is written as da! = o' A a?,
while condition (5.1b) is da? = dt A a3. Finally, conditions (5.1c) and (5.1d) are respectively
equivalent to da® # 0 and o' A dt # 0. Hence (5.33) is a GR3D5 Pfaffian system provided that

conditions (5.34) are satisfied. O

5.4.3 Step 3

Proposition 5.4.2. Let [ be a GR3 D5 Pfaffian system on a 5-manifold M. Assume that I admits
a 3-dimensional symmetry group G which acts freely and transversely on M and denote by I' a set of
infinitesimal generators of the action of G on M. Assume that I' has algebraic type A; @& As. Then

about each point of M there are local coordinates (a,b,c,u,v) such that I' = (—e® 9y, —0., —0p)
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and
0' =da—adc+ Fdu+dv,

I'=140%=db—ude, (5.35)
0® = dc+ F, du,

where F = F(u,v) is a differentiable function subject to the constraint

Fyy #0. (5.36)

Proof. The admissible gauge transformations in this case are those which fix (F5 + t E3). Because

the right action on G is exerted by the multiplication on the right by the matrices

1 00 ez 0 0 10 0
U=t 10|, Ua=] 0 1 0|, U=l01 0 | (5.37)
0 0 1 0 0 1 0 0 efs

we have to consider only the multiplication by Us and Us. Setting t; = f;(u,v) and applying (5.3),

the 1-forms o' change as follows

a2—>d2:a2+tdf2—df3, (5.38)

ad—at=ad+dfs.

One can check that conditions (5.34) are unchanged by (5.38). Now we use (5.38) in order to simplify
the .

First condition (5.34d) implies dt¢ # 0, and thus there is a change of coordinates (u,v) — (@, )
such that ¢(u,v) = @. Neglecting the tildes, we can rewrite (5.33), (5.34), and (5.38), respectively,

as

6! = w! + al,
I'=16%=uw?—wd+a? (5.39)

0® = w? + o,
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do' =o' Aa?, (5.40a)
do? =du o, (5.40b)
o' Adu # 0, (5.40¢)
da® # 0, (5.40d)
ol —wal =e 24t
o> = at=ao’4udfy—dfs, (5.41)

From the second in (5.41), solving the equation &? = 0, we find functions F, G, C*, and C? of (u,v)

such that (5.41) becomes
al =Fdu+dG,

a* =0, (5.42)
& = Cldu+ C? dv.
Now we plug (5.42) in (5.40). From (5.40b) we obtain C? = 0, while (5.40c) implies G, # 0. At this

point may as well consider new coordinates (a, b, ¢, u,?) where © = G. Dropping the tilde, we can

then rewrite (5.42) as
al = Fdu+dv,

a’ =0, (5.43)
a® = Cdu.
This time, from (5.40a), we obtain C' = F,,, and thus (5.40d) is equivalent to F,, # 0.

In summary, the Pfaffian system (5.39) can be written as
0t =w! + Fdu+dv,
I=1q6*=uw’-u?, (5.44)

0° =w? + F,du,
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with constraint

F,, #0. (5.45)

Using (5.31), (5.44) becomes (5.33). O

5.4.4 Step 4

Here we proceed, as in section 5.3.4, to prove the following.

Proposition 5.4.3. Let Z; = H(X,Y,Z,Y1,Ys), be a second-order Monge equation such that

0*H
7.2 # 0. Assume that this equation admits a 3-dimensional symmetry group G which acts freely
2

and transversely, denote by I' a set of infinitesimal generators of this action and assume that I is of

algebraic type Ay @ As. Then I' = (97, Z 0, — X Ox, Oy) and

Zy = X ?h(XY1, X?Y3), with D3h # 0. (5.46)

Proof. We will follow the same steps as in the proof of Proposition 5.3.3, which are mainly dictated
by the Monge Algorithm 3.5.8.

Let I be the GR3D5 Pfaffian system defined by the given Monge equation on the manifold N
with local coordinates (X,Y, Z,Y1,Y2). By Proposition 5.4.2 we have local coordinates (a, b, ¢, u, v)

on N such that T' = (—e€0,, —0,, —0p) and

nt =db—udc,
I'=Sn?*=da—adc+ Fdu+dv, (5.47)

n®=dc+ F,du,

where F' = F(u,v) is a differentiable function subject to the constraint

F,, #0. (5.48)

[0] By construction, (5.47) is an adapted basis of I, that is, I’ = {n*,n?}.



[1] Define the change of coordinates 71 : N — N by

according to which
91 — dy2 _yS dyl,
I =
n? =dy* —y'dy' + Fdy’® + dy’,

where we set F' = F(y*,y°) = F(u,v), with Fs,5 # 0.

[2] We seek for 62 = dU — V3dy? — Vidy' = W' + An? € I'. The dy* and dy® components

of n? are respectively Y* =1 and Y® = 1. The PDE system (3.47) becomes

aiyzl:AY :A,
oU s
aiyf):AY :A,

We see that for A = 1 we have the solution U = y* + y°. Recalling the notation 7 = Y dy! +

YZ2dy? +Y3dy® +Y*dy* + Y°dy® used in Proposition 3.3.3, the expressions (3.48) become

W:g—yUQ—AYOZ:O,
V?’:%—AWZO—F:—R

Y

oU oU
Vl = 87y1+y3(87y2—AY02)—AY01 :y4.

Using U and V2 we define a new change of coordinates 75 : N — N

gt =y, 2P =47, 2=y t=y'+y0, 2P =-F
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The Jacobian matrix of 7 is

(10 0 o0 0 |
0 1 0 0 0
Jn =10 0 1 0 0
0 0 0 1 1
(0 0 —Fs 0 —Fp |
Note that the determinant of the Jacobian matrix of 7o, that is, |J,,| = —F,s = —F,, is non-vanishing

by (5.48). The diffeomorphism 75 defines the mapping

3=y, o' =yt+y° w5 =F(y3 90,

and by the inverse function theorem there are defined two functions F = F (w3,x5) and f =

f(z®, 2% 2%) = —z* + F on N such that

fng:—y4, F072:y5.

The inverse of 75 can thus be defined by
nloyl=al, =27 =0 y=—f YP=a2'+f=F

Consequently we have
0! = da? — 23 da?,
I' = (5.52)
0> =n? =da* —25da® + fdat,

which is the general Goursat normal form of I’. By Theorem 3.4.4 we have f 5,5 # 0. By direct

1

Fy5 .

computation, we have f,s = Fys and thus fus o1 = —

[3] We can complete I’ to a basis of I by setting

02 = da® — fosdat.
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Then I can be written in the general Goursat normal form

0t = dz?® — 23 dat,
I'=1¢0%=ds* —2°da® + fda?,

0% = da® — fysdat.

Let’s do some computations, to check that the definitions of f and F were well posed.
. . 1 1 1 .
502 =dy® + —da' =du+ —dc=—n €l
T2 erFst: U+FUC FUUG,

as expected.

[4] Here we obtain the Monge normal form. In view of (3.84), we set
H=2a"f;s — f=a"Fp +a* — F =2 + h(xs,25).
Define the change of coordinates 74 : N — N by
X=z1, Y=o, Z=um4, Yi=u3 Yo=fa.
The inverse 7, * : N — N is defined by
=X, x=Y, m3=Y, wm=2, a5=7Ff(V1,Ys),
where f o7y = fz;. Our Monge equation is then given by

Zy=H=Hor,'=Z+h(Y1,Ys). (5.53)

Moreover, we have constructed a local change of coordinates 7 =4 o o7 : N — N given by
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and with inverse 77! given by

=X, b=Y, ¢c=2, u=Y,, v=FW.Y).

According to these, I' = (—e® 9,, —0,., —0p) is T-related to <feX 0z,—0x, *8y>.
[extra] We did not arrive at the claimed normal form yet. We have to add another step, which
is merely the definition of a contact transformation, which will lead us to (5.46). Define the change

of coordinates ¢ : N — N

X=e% Y=Y, Z=¢%2 Yi=-eY, Ya=e¢(Ya-V),

which is a local contact transformation such that Z; = e~2X (Z; — Z). Dropping the bars, ¢
transforms (5.53) to

Zy = X?h (XY, X%Ys)

and relates I' to (07, X Ox — Z 0z — Y1 Oy, — 2Y3 Oy,, Oy ), which is the prolongation of (97, X dx —

Z 0z, 0y). This completes our proof. O

5.5 Ag1: the Heisenberg (nilpotent) algebra

5.5.1 Step 1

We take the unique nilpotent Lie algebra A3 ; with structure equations

[E1, Es] = [Eq, B3] =0,
(5.54)
[Eq, E3] = Ej.

This is associated to the group of upper-triangular 3 x 3 matrices

A=10 1 ¢
0 0 1
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The (left invariant) Maurer-Cartan forms are then

w! =db—ade,
w? = da, (5.55)
w? = de,
with structure equations
dw' = —w? NP,
(5.56)
dw?=dw®=0
The dual to the (5.55) are
Rl = aba
R2 = aaa
Rs =ad,+ 0..
The right action on G is exerted by the multiplication on the right by the matrices
1 0 t 1 ta O 10 0
Uv=10 1 0 [;U=]0 1 0|, U=]0 1 t3
0 0 1 0 0 1 0 0 1
while the associated right-invariant vector fields are
Ll = _8b7
L2 = 7861 — Cab,
Ls =—0,.
5.5.2 Step 2
Proposition 5.5.1. An adapted basis for I can only be given by
o' =w! + o,
I'=¢6?=tw?—uw+a? (5.57)

03 = w? +a?,



where ¢t = ¢(u,v) # 0 and

da! = a? A a?,
da? =dt Ao,
dt A a? #0,

da® #0.

Proof. An optimal list of 1-dimensional subalgebras is given by

O =[E1,Ey,E5,Es +tE3], t#0,

and thus the E; € I’ + produce the following four cases:

Case 1: ' =w? +al, 62 =wd+0a? 6 =w+a
Case 2: 0' =wl + o, 2 =wd+0? 6 =w?+as
Case 3: ' =wl +at, ?=w?+a? B =w?+a’

Case 4: ' =wl +at, 2 =tw? —w?+a?, 6 =w?+ad

Here o = Uldu + Vidv, U?, V? and t are functions of (u,v) and t # 0.
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(5.584)
(5.58b)
(5.58¢)

(5.58d)

Cases 1, 2 and 3 lead to I” # 0. Case 4 gives the right structure equations. Indeed, conditions

(5.1a) and (5.1b) are equivalent to da! = a® A a® and da? = dt A a3, while conditions (5.1c) and

(5.1d) give da® # 0 and dt A o # 0. Hence, conditions (5.58) hold.

5.5.3 Step 3

O

Proposition 5.5.2. Let I be a GR3D5 Pfaffian system on a 5-manifold M. Assume that I admits

a 3-dimensional symmetry group G which acts freely and transversely on M and denote by I' a set

of infinitesimal generators of the action of G on M. Assume that I' has algebraic type Az 1. Then

about each point of M there are local coordinates (a, b, ¢, u, v) such that T' = (=0, =9, — ¢, —0,)
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and
' =db—adc+ Fdu,

I'=36?>=dc—uda—dv, (5.59)
0> = da + F, du,

where F = F(u,v) is a differentiable function subject to the constraint

Fyy #0. (5.60)

Proof. The admissible gauge transformations in this case are those which fix £y = Fy + t E3, thus

those generated by E; and Ey4. Setting Us(ts) = exp (t4F4), then we are looking for the action of

L f 3tf*+yg
U=Ui(g(u,v)) Us(f(u,v))=| 0 1 tf
0 0 1

From (5.3), the 1-forms o' change as follows

1
a1—>d1:a1+dg—fa2+§f2dt,
o - a? =ao? - fdt, (5.61)

o = ad=ao®+df.

Conditions (5.58) are easily seen to be unchanged by (5.61). Let’s use (5.61) to simplify the expres-
sions of al, a2, and o®.

Because (5.58¢), dt # 0 then there is a change of coordinates (a, b, ¢, u,v) — (a,b, ¢, @, v) such
that t(u,v) = 4. Writing the results of Proposition 5.5.1 in these new coordinates (dropping the

tildes), we have

6! = w! + al,
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da' =a? Ao, (5.62a)
do? = du Ao, (5.62b)
du A a? #0, (5.62c)
da® # 0. (5.62d)

The gauge transformation (5.61) now is

1
a1—>6z1:a1—|—dg—fa2+§f2du,

a? —a? =ao? - fdu, (5.63)

From this, we can define functions f and g such that

al =U'du,
a?=U%du+V?,dv, (5.64)
a® = U? du,

where U? and V? are arbitrary functions (u,v), subject to the constraints (5.62). In particular
(5.62c) implies V2, # 0. We can change the last coordinate from v to ¥ = V2 and rewrite (5.64)

(without tildes and bars) as

at = U du,
a? =U%du + dv, (5.65)
a® = U3 du,

for U® arbitrary functions of (u,v), subject to the constraints (5.62). Consequently, (5.62b) implies
0=duna®=da?=-U?duAdv, and thus U? = U?(u). From (5.62a) we have —U} du A dv =

da' = a? Aa® = —U3du A dv, and thus Us = U}. Let’s now use this results and (5.65) to rewrite
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(5.66) as
1
ol —at = (Ut —fU2+§f2)du+dg—fdv,

o —a? =U%du+ dv — fdu, (5.66)
o —a® =Uldu+df.

If we choose f = U?(u) and g = U?(u)v, then
1 1
al = (U' - 5U22) du+ d(U(u)v) — U2 dv = (U* — 5U22 +oU2)du = F du,
a* = dv, (5.67)
a® = (Ul +U? du = F,du.

With the same computations as above, we see that conditions (5.62a) to (5.62¢) are satisfied for any

F = F(u,v). Condition (5.62d) then is equivalent to the constraint

Fyy 7é 0
. Finally, using the local expression (5.55) together with (5.67), we obtain (5.59). O

5.5.4 Step 4

Here we proceed, as in section 5.3.4, to prove the following.

Proposition 5.5.3. Let Z; = H(X,Y,Z,Y1,Y3), be a second-order Monge equation such that
0’H
oY,?
and transversely, denote by I' a set of infinitesimal generators of this action and assume that I is of

# 0. Assume that this equation admits a 3-dimensional symmetry group G which acts freely

algebraic type As 1. Then locally I' = (92, Ox, 0y + X Jz) and

Zi=Y +h(Y1,Ys), with hy,y, # 0. (5.68)

Proof. We will follow the same steps as in the proof of Proposition 5.4.3.
Let I be the GR3D5 Pfaffian system defined by the given Monge equation on the manifold N

with local coordinates (X,Y, Z,Y7,Y3). By Proposition 5.5.2, there are local coordinates (a, b, ¢, u, v)
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on N such that I' = (=0, =0, — ¢ 0y, —0,) and

Nt =dc—uda—dv,
I'=<S > =db—adc+ Fdu, (5.69)

n® =da+ F,du,

where F' = F'(u,v) is a differentiable function such that F,, # 0.
We now start the Monge Algorithm 3.5.8.
[0] By construction, (5.69) is an adapted basis of I, that is, I’ = {n',n?}.

[1] Define the change of coordinates 7, : N — N by

Yy = —a, Yy :_C+U’ y3:u7 y4:ba ysz_ca

We see that 01 = Tfl*nl = dy?—y?® dy", as wanted. Define F' = Fory! = F(y?’;y2 —y°) = F(y3,%).

Accordingly, n? in these new coordinates is

my =t = Fdy’ +dyt —ytdy?,

and thus the local expression of I’ in these new coordinates is

I' = (5.70)

2] We seek for 82 =dU — V3dy? — Vidy' = W' + An2 € I'. Using (5.70) and the notation
[ y Y % g
in Proposition 3.3.3, we write

m= Yy dy' + Y5 dy® + Y3 dy® + Yyt +Y°dy®

= Fdy® +dy* —y' dyP.
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Accordingly, the PDE system (3.47) becomes

g~ A
o A A

(5.71)

Take A = —1 and the solution of (5.71) is U = —y* + y°y'. We can then rewrite the expressions

(3.48) as
W == 873/2 - AYO - 07
V?’:g—;fAYS:OJrF’:F, (5.72)
V= g—yUl +y W — AY =P

In particular, we can now write

0> =dU — Fdy® — y® dy'.

From (5.72) define

f=-V'=—p, (5.73)

and a new change of coordinates 75 : N — N such that

mle oyl=al, y2=a2 PB=dd, yi=-2'+G, P =G,

for some function G = G(23; 2%, 2%) such that G o 72 = 2°. In particular from (5.73) we define

f=forl, (5.74)

Finally we have

0t = da? — 23 da?t,

I (5.75)

0% = da* — 2® da® + fda?,
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which is the general Goursat normal form of I’. By Theorem 3.4.4 we have fs,5 # 0.

[3] We can complete I” to a basis of I by setting
02 = da® — fos dat.

Then I can be written in the general Goursat normal form

o' = da? — 23 da?,
I'=140*=da* —25da® + fdat,

0% =da’® — f,sdat.

From (5.74), we compute

1 N
fus = O 7 =T (2% 2%, 2°). (5.76)

Y

[4] Here we obtain the Monge normal form. Define the change of coordinates 74 : N — N by
X=mx, Y=, Z=mx4, Yi=u3 Y2=[fa.

The inverse 7, * : N — N is defined by

I
N
&

I
~:

r1=X, 12=Y, wx3=Y, x4 (Y,Y1,Y3),

where T o ="T.

We have thus constructed a local change of coordinates T =714 0m o7 : N — N given by

1
X=—-a, Y=v—¢, Z=ca—-b, Yi=u, Yg:F,

and with inverse 7! given by

a=-X, b=—-Z+XT, ¢c=-T, u=Y,, v=Y-T.



According to these, I' = (=0, —0, — cOp, —0,.) is 7-related to (0z,0x,0y + X 7).

we have H =Y + h (Y1, Y2).

5.6 Ag2: the solvable algebra not belonging to a family of algebras

5.6.1 Step 1

We consider the Lie algebra As o with structure equations

[E1, Es] =0,
[E1, B3] = Ey,

[E27E3] = El + E27

and the matrix group representation of G that we use is given by

e —ce™¢ e “(a+b—ac)
A= 0 e ¢ ae”°
0 0 1

The (left invariant) Maurer-Cartan forms are then

w! =db— (a+b) de,

w? = da — ade,

w? = de,
with structure equations
dw! = —w' Aw® —w? AWd,
dw? = —w? ANW3,
dw® = 0.
The dual to the (5.78) are
Rl = 8})3
RZ = aa,

Rs=a0,+ (a+b) O+ 0.
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Consequently

O

(5.77)

(5.78)

(5.79)



The right action on G is exerted by the multiplication on the right by the matrices

1 0 t 1 0 t e
U= 01 0 |,U=]0 1 t, |,Us=
0 0 1 00 1

The associated right-invariant vector fields are

L1 = —¢° 61;,
Lo = —e€ 0, — ce®© Oy,
Ly = —0,.

5.6.2 Step 2

Proposition 5.6.1. An adapted basis for I can only be given by

0t = w! +at,
I=% 602 =uw?+a?

63 :w3+a3,

where

da' = ol Aa? +a? Add,
da? = a? Ao,
da® #0,

al Ao #0.

Proof. An optimal list of 1-dimensional subalgebras is

O = [Ey, Es, E3].

—tge_tS

0
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(5.80)

(5.81a)
(5.81b)
(5.81c¢)

(5.81d)
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Consequently E; € T - produces the following three cases:

Case 1: 61

I
&
[N
_|_
Q»d
>
%}
I
&
w
+
Q
LN
>
w
|
&
+
Q
w

Case 2: ' =wl +at, 2 =uw+a? 03=uw?+0a’

Case 3: ' =wl +al, 2 =w?+0? 6 =uwd+0a’

Here o' = U'(u,v) du+ Vi(u,v) dv. Imposing conditions (5.1a) and (5.1b) in Cases 1 and 2 lead to
I" £0.

In Case 3, conditions (5.1a) and (5.1b) are respectively equivalent to da! = a* Aa®+a? Aa? and
da? = a®> Aa®. Conditions (5.1c) and (5.1d) are respectively equivalent to da® # 0 and o' Aa? # 0.

Hence, the derived flag conditions are (5.81). O

5.6.3 Step 3

Proposition 5.6.2. Let I be a GR3D5; Pfaffian system on a 5-manifold M. Assume that I admits
a 3-dimensional symmetry group G which acts freely and transversely on M and denote by I" a set of
infinitesimal generators of the action of G on M. Assume that I" has algebraic type A3 2. Then about
each point of M there are local coordinates (a, b, ¢, u, v) such that T' = (—e® 3y, —€® 0, — ce® Oy, —0,.)

and
0' =db— (a+b) de+ Fdu+dv,

I'=46%>=da—adc+du, (5.82)
02 =de+ F,du,

where F' = F(u,v) is a differentiable function subject to the constraint

F,, #0. (5.83)
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Proof. The admissible gauge transformations in this case are those which fix E3, thus only the action

of Us(f(u,v)). From (5.3), the 1-forms o change by

o > at=eTa? (5.84)

From (5.81d) we see that a! # 0 and we can find f such that e~/ is an integrating factor of a2,
that is, @ = e~/ a? = d4 for some function @(u,v). Because of (5.81d), we have d@ # 0 and we
can define the change of coordinates (a, b, c,u,v) — (a,b, ¢, @,v). Dropping the tilde and the bars,

we can write the right-hand sides of (5.84) as

ot =Utdu+ G, dv,
o = du, (5.85)

B =U3du+V3av,

for some functions U?, V3 and G of (u,v). Using (5.81d) again, we find G,, # 0. Another change of

coordinates produces

at = Fdu+dv,
o? = du, (5.86)
B =U3du+V3dav,

for some functions U3, V3 and F of (u,v). From (5.81b) we get 0 = da? = a? A a® = du A a3, thus

V3 = 0. Consequently (5.81a) becomes

—Fydundv=da'=a'Na®+a?Aad

=-U%duAdv+0,
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which gives U? = F,. Finally, we can write (5.86) as

al = Fdu+dv,
o =du, (5.87)

o’ =F,du,
thus (5.81c) is equivalent to Fy, # 0 and (5.80) becomes

0' =w! + Fdu+dv,
I=4 6% =w?+du, (5.88)

0% =w? + F,du.

By means of (5.78), we write (5.88) as (5.82). O

5.6.4 Step 4
Here we proceed, as in section 5.3.4, to prove the following.

Proposition 5.6.3. Let Z; = H(X,Y,Z,Y1,Ys), be a second-order Monge equation such that

0’H
.2 # 0. Assume that this equation admits a 3-dimensional symmetry group G which acts freely
2

and transversely, denote by I' a set of infinitesimal generators of this action and assume that I" is of

algebraic type Aso. Then locally I' = (07, mn X 0z + X 0y, Z0z — X 0x) and
Z1= XY + X 2h(Y — XY1,X?Y3), with Diyh # 0. (5.89)

Proof. We will follow the same steps as in the proof of Proposition 5.4.3.
Let I be the GR3D5 Pfaffian system defined by the given Monge equation on the manifold N
with local coordinates (X,Y, Z,Y7,Y3). By Proposition 5.6.2, there are local coordinates (a, b, ¢, u, v)

on N such that T' = (—e® 9y, —e€ 0, — ce 0y, —0,.), and

n' =da—adc+du,
I=3 0P =db—(a+0b) de+ Fdu+dv, (5.90)

n®=dc+ F,du,
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where F' = F'(u,v) is a differentiable function such that F,, # 0.
We now start the Monge Algorithm 3.5.8.
[0] By construction, (5.90) is an adapted basis of I, that is, I’ = {n',n?}.

[1] Define the change of coordinates 71 : N — N by

y'=c, Y¥=u+a, y=a, y'=b, y°=n0,

. . ~-1 .
The inverse is 7, * given by

a=y*, b=y', c=y', u=y*—y>, v=y"

We see that 01 = 771 n! = dy2—y3 dy', as wanted. Define F' = For ! = F(y2 — %) = F(7,9°).

Accordingly, n? in these new coordinates is
_1%* = =
mo=1 0t =~ +yh)dy' + Fdy® — Fdy® +dy' +dy°,

and thus the local expression of I’ in these new coordinates is

' =dy* —y*dy’,
I = (5.91)
my = —(* +y")dy' + Fdy® = Fdy® +dy* + dy’.
[2] We seek for 62 = dU — V3dy® —Vidyl = W' + An3 € I'. Using (5.91) and the notation
in Proposition 3.3.3, we write
=Y dy' +YZdy? +Y3dy? + Y dy' + YO dyb

= —(y* +y")dy' + Fdy® — Fdy® +dy* + dy°.

Accordingly, the PDE system (3.47) becomes

% = AY* = A,
a% (5.92)
= AY® = A,
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Take A = 1 and the solution of (5.92) is U = y* + y°. We can then rewrite the expressions (3.48) as

W:S—;—AYOQ:O—F:—F,

VSZ(%fAyS:MF:R (5.93)
1 ou 3 1 31 3 4 4 3 n
V:Tyl—i_yW_AYb :0—yF+(y +y):y +y(1—F).

In particular, we can now write

0> = dU — Fdy® — [y* +4*(1 — F)]dy".

From (5.93) define

f=-Vi=—yt+43(F —1), (5.94)

and a new change of coordinates 75 : N — N such that

for some function G = G(2? — 23;2°) such that G o 72 = z°. In particular from (5.94) we define

f=fort. (5.95)

Finally we have
0t = dz? — 23 dat,
I' = (5.96)
0% = da* — 2® da® + fda?,

which is the general Goursat normal form of I’. By Theorem 3.4.4 we have [ 5.5 # 0.

[3] We can complete I’ to a basis of I by setting

0 = da® — fosdat.
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Then I can be written in the general Goursat normal form

0! = da? — 23 da?,
I'=1¢0%=ds* —2°da® + fda?,
0% = da® — fysdat.
From (5.95), we compute
fos = 2 + T(2?, 2%, 25), (5.97)
WhereToB*lon1 = F%

[4] Here we obtain the Monge normal form. Define the change of coordinates 74 : N — N by
X=mx, Y=z, Z=mx4, Yi=u3 Y2=[fa.

The inverse 7, * : N — N is defined by

r=X, zo=Y, x3=Y, wa=2 x5=TY,Y,Y2),

where T oy =T + 3.

We have thus constructed a local change of coordinates T =714 0m o7 : N — N given by

1
X=c¢, Y=u+a, Z=b+v, Y]=aqa, YQZG,—FF,

and with inverse 7! given by

a=Y, b=Z-T, c=X, u=Y-Y,, v="T.

According to these, I' = (—e® 3y, —e® 0, — ce® Oy, —0,.) is T-related to (—eX 0z, —e* (Oy + X 0z +
Jy, + 0Oy, ), —0x). Consequently we have H = Z +Y + h(Y1 - Y, Yo = Y).

[extra] Define the (contact) transformation on N

: X=e8, Y=Y, Z=eXZ Yi=e*Y, Ya=eXY,-Y),
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according to which we have Z; = e=2X (Z; — Z). Define 7 = 79 o 7. Then, dropping the bars, I is
7-related to (07, X Oy + In X 0z + Oy,, X 0x — Z 0z — Y1 Oy, — 2Y3 Oy, ), which is the prolongation
of (07, X0y +InX 0z,X Ox — Z 0z). Finally, our general Monge equation has expression Z; =

1

2 (Y Hh(Y = XY1,Y2 = XV1)). O

5.7 Ajj5: the one parameter family of solvable algebras with ¢ # 0

5.7.1 Step 1

The Lie algebra A 5 has structure equations

[E1,E5] =0, [Ey, Es] = En,

(5.98)
[EQ,Eg]:EEQ, 6750
The matrix group representation of G that we use is given by
e ¢ 0 e ‘a
A= 0 e ebe
0 0 1
The (left invariant) Maurer-Cartan forms are then
w! =da — ade,
w? = db — ebde, (5.99)
w? = de,
with structure equations
dw! = —w' A w?,
dw? = —ew? AP, (5.100)

dw?® =0.
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The dual to the (5.99) are
Ry = aa7

R2:ab7
R3=a0, +€bdy + 0.

The right action on G is exerted by the multiplication on the right by the matrices

1 0 t 1 0 O e ts 1 0
Ui=1 01 0 |, 0=] 01 e |,Us= 0 e 0
0 0 1 0 0 1 0 0 1

The associated right-invariant vector fields are

L1 = —¢° &“
L2 = —e* 61,,
Ls =—0,

5.7.2 Step 2

Proposition 5.7.1. An adapted basis for I can only be given by

0t = w! —tw? + ot
I= 02 = w3 + QQ’ (5101)

0 = w?+

where ¢t = ¢(u,v) # 0 and

do' =o' Aa?, (5.102a)
do? =ea® N, (5.102b)
da® # 0, (5.102¢)

al Aa? #£0. (5.102d)
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Proof. An optimal list of 1-dimensional subalgebras is given by

O:[El,EQ,E2+tE1,E3], tER—{O},

thus the condition E; € (I’)" produces the following four cases.

Case 1: ' =w? +al, 62 =wd+0? 6 =w!+a’

Case 2: ' =w!' +at, ?=w’+a? 6 =w?+a’

Case 3: 0! =w! +at, 62 =w?+a? 6 =u®+as

Case 4: ' =w! —tw?+al, 2 =w?+a? 6 =uw?+as.
Here o = Ut(u,v)du + Vi(u,v)dv and t = t(u,v) # 0. Cases 1 to 3 lead to I"” # 0. In Case
4, conditions (5.1a) and (5.1b) are respectively equivalent to da' = o' A a® and da? = ea? A o3.

According to these, conditions (5.1c) and (5.1d) are respectively equivalent to da® # 0 and al Aa? #

0. asetofinfinitesimalDT(I) = [3,2,0] if and only if (5.101) and (5.102) hold. O

5.7.3 Step 3

Proposition 5.7.2. Let I be a GR3 D5 Pfaffian system on a 5-manifold M. Assume that I admits
a 3-dimensional symmetry group G which acts freely and transversely on M and denote by I' a set
of infinitesimal generators of the action of G on M. Assume that I' has algebraic type Az 5. Then
about each point of M there are local coordinates (a, b, ¢, u,v) such that I' = (—e® 9,, —e 0y, —O¢)

and
0' =da—adc+ du,

I'=16?=db—ebdc+ Fdu+dv, (5.103)
0> =edc+ F,du,

where F' = F(u,v) is a differentiable function subject to the constraint

F,, #0. (5.104)
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Proof. The admissible gauge transformations in this case are those which fix F3, and thus only the

action of Us(f(u,v)). From (5.3), the 1-forms a! change as follows

at —al =/ al,

o? —a?=e" a2 (5.105)
o = ad=a®+df.

From (5.102d) we see that o' # 0 and o # 0. We can find f such that e~/ is an integrating factor

of al, that is, &'

= e~/ a! = da for some function @ = 7(u,v). Because of (5.102d), we have d # 0
and we can define the change of coordinates (a, b, ¢, u,v) — (a,b, ¢, 4, v). Dropping the tilde and the

bars, we can write the right-hand sides of (5.105) as

ol =du,

o? =U'du+ G, dv, (5.106)
B =U3du+V3av,

for some functions U?, V3 and G of (u,v). Using (5.102d) again, we find G, # 0. Another change

of coordinates produces

ot =du,

o = Fdu +dv, (5.107)
B =U3du+V3dav,
for some functions U3, V3 and F of (u,v). From (5.102a) we get 0 = da! = a' Aa® = du a3, thus

V3 = 0. Consequently (5.102b) becomes

—Fydundv=dao®=ea’Na®=—eU3dundv+0,
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which gives U3 = %, and thus we can write (5.107) as

al = du,
o = Fdu +dv, (5.108)

F,
o = du,
€
thus (5.102¢) is equivalent to F,, # 0. Finally, (5.101) becomes

0t = w! + du,
I=1¢60*=w?+ Fdu+dv, (5.109)

F,
03 = w + ?du,

which, setting 03 = €63 and using the local expressions (5.99), produces (5.103). O

5.7.4 Step 4
Here we proceed, as in section 5.3.4, to prove the following.

Proposition 5.7.3. Let Z; = H(X,Y,Z,Y1,Ys), be a second-order Monge equation such that

0*H

7.2 # 0. Assume that this equation admits a 3-dimensional symmetry group G which acts freely
2

and transversely, denote by I' a set of infinitesimal generators of this action and assume that I is of

algebraic type A§ 5. Then I' = (XY 0y, Dy, e(Z0y — X Ox)) and
1
Z1 = =X "?h(eXY; - Y, XYy + XY - Y), with Diyh # 0. (5.110)
€

Proof. We will follow the same steps as in the proof of Proposition 5.6.3.
Let I be the GR3D5 Pfaffian system defined by the given Monge equation on the manifold V.
By Proposition 5.6.2, there are local coordinates (a, b, c,u,v) on N such that I' = (—e®dy, —e® 0, —

ce€ 9y, —0,.) and
nt =da—adc+du,

I'=4qn*=db—ebdc+ Fdu+ dov, (5.111)

n® =edc+ F,du,
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where F' = F'(u,v) is a differentiable function such that F,, # 0. We now start the Monge Algorithm
3.5.8.

[0] By construction, (5.111) is an adapted basis of I, that is, I’ = {n',n?}.

[1] Define the change of coordinates 71 : N — N by

y'=c, Y¥=u+a, y=a, y'=b, y°=n0

. —1 . .
The inverse 7; * is given by

a=y*, b=y', c=y', u=y*—y>, v=y"

We see that 01 = 771 n! = dy2—y3 dy', as wanted. Define F' = For ! = F(y2 — %) = F(7,9°).

Accordingly, n? in these new coordinates is
=10 = —eytdy' + Fdy? — Fdy® + dy* + dy°,

and thus the local expression of I’ in these new coordinates is

91 _ dy2 o y3 dyl,
I'= (5.112)
77(2) = —eytdy! + de2 — de?’ +dy* +dy°.
[2] We seek for 62 = dU —V3dy® —V1dy! = WOl + Ang € I'. Using (5.112) and the notation
in Proposition 3.3.3, we write
=Y dy' +YZdy? +Y3dy? + Y dy' + YO dyb

= —eytdy' + Fdy? — Fdy® + dy* + dy°.

Accordingly, the PDE system (3.47) becomes

% = AY* = A,
a‘% (5.113)
= AY® = A,
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Take A = 1 and the solution of (5.113) is U = y* 4+ y°. We can then rewrite the expressions (3.48)

as

W:%—AYOQZ —F=-F,

y

V3= %—AY?’:OJFF:F, (5.114)
y
ou . N

V= aflerydeAYol = eyt — P F.

In particular, we can now write

0> = dU — Fdy® — (ey* — y°F) dy'.

From (5.114) define

f=-V'=—ey* +4°F (5.115)

and a new change of coordinates 7 : N — N such that

ol

xlzyl’ x2:y2, x?’:y?’, x4:U:y4+y5, 25— V3 =

-1, 1 _ 1 2 2 3 _.3 4 4 5 __
T, oy =z, Y=z, y=2, y=1-G y =G,

for some function G = G(22, 23, 2°) such that G o 72 = 2°. In particular from (5.115) we define

f=foryt = —ex* + %25 + ef (2?,2°, 7). (5.116)

Finally we have
0t = daz? — 23 dat,
I = (5.117)
0% = da* — 2®da® + fda?,

which is the general Goursat normal form of I’. By Theorem 3.4.4 we have f 5,5 # 0.

[3] We can complete I’ to a basis of I by setting

03 = da® — fos dat.
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Then I can be written in the general Goursat normal form

0t = dz?® — 23 dat,
I'=1¢0%=ds* —2°da® + fda?,
0% = da® — fysdat.
From (5.116), we compute
fos = 2% 4+ T(2?, 23, 2°), (5.118)
WhereToB*lon1 =1

[4] Here we obtain the Monge normal form. Define the change of coordinates 74 : N — N by
X=mx, Y=z, Z=mx4, Yi=u3 Y2=[fa.

The inverse 7, * : N — N is defined by

r=X, zo=Y, x3=Y, wa=2 x5=TY,Y,Y2),

where T oy =T + 3.
We have thus constructed a local change of coordinates T =714 0m o7 : N — N given by

X=¢, Y=u+a, Z=b+v, Yi=a, Y2=a+Fi,

and with inverse 7! given by

a=Y,, b=Z-T, ¢c=X, u=Y-Y;, v="T.
According to these, I' = (—e€ 9, —e Oy, —0,.) is T-related to (—eX (Oy + dy, + Oy, ), —eX 0z, —0x).
Consequently we have H = €Z + h(Y — Y1,Y> — V7).

[extra] Define the (contact) transformation on N
_ _ Y _ - Xz _
i X=X V=2, Z=°

€ €

<
Il
|
ml
>
Py
=
[:<I
Il
)
|
[\v)
>
o
)
S
|
<
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according to which we have Z; = e*(GH/E)X(Zl —eZ). Define 7 = tgo7. Then, dropping the bars, T’
is 7-related to <X1/€[ay + & Oy, + SIQ;XZ Oy,|, 0z, —€X Ox +€Z Oz + €Y1 Oy, + 2€Y3 Oy, ), which is the
prolongation of (X'/<0y, 0z, —eX Ox +¢Z dz). Finally, our general Monge equation has expression

Z Y+ h(Y —XY7,Ys — XY7)). Note that the factor % can be “absorbed” by h, but we

:eXZ(

use it for computational purposes in Section 6.5. O
5.8 Aj;: the one parameter family of solvable algebras with € > 0

5.8.1 Step 1l

The Lie algebra A§ ; has structure equations

[E1, E2) =0, [E1,Es]=¢eE; — Es,

(5.119)
[EQ,Eg]ZEl—‘rEEQ, EZO
The matrix group representation of G that we use is given by
cosc —sinc eacosc— ebsinc+ asinc+ bcosc
A=e"“| sine cosc easinc+ ebcosc— acosc+ bsine
0 0 e
The (left invariant) Maurer-Cartan forms are then
wl'=da—edb+ (62b —b— 26@) de,
w? = eda+ db+ (a —€2a — 26b) de, (5.120)
w? = de,
with structure equations
dw! = —cw ANw® —w? A3,
dw? = W' Aw? — ew? AP, (5.121)

dw® = 0.



The dual to the (5.120) are

1 €

Rl— 1+628a_1+€28b7
1

RQZ ¢ 0 + 61)7

14+e % 1+4¢2

R; = (ea+b) 0, + (b —a) Op + O..

The right action on G is exerted by the multiplication on the right by the matrices

1 0 0 1 0 to costgy —sints 0
Ur=]101 —t; | Uz2=]1 01 0 |,Us= e " | sin t3 costs 0
0 0 1 0 0 1 0 0 ects

The associated right-invariant vector fields are

e (esinc — cosc) e (ecosc +sinc)

L = aa 87
! 1+ €2 * 1+ €2 ’
e (ecosc +sinc) e (esinc — cosc)
Lo = — O Op,
2 1+ €2 + 1+¢€? b
Ls = —0..

5.8.2 Step 2

Proposition 5.8.1. An adapted basis for I can only be given by

o' =w' +al,
I=202=u2+02
0° = w? +a®,

where

da! = (eal +a2) Aad,
da? = (ea2 - al) Aad,
do® #0,

at Ao #£0.
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(5.122)

(5.123a)
(5.123b)
(5.123¢)

(5.123d)
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Proof. An optimal list of 1-dimensional subalgebras is O = [Ey, Es], and thus the E; € (I')"

produces the following two cases:

Case 1: ' =w? +al, > =wd+0a? 6 =w!+a’

Case 2: ' =w' +at, 2=w?+a? 6 =w’+a’

Here o = Ut(u,v) du+ Vi(u,v)dv. Case 1 leads to I" # 0. In Case 2, conditions (5.1a) and (5.1b)

are respectively equivalent to da! = (ea! + a?) A a® and da? = (ea® — a') A 3. Consequently,

conditions (5.1c) and (5.1d) are respectively equivalent to da® # 0 and a! A a® # 0. These are

(5.123). O

5.8.3 Step 3

Proposition 5.8.2. Let [ be a GR3 D5 Pfaffian system on a 5-manifold M. Assume that I admits
a 3-dimensional symmetry group G which acts freely and transversely on M and denote by I' a set of
infinitesimal generators of the action of G on M. Assume that I" has algebraic type A§ ;. Then about

each point of M there are local coordinates (a, b, ¢, u,v) such that T' = (A 9,+ B 0, AJpy—B 04, —0¢),

€cC

where A4 = & (esinc — cosc) and B = e (ecosc +sinc)

d
1462 1+e2 an

)

6! :da—edb+(62b—b—26a) de+ Fdu+dv,

I=1¢0>=cda+db+ (a—e*a—2eb) de+du, (5.124)

F,
e2+1

0% =dc— (F =€) du+dv),

where F' = F(u,v) is a differentiable function subject to the constraint

Dy|(F — €) F, — F,] 0. (5.125)
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Proof. The admissible gauge transformations in this case are those which fix E3, thus those generated

by Us(f(u,v)). From (5.3), the 1-forms a! change by

ot — at = e (cos fa! —sin fa?)

o - a*=e “ (sinfa' + cos f a?) (5.126)

Looking at the second of (5.126), we can find f such that V2 = 0. In particular we can write the

right-hand sides of (5.126) as
al =UYdu+dV,

a?=U,du, (5.127)
a’* =U%du+V?®dv,
for some functions U,V, U? and V3 of (u,v). From (5.123d) we see that U,V, # 0, therefore we

can change coordinates from (a, b, ¢, u, v) to (a,b, c, U, V) Dropping the tilde and the bars we write

(5.127) as
al = Fdu+dv,

o? = du, (5.128)
o =U3du+V3do,

From (5.123b) we have

0=da?=(ca® —a')Aa® =[(e = F)du— dv)] A (U du+ V3 dv)

=[V3(e—F)+U*dundv
and from (5.123a) we obtain

~Fyduidv=da' = (ea’ +a®)Na® = [(1 + eF)du+ edv] A (U du+ V3 dv)

= [V3(1 +€F) — U3 du A dv.
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Consequently we have the system
V3e—-F)+U?*=0,

V31 +€F) — eU? = —F,,

that is, U3 = EQ}H (e— F)F, and V3 = —ﬁFv. Consequently we can write (5.128) as

al = Fdu+dv,

o = du, (5.129)

1
3 ___~ PR (F— .
o} 2] w[( €)du+ dv]

Accordingly (5.123c) is equivalent to d (F,[(F — €) du + dv]) # 0, that is,
0# D,[Fy,(F —€)] — Dy[F,] = D,[F,(F —¢€) — F,],

which is equivalent to (5.125).
Finally, using (5.120) and (5.129), the GR3 D5 Pfaffian system (5.122) has the local expression

(5.124). O

5.8.4 Step 4
Here we proceed, as in section 5.3.4, to prove the following.

Proposition 5.8.3. Let Z; = H(X,Y,Z,Y1,Ys), be a second-order Monge equation such that

0’H

72 # 0. Assume that this equation admits a 3-dimensional symmetry group G which acts freely
2

and transversely, denote by I' a set of infinitesimal generators of this action and assume that I' is of

algebraic type A§ ;. Then I' = (e“¥ sin X dy, —e*~ cos X dy, —9x) and
Z1 = h(Z,Ys — 261 + €Y +Y), with Diyh # 0. (5.130)

Proof. We will follow the same steps as in the proof of Proposition 5.4.3.
Let I be the GR3D5 Pfaffian system defined by the given Monge equation on the manifold V.

By Proposition 5.8.2; there are local coordinates (a, b, ¢, u, v) on N such that I' = (A9, + B 0y, A0y —
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e““(esinc — cosc) e“(ecosc+ sinc)

Bd,, —0.), where A = e and B = T , and
nt =eda+db+ (a—e2a—2eb) dc+ du,
I={¢n"=da—edb+ (€b—b—2ea) dc+ Fdu+ dv, (5.131)
n}=dc— Fy ((F—¢)du—+dv)
e2+1 ’

where F' = F(u,v) is a differentiable function subject to the constraint D,[(F —¢€)F, — F},] # 0. We
now start the Monge Algorithm 3.5.8.
[0] By construction, (5.131) is an adapted basis of I, that is, I’ = {n',7?}.

[1] Immediately we see that Eng(nl) = 1. Define the change of coordinates 7y : N — N by
yv'=c¢, yY’=utea+b 1y =—-a+ea+2e, yvi=u y®=u,
The inverse is 7, ! given by

B 22 42 4yt — gt e
o e2+1

—y3 + 2ey? — 2ey?
a =

b
e +1 ’

)

C:y17 U:y4, U:ys'

Accordingly, we see that 0! = 7'1_1*771 = dy? —y>dy', as wanted. Now, we write n? in these new

coordinates. Set F' = F(y*,y°) = F(u,v), then
mo=rm = (e e e — Pyt dy' +edy’ — dy + (F - o) dyt + dy’,

and thus the local expression of I’ in these new coordinates is

91 — dy2 _ y3 dyl,
I = (5.132)

me = (2 +yte + ey’ — P +yt) dy' +edy? — dy® + (F —€) dy* + dy’.
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[2] We seek for 62 = dU —V3dy® —V1dy! = WOl + An2 € I'. Using (5.132) and the notation
in Proposition 3.3.3, we write
e =Yy dy' +Y¢dy? +Y3dy? + Yidy' + Y dy®
= (v’ +y'e + e’ =y +yh)dy' +edy? —dy’ + (F —e)dy* + dy°.

Accordingly, the PDE system (3.47) becomes

% = AY? = A(F —¢),
8yU (5.133)
— =AY = A
oy°
Without loss in generality, because 8(FF“5BZI;“57F”4) £ 0, we can set F = G/“G;ZGF for a generic
function G. Then take A = G5 and (5.133) becomes
oUu G+ eGs G4
87y4 = Gys <yG5y — E) = Gy5G7y5 = Gy4,
v y v (5.134)
E Gy57
oy®
and the solution is U = G(y*,4°), thus F = Uy%jj"ﬁ and A = Uys. Consequently, the expressions
(3.48) become
ou
W= 9 AY] = —€U,ps,
V3 = % — AY? =U,ps, (5.135)
1 oU 3 1 22, 4.2 3 .2, .4
=g TV W =AYy =-Up(—y e +y'e +ey’ —y +y°).
From (5.135) we define
f=-V'=Up(—2E +y' +ey® — 2 +y), (5.136)

and a new change of coordinates 75 : N — N such that

mlzylv $2:y2» £U3=y37 $4:U7 xSZUyE).



160

The inverse of , can be defined by

In particular from (5.136) we compute

f=fort=a[(E+1)(U - 2?) + ex®). (5.137)

Consequently we have

0! = da? — 23 da?,
I' = (5.138)
0> =n? =da* —2°da® + fdat,

which is the general Goursat normal form of I’. By Theorem 3.4.4 we have fs,5 # 0.

[3] We can complete I’ to a basis of I by setting

0% = da® — fos dat.

Then I can be written in the general Goursat normal form

0! = da? — 2% da?,
I'=40*=da* —25da® + fdat,

03 = dad — fusdat.

From (5.194), we compute

fos = 22T (z*, 2%) — 22(E2 + 1) + ea®. (5.139)

[4] Here we obtain the Monge normal form. Define the change of coordinates 74 : N — N by

X:.'L'l, Y::I;Q, Z:$4; Yizx37 YYQZfIS

=X, 22=Y, 2=V, 2*=2 2 =T(Y,Z,Y,Ys),
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where T o 74 = f5.

We have thus constructed a local change of coordinates T =14 0m o7 : N — N given by

X=c¢, Y=utea+b Z=U, Y =2b+(—1)a,

Yy = (2 = 1)b— 2ea — (2 + 1)(u+ Uy)

and with inverse 7! given by

2¢Y — Yy — 2¢U
a =

(1—€e))Y + €Yy + (2 - 1)U N A
e2+1 ’

b =
) 62 + 1 9
According to these,

e““(esinc — cos c) e““(ecosc+ sinc)

F - 80, 6 I
e - 1+¢ ’
e“(esinc — cosc) e““(ecos ¢+ sin ¢)
b — am _ac>
1+ €2 1+ €2

is 7-related to

(e“X sin Xy + (esin X + cos X)e™ dy, + (ecos X — sin X )e“X dy,,

— e cos X0y — (ecos X — sin X )e“Xdy, + (esin X + cos X)eX dy,, —0x),

which is the prolongation of (e“X sin Xy, —e“X cos X0y, —0x). Consequently we have Z; =

h(Z,Y2 —2eY1 + €Y +Y). O

5.9 Agg: the special linear algebra

5.9.1 Step1

This Lie algebra has structure equations

[E1, E») = 2 Es,
[E1, E3] = —2 F3, (5.140)

[Es, B3] = Ey.



The matrix group representation of G that we use is given by

1+2ch  —ce*® b(l+ch)e 2
A= —2b e2® —b?e20

2¢(1+cb) —c2e®* (14 ch)’e 20
The (left-invariant) Maurer-Cartan forms are then

w!' =da—bde,
w® =e** (db—b*dc),
w? =e?*de,
with structure equations
dw' = —w? Aw?,
dw? = —2w' A Ww?,
dw® = 2w AWB.

The dual to (5.141) are
Rl = aa7

Rg = €2a 8b,
Ry =be™ 209, + b2 7229, + e 229,.

The associated 1-parameter subgroups of G are

1 0 0 1 0 t 1 —t3
Ui=10 e 0 U= =2t 1 -3 | Us=| 0 1
0 0 e 0 0 1 2ty —t2

while the associated right-invariant vector fields are

Ll = —3(1 - Qbab + 2680,
Lo =1¢0+ (1+2cb) Op — 2 0,

Ls = 0..
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(5.141)

(5.142)



An optimal list of 1-dimensional subalgebras is given by
1
0= §(E2 — E3), By, B,

thus for (I')+ we have the following three cases.

Case 1: #'=wl'4al, 2 =uw?+w?+a?,

03 =w? —w? +a’.

Case 2: O0'=w?+al, 0?=w®+a? 6 =uw'+a’

Case 3: O'=w'4al, 0?=w®+0a? 6 =w?+a
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In Case 3 we have I # 0. We shall see that the other two cases give rise to inequivalent G R3Ds

Pfaffian systems, which we will consider separately.

5.9.2 Step 2.1

Proposition 5.9.1. Let [ be a GR3 D5 Pfaffian system on a 5-manifold M. Assume that I admits

a 3-dimensional symmetry group G which acts freely and transversely on M and denote by I a set

of infinitesimal generators of the action of G on M. Assume that I' has algebraic type A3 g and that

(Ey) is the Cartan subalgebra of I'. If Ey ¢ (I')* then we have

o' = w! + at,
I'=1¢6%=w?+w+a?

07 = w? —w? + a?,

with derived flag conditions

dat =a? Ao,
do? =2a' A (@? —2a?),
da® # —2a! A a?,

al Aa? #£0.

(5.143)

(5.144a)
(5.144b)
(5.144c¢)

(5.144d)

Proof. From Section 5.9.1 and the hypothesis E; ¢ (I')*, we must consider Case 1. In this case,
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conditions (5.1a) and (5.1b) are respectively equivalent to da' = a?Aa3 and da? = 2 A(a?—2a?).

Conditions (5.1c) and (5.1d) are respectively equivalent to da® # —2a! Aa® and al Aa? #0. O

5.9.3 Step 3.1

Proposition 5.9.2. Let I be a GR3 D5 Pfaffian system on a 5-manifold M. Assume that I admits
a 3-dimensional symmetry group G which acts freely and transversely on M and denote by I' a
set of infinitesimal generators of the action of G on M. Assume that I' has algebraic type Asg.
Then about each point of M there are local coordinates (a,b, ¢, u,v) such that I' = (-9, — 2b39y +

2¢0,, cO, + (1 + 2¢b) Oy — 2 .., O.). Moreover, if 9, ¢ (I')* then

' =da—bdc+ Fdu+dv,
I={0*=e2"db—b*e > dc+ du, (5.145)

0% =e**de — (; — FF) du—F,dv,

where F' = F(u,v) is a differentiable function such that
Dy[FFE, —v— F,] #0. (5.146)

Proof. We start from the results of Proposition 5.9.1. The admissible gauge transformations are

given by
cos f %sinf %sinf
U(f(u,v)) = exp (J;(RQ - R3)> =| —sinf L(1+cosf) 3(cosf—1)
—sinf $(cosf—1) 1(1+cosf)

From (5.3), the 1-forms o' change by

1
ol = at :cosfalJrisinfaQ,
a? — a? = —2sin fa' + cos f a?, (5.147)

Lar

1
a3—>&3:—sinfa1+§(cosf—1)a2+a3—2

From (5.144d), that is, o' Aa? # 0, we see that a! # 0 and a? # 0 and without loss in generality we
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can apply (5.147) to obtain &? = U, du, for some function U = U (u,v). Moreover, we can rewrite

the right-hand side of (5.147) as
al=Fldu+dV,

a’=U,du,

ad=Ctdu+ C?dv,

for generic functions F', V, C! and C? of (u,v) subject to the constraint (5.144). Now, condition

(5.144d), implies V,, U, # 0. We can thus change coordinates to (a,b,c, 4 = U,0 = V). Dropping

the tilde and the bars we write
al = Fdu+dv,

a? =du,
a® =Cldu+ C%dv.

Condition (5.144d) is satisfied. Condition (5.144a) becomes

—Fydundv=dao'=a*Na®=C?dunduv,

and thus C? = —F,. Consequently, we can write (5.144b) as

0=da’*=2a"A(a?—-20>) = 2(Fdu+dv)A((1-2C")du+2F,dv) = 2(1-2C' —2FF,) du A dv,

and thus we have C! = —1 + F'F,,. We can now rewrite (5.143)

0' =w' + Fdu+dv,

I=46*=w?>+uw’+du,

which is (5.145), using (5.141).

Finally, from (5.144c) we get

(5.148)

0#da’+2a'Aa® = (Fyy — F) — FFy, 4+ 2FF, + 1 — 2FF,) duidv = (Fy,—F; —F Fy,+1) duidv,
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that is, Fy,, — F2 — FF,, +1 # 0. This proves (5.146). O

5.9.4 Step 4.1
Here we proceed, as in section 5.3.4, to prove the following proposition.

Proposition 5.9.3. Let Z; = H(X,Y,Z,Y1,Y3), be a second-order Monge equation such that
g;; # 0. Assume that this equation admits a 3-dimensional symmetry group G which acts freely
and transversely, denote by I' a set of infinitesimal generators of this action and assume that T’
is of algebraic type Asg. Moreover, assume that I is the GR3D; Pfaffian system generated by
the given general Monge equation and that (I’)* is not the Cartan subalgebra of I'. Then I' =

<2X 8X — 283/7 2X 8y — X2 6)(, ax> and
1
7, =eY h(z, Yoe 2 — 2Y12e_2y), with Dfyh # 0. (5.149)

Proof. We will follow the same steps as in the proof of Proposition 5.4.3.
Let I be the GR3D5 Pfaffian system defined by the given Monge equation on the manifold N
with local coordinates (X,Y, Z,Y7,Y3). By Proposition 5.9.2, there are local coordinates (a, b, ¢, u, v)

on N such that T' = (=9, — 2b9y + 2¢O, O, + (1 + 2¢b) Oy — ? D, O.), and

nt=e2db—b?e 2 dc+ du,

I={7n"=da—bdc+ Fdu+dv, (5.150)

1
P =ede— (2 - FF) du— F,dwv,

w # (0. We now start the Monge

where F' = F(u,v) is a differentiable function such that
Algorithm 3.5.8.
[0] By construction, (5.150) is an adapted basis of I, that is, I’ = {n',n?}.

[1] Define the change of coordinates 7 : N — N by

1 1
y1:c+7b+€2aa y2—u+1n<2(62“+b)2>2a, P =b%e72 — e yt=wu, o’ =,
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. . —-1 .
The inverse is 7, ~ given by

—1

Accordingly, we see that 01 = 7; *771 = dy? —y>dy', as wanted. Now, we write n? in these new

j— 5_
coordinates. Set F' = F(y*,¢y°) = F(u,v), with W%a—w # 0, then

* 1 1
w=rtnt= _§6y4—y2(462y2—2y4 — y32)dy1 - Zey4_y2dy3 + Fdy' + dy°,

and thus the local expression of I’ in these new coordinates is

91 — dyZ _ y3 dyl7
I = (5.151)

1 4 1
n = —ge?f’y2 (420" ~20" _ 3%y gyt — Zeyhyzdy3 + Fdy* +dy°.

[2] We seek for 62 = dU — V3dy® —Vidyl = W' + An3 € I'. The dy* and dy® components

of 2 are respectively Y* = F and Y°® = 1. The PDE system (3.47) becomes

ou

W - AY4 == 14}7‘7
61;] (5.152)
ﬁ - AY5 - A,
Y
s —y®—
Without loss in generality, because w%’a—w # 0, we can set F' = gyj for a generic function
G. Then take A = G5 and (5.152) becomes
ou
oyt~
i (5.153)
oy =
and the solution is U = G(y*,y°), thus F = gy4 and A = U,s. Using (5.151) and the notation in
45

Proposition 3.3.3, that is

e =Yddy' + Y2 dy? +Y3dy? + Yidy* + Y2 dy®
_ Loy (4e2" 2" — 3%y dyt — 16y4—y2dy3 + Uy dy* + dy®,
8 1 U,
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the expressions (3.48) become

ou
W = 87]/2 - AAY—O2 = Oa
) ou : 1
Ve — 57 AY3 = Zey“nyUyS’ (5.154)
ou ou 1
V= ot y3(aT,2 — AYF) - A = —gey4‘y2 (4627720 — YU

In particular, we can now write
2 2 1 4 2 202 — 9yt 32 1 1 4 2 3
0° = Uy my = éey Yo(4e™ T — U dy — Zey YUy dy® + dU.

From (5.154) let’s define

. 1
f= _yl = 5(3}32 _ 462?12—22/4)‘/37 (5.155)

and a new change of coordinates 75 : N — N such that
=y, x°=y, =y, x"=U, x5:V3:Zey4*y2Uy5.
2 4 Loyaoy?
T2=y, :Ua x5:Z€ Uy57

and by the inverse function theorem there are defined two functions U = U (.2?2,%‘4, a:5) and V =

\%4 (acQ,x47x5) on N such that

In particular from (5.155) we compute

~ 1 ~
f=fort= §(x32 — 4% 205, (5.156)
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Consequently we have
0! = da? — 23 da?,
I'= (5.157)
6% =n? = da* — 25dz® + fdat,

which is the general Goursat normal form of I’. By Theorem 3.4.4 we have f,s.5 # 0.

[3] We can complete I” to a basis of I by setting
03 = da® — fos dat.

Then I can be written in the general Goursat normal form

0' = da® — 23 da?,
I'=40*=da* —25da® + fdat,

0% =da® — fosdat.

[4] Here we obtain the Monge normal form. In view of (3.84), we set H = 2 f,5 — f and from

(5.156) we compute.

2

| - . s
= §x52Uzse_x2+U(4eQ’”2_2U — 2. (5.158)

Define the change of coordinates 74 : N — N by

X=z' Y=22 Z=2z' Yi=23 Yo=fs.

=X, 22=VY, 2=V, =2 °=T(ZY,Y,Y),
where T o 74 = f,5. From (5.158) we know that the general Monge equation is now expressed by

Zy=H=Hor,' =H(ZY,YY?). (5.159)
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We have thus constructed a local change of coordinates 7 =14 0m o7 : N — N given by

1 1 2a 2
m, Y:u+ln(2(e +b)>_2a,

Y =0, Z=U(uv), Yy=0e2*—e* Yy=TI(a,bu,v),

and with inverse 7! given by

- 1 . 1 . -
a= —gan +In(2e¥7Y —v) — SV =0), b= ge—Y+U(4@2Y—2U -Y1?),
2 . .
c=X—-———, u=U, v=V
26Y_U —Yl

According to these, I' is 7-related to

<2X Ox — 20y — 2Y1(()"y1 — 4}/2(93/2, —-X? Ox +2X 0y + (2XY1 + 2) 8y1 + (4XY2 + 2Y1) 8}/2, ax>,

which is the prolongation of (2X dx — 20y, 2X dy — X2 dx, Ox). From this we check that (5.159)

has to be (5.149). O

5.9.5 Step 2.2

With the notations of Section 5.9.1, we have the following.

Proposition 5.9.4. Let I be a GR3D5 Pfaffian system on a 5-manifold M. Assume that I admits
a 3-dimensional symmetry group G which acts freely and transversely on M and denote by I' a set
of infinitesimal generators of the action of G on M. Assume that I" has algebraic type A3 g and that

(Ey) is the Cartan subalgebra of T'. If E; € (I')* then we have

0' = w? +al,
1= 02 = wg —+ a27 (5160)

03 = w! +a?,



where the derived flag conditions are

da! = —2a' AN a?,
da? =2a% A a?,
do? # ol Aa?,

al Ao #0.
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(5.161a)
(5.161b)
(5.161c)

(5.161d)

Proof. From Proposition 5.9.1 and the hypothesis E; € (I’)*, we must consider Case 2. In this case,

conditions (5.1a) and (5.1b) are respectively equivalent to da! = —2a! A a? and da? = 2a? A o?.

Conditions (5.1c) and (5.1d) can be written as da® # al Aa? and al Aa? # 0. These give (5.161). O

5.9.6 Step 3.2

Proposition 5.9.5. Let I be a GR3D5; Pfaflian system on a 5-manifold M. Assume that I admits

a 3-dimensional symmetry group G which acts freely and transversely on M and denote by I' a

set of infinitesimal generators of the action of G on M. Assume that I' has algebraic type Ass.

Then about each point of M there are local coordinates (a,b, ¢, u,v) such that I' = (—9, — 200 +

2¢0,, ¢, + (1 + 2¢b) Oy — 2 .., .). Moreover, if 9, € (I')* then

0' = e 22 db—b%e 2 de+ Fdu+ dv,

I=20%=¢**de+du,

1
0% =da—bdc— ideu,

where F' = F(u,v) is a differentiable function such that

Foy # —2.

(5.162)

(5.163)
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Proof. The admissible gauge transformations in this case are those which fix 7, thus only the action

of
1 0 0
Uy=10 e 0
0 0 e

From (5.3), the 1-forms o’ change by

a—a=ela
B—-B=e?p (5.164)
Yo y=y+df

From (5.161d)), that is, a® A a? # 0, we see that o' # 0 and a? # 0 and without loss in generality

we can apply (5.164) to obtain @ = dU, for some function U = U (u,v). Moreover, we can rewrite

the right-hand side of (5.147) as
al = Fdu+ G,dv,

a’=du,
& =U%du+V3do,
for generic functions F, G, U and V3 of (u,v) subject to the constraint (5.161). Now, condition

(5.161d), implies G, U, # 0. We can thus change coordinates to (a,b,c,i = U, = G). Dropping

the tilde and the bars we write
al = Fdu+dv,

a? = du,
o =U3du+V3do,

Condition (5.161d) is satisfied. Condition (5.161b) becomes

0=do®>=2a>Aa® =2V3du A dv,

and thus V3 = 0. Consequently, we can write (5.161a) as

—Fydundv=da'=—-2a' ANo® =203 du A dv,
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and thus we have U? = —1F,. We can now rewrite (5.160)

0' = w? + Fdu+dv,
I=<02=_3 + du, (5165)

0% =w! — %Fv du,

which is (5.162), using (5.141). Finally, condition (5.161c) is now
1 3 1 a2
iFwdu/\dv:da #a ANa” = —duNdov,
from which we obtain (5.163). O

5.9.7 Step 4.2
Here we proceed, as in section 5.3.4, to prove the following proposition.

Proposition 5.9.6. Let Z; = H(X,Y,Z,Y1,Ys), be a second-order Monge equation such that
g;l; # 0. Assume that this equation admits a 3-dimensional symmetry group G which acts freely
and transversely, denote by I' a set of infinitesimal generators of this action and assume that I' is
of algebraic type Asg. Moreover, assume that I is the GR3Ds Pfaffian system generated by the
given general Monge equation and that (I’)* is the Cartan subalgebra of I'. Then I' = (2X dx —

2Z62, —X2 8X + (1 +2XZ) 82, (9)() and

Y, -2V Z

Zl_Zz+Y2h(Y,
1 }/12

> , with Dy h # 0. (5.166)

Proof. We will follow the same steps as in the proof of Proposition 5.4.3.
Let I be the GR3D5 Pfaffian system defined by the given Monge equation on the manifold N

with local coordinates (X,Y; Z,Y7,Y3). By Proposition 5.9.2, there are local coordinates (a, b, ¢, u, v)
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on N such that T' = (=0, — 200 + 2¢0,, ¢y + (1 + 2¢b) Oy — % O, O.) and

nt =e2*dc+ du,
I'=4qn?=e2db—b?e**dc+ Fdu+ dv, (5.167)
3 1
n° =da—bdc— §deu,
where F' = F(u,v) is a differentiable function such that F,, # —2. We now start the Monge
Algorithm 3.5.8.

[0] By construction, (5.167) is an adapted basis of I, that is, I’ = {n',7?}.

[1] Define the change of coordinates 71 : N — N by

_ _ 3 _ 2a 4 5
Yy =, Yy = U, Yy =€, ba

Accordingly, we see that 0! = 7'1_1*771 =dy?® —y>dy', as wanted. Now, we write n? in these new

coordinates. Set F = F(—y?,y%) = F(u,v), with Fs,s # —2, then

2
1% 1 y4
= = gyt = S dyt = Fdy? 4 dy,

and thus the local expression of I’ in these new coordinates is

r=t e L (5.168)
noz—?dy — Fdy +Edy +dy°.
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[2] We seek for 62 = dU — V3dy® —Vidyl = W' + An3 € I'. The dy* and dy® components

of n¢ are respectively Y4 = y% and Y° = 1. The PDE system (3.47) becomes

8£ = AY?4 = é

oyt oy

o ) (5.169)
87y5 == AY = A,

Take A = y* and the solution of (5.169) is U = y* + y5y>. Using (5.168) and the notation in

Proposition 3.3.3, that is

=Y dy' +YZdy? + Y3dy? + Y dy' + YO dyd

y* 1
= —ody' - Fdy’ + < dy* + dy°,
Yy Yy
the expressions (3.48) become
ou
W= 92 — AY] =0+ y*F = y°F,
ou
V3= 5.3 —AY3 =95 —0 =", (5.170)
Y
ou
Vi gty WAy =0+ F+y" =y F 4y

In particular, we can now write
02 = dU — y° dy® — (43F + y*°) dy'.

From (5.170) define
f=—Vl= 4BF - y*? (5.171)

and a new change of coordinates 75 : N — N such that

dl=yl, a2 =2, P =4p, = U=yt Sy, 2% = V3 =S

. — _ _ 4 _ 4 5
Tyt y =xr, Yy =xr, Yy =, Yy =xr —xrx, Yy =x.
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In particular, writing F = F(—22,2%) =, from (5.171) we compute
p ) g ) p
f=fort= —2*? 4 20t — 203° — 2R (5.172)

According to this algorithm we have

0! = da? — 23 da?,
I = (5.173)
0% =da* — 2° da® + fda?,

which is the general Goursat normal form of I’. By Theorem 3.4.4 we have f,s.5 # 0.

[3] We can complete I’ to a basis of I by setting
03 = da® — fos dat.

Then I can be written in the general Goursat normal form

0t = dz?® — 23 dat,
I'=40*=da* —25da® + fdat,

03 = da® — fusdat.
At this point, from (5.172), we compute

fus = 2zt23 — 225237 — 3332Fzs = 23(22" — 22°2% — 23 Fs),
(5.174)
Foss = —a3%(2 — Fis,5) # 0.

[4] Here we obtain the Monge normal form. In view of (3.84), we set H = 2 f,5 — f and from
5.174) we compute.
( p

2

H=2" 4 2%*(F - 25 F,s — %), (5.175)

Define the change of coordinates 74 : N — N by

X=ux1, Y=0x9, Z=u4, YI=u3, Yo=fp, = x3(2x4 — 2223 — 2°F, ).
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The inverse 7, * : N — N is defined by

=X, zo=Y, x3=Y, a4=2 a5=T(;ZY1,Ys),
where T o 74 = 2°. From (5.175) we know that the general Monge equation is now expressed by
Zyv=H=Hor;' =722+ Y*WY;Z,Y1,Ys). (5.176)
We have thus constructed a local change of coordinates T =14 0m o7 : N — N given by
X=¢c Y=-u Z=b+ve’® Y =¢e2* Y,=2e(2b-¢e*F,),

and with inverse 7! given by

a=mY,, b=2Z2-"T, ¢c=X, uv=-Y, v=T.
According to these, I' is 7-related to

<2 (Xax —Z0z—-Y; 8}/1 —2Y, 6y2),—X28X + (1 +2XZ) 0z +2XY; 8y1 +2(Y1 +2XYv2) 8x>,

which is the prolongation of (2X 0x — 2Z 0z, —X?dx + (1 +2XZ) Jz, Ox). From this we check

that the expression h in (5.176) has to be as in (5.166). O

5.10 Agjg: the special orthogonal algebra

5.10.1 Step 1

We take the Lie algebra Aj g with structure equations

[Ela E2} = E3a
[Ey, B3] = —Es, (5.177)

[Es, B3] = E.



The matrix group representation of G that we use is given by

cosccosb —sinccosa + coscsinbsina  sincsina + coscsinbcosa
A= sinccosb cosccosa +sincsinbsina  — coscsina + sincsinbcosa
—sinb cosbsina cosbcosa

The (left invariant) Maurer-Cartan forms are then

w! = da — sinbde,
w? = cosadb + cosbsinade,

w® = —sinadb + cosbcosade,

with structure equations

dw' = —w? N3,

dw? = wr Aw?,

dw® = —w' AW
The dual to the (5.178) are
Rl = aaa
. b .
Ry = sin a sin 8, + cosady + sina o,
cosb cosb
Ry = cosasinbaa sinad, + cosa 3
cos b cosb

The right action is exerted by the multiplication on the right by the matrices

1 0 0 costy 0 sints costy —sinty
Uy = 0 cost; —sint; , U = 0 1 0 , Uz = sinty  costs
0 sint; cost —sinty 0 costy 0 0

The associated right-invariant vector fields are

cos ¢ . cos csinb
L1 =— Oy +sincOpy — ——— 0.,
cosb cosb
sinec sincsinb
Lo =— Oq —cosCcOy — ———— O,
cosb cosb

L3z = —0,.

178

(5.178)

(5.179)

0
0
1
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5.10.2 Step 2

Proposition 5.10.1. An adapted basis for I is given by

o' =w' +al,
I = 92 = wz =+ a27 (5180)

0% = w3 + a3,

where

do' = a? A a?, (5.181a)
da? = —a' A a?, (5.181b)
da® # a' A a?, (5.181c¢)
al Ao #0. (5.181d)

Proof. In this case all 1-dimensional subalgebras are conjugate and an optimal list is given by

O = [Es], and thus we have only one case:

o' = w! +al,
I={62=u+a?
03 = w3 + 0,

where o = U'(u,v)du + Vi(u,v) dv. Conditions (5.1a) and (5.1b) are respectively equivalent to

da' = a® A a® and da? = —al! A a®. Conditions (5.1c) and (5.1d) are respectively equivalent to

da® # ol Aa? and ol A a? # 0. Hence, the derived flag conditions give (5.181). O

5.10.3 Step 3

Proposition 5.10.2. Let I be a GR3D5 Pfaffian system on a 5-manifold M. Assume that I admits
a 3-dimensional symmetry group G which acts freely and transversely on M and denote by I a set

of infinitesimal generators of the action of G on M. Assume that I" has algebraic type Az g. Then
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about each point of M there are local coordinates (a, b, ¢, u,v) such that

I'=(A4.0,+B.0p+C.0., AOy+ B0+ C0O., —0.),

—sinc

where A = and B = —cosc, C = Asinb, and

cosb

0' = da —sinbdc+ du,
I'=1¢6?=cosadb+cosbsinadc+ Fdu+ dv, (5.182)

6% = cosbeosadc —sinadb+ FF,du+ F, dv,

where F' = F(u,v) is a differentiable function subject to the constraint

D,(FF,+v—F,) #0. (5.183)

Proof. The admissible gauge transformations in this case are those which fix E3, thus that generated

by Us (f(u,v)). From (5.3), the 1-forms o’ change by

1 1

1 2
cos fa' —sin fa”,

a —a =
o® — a* =sin fal + cos f o?, (5.184)
o® — ad =+ df.

From (5.181d) we see that a! # 0 and a? # 0. Without loss in generality we can assume V? # 0,

thus a gauge transformation (5.184) with f = arctan 5—; gives

& =U%du+V,dv, (5.185)

a® =U%du+U*dv,
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for some functions U?, V¢, U and V of (u,v). From (5.181d) we see that U, V, # 0. We can change
coordinates from (a, b, ¢, u,v) to (a,b,c,U,U). Dropping the tildes and the bars, we write (5.186) as

al =du,

a? = Fdu+dv, (5.186)

o =U%du+ Utdw.

From (5.181b) we get
—Fydundv=dao?=—-a'Na®=-U*dundv,
that is, U* = F,,. Consequently from (5.181a) we obtain
0=da'=a*Na® = (FU* ~U3duNdv=(FF, —U®duAdv

and thus U3 = FF,. Accordingly (5.180) becomes

0' = w! + du,
I'=1¢60*=w?+Fdu+dv,

0 = w3+ FF,du+ F, dv,

which, using (5.178), gives (5.182). To conclude, condition (5.181c) is

0#da® —a* Na? = (Dy[F,] — D[FF,] —1)duAdv = D,[F, — FF, —v]du A dv,
which is (5.183). O
5.10.4 Step 4

Here we proceed, as in section 5.3.4, to prove the following.

Proposition 5.10.3. Let Z; = H(X,Y,Z,Y1,Y5), be a second-order Monge equation such that

0*H
V.2 # 0. Assume that this equation admits a 3-dimensional symmetry group G which acts freely
2
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and transversely, denote by I' a set of infinitesimal generators of this action and assume that I' is of

cos X —sin X

algebraic type Agg. Then I' = <W(Y1 Ox + Oy), W(Yl Ox + dy), Ox) and

Ya? Y, .
Zi=4/1-Y:? + h(Z,Y+arctan , with h # 0. 5.187
' \/ R [yp2 ) (5.187)

Proof. We will follow the same steps as in the proof of Proposition 5.4.3.

Let I be the GR3Ds5 Pfaffian system defined by the given Monge equation on the manifold

N. By Proposition 5.10.2, there are local coordinates (a,b, ¢, u,v) on N such that I' = (—<2£9, +

cos b

sincdy — cosctanbd,, —H2CH, —coscd, —sinctanbd,, —0,) and
’ cosb ’

nt =da —sinbdec + du,
I'=19 n?=cosadb+ cosbsinade+ Fdu+ dv, (5.188)

773 =cosbcosadc —sinadb+ FF,du+ F,dv,

where F' = F(u,v) is a differentiable function subject to the constraint D,(FF, + v — F,) # 0. We
now start the Monge Algorithm 3.5.8.
[0] By construction, (5.188) is an adapted basis of I, that is, I’ = {n',7*}.

[1] Immediately we see that Eng(n') = 1. Define the change of coordinates 71 : N — N by

yl=—c, y>’=—-a—u, y>=sinb, yt=u, ¢y>=0.
The inverse 7, 1is given by

a=—y?—yt, b=arcsiny®, c=—y', u=y*, v=1yb.

Accordingly, we see that 01 = —77 1 "n! = dy? — y3 dy', as wanted. Now, we write 52 in these new

coordinates. Set F' = F(y*,y°) = F(u,v), then

cos (y% + y*
m=m 0t =1y sin (v’ +y*) dy' + CSW V) 13 4 Fayt +ay,

\/17y32
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and thus the local expression of I’ in these new coordinates is

01 — dy2 _y3 dy17

I = s (12 4 5.189
778:\/1—y323in(y2—|—y4)dyl+7C05(y +y)dy3+de4+dy5. ( )
1—y32

[2] We seek for 62 = dU —V3dy? —V'dy' = W6 + An? € I'. Using (5.189) and the notation

in Proposition 3.3.3, we write

77(2) = YO1 dy1 + Y02 dy2 +Y3 dy3 +Yv4 dy4 +Y? dy5

2, .4
=\/1—¢37sin (y® +yH) dy' + wdy?’ + Fdy* +dy°.

V1 -3

Accordingly, the PDE system (3.47) becomes

% = AY* = AF,
63;] (5.190)
aiys = AY5 - A,

. . . G . .
Without loss in generality, we can set F' = Gy‘f for a generic function G. Then take A = G5 and

(5.190) becomes

W
ay4 Y
(5.191)
ou
oy = O

and the solution is U = G(y*,9°), thus F = o~ and A = U,s. Consequently, the expressions (3.48)

become oU
_ 2 __
W = 42 —AYy =0,
oU cos (y? +y*)
3 _ 3 _
Ve = 783/3 —AY? = —Uys

m ’ (5.192)

ou
V= 1 + W — AYY = —Upsy/1 — y3%sin (2 + yt).
From (5.192) we define

f=-vt= —Uysy/1— y3?sin (y2 + y?), (5.193)



184

and a new change of coordinates 75 : N — N such that

pl=yl, 2=yt P =yd at=U, F=VP=_Up
1— y3?
The inverse of 75 can be defined by
b oyt=al, P=a? P=ad yi=0, =V
In particular from (5.193) we compute
f:fOT2_1::r5(17x32)sin(x2+U)’ (5.194)

cos (22 + U)
where U = U(x2, 2%, 2°). Consequently we have

0t = daz? — 23 dat,
I' = (5.195)
0> = 7,12 = dat — 2® da® + fda?,

which is the general Goursat normal form of I’. By Theorem 3.4.4 we have f;5,5 # 0.

[3] We can complete I’ to a basis of I by setting

03 = da® — fosdat.

Then I can be written in the general Goursat normal form

0' = da® — 23 da?,
I'=40*=da* —25da® + fdat,

0® = da® — fusdat.

From (5.194), we compute

2

fos = (1 — 23T (2%, 2, 2°). (5.196)
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[4] Here we obtain the Monge normal form. Define the change of coordinates 74 : N — N by
X=z' Y=2% Z=z' Yi=23 Yo=fs.
The inverse 7, * : N — N is defined by
=X, 2=V, 2=V, 2*=2 2 =T(Y,Z,Y,Ys),

where T o 74 = fu5.

We have thus constructed a local change of coordinates T =714 0m o7 : N — N given by
X=-¢ Y=-u—a, Z=U, Yy =sinb, Yo=T(a,b,u,v)
and with inverse 7! given by
a=-Y -U, b=arcsinYy, c=-X, u=UY,2ZY,Ys), v=V(Y,ZY,Ys).

According to these, I' is 7-related to

Yi cos X Oy + cos X By
cos XY1* + 2sin XY72Y, — 2cos XY12 — 2sin XY, Y5 4 cos X + cos X Va2
- (1-Y,2)3/2

{ —sin X1/1 - Y120y,

aYg )

—sin XY; sin X

Ay — o
V1 —Y;? * V1-Y;2 v

—sin XY;% +2cos XY1%Ys + 2sin XY;2 — 2cos XY;Ys — sin X — sin X Yy?

—cos Xy/1 7Y123y1

— 0 0
(1- V22 v Ox)
which is the prolongation of <z//11‘370% Ox + \/Cfsi = Jy, _\Zn );};1 — \/Sini(/ = Jy, 0x). Consequently
—r1 —r] —r1 —r1

Yy? ( Ys
ehave Z; = /1 - Yi°+ —=— h( Z,Y + arctan ———— . O
W Vi 1 \/ 1 17Y12 17Y12
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CHAPTER 6

EXAMPLES

In this chapter we list examples of inequivalent general Monge equations, for each algebraic type
[g] considered in Chapter 5. We determine the root type of their corresponding Cartan 2-tensor using
the program FiveVariables (see Chapter 8). The full symmetry algebra Sym of each of the equations
considered is also calculated and, in some cases, we identify the corresponding nonlinear involutive
system obtained by lifting.

In Table 3.1 (see page 63) we reported the normal forms obtained by Cartan. We recall that
every general Monge equation of root type [0o] is equivalent to the Hilbert-Cartan equation Z; = Y2
(see examples 4.1.14 and 4.3.2, where the corresponding nonlinear involutive system is given). The
full symmetry algebra of this equation is the 14-dimensional exceptional simple Lie algebra go, see
Section 7.4. For each algebraic type [g] we were able to find a representative of the root type [o0],
except for the algebraic type Asg.

Concerning the root type [4], Cartan obtained the general Monge normal form

1 1
7= <Y22 + Eokyf + (1+ & — k") Y2) :

where k = k(X)) is an invariant. If k is a constant then dim Sym = 7 and two equations are equivalent
if and only if they have the same invariant. If k is not a constant then dim Sym = 6. In this case,
assume I; and I, are GR3D5 Pfaffian systems with corresponding invariants k; and ke such that
k= F;(k;), then I; and I are equivalent if and only if F} and F, are the same expressions. We
provide one example for which dim Sym = 6 and various for which dim Sym = 7, postponing to a
future analysis a more detailed classification of this last ones.

According to Cartan, when the root type is [2,2] then dim Sym = 5 or dim Sym = 6. When
dim Sym = 6 then Sym is the direct sum of two 3-dimensional Lie algebras or it is the algebra of

FEuclidean movement in the space. Cartan provides a couple of normal forms only for some special
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cases where dim Sym = 6. We present several examples of both cases, whose full classification will
be shortly available.

For the root types [3,1], [2,1,1] and [1,1,1,1] Cartan did not provide any normal forms, but
he pointed out that in these cases dim Sym < 5. We produce a wide list of inequivalent general
Monge equations with these root types. In particular, the list for the root type [3,1] includes all
inequivalent Monge equations.

For the convenience of the reader, we report our root-type lists in Section 6.10.

6.1 34,

In this section,

Z1 =h(Y1,Y2), hy,y, #0, and I' = (9x, 0y, 0z).

The root type [00] is represented by Z; = Y5%. For the other root types we have the following

examples.

# Root type | dimSym | h(Y7,Y2)
6.1.1 | [4] 7 Yy?

6.1.2 | [4] 7 V12 4+ Y52
6.1.3 | [3,1] 4 Y713 4+ Vy?
6.1.4 | [2,2] 5 Y12+ Y5
6.1.5 | [2,2] 4 Y13 + Y53
6.1.6 | [2,1,1] 5 Y, Y52
6.1.7 | [1,1,1,1] 5 Y153
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# Completion of T to Sym

6.11 | X0y, X0x—5Z0z, YOy+3Z0z, Y2"0x+ (Y2’Y1—32)0y +32Y2°0z.
6.12 | X0y +2Y 0y, YOr+220;, X0y +2Y1eX0z, e X0y +2YieX0;.
6.1.3 | X0x —Y 0y —5Z0z.

6.14 | X0y +2Y 0z, XOx+4Y 0Oy +7Z0z.

6.15 | YOy +3Z0;.

6.1.6 | X0x —4Z 0z, Y Oy +3Z0z.

6.1.7 | X0x —6Z20z, YOy +4Z0;.

From Example 6.1.6, the general Monge equation

Z' =YY" (6.1)

is lifted (see Section 4.4) to the nonlinear involutive system

t
r = —=(9t*z* — 10222y + 5y,

?wz (6.2)
— Y202 ),
s=—_(t"2" —y)
The 2-dimensional integral manifold s : (Z, X) € R? — J(R? R) of (6.2) is
12
=% y=Xz+3Y" 2= S—AY”E’ +3Y'Y"? +3Y - Z, (6.3)
z

where Y and Z satisfy (6.1).

6.2 A A

In this section we have

Z1=X"?hV,W), where V=XY;, W=X2Y,, hyw #0, and

T =(dy, Zd; — X dx, y).
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The root type [oc] is represented by Z; = Y1*Y; ™!, which is obtained by setting h(XYy, X2Y;) =

h(V,W) = VAW L, For the other root types we have the following examples.

# Root type | dimSym | h(V,W)

6.2.1 | [4] 7 w2

6.2.2 | [3,1] 3 Vm 4 w2, m¢{0,1,2}
6.2.3 | [3,1] 4 VSw?2

6.2.4 | 2,2] 5 (VWw)*/3

6.2.5 | [2,1,1] 5 wn, ne{-1,3,3}

6.2.6 | [1,1,1,1] 5 W, n¢{-1,0,11,23}
6.2.7 | [1,1,1,1] 5 VSR £ 2

# Completion of T to Sym
621 | X0y, YOyr+2Z9;, mX0y —2Y10z, XlnX0y —2(Y — XY1)0z.
6.2.2 | 00x.
6.2.3 | YOy —3Z05.
6.24 | Ox, YOy +3520z.
6.2.5 | X0y, YOy +nZoz.
6.2.6 | X0y, YOy +nZoy.
6.2.7 | X0y, YOy —3Z0z.
6.3 As;

We start from

7y =Y +h(¥1,Ya),

hY2Y2 7é O,

I'= <az, Ox, Oy +Xaz>.



The root type [0co] has the representative Z; =Y + Y»2. For the other root types we have

# Root type | dimSym | h(Y7,Y2)
6.3.1 | [4] 7 Y, (™Y
6.3.2 | [4] 7 V12 4+ Y52
6.3.3 | [3,1] 3 Y13+ Y52
6.3.4 | [2,2] 6 InY;
6.3.5 | [2,1,1] 4 Y1Ys?
6.3.6 | [1,1,1,1] 5 Yy?

Completion of T' to Sym

6.3.1

X0y +3X2%07, XO0x+Y0dy+2Z0y,
V2 [9x + (Y1 — V2) 0y +Y 0],
e V2 [0x + (Y1 + V2) Oy +Y 0z].

6.3.2

eX Oy + (2Y1 + 1)€X 0z, e X dy + (2Y1 — 1)€7X 0z,
(AX2-Y)oy + (YX —2Z+ 5 X3+ Y1) 0y,
$X Oy + (Y + 1X?%) 0.

6.3.3

00x.

6.3.4

X8Y+%X2827
X O0x +20y + Z 0z,

2

(X = 2)0x + (Z+2X - %) 0y — (¥ — X7+ Hy2) g,

6.3.5

Xox+5Y oy +120;.

6.3.6

X0y +3X%0z, XOx+3Y 0y +4Z0y.

From Example 6.3.6, the general Monge equation

7' =y +vy"

is lifted (see Section 4.4) to the nonlinear involutive system

1
f@@p + 2¢q + ysin 2t — 2yt),

s = \/Zcost.
x

T =

190

(6.4)
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The 2-dimensional integral manifold s : (£, X) € R? — J(R% R) of (6.5) is

1 ) 1 . 2 6 72
xr = €T s :71'_X + 5
e Vs Y e
1
2= Z (= X)Y" = 3Y"Y 4 (@ - X)'Y 4+ (¢ - X)Y + Z (6.6)
1 9 R 2 z—X
+ WG [GY” + (2 — X)Z} arctan( N >,

where Y and Z satisfy (6.4).

6.4 Asy

In this section we have

Y +h(V,W)
T xr

F:<8z, 1DX82+X8y,Zaz—Xax>

7 where V=Y - V1 X, W=Y2X?% hww #0, and

One representatives of the root type [co] is the parametric general Monge equation

Y +m(W?2 4 2nV?)
Zl = X2 ’

for n € {1, —%}, m # 0. We were not able to provide a representative of the root type [2,2]. For

the other root types we have the following.

# Root type | dimSym | h(V, W)

6.4.1 | [4] 7 W2+Vvm me{0,1,2}
6.4.2 | [3,1] 3 W2+V™ m¢{0,1,2}
6.4.3 | [2,1,1] 4 w1t

6.4.4 | [2,1,1] wi/3

6.4.5 | [1,1,1,1] 4 w3

6.4.6 | [1,1,1,1] w?2/3
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# Completion of ' to Sym
form=0: Oy — %82, %8Z—IHX8%
641 | [AInX(InX —2) —2Y +2Y1X| 07 — X(1 — InX) dy,
MX(InX+4)+4Y]0y — X ' InX(In X +4Y1X +6) —8ZX —4Y +4Y1X — 2] 07.
6.4.2 | 00x.
6.4.3 | Oy — % 0z.
6.4.4 | at least that in 6.4.3, one more at most.
6.4.5 | same as in 6.4.3.
6.4.6 | at least that in 6.4.3, one more at most.
6.5 A5

In this section

Z

_ 1
T eX?

I'= <X1/€ ay, (92, E(Zaz - Xax)>

h(V,W), where V =eXY; -Y, €€X2Yo+ XY, —Y, hww #0, and

The algebraic type considered in this section depends on the parameter € # 0. We show several

examples of the root type [00], according to different values of e.

Root type | h(V,W) | €

[o0] w2 +1,44
[00] V=Sw? | 1,9
[00] w1t +5

[00] w/3 +1




Other root types are represented by the following examples.

# Root type | dimSym | h(V, W)
6.5.1 | [4] 7 W2, e {£1,+4}
6.5.2 | [3,1] 3 VOIW?, e {1,9}
6.5.3 | [2,2] 6 W=t e=+1
6.5.4 | [2,1,1] 5 Wt ed {£1,£5}
6.5.5 | [2,1,1] 5 W3, e £ +1
6.5.6 | [2,1,1] 5 W23, e = +1
6.5.7 | [2,1,1] 4 VW2 m ¢ {0, -5}
6.5.8 | [1,1,1,1] 5 w3
6.5.9 | [1,1,1,1] 4 VmW3 m #0
# Completion of I' to Sym
X-Yedy, Yoy +2Z0y,
6.5.1 | X110y +2(e — 2)eXV(eXY, +Y) 0y,
X9y +2(e +2)eXV(eXY, —Y) .
6.5.2 | for e ¢ {1,9}: YOy —3Z0y.
653 | +0yv, YOy —Z0z, (XYi+Y)0x+55%(X2Y1?-Y?)0y — 450z
6.5.4 )(71/E ay, Y Oy — Z 0.
6.5.5 )(_1/68)/7 Y Oy + %Zaz
6.5.6 | fore=+1: X V0y, YOy +2Z0z.
6.5.7 | for m € {0,—5}: YOy +(m+2)Z 0.
6.5.8 | X Y0y, YOy + (m+2)Z0y.
6.5.9 | form#0: YOy + (m+2)Z0z.

193
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6.6 A5,
This section deals with the general Monge equations associated to the last 1-parameter family

of algebras, namely

Zy=hZ,W), where W =Y, —2¢Y; + (€2 +1)Y, hww #0, ,e>0and

I = (eGX sin X 9y, —eX cos X Oy, —0x)

The representatives of the root types [0o] we found are

Root type | h(Z, W)

[00] 2e¢Z + W3,

[o0] ZmW?33 e =0.

We notice that I' is the Lie algebra associated to the group of Euclidean transformations in the
plane, when € = 0. In this case the previous list reduces to the representative Z; = Z™ (Y, + Y)?/3,
for any m.

We were not able to produce examples for the root types [3,1] and [2,2]. Some examples of the

other root types are the following.

# Root type | dimSym | h(V, W)
6.6.1 | [4] 7 w2
6.6.2 | [2,1,1] 5 w1
6.6.3 | [1,1,1,1] 5 w3

# Completion of ' to Sym

Y Oy +2Z0z, 0z,
6.6.1 | e~ sin X 9y — 8ee X [Yi cos X +sin X(Y + Ye2 — €Y1)] Oz,
eX cos X Oy + 8ee“X[Yysin X — cos X (Y + €2Y — €Y7)] 0z.

662 | YOy —Z0z, 0z

6.6.3 | YOy +3Z04, 9z.
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6.7 A37871

In this section we have

1
Zi=eY h(Z,W), where W =e 2VY, — 56—2‘%2, hww # 0, and

I' = (2X 0x — 20y, 2X 0y — X? Ox, Ox)

In the following lists of examples of root type, we assume the parameters m and n to be free if
not otherwise specified.

The representatives of the root types [co] that we found are

o ’ 1 n 1 2
Zl :e(l )Y zZm (Yé - 2Y12> 5 for n € {_1a37352}'

In the following list we have examples of the other root types.

# Root type | dimSym | h(Z, W)

6.7.1 | [4] 4 1+ W ne{-1,2}

6.7.2 | [4] 6 1+ W2/3

6.7.3 | [3,1] 3 Z +W?

6.7.4 | [2,2] 6 ZmWn, n g {-1,0,1,%, 2,2}
6.7.5 | [2,1,1] 3 Zm+ W2 m ¢ {0,1}

6.7.6 | [2,1,1] 3 Zm4+Wnr m#£0,ne{-1,1
6.7.7 | [1,1,1,1] 3 Z+Wr ng{-1,12}




# Completion of I' to Sym
6.7.1 | Oz.
6.7.2 | 97, e Y/20x —eY/20,, e Y/2X0x —2e Y20y —eY/2X 0.
6.7.3 | 00x-

for A=Yo =iV, E=e0720Y n£lm#£1l vi=5250v + 2520z,
6.74 | Vo= 52 270z, vy = BA" ox + (BViA" 4 ol ziom) oy

+ (L 22 (n - 1A B2 ) 0

6.7.5 | 00x.-
6.7.6 | 00x.
6.7.7 | 00x.
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Here we notice that in the case 6.7.4, Sym = A3 g @ Az is the direct sum of two copies of sly,

because <v1, Vo, V3> satisfies the structure equations

[Vi,vo] = 2va, [vi,v3] = —2v3, [va,Vv3]= vy,

used in Section 5.9.

6.8 A3’872

Here we have

The parameters m and n are assumed free if not otherwise specified in the following lists.

Y, -2Y1Z

Zy =72+ Y2WY,W), where W = “——" hyw #0, and

Y

I'=(2X0x —2Z 0z, (1+2XZ) 07 — X?0x, Ox)

The representatives of the root types [co] that we found are

Root type | h(Y, W)

[o0] mY"™ + pW?, for p € {—??—2,3—12}.




We were not able to provide a representative

types we have the following examples.
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of the root types [4] and [3,1]. For the other root

# Root type | dimSym | h(Y,W)
6.8.1 | [2,2] 6 mY"™ + pW?, for p & {—35,0, 35} W2,
6.8.2 | [2,1,1] 3 mY™ + pW?3/3 mp #0,
6.8.3 | [2,1,1] 3 mY"W?2, m # 0,
6.84 | [1,1,1,1] 3 mY"W3, m #0,n¢{0,1}.
6.8.5 | [1,1,1,1] 4 mY"W3, m #0,n € {0,1}.
# Completion of I' to Sym
6.8.1.a | for m =n = p =1, the Airy wave functions are envolved.
6.8.1b | forp#—4, m=0:2Ydy, Y20 + 510z, —ov.
6.8.1.c forp:f%,m:(): vi=Y10z, vo=0y, v3=-Y0y.
6.8.2 00x.
6.8.3 00x.
6.8.4 00x.
6.8.5 Y™ Oy.

Here we notice that in the Example 6.8.1.b, Sym = Az g ® A3 is the direct sum of two copies of

sly. On the other side, in Example 6.8.1.c we have Sym = Az g & A;é, where Agé = (v1,Va,V3)

has structure equations

as seen in Section 5.7.3.

6.9 Asg

[Vlav?)] =V, [V27V3] = —Vg2,

This section deals with the general Monge equations associated to s0(3). These are expressed

by

Y2
Zy=4]1-Y24 2
1-1

(Yl 8X + aY) )

= cos X

V1-Y?

2

hZ, W),

where W =Y + arctan

—sin X

2
_7}/12, h # 0, and
s (Y10x +0y), Ox)

1



# Root type | dimSym | h(Z, W)
6.9.1 | [2,2] [(Z)eAW
6.9.2 | [1,1,1,1] W

6.9.3 | [1,1,1,1] w?2

We were able to find only the following two root types, the symmetries are yet to be computed.
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6.10 Summary of root-type lists

For the convenience of the reader, in this section we summarize the lists of general Monge
equations obtained in this chapter, sorting them by root type. The dimension “dim” and the
algebraic type [g], according to [36], of the full symmetry Sym are provided. In particular we
remark that all the Monge equations of root type [3, 1] here listed are inequivalent. We remind the
reader that As g1 and As g o are representatives of the two inequivalent actions of s((2) on the plane
(see [35]).

Finally, the algebraic types were computed with the precious aid of the LieAlgebras routine of

DifferentialGeometry (Maple 11 and later versions).

Root type [4] Root type [3,1] Root type [2, 2]
dim # dim # [g] dim # [g]
7 6.1.1 4 6.1.3 Ass 6 6.3.4
7 6.1.2 4 6.2.3 V.VRD 6 6.5.3
7 | 621 3 |6.22 Ay @ Ay 6 | 674 | Ags® Az
7 6.3.1 3 6.3.3 Aszq 6 6.8.1.a
7 | 6.3.2 3 | 642 Az 6 | 6.8.1.8 | Ags® A
7 | 641 3 1652 | A, e {1,9} 6 | 68.1c | Ags® Az}
7 | 651 3 |673 As s 5 | 6.14
7 6.6.1 5 6.2.4
6 6.7.2 4 6.1.5
4 6.7.1 6.9.1




Root type [2,1,1]

Root type [1,1,1,1]

dim | # [a] dim | # [g]
5 |6.1.6 5 | 6.1.7
5 |6.25 5 |6.26
5 |654 5 | 6.2.7
5 |655 5 |6.3.6
5 |6.5.6 5 |6.5.8
5 |6.6.2 5 |6.6.3
4 |635 Ay 4 1645 | A3 @4;
4 1643 | AspoA 4 659 |24 e#Am+3
4 6.5.7 | 245, e£m+2 6.8.5 Az @ Ay
3 675 As s 3 |677 As s,
3 |676 Ass 3 |6.84 As g
3 |6.7.2 Asgo 6.4.6
3 [6.7.3 Az 6.9.2
6.4.4 6.9.3
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CHAPTER 7

DARBOUX INTEGRABLE HYPERBOLIC PDE IN THE PLANE

In this Chapter we are concerned with the classification of second order hyperbolic scalar partial
differential equations in two variables (PDE in the plane) which can be solved by the method of
Darboux. These are shown to give rise to hyperbolic Pfaffian systems of rank-3 on a 7-manifold
which are Darboux integrable.

The geometric definition of Darboux integrable hyperbolic PDE is given, followed by a char-
acterizing theorem. Our symmetry normal forms from Chapter 5 are then used to provide a broad
classification of such PDE.

Some examples will be provided at the end.

7.1 Basic definitions

Following [20] and [38], a rank-3 Pfaffian system I defined on a 7-dimensional manifold M7 is

L o1, 72, 02 on My such that

said to be hyperbolic if there exists a local coframe a, o', a2, 7
[i] I = {a7a1,a2},

[ii] Eng(a) = 2 and the following structure equations are satisfied

da=0 mod I,
da' =7 Aot mod 1, (7.1)
do? = 7% A o? mod I.

More precisely, see [20, Proposition 5.5], there exists an adapted coframe on M7 such that

da=a* At +a? Ar? mod a,
do' = Nya? Ao + 7t Aot mod(a,al), (7.2)

doa? = Nio* Aot + 7% Ao mod(a,a?),
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for some functions N; € C*°(M). The functions NN; are called the Monge-Ampére invariants of
I. These structure equations imply that every hyperbolic Pfaffian system I can be only one of the
following three types:

[I] I is Monge-Ampéreif N; =0 for i =1, 2;

[II] I is semi-Monge-Ampére if Ny Ny = 0 and Ni2 + N,? #0;

[II1] I is non-Monge-Ampére if N; # 0 for i = 1, 2.

The next notion to recall is that of Darboux integrability. Let I be a hyperbolic Pfaffian system
satisfying (7.1). We say that I is Darbouz integrable (at level 0) if

[iii] the systems {ﬂ‘i, 0’} are complete, for ¢ = 1, 2.

If I is Darboux integrable, then the Pfaffian systems V; = {a,al,a?, 7' 0'} and Vo =

2 712, 0%} are called singular systems of I and the first integrals of V; are called Darbouz

{a, ot a
invariants of 1. (V1,V3) is said to be a Vessiot pair of I.

Darboux integrable Pfaffian systems of Monge-Ampere type were classified by Goursat [24] over
the complex field and lately by Biesecker [5] over the reals.

A geometric analysis of Darboux integrability for hyperbolic PDE in the plane was given by
Jurds in his PhD thesis [31] and then in an article coauthored with Anderson [32]. Recently, in [3],
Anderson, Fels, and Vassiliou generalize the notion of Darboux integrability for hyperbolic Pfaffian
systems. Here we give a specialized version of the main theorems elaborated in this last work. For
these, we first need to introduce the following notation.

Let I; = {0}, 6?, 03} be a rank-3 Pfaffian system on a 5-manifold M;, for each i = 1, 2. On the
cross-product manifold M; x Ms with standard projections m; : M7 X My — M; we define the rank-6
Pfaffian system I; @ I, with basis {6/ = 76! };?1223 Assume that G is a 3-dimensional symmetry
group of both I and I, and that G acts freely on M; with infinitesimal generators I'; = (E}, B}, E3).
Then there are uniquely defined local lifts T; = (E?, Ei, E4) on M, x My such that m;,I; = I';. Then
the diagonal action of G on M7 x M, is defined by the infinitesimal generators E‘j = Ejl + EJQ, for

j =1,2,3, and we write I' = (Ey, Es, E3).

Theorem 7.1.1. (See [3, Theorem 1.4]) Let I be a Darbouz integrable hyperbolic rank-3 Pfaffian

system on the T-manifold M. Then there exist (locally) a 3-dimensional Lie group G and two Pfaffian
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systems Iy and Iy respectively defined on the 5-manifolds My and My for which the following are
true.

[i] I; has (constant) rank 3 and Ii(oo) = {0}, fori=1,2.

[ii] G is a symmetry group of I;, which acts regularly and freely on M; and transversely to I;, for
1=1,2.

[iii] The reduction by the diagonal action of G on My x My gives (MyxMs)/G = M and (I & I1) /G =

1.

The group G of Theorem 7.1.1 is called the Vessiot group of the Darboux integrable hyperbolic

Pfaffian system I. The Pfaffian systems I; are called side systems.

Theorem 7.1.2. (See [3, Corollary 3.4]) Let I} and I3 be two rank-3 Pfaffian systems respectively
defined on the 5-manifolds My and My such that Il-(oo) = {0}, fori=1,2. Assume the following is
true.

[1] G is a 3-dimensional symmetry group of I;, which acts freely on M; and transversely to I;, for
1=1,2.

[2] The diagonal action of G on My x My is reqular.

Then the following hold.

[i] The quotient manifold M = (M; x Ms3)/G is T-dimensional.

[ii] The rank-6 Pfaffian system I1 @ Is on My x My is reduced by G to a rank-3 Pfaffian system I
on M.

[iii] I is a Darboux integrable hyperbolic Pfaffian system, whose Vessiot group is G.

Notice that Theorem 7.1.1 applies in particular when I is generated by a hyperbolic PDE in
plane, while Theorem 7.1.2 does not guarantee that I is generated by a PDE. In the next section
we will show that when Iy and I are both GR3Ds Pfaffian systems to which Theorem 7.1.2 can be
applied, then I is locally generated by a PDE in plane. Therefore, using the symmetry normal forms
of Chapter 5, we can obtain a broad classification of all Darboux integrable non-Monge-Ampere

hyperbolic PDE in the plane.
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7.2 Non-Monge-Ampeére equations
Now we can establish our classification of Darboux integrable non-Monge-Ampere hyperbolic
equation. We shall use the same notation as in Theorems 7.1.1 and 7.1.2.

First, we must provide a preliminary result that follows from the recent work of Anderson and

Fels [2].

Lemma 7.2.1. If I is a non-Monge-Ampere Darboux integrable Pfaffian system then each side

system is a GR3Ds Pfaffian system.

This results is based on the argument that, in the given hypothesis, the side systems must have
derived type [3,2,0] in order for the Monge invariants to be both non-vanishing,.

We can finally produce our theorem.

Theorem 7.2.2. Let I be a Darboux integrable hyperbolic rank-3 Pfaffian system on a 7-manifold
M. Assume G is the (3-dimensional) Vessiot group of I and that g is the Lie Algebra associated to
G, of type [g] according to [36]. Then I is non-Monge-Ampére if and only if about each point of M
there are local coordinates (A, B, C,uy,v1,us,vs) such that

[i] {u1,v1} and {us,v2} are sets of Darboux invariants of I;

[ii] I can be expressed in one of the normal forms of Tables 7.1 and 7.2 (page 211). In these
tables Fy = Fy(uy,v1) and Fy = Fy(u1,v1) are assumed to be smooth functions, and the expressions

O?K; )
K; = K;(u;,v;, F;) are such that e #0, fori=1, 2.

Vg
Proof. [«<] Each Pfaffian system I in Tables 7.1 and 7.2 (page 211) can be checked to be hyperbolic

and generated by a PDE in the plane, for instance using the characterizations in [20]. By direct

. N . . . . . 2 .
computation one can see that each Monge-Ampére invariant N; is a multiple of the expression %f; ,

and thus non-zero by hypothesis.

This result follows from Theorem 7.1.2 as well, once we show that those in Tables 7.1 and 7.2
are actually reductions of two copies of the systems in Table 1.1. This reduction can be found in
the next part of this proof.

[=] Applying Theorem 7.1.1 and Lemma 7.2.1, we conclude that the side systems I; and I,
satisfy the hypothesis of Theorem 3. Consequently [ is the reduction by G of two copies of one of the

systems in Table 1.1. We now describe the algorithm provided in the proof of [3, Theorem 4.5, page
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1928], which will lead us to the expressions in Table 7.1 and Table 7.2. After the general description

of this algorithm, we shall show the steps at work in one nontrivial example, A3 ;. Finally, we shall
report the main expressions used for each algebraic type.

First, let’s recall the notations preluding Theorem 7.1.1 and let’s consider local coordinates

(as, b, ¢i, ui, v;) on the 5-manifolds M;. A local coordinate system on My x My is (a1,b1, ¢1,u1,v1,

ag,ba, ca, uz, v2) and, locally, the standard projections can be expressed by

ﬂ-i(ala b17 C1,U1,v1, a2, b27 CQa”viQ) = (ai) bi7ci7ui7v’i)'

Now we proceed to the description of the reduction.

[DI 1] This is the setup. Let the algebraic type of the Vessiot algebra of I be [g] as in Theorem
3 (page 5) and Table 1.1 (page 8). We have the corresponding normal form of the side systems I,
which are GR3Ds Pfaffian systems, and the infinitesimal generators I'; of the action of G on M;.
To write the local expression of I; and I'; we identify the local coordinates (a, b, ¢, u,v) in Table 1.1
with (a;, b, ¢i, ui,v;). In a similar way we define the functions K; = m;* K on M; X My, where K is
the function defined in Table 1.1 (page 8). Finally, define the Pfaffian system I1 & I on My x Mo
and the diagonal action of G as described before Theorem 7.1.1.

[DI 2] We define the quotient map. As a consequence of our hypothesis, the diagonal action of
G on the 10-manifold M; x M, has 3-dimensional orbits, and thus there are seven invariants. We
know that by construction four of them are wuy, v1, ug, vo. We label other three by A, B and C. By
Theorem 7.1.1, the diagonal action is regular and on the quotient manifold (M; x Ms)/G = M we
can take local coordinates (A, B, C,u1, v1, u2,v2). Consequently, the quotient map q : My x My — M

is locally defined by

A = A(a;, b, c;), B= B(ai,bi,c;), C = Clas,bi,c;), ur =uy, v1 =01, up = up, vz = vs.

[DI 3] We obtain the reduced Pfaffian system I. Define the rank-3 Pfaffian subsystems I; =

{éf }j=1,2,3 of Iy ®I>. By the transversality conditions, the matrices P; = (EhA éf) are non-singular.

We can change the bases of I; to {8}, 62,63}, where we define (6}, 62,63)T = P71 (0},62,6%)". Now

1?71 171 1?71 7

we define the semi-basic forms, that is the rank-3 subsystem Iy, = {0_{ — 0_5}]-:172’3 of Iy & I,. By
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direct computation, one verifies that I' C (I4)". Consequently the reduced Pfaffian system I is
such that q*I = I,. Finally, because I = s*I, for any section s, we produce the local expressions

in Table 7.1 and Table 7.2 by considering the section s : M — M; x My given by

a1:A, blzB7 01:C’, 02:0, bQZO, CQZO, Uiy = Uy, V1 = V1, U2 = Uz, V3 = V2.

After step [DI 3] we have our local expressions of I = {63,02,03}. In general, this is not an
adapted basis of I, which we usually denote by {a, a!,a?}. To obtain an adapted basis one can use
a standard procedure, for instance the one outlined in [9]. The first step is to obtain I’ = {a}.

We now proceed to a detailed case, As 1, following the three steps described above. In the other
cases we will provide only the data.

[As.1. DI 1] We have
L&, ={dbi— (a; + b;) de; + Fidu; +dvs, da; —a;de; +du;,  de; + Fyy, duibizi 2
and infinitesimal generators of the diagonal action are
E; = —e Op, — €°2 Op,, Fy = —e% Ouy — €16 Oy, — €72 Oy, — C2€° O, Eg = —0¢; — Oe,.
[As,1. DI 2] To complete uq, v1, Uz, v2 to a set of invariants of the diagonal action, we take

A:(Il*ag, B:blfbgf(clch)ag, 0261702.

[A3,1. DI 3] We have

-1 —C; a;



Consequently

cida; — dby + (F1U101 — Fyviuia; — Fl) dui + a;1dvy — cadas + dbs
+ (—F2U262 + Fyvousas + Fg) dus — as d’Ug7
— day — Fyvyduy + das + Fovs dus,

— dCl — Fl’Ul’U,l du1 + d”Ul -+ dCQ + F2U27.L2 dUQ — d’UQ

For all the other cases, we here report only the invariants A, B and C used.

[3A1]A:a1—a2, B:bl—bg, 0201—62.

[A1 @AQ] A:al—agecl_c% B:bl—bg, 0261—02.

[A372] A= a; — (301762CL27 B = b1 — [(Cl — CQ)CLQ =+ b2]€clic2, C = Cc1 — Co.

[A55] A=a1 — e 2ay, B=0b — el1=)py C'=c; —co.

[A57] A=a;—cosc; — coe(c172) gy —gineq — cge(C1 )y,

CcoSC] — 6266(61762)1)2, C=c —oco.

[A3,8] A=a —as+ ln(l — bocy + Czbg),

De 22 C=(cy—cy)

2a9
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B =by +sine; — coeflcr—2) g, —

B = [bl(bgcl — bycoby — 1) + bg](bgcl — cobgy —

m. For this algebraic type we have three possible normal forms.

[As.s.1] Both I1 and I, are GR3Dj; Pfaffian systems with normal form As g as in Table 1.1.

[As.s2] Both I1 and I, are GR3 D5 Pfaffian systems with normal form As g o as in Table 1.1.

[Ass3] I1 and I are GR3 D5 Pfaffian systems with inequivalent normal forms As g as in Table

1.1. In particular different choices of side normal forms will produce equivalent Darboux integrable

Pfaffian systems.
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[A39] B = —arcsin Ly, A = arcsin (C(fﬁ), C = arcsin (COL%), where
L1 = — coscy sin ag cos ¢y cos a; — sin ¢o Sin ag sin ¢ ¢os a; — €os €2 Sin ag sin ¢ sin by sin a;

+ sin ¢ sin as cos ¢ sin by sin a; + cos by cos as cos by sina; — cos ¢s sin by cos ag sin ¢1 cos a;
~+ €oSs ¢ sin by cos as cos ¢y sin by sinaq + sin ¢y sin by cos as cos ¢1 cos ay
+ sin ¢o sin by cos as sin ¢q sin by sinay,
Lo = —sinag sin ¢ cos by cos ¢a + sin ag cos ¢; cos by sin ¢a — cos by cos ag sin by
+ cos ag cos ¢1 cos by cos co sin by + cos as sin ¢ cos by sin ¢s sin by,
L3 = —cos by sinag sin by + sin as cos ¢q cos by cos ¢g sin by

+ sin ay sin ¢1 cos by sin ¢g sin by + sin ¢1 cos by €os ¢3 Cos ag — €os ¢1 €os by sin ¢o cos as.

7.3 Examples

In the following examples we applied the forementioned algorithm [DI] to reduce two copies
of the Hilbert-Cartan equation to a Darboux integrable non-Monge-Ampere hyperbolic PDE in the
plane. We used the Chevalley basis of go provided in Table 7.3 (page 213) and the indicated 3-
dimensional abelian subalgebra P3a; of go. A program developed by Biesecker was used to compute
the Darboux invariants.

The explicit realizations as hyperbolic PDE in the plane are computationally difficult. One
future project is the production of several examples of hyperbolic PDE in the plane obtained from

the normal forms in Tables 7.1 and 7.2.

Example 7.3.1. From P3a; = {Y1, X4, X5} we got the equation

rt — s = t'/3s.



The Darboux invariants are

3t1/3 4 4s

where W7 = 121

)

I, =Wy 4+ W,
1 s
Iy = =2, gW5 + g(P - q*),
t
J1 =W — Wa,
1 S
Jo =2J1gW5 + g(p - q?)»
1
2= 2t1/3'

Example 7.3.2. Using P3as = {X4, X5, X5} we got

The Darboux invariants are

rt — s = 3¢t

t

I —

Lo g g
IQ - 7y]:1 +z,

t

h= g
! 32+ s
Jo = —yJi1 + 2.

Example 7.3.3. From P3a3 = {X3, X5, X¢} we obtained

The Darboux invariants are

" 9 — 4252
rt— 8" = ———.
§3 + 412

Il = (W1 — S) WQ,

1 rq
12 = 8ZSW211 - ?7 (1 - 12£CtW2> s

Ji1 = (Wl + S) WQ,

1
J2 = —8$SW2J1 - —

W(g—mmwg,

4
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Example 7.3.4. Using P3as = {X3, X5, X6} we got
r? (yt +2q) = y°s°

or equivalently

yts
rt—st=—s2—- —2 .
(yt +2q)'/3

The Darboux invariants are

(W1 — Wa) W5 — 2Ws

I fr—
1 W42 )
11W1$W4 2 W5
=~ = 2
2 WS +3(+ys) W
Ji= (W1 +Wa),
J1 Wi 2
J2: 1y - +§(p+y$),

where W1 = y(yt + 2¢)V/3, Wy = VM> W3 = —zy(yx + 4W7), Wy = (yx + 2Wy), W5 =

2(2qy® — WEWs5 + yit). [ ]

According to the general theory exposed in this dissertation, the PDE obtained in the previous
examples are all equivalent, because they are reductions of equivalent GR3Ds Pfaffian systems by
isomorphic symmetry algebras. By these examples, one realizes how complicated the change of

variables involved are.

7.4 Addendum: the exceptional Lie algebra go

This project was motivated by the following question. How many inequivalent symmetry re-
ductions of the Hilbert-Cartan equation z, = y,,> are there? Or rather, considering Theorem 7.1.2,
how many different Darboux integrable generic hyperbolic PDE in the plane can be obtained as
reductions of two copies of the HC equation?

Cartan proved that the HC equation is the only Monge equation which has symmetry algebra
the (real non-compact form of the) exceptional Lie algebra go. Thus our initial question soon turned
out to rise another, rather geometric, one. How many non conjugate 3-dimensional subalgebras does

go have? Searching for an answer we started to study the five variables paper.
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In this section we just report a realization of go as the symmetry algebra of z, = y,.2. A
Chevalley basis for gs is given in Table 7.3 (page 213), then using this and setting Hs = 3H; + Ho,
H, =3H, 4+ 2H5, H; = H, + Hy and Hg = 2H; + H,, the structure equations of go are given in

Table 7.4 (page 214).
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Table 7.1: Non-Monge-Ampere Darboux integrable hyperbolic PDE in the plane (1).

I K.

34,

—dA— Fl’Ul du1 + FQ,UQ d'LLQ, —dB — U1F1'U1 du1 + U2F2v2 d’LLQ,
7dC*(’U1F1U1 7F1)dul+(’02F2U2 7F2) dUQ; KliFZ

A @ Ay

—e CdA— eiC(Fl + AFy,, )duy — e Cdvy + Fodus + dus,
—dC—Flvldul +F2v2dUQ, —dB—ulFlvldul—i-uQngZduQ; K; = F;.

Az

CdA—dB + (CFlvl — Au1F1v1 — Fl) duy + Advy + Fo duo,
—dC — ulFlvldul +dv; + UQFQ,UQdUQ — dws,
—dA—Flvld’Lbl-FFQdeUQ; Kz:Fz

Az

Ce “dA—eCdB+ Fydus + dvs

+ (F1,CA— AFy,, — Fi,, B+ C — F1)e % du; — e % duy,
—e CdA - e_C(AFh,1 +1)duy + dus,
—dC — Fy,, duy + Fy,, dug; K; = F;.

€
AS

itel

e#£0

—e9dA - efc(eflAFlv1 +1)dus + dug,
— e_ECdB — e—eC(Flle + Fl) duy — 6_50 dvi + Fy dus + dvs,
—EdC—Flvl duq +F2v2 dug; K; =F;.

€
3,7

e>0

(esinC — cos C)d A + (ecos C +sinC) d B + ¢““ Fy duy + €© dvsy
sin C'
1

- {((Ae2 +2eB — A)(F) — €)F1,, — (1+¢€%))
cos C

+ €2
+ ((Be* — 24e — B)(F1 — €)F1,, + (1 + €2)F) Trea| du
€
_ {(Ag +2eB — A)F,, % + ((Be® —24e— B)Fy,, + (1 +¢
€

— (ecosC' +sinC)dA + (esinC — cos C) d B + e© duy

cos C'
1+ €2
sinC
1+e
+ [(AEQ +2eB - AR, S0 (B2 —24c— BYFy,, + (14 ¢2) SnC
V1] 4 2 o1 1+ €2
(14€3)dC + Fs,,(Fy — €) duy + Fs,,, dvy — Fy,, (F1 — €) duy — F,,, dvs;
K;,, = (F; —¢€) F;,, — Fyy,.

+ {((Ae2 +2eB — A)(Fy —€)F1,, — (1+ 62)>

— ((B€* —24e — B)(Fy — €)F1,, + (14 €)FY) duy

dvl,
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Table 7.2: Non-Monge-Ampeére Darboux integrable hyperbolic PDE in the plane (2).

(o] I K.

(=1 —2CB)dA + CdB + Fydug + dvy + [Fy,, e 2*(Ce** + CB* + B) — 1 — 2CB] dv,
1
— {62‘4 (2 - FlvlFl) (CB? 4 e*4C + B) + F|, — ¢*AC 4+ 2CBF, | du,,
1
—2BdA +dB — (2 + FQ,U2F2> dug — F2U2 dvg + (Fl’ul 62A 4 F’h}1 8267214 o QB) duy
1
Azg _ (6*21‘1(5 — Fh)lFl)(B2 + e4A) + 2BF; — 62A) duy,
1
2C(CB +1)dA — C?*dB +dC — (5 — Fy, 2) dus + F,, dvy

1
+ {e—”‘(5 — F1,, F1)[C?%e* + (1 — CB)? — C(1 + 2CB)F, — C?¢**} duy
+{2C(1 +COB) — Fi,,e ?4[C?%" + (1 + CB)*} dvy; Ky, = FiFi,, —v; — Fiy,.

1
(-1 =2CB)dA+CdB — 5 Fy, dus + ce* du,

+[~(1 +CB)Be A + (BFy,, +e* F1)C + %Flvl] duy,
©% 1 —2BdA+ dB — Fyduy — dvy + (BFy,, — B*e 7?4 + A F)) duy + 4 duy,
2C(CB+1)dA—C?dB+ dC — duy — C?e*4 dv,

+[(1 4+ CB)?e A 4 (=BFy,, — **F)C? — CFy,,]dui; K;=F; +v;%

(-1-2CB)dA+CdB — F2T dus + [e724((1 + CB)B + Ce*"Fy,,, — 1 — 2CB]dv,
+ e_QA[(—% + F1,, F1)(CB? + Ce* + B) = 2CBe** Fy + "' C — e Fy] duy,
~2BdA+ dB — Fyduy — dvy + [(e 24 B? + 4 Fy,, — 2B]dv,
Az 83 + [(—% + Fr F1)(e724B? + 24) — 2BF) + 24 duy,
2C(CB+1)dA—C?dB + dC — duy + [~ ((1 + CB)?e %4 4+ C%*Fy,,
+2(1+CB)C)dv, + [(% — F1,, F) (e (1 + CB)? 4 &2C?)
+2(1+CB)F, — Y duy; Ky, = FiFy,, —v — Fiy,, Ko= Fy+v°

—cosCcosBdA+sinCdB + dus
— [Fi(F1y, sin A — cos A) sin C' + (Fy (Fi,, cos A+ sin A) sin B + cos B) cos C| duy
— [(F1y, sin A — cos A) sin C' + (Fi,, cos A + sin A) sin B cos C) dvy,
—sinCcosBdA —cosCdB + Fydug + dvs
— [(F1(Fiy, cos A+ sin A) sin B + cos B) sin C' — F;(F},, sin A — cos A) cos C] duy
— [(F1y, cos A+ sin A) sin Bsin C — (Fy,, sin A — cos A) cos C d vy,
sinBdA — dC + FyFs,, dus + Fs,, dvy — [(F1,, cos A+ sin A)Fy cos B — sin B] du,
— (cos AFy,, +sinA)cos Bdvy; K, = FiF;,, +v; — Fyy, .

Az
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Table 7.3: A Chevalley basis for gs.

Hy = y0y + Y20y, + You0y,, + 220,
Hy = —20, — 3y0y — 2y.0y, — Y220y,, — 320,

X1 = (—4y3 + 6yary) 0o + (—3zy + 6YYa Yoo — iyi) 0y + (3yYse — 3ys2) Oy,

+ (=3Ysaz + 202,Yz) Oy, + (205,y — 32%) -,

1
Yl = gazv
X2 = (an + 8%7

3 3 3

3 3 3 1
+ (43/313‘.2 - 521’ - yi) ayz + (ygzx — YzzlYzx — 22) 6yza: + (21/2951'2 - 3ya:2> 827

X35 = (8yy — 6Ygzx) Or + (Szac — 6YuYral + 4y§) Oy +3 (z — yiwx) 0Oy,

1 1 1

Xy = —40,,

Yy = ixzaz + Zyazay + <iyxa: + iy) Oy, + <yz - iymw> By, +Y320:,

w- 1,

Y5 = <;yx502 - Zyx - éymﬁ) Ox + <iy§$2 - éyxymfcg - 292 + 1162$3> %
+ (—116y32mx3 + %sz - Zyzy + 19920%) Oy,

Lo 2,3 1o 1

1 3 3 1
+ (—24yizx3 + Zzy:xx - ZZy - 3yi> 0z,

8
X6 = —8Ywa0z + (_Symzym + 42) 8y - 4yazcxayz - 71429662’

3
1 1 1 1 1
Ys = —@xg’ay - 1—6:1:28% - gaz@yw + <4ymx + 4y> 0,



Table 7.4: Lie brackets in go.
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H; H,y X, Yy X, Ya X5 Ys X, Y Xs Ys Xs Vs
H; 0 0 2X; -2Y7  —X, Ya X —~Ys 0 0 X5 Y; Xe —Y
Hs 0 0 —3X;  3Y1  2X, —2Y» —Xs Y X4 -Yy 3Xs -3Ys 0 0
X; | —2X7  3X, 0 H; X 0 0 Y, 0 0 X 0 0 -V
v, | 2vy -3vi  —H, 0 0 ~Y; X 0 0 0 0 -Ys X5 0
Xo | Xo  —2X, —X; 0 0 Hy —2X, 31 3X5s  2Ys 0 -y, 0 0
Yy | - 2Y, 0 Ys —H, 0 —3X; 2Yy —2X3 -3Ys X4 0 0 0
X5 | —X3 X3 0 —X,  2X4 33Xy 0 Hs 3Xg —2Y» 0 0 0 -V
Ys | Y —Ys Y 0 —3Yy; —2Y, —Hs 0 2X, -3Ys 0 0 X, 0
X4 0 — X4 0 0 —3X5 2Xs —3Xg —2X» 0 Hy 0 Y, 0 Ys
Yy 0 Y 0 0 —2Y;  3Y; 2Y, 3Ys  —Hy 0 —X 0 —-Xs 0
X5 | X5 @ —3Xs —Xg 0 0 — X4 0 0 0 Xs 0 H; 0 Y3
Ys | —Ys 3Ys 0 Yo Y 0 0 0 —Y, 0 —Hs 0 -X; 0
Xe | —Xg 0 0 — X5 0 0 0 — X4 0 X3 0 X 0 He
Yo | Yo 0 Ys 0 0 0 Y, 0 ~Ys 0 -3 0 —H¢ 0
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CHAPTER 8

FIVEVARIABLES PACKAGE

In this Chapter we give a brief account of the equivalence method applied to a general rank-3
Pfaffian system I, as shown by Cartan [10] and Hsiao [29]. A recent description of this method was

provided by Stormark [38, Chapter 16].

From Theorem 3.3.5 and Hsiao [29], we know that there exist a local coframe w!, ..., w® and
1-forms ¢!, ¢2, db, d?, e', e and e on M such that:
[ I= {wl,wQ,wB};

[ii] the following structure equations are satisfied
dw! = et At + A Aw? + WP Aw?,
dw? =d* Nt + P AW+ W AWS, (8.1)
dod =e' Aot + 2 AW+ AW +wt AW

[iii] the Hsiao requirement is satisfied

w? A <e3 — % (c'+ d2)> =0. (8.2)

A change of variables on M, say ¢~ ! : M — M, is equivalent to a linear change of the given
coframe on M, say Q = ¢*Q. Using the vector notation 0= (wl . w5)T, this linear transformation
has to be represented by a 5 x 5 matrix T such that Q = T(). Because ¢ preserves the structure

equations of , Q) satisfies properties [i] to [iii].
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The preservation of the derived system implies that

851

g4l
T = T

b1

b1

b
01
Y
b2

b2

that is, T has only nineteen arbitrary entries.

p3 a f

ps 7

A complete consideration of equations (8.1) reveals that

Lo LB 0
Ly L§

T= x y L
p1 P2 D3
q1 Q42 g3

€ G2, L=ad— ,6’}/ 7é 0. (83)

> L o o o

Consequently, two G R3Ds Pfaffian systems {w!,w?, w3} and {&!, @2 &3} are equivalent if and only

if the local coframes €2 and € (satisfying [i] and [ii]) are related by a transformation T € G2, defined

in (8.3).

Cartan proved that one can actually reduce G2 to a 7-dimensional group G7. Hsiao provided

explicit computations for the reduction from G2 to G7, showing first of all that Hsiao’s requirement

(8.2) (implicitly assumed by Cartan) reduces G12 to a 10-dimensional group G1o defined by

La L5 0 O
Ly Lé 0 0
T= zr y L 0
4F
pr P2 Ly @
3
1
a1 Q2 3L v

where L is defined in (8.3).

> L o o o

€ Gy, F=ay—-pz, G=yy—xd, (8.4)
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Finally, G1¢ is reduced to a 7-dimensional group G7, namely

3oal +2xF 30BL+2yF 4F

Lo Lj 0 0 0
Ly L& 0 0 0

T= T y L 0 0 |eGr, U:%(pl(s_pfy_(hﬁ‘i‘(ﬂa)v (8.5)
B
)

312 312 3L
3ovL +22G  300L + 2yG é
3L2 3L2 3L

where L, F and G are defined in (8.3) and (8.4). The Maurer-Cartan matrix associated to G is

27l 4 7t 2 0 0 O
3 7l + 27t 0 0 0
7o 76 l4+7t 0 0
77 0 %71'6 al 72
0 7’ —% I SR

Consider the principal bundle Py = M x G with local coframe w',...,w®, 7', ..., 77. Then

the structure equations [10, page 149, equation (5)]

dw! = W A (27r1 —|—7T4) + W AT+ WP AWl
dwzzwl/\wg—l—w?/\(7r1—|—27r4)—|—w3/\w5, (8.6)
dw® = ' AT+ AT+ WP A (771 +7r4) +wt AW?
called Cartan’s first formulas are satisfied. These equations are invariant under the equivalences G7.
Introducing two new auxiliary variables vy, vy one defines the group Gg of block matrices
T; 0

€ Gy
Ty I
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such that T7 € G, I; is the identity matrix of order seven and

vy 0 0 0 O
vy 0 0 0 O
0 v 0 0 O
To = 0 v 0 0 O
0 0 »1 0 O
0 0 wvo 0 O
0 0 0 wv v
Consequently we can consider the principal bundle Pi4 = M x Gg with coframe w',..., w® 7', ...,

77, x%, x%. Cartan’s first formulas (8.6) will still hold and be invariant under the equivalences
Gg. Moreover the following set of invariant structure equations, called Cartan’s second formulas, is

revealed [10, page 151, equation (8)]

drt = Wt A (X1+2ng3+2A2w4+2A3w5) +w?A (ng3+A3w4—|—A4w5)
1 2 1
—l—fwg/\ﬂj—fcu4/\7r5—|—fu)5/\7r6—71'2/\7737
3 3 3
d71'2:wl/\x2—|—w2/\(B4w3—|—A4w4—|—A5w5) —w4/\7r6—|—7r2/\(ﬂ'1—7r4),
d7T3:7(4)1/\(B1WS+A1W4+A2LO5)+w2/\X1*w5/\7T5*7T3/\(7T1*7T4),
drnt = —w' A (ng3+A2w4+A3w5) +w? A (X2 — 2B3w® — 245 w* —2A4w5)
1 1 2
—l—gwg/\ﬂ'?—l—gcu‘l/\7r5—§w5/\7r6—1—71'2/\71'37

9 9 3 3
dr® = w! A (32D1 w? + gcl WS+ 131 wt 4+ ZBQ w5) + Wi A (Xl + Aswt + As w5)

(8.7)

9 3 3
—l—wz/\<802w3—|—432@‘14—%433,@‘)5>—w5/\71'7—|—771/\7T‘[”—i—71"3/\71'67

6 _ 1 9 2,9 3,3 4,3 5 3 2 4 5
dm® =w" A 32D2w +8C2w —|—4Bzw +4B3w 4w /\(X Asw A4w)

9 3 3 -
+w? A (803w3+433w4+4B2w5> +wt AT+ AT+t A RS,
9 3

3
dr” = w! A <64Ew2 — ng w?’) — §D2 WAL — WA (32 w* — By w5)

+w4/\(X1+2A3w5)+w5/\x2+(ﬂ'1+ﬂ'4)/\7T7+%7T5/\7T6.
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where Aq,...,As, B1,...,B4, C1,C5,C3, D1, Dy and FE are functions on Py4. Using the notation

ot = ol @ alll = o ® al? for symmetric tensor product of forms, the symmetric (0,4)-tensors

(3] 504]

Fr (w4, w5) = A1w4[4] + 4A2w4[3] oW+ 6A3w4[2] ® w5[2] + 440 O W 4+ Asw

and
Gr (wS,w4,w5) =Fr (w4,w5)

(2] (2]

+4 (Blw4[3] + 3By O w® + 3Bt 0w + B4w5[3]) O wd

16 (C’lw4[2] 2050t 0w+ ng5[2]> ® w3[2]
+4 (D1w4 + D2w5) ® w?’[s]
+ B

are respectively called Cartan 2-tensor and Cartan 3-tensor associated to the general rank-3 Pfaffian

system in five variables I. They are relative invariant with respect to Gy, in the following sense.

Consider the two homogeneous polynomials, which we call Cartan tensors,
Fr = A1$14 + 4A2.1313.132 + 6A31‘12$22 + 4A4I1$23 + A51‘24,

and
g[ = .7:] + 4 (31113 + 3B21‘121‘2 + 3B31‘1$22 + B4$23) I3

+6 (C1m12 + 2C5x 120 + ng22) 2324+ 4 (D121 + Doxs) 23> + Fast.

The linear factors of F; can be called roots and we can call root type of these polynomials their
factorization by means of roots. For instance, if K; is a linear expression in 1 and o, then F; must
be of one of the following types:

[00] infinitely many roots, F; = 0;

[4] one root of multiplicity four, F; = K1*;

[3,1] one triple root and one simple root, F; = K1°Ks;

[2,2] two double roots, F; = K;?Ky?%;

[2,1,1] one double root and two simple roots, Fr = Ki’K>Ks:

[1,1,1,1] four simple roots, F; = K1 Ko K3K},.
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If two GR3Ds5 Pfaffian systems I and J are equivalent then their Cartan tensors F; and Fj
have the same type of roots. However, we must notice that if F; and F; have the same root type,
I and J need not to be equivalent (unless F; = 0). The root type of a GR3 D5 Pfaffian system I is
defined as the root type of its Cartan 2-tensor Fj.

The root type [3,1] and [2,1,1] were treated simultaneously by Cartan [10, §VII], while Stormak
[38] does not point out the type [2,1,1]. For the first time in the literature we provided, in Chapter
6, examples of GR3Djy Pfaffian systems for all the root types.

We implemented the above procedure in Maple language with commands defined in the Differ-
entialGeometry package. In this way we built a program, called FiveVariables. Using FiveVariables
we can compute the Cartan tensors and the root type of any G R3 D5 Pfaffian system. Moreover, our
program can handle even nonlinear involutive systems or general Goursat equations, when realized
as in Section 4.3. Using FiveVariables we can determine if two given nonlinear involutive systems
(or two general Goursat equations) are not equivalent. The examples in Chapter 6 were determined
using our software.

A detailed guide for FiveVariables is the subject of a future work. We note that this software
handles G R3 D5 Pfaffian systems and their lifts to 6-manifold, that is, the Pfaffian systems generated
by nonlinear involutive systems or the Pfaffian systems associated to general Goursat equations (see
Section 4.3). Here we report the main routines defined in FiveVariables and their purpose.

When executing the Maple command
> with(FiveVariables);

the user will see the following routines

[CartanTensor, ClassifyCartanTensor, CreateCartanTensor, Five VariablesChecks, GeneralForm,
HsiaoRequirement, ModuleApply, PointCartan3Tensor, PointCartanTensor, PolyCartanTensor, Pro-
longation, Reductionl, Reduction?2].

The main routine “ModuleApply” is executed by the command “FiveVariables”. The arguments
of this command are of various nature, depending on the goal of the user. For instance, one can

start a computation from a previous one, using stored data, or one can start a new computation
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providing an adapted basis (see Definition 2.6.2) for the GR3Ds Pfaffian system at hand. Several
options are available.

The command “GeneralForm” produces an adapted coframe satisfying properties [i] and [ii].

Starting from an adapted coframe produced by “GeneralForm”, the command “HsiaoRequire-
ment” computes an adapted coframe and the auxiliary 1-forms ¢, d* and e’ satisfying (8.2).

One can apply the equivalence method described above to this adapted coframe. The routine
“Reductionl” reduces the 19-dimensional structure G1g9 to Gia.

With the routine “Reduction2”, one obtains G7.

Finally, calling “PointCartanTensor” one realizes Gg. Using the Cartan’s formulas, the Cartan
2-tensor (default) or the Cartan 3-tensor are computed.

Implementing an algorithm from [35, Exercise 3.53, page 103], the command “ClassifyCartan-

Tensor” returns the root type of the Cartan 2-tensor handed.
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