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An algorithm is developed to solve the fundamental flow
cases of fully-developed turbulent flow in a pipe and in a
channel. The algorithm uses second-order finite-difference
approximations for nonuniform grid spacing and is
developed in such a way as to easily facilitate the
implementation of several two-equation, Reynolds-
Averaged-Navier-Stokes turbulence models. Results are
included for the Wilcox 1998 k- model.

Introduction

Fully-developed flow in a pipe or channel is a very
fundamental flow scenario for testing turbulence models. The
degree to which a turbulence model is seen to be valid is
partially based on the ability of the model to predict the wall
shear stress of turbulent flows in pipes and channels as a
function of Reynolds number. This paper presents the
development of a second-order algorithm that can be easily
adapted to several two-equation turbulence models.

Governing Equations

The governing steady-state, incompressible continuity and
Boussinesq-RANS equations can be written in vector form as
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For fully-developed flow in a pipe, the gradients of transport
properties along the axis of the pipe are zero. Additionally, all
gradients with respect to @ are zero and there is no component of
velocity in the azimuthal direction. Therefore, Egs. (1) and (2)
can be written in cylindrical coordinates as
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where the coordinate » is the normal coordinate measured
outward from the center of the pipe, and z is the coordinate along
the axis of the pipe. The no-slip boundary conditions at the wall
of the pipe, =R, are
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Applying the 17, boundary condition to the integral of Eq. (3)
gives V. = 0 and the governing equations can be written as
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The results of Eq. (8) show that f) = f)(z) which has been used
in Eq. (9). The velocity boundary condition at the center of the
pipe, r=0, is
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Integrating Eq. (9) from the centerline to some arbitrary
distance, r, gives
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where C is an arbitrary constant. Applying the boundary
condition given in Eq. (10) gives C =0 and Eq. (11) can be
written
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The left-hand side of Eq. (12) evaluated at the wall is related to
the shear stress at the wall which can also be written in terms of
the friction velocity
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Using this in Eq. (12) evaluated at #=R gives the relationship
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Using this in Eq. (12) gives the formulation and the remaining
boundary condition
av. ___ui 1
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This can be nondimensionalized using the following parameters
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Using these nondimensional parameters, Eq. (15) can be written
as
N R
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Two-equation RANS-based turbulence models can be coupled
with Eq. (17). A general form for the complete system of
equations including boundary conditions can often be written in
the form
+ .
du R r+) ’ vt 7

A+v* /o) d’ﬂ S,

|-
o

ut()=0, k*(1)=0,

+ +
“m=0 Lo=0 &
dr

Liv* fo i } s, (18)

= (0)=0

where h" represents the second turbulence variable, and f,, S,
and S, are functions of model constants, the turbulence variables,
and their derivatives with respect to 7.

Finite-Difference Discretization

A general formulation for fully-developed pipe and channel
flow can be written to allow implementation of several two-
equation turbulence models. This formulation takes the form
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where the primes represent derivatives with respect to 7.
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Equation (19) can be solved numerically using the finite-
difference method on a non-uniform grid. Here we define a one-
dimensional domain discretized by m nodes. Node 1 is located at
7 =0, and node m is located at 7=1. Applying second-order
forward difference approximations, the first and second
derivatives of any variable, ¢, can be approximated at node 1 as
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Applying second-order forward difference approximations, the
first and second derivatives of any variable, ¢, can be
approximated at node 2 as
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Applying second-order finite difference approximations, the first
and second derivatives of any variable, ¢, can be approximated
at an interior node, j, as
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Applying second-order backward difference approximations, the
first and second derivatives of any variable, ¢, can be
approximated at node m as
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Any number of algorithms can be used for grid generation.
An algorithm that works well for the present study clusters the
nodes near the wall and can be written as
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where f is a clustering parameter.
Once the 7 array has been filled out, the following
coefficient arrays can also be calculated
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Using Eqgs. (25)-(28) in Egs. (20)-(23) gives second-order
approximations for the first and second derivatives of any
variable, ¢
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Beginning with initial estimates for k™ and 2" along with the
known arrays of 7 and y ™, initial estimates for v and u* can
be found from
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If the model requires the second derivative of u* to be
calculated, it can be estimated using Eq. (29)
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Likewise, in light of the boundary conditions, the first
derivatives for k*, ", and v* can be estimated
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The k-transport equation can now be written in terms of the
second-order finite-difference approximations expressed above
including the boundary conditions on k&
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The h-transport equation can also be written in terms of the
second-order finite-difference approximations expressed above
including the boundary conditions on 4
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where fj is the near-wall asymptotic solution for 4™ at node j,
and m;, is an integer that determines how many nodes are
calculated from the near-wall solution. The integer m, =7
should be used if the asymptotic solution of A" is singular.
Otherwise, m;, =1 can generally be used.

The formulations given in Egs. (33) and (34) are for fully-
developed flow in a pipe. This formulation can be used to
calculate fully-developed flow in a channel by making minor
modifications. Here we define P as an array that can be
conditionally evaluated and used for the terms in the pipe
formulation that are different than those in the channel
formulation. For example, in the k-equation P; can be evaluated

as follows
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Solution Procedure

The systems of equations given in Egs. (33) and (34) can be
solved through an iterative process by lagging certain terms. The
systems reduce to tridiagonal systems if any terms other than the
tridiagonal terms are lagged (moved to the right-hand side of the
system) along with the source terms. The solution process
becomes more stable if part of the off-diagonals of the resulting
tridiagonal system are also lagged. In the following algorithms,
Q is a relaxation factor, and 7" is a blending factor. Given initial
estimates for k™ and h™, the following arrays can be calculated
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as row j in the tridiagonal system, the following algorithm can
be used to obtain an improved estimate for k"
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The new estimate for k™ is used in Eq. (36) to update the arrays
in that equation. A similar tridiagonal algorithm can then be used

to evaluate an improved estimate for h*
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The algorithms given in Eqgs. (36)—(38) are repeated until a
converged solution is obtained. Upon completion, u* can be
found by direct numerical integration using the trapedzoidal rule
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Results

Results are included here for the Wilcox 1998 k- model
[1]. This model can be written as
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The shear-flow correction term in the damping equations can be
written in cylindrical coordinates as
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For fully-developed pipe flow, derivatives with respect to § and
z are zero. Applying these simplifications to Eq. (41) and using
the nondimensional definitions
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The Wilcox 1998 k- model is a special case of Eq. (18) where
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The algorithms given in Eqs. (36)—(38) can be used to solve this
model where the functions are defined as

’ ’

okl el K omierls
1 a)}r’ werz V @ 1TR/S
. 24 <0
4 ’ ¢
=R o
1+(R,/8) 140077 7
2
S =vju; ~0.09R2kjw] f; -
2
5, =052 0 RIS 7 130 p2yt
1+Rz/2'95 ' -
6
fh()_
0.072y}

and m,;, =7 can be used because @ is singular at the wall.
Figure 1 shows the grid convergence results of a case for
R, =300.
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Figure 1. Grid convergence results for the Wilcox 1998 k- model.

Figure 2 shows the results of the algorithm presented here
compared to results from code distributed by the author of the
model, Dr. David C. Wilcox.
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Figure 2. Results of the algorithm compared to results from code by Dr.
David C. Wilcox.

These results show that the models grid-converge to the same
solution.

Conclusion

A concise second-order algorithm has been presented that
can be used to implement several two-equation turbulence
models. The results of the Wilcox 1998 k-w model have been
included here.
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