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Sensitivity curves for spaceborne gravitational wave interferometers
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~Received 24 September 1999; revised manuscript received 20 March 2000; published 1 August 2000!

To determine whether particular sources of gravitational radiation will be detectable by a specific gravita-
tional wave detector, it is necessary to know the sensitivity limits of the instrument. These instrumental
sensitivities are often depicted~after averaging over source position and polarization! by graphing the minimal
values of the gravitational wave amplitude detectable by the instrument versus the frequency of the gravita-
tional wave. This paper describes in detail how to compute such a sensitivity curve given a set of specifications
for a spaceborne laser interferometer gravitational wave observatory. Minor errors in the prior literature are
corrected, and the first~mostly! analytic calculation of the gravitational wave transfer function is presented.
Example sensitivity curve calculations are presented for the proposed LISA interferometer.

PACS number~s!: 04.80.Nn, 95.55.Ym

I. INTRODUCTION

Advances in modern technology have ushered in an era of
large laser interferometers designed to be used in the detec-
tion of gravitational radiation, both on the ground and in
space. Such projects include the Laser Interferometric Gravi-
tational Wave Observatory~LIGO! and VIRGO @1,2#
ground-based interferometers, and the proposed Laser Inter-
ferometer Space Antenna~LISA! and OMEGA@3,4# space-
based interferometers. As these detectors come on-line, a
new branch of astronomy will be created and a radically new
view of the Universe is expected to be revealed. With the era
of gravitational wave astronomy on the horizon, much effort
has been devoted to the problem of categorizing sources of
gravitational radiation, and extensive studies are underway
to determine what sources will be visible to the various
detectors.

Typically, the sensitivity of detectors to sources of gravi-
tational radiation has been illustrated using graphs which
compare source strengths~dimensionless strain! to instru-
ment noise as functions of the gravitational wave frequency.
Many different types of plots have appeared in the literature,
ranging from single plots of spectral density to separate am-
plitude plots for each class of source. When considering the
possibility of observing a new source, or comparing aspects
of various proposed gravitational wave observatories, it is
important to be able to generate consistent and accurate noise
curves for a given instrument and to understand what as-
sumptions have gone into generating the curves. This is es-
pecially important in the case of spaceborne gravitational
observatories which are sensitive to low frequency~LF!
gravitational waves~in the band from 1024 Hz to 1 Hz!. In
this LF band, the sources of radiation include bothknown

continuous sources at well-determined strengths and fre-
quencies@5#, for which a signal-to-noise ratio only slightly
greater than one is needed for detection, as well as specula-
tive short-lived ‘‘burst’’ sources requiring a much greater
signal-to-noise ratio for detection.

This paper reviews the mathematical formalism and meth-
odology for generating noise curves for a class of spaceborne
gravitational wave interferometers. A synthesis is provided
here of material which has hitherto been scattered across the
literature, and a variety of new results are incorporated. The
gravitational wave transfer function of an interferometer, av-
eraged over source direction and polarization, is calculated
here for the first time,1 and a number of minor errors in the
existing literature are corrected. Although the results of this
paper are applicable to any spaceborne laser interferometer
system designed for gravitational wave detection, specifics
of the proposed LISA mission are used as an example.

The outline of the paper is as follows. In Sec. II, the
concept of instrumental operation for a spaceborne interfer-
ometer is described. Section III discusses noise sources that
limit the sensitivity of the detector and Sec. IV presents the
mathematical formalism for generating sensitivity curves
from these noise sources. Section V considers the various
types of sensitivity curves which currently exist in the litera-
ture and reconciles the different methods.

II. INSTRUMENT OPERATION

A. Instrument design

The common design concept for proposed spaceborne in-
terferometers consists of a constellation of probes arranged

*Electronic mail address: shane@physics.montana.edu
†Electronic mail address: hiscock@montana.edu
‡Electronic mail address: hellings@graviton.jpl.nasa.gov

1While this paper was in preparation, we became of aware of
recent work by Armstrong, Estabrook, and Tinto@6# which numeri-
cally estimates the gravitational wave transfer function using Monte
Carlo simulations to conduct the averaging. A visual inspection of
the sensitivity curve derived from the transfer function derived by
@6# shows agreement with the results derived in this paper.
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in an equilateral triangle inscribed on the circle of the
probes’ relative orbits. In the simplest configuration, 3
probes are used to form a single Michelson interferometer, as
shown in Fig. 1. The probe at the vertex of the angle corre-
sponds to the central mirror in the interferometer, while the
two probes on the ends of the arms correspond to the end
mirrors. The effect of a gravitational wave passing by the
detector is to stretch or contract space in the arms of the
interferometer. The effects in the two arms will in general be
different, due to the different orientation of the two arms in
space. The wave is detected by monitoring the times of flight
of laser signals between the probes in order to observe and
measure this difference. The basic operation of a space gravi-
tational wave detector consists in measuring the phases of
the incoming laser signals relative to those of the outgoing
signals in both arms of the interferometer and differencing
these relative phases to cancel common phase noise in the
two arms.

In order to avoid spurious motions of the spacecraft that
could mimic the effect of a gravitational wave on the laser
tracking signals, each spacecraft is equipped with a position
control system. This system consists of, first, an accelerom-
eter that measures the motion of the spacecraft relative to a
proof mass that floats freely at the center of the accelerom-
eter and, second, a set of thrusters that accelerate the space-
craft. A control loop fires the thrusters in such a way as to
null the output from the accelerometer and maintain the
spacecraft on a purely gravitational trajectory.

B. Gravitational wave response

The response of an electromagnetic tracking signal to the
passage of a gravitational wave has been shown by Es-
tabrook and Wahlquist@9# to be a Doppler shift in the fre-
quency of the received signal relative to the outgoing signal.
For a gravitational wave of amplitudeh(t), the shift in a
signal of fundamental frequencyno will be given by

Dn~ t,u,c!

no
5

1

2
cos 2c@~12cosu!h~ t !12 cosu

3h~ t2t2t cosu!2~11cosu!h~ t22t!#,

~1!

wheret is the light travel time between end masses,u is the
angle between the lines-of-sight to the probe and to the
source, andc is a principal polarization angle of the quad-
rupole gravitational wave.

The anglesu andc will, for a general spaceborne inter-
ferometer, be slowly varying functions of time, dependent
upon the orbital configuration of the detector. This paper
ignores these time dependencies, which are specific to a par-
ticular mission design, so that the only time dependence as-
sumed in Eq.~1! is the time varying amplitude of the gravi-
tational wave,h(t). The sky-averaged sensitivity obtained by
averaging over the antenna pattern associated with a particu-
lar interferometer orbital configuration will be negligibly dif-
ferent from the all-sky average obtained here for a fictitious
spatially fixed interferometer.2

It is useful to writeh(t) in terms of its Fourier transform
h̃(v). If the Doppler record is sampled for a timeT thenh(t)
is related to its Fourier transform by

h~ t !5
AT

2pE2`

1`

h̃~v!eivtdv, ~2!

where theAT normalization factor is used to keep the power
spectrum roughly independent of time. Using this definition
of the Fourier transform and Eq.~1!, the frequency shift can
be written as

Dn~ t,u,c!5no

AT

2pE2`

1` 1

2
cos~2c!h̃~v,u,c!@~12m!

12me2 ivt(11m)2~11m!e2 i2vt#eivtdv,

~3!

wherem[cosu. The quantity that is actually read out by the
laser interferometer tracking system is phase, so Eq.~3! is
integrated to find the phase in cycles

Df~ t,u,c!5E
0

t

Dn~ t8,u,c!dt8. ~4!

If the phase is divided by the laser frequency and the one-
way light travel time of each arm, one obtains

2The anglesu and c will vary at the orbital period of the inter-
ferometer,Torb . In calculating the response to a gravitational wave
of period Tgw , the relative error in the power spectrum made by
assuming the angles to be constant will be of order (Tgw /Torb)2. As
long as the orbital period is much longer than the gravitational wave
period, this error will be negligible.

FIG. 1. A typical configuration for a spaceborne gravitational
wave interferometer. Three probes form an equilateral triangle, in-
scribed on the relative orbits of the spacecraft. A single Michelson
interferometer is formed using any two legs of the triangle, and a
second~non-independent! interferometer can be formed using the
third arm of the configuration in conjunction with an arm already in
use for the primary signal.
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z~ t,u,c!5
Df~ t,u,c!

not

5
AT

4pt E
2`

1`

dv cos~2c!h̃~v!@~12m!

12me2 ivt(11m)2~11m!e2 i2vt#
1

iv
eivt,

~5!

where Eq.~3! has been used to expandDn(t,u,c), and ar-
bitrary constant phases have been set to zero in the integra-
tion of Eq. ~4!. The 1/v in the Fourier integral arises from
the integration in the time domain in Eq.~4!. This z(t,u,c)
has the property that, in the limit of low frequency, it reduces
to a pure spatial strain. At high frequencies, the signal is
much more complicated due to the threeh-terms that enter at
different times. Nevertheless, in what follows we will
loosely refer to the quantityz(t,u,c) as the gravitational
wave strain.

The goal of gravitational wave detection is to detect the
strain produced by a gravitational wave signal, as given in
Eq. ~5!, in the presence of competing noise. The primary
sources and spectra of this noise will be discussed in the next
section.

III. NOISE SPECTRA

A. Common noise spectra

The signal received in a single arm of the interferometer
is given by

si~ t !5z~ t,u i ,c i !1p~ t !2p~ t22t i !1ni~ t !, ~6!

wheres1(t) ands2(t) are the two noisy strain signals in the
two arms of the interferometer,p(t) is the laser phase noise
which is common to the two arms,ni(t) is the strain noise in
the i th arm produced by all other noise sources, andt i is the
one-way light travel time in thei th arm. The major source of
noise in each arm, by several orders of magnitude, is thep(t)
phase noise in the lasers. However, this noise is common to
both arms of the interferometer and can be eliminated
through signal processing. When an interferometer signal

S~ t !5s1~ t !2s2~ t !

5z1~ t !2z2~ t !1n1~ t !2n2~ t !2p~ t22t1!1p~ t22t2!

~7!

is formed, the laser phase noise will cancel ast1→t2. Un-
fortunately, a space-based interferometer consisting of freely
flying spacecraft will necessarily have unequal armlengths,
preventing effective use ofS(t) as a signal for data analysis.

However, a new data reduction procedure for space inter-
ferometry has been recently discovered and discussed in a
paper by Tinto and Armstrong@10#. This method eliminates
all laser phase noise even if the two light travel timest1 and
t2 are unequal. Working in the time domain, one defines the
combination

X~ t !5s1~ t !2s2~ t !2s1~ t22t2!1s2~ t22t1!

5z1~ t !2z2~ t !2z1~ t22t2!1z2~ t22t1!

1n1~ t !2n1~ t22t2!2n2~ t !1n2~ t22t1!, ~8!

which is devoid of laser phase noise for all values of the two
light travel timest1 andt2. In order for the laser phase noise
to cancel exactly, both light travel times must be known
exactly so that the combination of signals in Eq.~8! can be
correctly formed. In practice, however, all that is necessary is
for the armlengths to be known well enough for the laser
phase noise to become insignificant relative to the indepen-
dent noise sources~discussed next!.

B. Independent noise spectra

Since noise common to the two arms of an interferometer
can be significantly reduced by the procedure just described,
the limiting sensitivity of the space-based gravitational wave
missions is actually determined by noise sources that are
independent in the two arms of the interferometer. The quan-
tity that needs to be calculated for each such noise source is
the phase noise the source produces in a round-trip signal.
This will produce strain noisen(t) to compete with the
gravitational wave signalz(t) @see Eq.~6!#. From Eq.~5!, the
relation between the spectral density of strain noise and the
spectral density of phase noise is seen to be

Sn5
Sf

n0
2t2 . ~9!

In Eq. ~9!, Sf is assumed to represent the total noise contri-
bution of a specific type, produced in the one-arm round-trip
signal. However, each arm is composed of two spacecraft
whose leading noise sources are statistically independent of
each other. RedefiningSf to be the noise of a particular type
in each spacecraft, Eq.~9! can be rewritten

Sn5
2Sf

no
2t2 ~10!

whereSf is now the noise contributed by a single spacecraft.
The noise curves for space gravitational wave detectors

are dominated by acceleration noise at low frequencies and
by position noise at high frequencies. In what follows, we
will consider some of the major sources of this noise.

The most important single source of position noise in the
current designs is shot noise in the detection of the weak
laser signals. Shot noise produces a phase noise~in cycles!
given by

Sf5
hno

4p2Pr

~11!

where hno is the photon energy andPr is the received
power. The received power is calculated from

Pr5PtF ep2no
2D2

c2 GF 1

4pr 2G FepD2

4 G ~12!
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where Pt is the transmitted power, the quantity in the first
square brackets is the directional gain of the transmitter op-
tics with diameterD and efficiencye for light of frequency
no , the quantity in the second square brackets is the space
loss at a distancer, and the quantity in the last square brack-
ets is the effective cross section of the receiving optics. Com-
bining Eqs.~10!–~12!, the formula for the strain noise pro-
duced in each arm by laser shot noise is

Sn52
4c4

p4

hno

e2D4Pt

1

no
4 , ~13!

where we have used the fact thatr'ct. The leading factor
of 2 comes from Eq.~10! and accounts for the fact that there
are two lasers in each arm of the interferometer~one in each
spacecraft!.

There are other one-way noises that affect either the in-
coming signal only~such as thermal noise in the receiver
electronics! or the outgoing signal only~such as pointing
errors that rotate the outgoing nonspherical wave front!. If
the effective position noise of such errors has spectral den-
sity Sx , then the phase noise they produce in the round-trip
signal will have spectral density

Sf5
no

2

c2 Sx ~14!

whereSf is in cycles2 Hz21 andSx is in m2 Hz21. Other
position noise sources, such as thermal variations in the path
through one spacecraft’s optics, will affect both incoming
and outgoing signals and so will produce phase noise with
spectral density given by

Sf54
no

2

c2 Sx . ~15!

Acceleration noise acting on the proof mass in each space-
craft is a noise source of this second type, since a physical
motion of the proof mass will change the path length of both
incoming and outgoing signals. Acceleration noise from a
single proof mass will thus produce phase noise in the re-
ceived two-way signal given in cycles by

Sf~ f !54
no

2Sa

c2~2p f !4 ~16!

whereSa is the acceleration spectral density in m2s24Hz21

and the factor of 4 comes from doubling the effect by acting
on both incoming and outgoing signals. Equations~14!–~16!
are the phase noises produced from position noise in a single
spacecraft; the total position noise in an interferometer arm is
found by using the appropriateSf in Eq. ~10!.

For the current LISA design, the strengths of many of
these noise sources have been budgeted. The shot noise is
expected to have phase spectral densitySf( f )51.2310210

cycles2 Hz21, while the total one-way position noise~in-
cluding shot noise! is allowed spectral densitySx( f )51.6
310221 m2 Hz21 @3#. The major source of acceleration
noise in the space detectors is expected to be parasitic forces

acting on the proof mass of the accelerometer. Accelerom-
eters are very complex and the noise is difficult to character-
ize, especially in the laboratory tests where the proof mass
must be suspended in one-g rather than being allowed to
float freely in space. Nevertheless, from what has been
learned in the laboratory, it appears that a flat acceleration
noise spectrum at a level ofSa59310230 m2 s24 Hz21

should be achievable over most of the frequency band
of interest ~this is the level assumed in the present LISA
design@3#!.

The total noise curves for space gravitational wave detec-
tors are found by adding the various noise spectra in quadra-
ture. Using the values given above for the LISA mission, this
total root spectral density of the instrument is as plotted in
Fig. 2.

IV. GENERATION OF SENSITIVITY CURVES

The sensitivity of an instrument to a gravitational wave
depends on the relationship between the amplitude of the
wave and the size of the signal that eventually appears in the
detector. It also depends on the size of the noise in the final
output signal of the instrument. The connection between am-
plitude and signal is calculated in frequency space and is
called thetransfer function. If the interferometer outputS(t)
has a gravitational wave contribution to it given by

D~ t !5z1~ t !2z2~ t !, ~17!

then the transfer functionR(v) is defined by

SD̄~v!5Sh~v!R~v!, ~18!

where the gravitational wave amplitude spectral density
Sh(v) is defined by

Sh~v!5uh̃~v!u2, ~19!

so that the mean-square gravitational wave strain is given by

FIG. 2. The root spectral density of the noise in the LISA inter-
ferometer formed by adding the strain noises induced by accelera-
tion noise and by total position noise in quadrature.
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^h2&5
1

TE0

`

h~ t !2dt5
1

2pE0

`

Sh~v!dv. ~20!

Similarly, the instrumental responseSD̄(v) is defined such
that

^D2&5
1

2pE0

`

SD̄~v!dv, ~21!

where the brackets indicate a time average and the bar over
the D in Eq. ~21! indicates that it is averaged over source
polarization and direction.

In the next section, the transfer function from the gravita-
tional wave amplitudeh to the interferometer signalD̄
~which is the signal part ofS) is worked out. As discussed in
Sec. III A, the preferred instrumental output would actually
be X(t), defined in Eq.~8!, since it exactly cancels the laser
phase noise in the data. However,X(t) is a difficult quantity
to work with since its transfer function will depend on the
particular values of the interferometer arm lengths,t1 and
t2. One approach to simplify the calculation is to assume
t15t2. ~This approach is taken in Ref.@6#.! At the end of
the next section, we will give the transfer function forX(t)
with this assumption made, and will show that in this limit
S(t) andX(t) yield the same instrumental sensitivity.

A. Gravitational wave transfer function

Previous estimates of sensitivity@8# have often resorted to
working in the long wavelength approximation, beginning
from the Doppler tracking signal described by Eq.~1!, or
have combined results for independent single arms. Here the
exactgravitational wave transfer function is computed, with-
out such approximations, from the gravitational wave strain.

Consider the geometry shown in Fig. 3. The vectorsL1

and L2 point along the arms of the interferometer, and the
vectork points along the propagation vector of the gravita-
tional wave. The quantitiesu i measure the angular separation
between the arm vectors and the propagation vector. The
valueg is the opening angle of the interferometer, ande is
the inclination of the plane containingk andL1 to the plane
of the interferometer.

Not shown are the principal polarization vectors of the
gravitational wave, which lie in a plane 90° away fromk.
The polarization angles,c i , are measured from the point
where the plane of thei th arm and the propagation vector
intersects the plane containing the principal polarization vec-
tor. The anglea in Fig. 3 is simply the difference of the two
polarization angles,a5c22c1.

The average power in the interferometer is given by

^D2&5 lim
T→`

1

TE0

`

uDu2dt, ~22!

where D is defined by Eq.~17!. Using the definition ofz
from Eq. ~5! this can be expanded to yield

^D2&5
1

2pE0

`

dvh̃2~v!
1

~vt!2
@T1~v!1T2~v!22T3~v!#,

~23!

where

T1~v!5cos2~2c1!@m1
2~11cos2~vt!!1sin2~vt!

22m1
2 cos~vt!cos~vtm1!

22m1 sin~vt!sin~vtm1!#, ~24!

T2~v!5cos2~2c2!@m2
2~11cos2~vt!!1sin2~vt!

22m2
2 cos~vt!cos~vtm2!

22m2 sin~vt!sin~vtm2!#, ~25!

T3~v!5cos~2c1!cos~2c2!h~v!, ~26!

with m i5cosui , and where

h~v,u1 ,u2!5@cos~vt!2cos~vtm1!#@cos~vt!

2cos~vtm2!#m1m21@sin~vt!

2m1 sin~vtm1!#@sin~vt!2m2 sin~vtm2!#,

~27!

has been defined for convenience. The expression for the
power in the detector, as given by Eq.~23!, is a complicated
function of frequency and of the orientation between the
propagation vector of the gravitational wave and the interfer-
ometer. It represents the antenna pattern for a laser interfer-
ometer gravitational wave detector. At low frequencies, the
frequency dependence drops out and the expressions sim-
plify greatly @11#, but at higher frequencies it remains a very
complicated frequency-dependent object.

FIG. 3. The geometrical relationship of the interferometer to the
propagation vector of a gravitational wave, used to conduct spatial
averaging. The arms are designated by vectorsL1 and L2 ~solid
black vectors!, while the propagation vector of the gravitational
wave is given byk ~open white arrow!. One arm of the interferom-
eter is aligned along the polar axis of a 2-sphere, the other arm lying
an angular distanceg away long a line of constant longitude. The
anglesu i relate the vectork to the arms of the interferometer, and
the anglee is the inclination of the plane containingk andL1 to the
plane of the interferometer.
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To characterize the average sensitivity of the instrument it
is customary to consider the isotropic power, obtained by
averaging the antenna pattern over all propagation vectors
and all polarizations:

^D2&5
1

8p2E
0

2p

dcE
0

2p

deE
0

p

sinudu^D2&. ~28!

Since the variables (u1 ,c1) and (u2 ,c2) that figure in Eq.
~23! each locate the same propagation vector of the gravita-
tional wave, they are not independent of one another. How-
ever, examination of Eqs.~24!–~26! shows thatT1 depends
only on the (u1 ,c1) variables, whileT2 depends only on
(u2 ,c2). This allows the integration of Eq.~28! to be per-
formed very easily for theT1 andT2 terms without convert-
ing to a common set of angular variables. In each case, the
averaging of theT1 and T2 terms over the (u i ,c i) gives
precisely the same value:

T̄15T̄25
1

8p2E dc1 de du1 sinu1 T1

5
1

2 F „11cos2~vt!…S 1

3
2

2

~vt!2D1sin2~vt!

1
4

~vt!3sin~vt!cos~vt!G . ~29!

The average isotropic power can then be expressed as

^D2&5
1

pE0

`

dv h̃2~v!
1

~vt!2
@ T̄12T̄3#. ~30!

To complete the integration, the functionT3 @which de-
pends on both (u1 ,c1) and (u2 ,c2)] must finally be ex-
pressed in terms of a single set of angular variables. One may
choose to eliminate (u2 ,c2) in favor of (u1 ,c1) by using
conventional spherical trigonometry in Fig. 3. For the polar-
ization angle, the relationship is particularly simple

c25c11a

and the integration overc1 may be carried out analytically,
giving

T̄35
1

8p2E dc1 de du1 sinu1 T3

5
1

8pE de du1 sinu1 cos~2a!h~v,u1 ,u2!. ~31!

The cost of carrying out thec1 integration is the introduction
of the anglea, which can be related to the$e,u i% variables
using the law of sines in Fig. 3:

sina5
sing sine

sinu2
. ~32!

The functionh(v,u1 ,u2) in Eq. ~27! has terms containing
m25cosu2, which must be re-expressed in terms of the inte-
gration variableu1. The relationship betweenu1 and u2 is
given by

cosu25cosg cosu11sing sinu1cose, ~33!

whereg is the opening angle of the interferometer, ande is
the inclination of the gravitational wave propagation vector
to the interferometer. Due to the complexity ofh(v) when
Eq. ~33! is substituted into Eq.~27!, we have not been able to
calculate an expression forT̄3 analytically, so it will be kept
as an explicit integral.

Using the definition ofR(v) from Eq. ~18! with the av-
erage isotropic power in Eq.~30!, the gravitational wave
transfer function is found to be

R~v!52
1

~vt!2
@ T̄12T̄3#

5
1

~vt!2 F „11cos2~vt!…S 1

3
2

2

~vt!2D1sin2~vt!

1
4

~vt!3sin~vt!cos~vt!

2
1

4pE de du1 sinu1~122 sin2a!h~v!G . ~34!

It is straightforward to evaluate the remaining integral using
simple numerical techniques. The exact transfer function, in-
cluding the numerical evaluation of the last integral, is
shown in Fig. 4 as a function of the dimensionless quantity
u5vt.

The high frequency structure in Fig. 4 dominates the
shape of the transfer function at frequencies greater thanv
.1/t. At these frequencies, the armlengtht of the interfer-
ometer becomes comparable to the wavelength of the gravi-

FIG. 4. The transfer functionR(u) is shown as a function of the
dimensionless variableu5vt. Note that it is roughly constant at
low frequencies, and has a ‘‘knee’’ located atu5vt;1.
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tational wave. The extrema in the transfer function are am-
plifications due to interference of the signals in the arms. The
minima occur at frequencies

f 5n/2t. ~35!

The appearance of these periodic amplifications is familiar
from basic interferometry.

Taking the limit of smallvt in Eq. ~34! will yield a low
frequency limit forSD̄ of

SD̄5
4

5
sin2g Sh , ~36!

which is in agreement with a previous result from Hellings
@8#.3

B. Sensitivity curves

The sensitivity curve for a gravitational wave observatory
is obtained from Eq.~18! in the case where the spectral den-
sity of the isotropic power,SD̄ , is equal to the spectral den-
sity of noise in the detector. The noise in the final instrumen-
tal signal may be related to the hardware noise in each
detector by inspection of Eq.~7!. Assuming thatn1(t) and
n2(t) are uncorrelated, the spectral density of the signal pro-
duced by phase measurement noise is

SN52Sn , ~37!

whereSn is the spectral density of noise. The factor of 2 in
Eq. ~37! comes from the twoni(t) in Eq. ~7! adding in
quadrature, since they are uncorrelated. The final equation
for gravitational wave amplitude sensitivity is thus

Sh5
SD̄

R
5

SN

R
5

2Sn

R
. ~38!

The spectral amplitude sensitivity is simply the square root
of Sh , or

hf5ASh5A2
Sn

R
. ~39!

Using the noise curve given in Fig. 2, and using the LISA
value of ct553109 m, the LISA sensitivity curve, com-
puted using Eq.~39!, is shown in Fig. 5. The position of the
high frequency ‘‘knee’’ occurs atf 51/(2pt)51022 Hz.

The greatest sensitivity is seen to occur in a mid-
frequency ‘‘floor;’’ the level of this floor is set by the size of
the position noise. The width of the floor is a function of the
acceleration noise level and the arm length of the interferom-

eter. The low frequency rise occurs when acceleration noise
begins to dominate over position noise; the high frequency
rise is caused by the turnover in the transfer function, atf
.1/(2pt).

C. Comparison with prior results

One may compare the transfer function of Eq.~34! with
others that have previously appeared in the literature. In gen-
eral, previous results have approximated the transfer function
by working in the low frequency limit, where the transfer
function becomes constant@8#.4

For the specific case of LISA, the transfer functions which
have previously been published@3,7# represent a time-
average over the LISA orbit and averages over azimuth and
polarization, but not over source declination~separate trans-
fer functions are shown for specific values of source decli-
nation!. The work presented in this paper is more general,
averaging over source declinations rather than the specific
characteristics of the LISA orbit. The transfer function of Eq.
~34! is the first with true all-sky averaging valid at all fre-
quencies. Also, the previous transfer functions for LISA
have been incorrectly normalized at high frequencies. The
problem with these transfer functions is they have been ob-
tained by multiplying the maximal response of the interfer-
ometer to a high-frequency source~with optimal polarization
and direction! by the value of the transfer function in the
low-frequency limit, as given by Eq.~36!. The actual transfer
function, given by Eq.~34!, is much more complicated than
this, as may be seen in the complicated dependence on fre-

3In the notation of this paper, the interferometer signal has been
multiplied by the laser period and divided by the arm length of the
interferometer, as described in Eq.~5!. To agree with the expres-
sions for the spectral density of the interferometer signalSd in the
literature, this factor must be accounted for above, so thatSd

5(tno)2SD̄ .

4The full transfer function has not been needed for the ground-
based interferometers such as LIGO since in their operation~as
Fabry-Pe´rot cavities! the low frequency limit is valid up to about
40250 kHz.

FIG. 5. The sensitivity curve for the proposed LISA observatory
is shown. The low frequency rise is due to acceleration noise in the
system. The high frequency rise is due to the ‘‘knee’’ in the transfer
function atf .(2pt)21. The structure at high frequencies is a con-
sequence of the high frequency structure in the gravitational wave
transfer function.
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quency and interferometer opening angleg (g enters
through the parametersh anda).

D. The transfer function for X„t…

As discussed at the beginning of Sec. IV, the preferred
signal from the interferometer for purposes of data analysis
is not S(t), but X(t), since the common laser phase noise
exactly cancels inX(t). Unfortunately, the transfer function
for X(t) depends in a complicated way on the particular
values oft1 andt2. However, substantial simplification oc-
curs in the special caset1't25t, which was treated in Ref.
@6#. In this case, the formula forX(t) becomes

X~ t !5z1~ t !2z2~ t !2@z1~ t22t!2z2~ t22t!#1n1~ t !

2n2~ t !2@n1~ t22t!2n2~ t22t!#, ~40!

which may also be written as

X~ t !5J~ t !1s~ t ! ~41!

where

J~ t !5D~ t !2D~ t22t!, ~42!

and

s~ t !5N~ t !2N~ t22t!. ~43!

HereD(t) is given by Eq.~17! andN(t)[n1(t)2n2(t).
The portion ofX(t) which is a gravitational wave signal

is then, by Eq.~42!, simply two copies of theD signal we
have previously analyzed. The transfer function forJ(t)
may be calculated following the procedure in Sec. IV A, to
find

SJ~v!54 sin2~vt!SD̄~v!54 sin2~vt!Sh~v!R~v!,
~44!

where Eq.~18! has been used for the second equality. The
transfer function forX will then be

RX~v!54 sin2~vt!R~v!, ~45!

whereR(v) is the previously derived transfer function for
D, given by Eq.~34!.

At first glance, it appears the that transfer function forX
could be as large as four times the transfer function forD,
and hence that weaker gravitational waves could be observed
by constructingX. However, to determine the sensitivity of
the interferometer, one must equateSJ(v) in Eq. ~44! to the
appropriate spectral density of noise. ForX, this is formed
using thes(t) combination defined in Eq.~43!. Because the
noise contribution toX is formed by the same subtraction
process, it will similarly have

Ss~v!54 sin2~vt!SN~v!. ~46!

The additional factors due to the subtraction process used to
form X, which appear in Eqs.~44!,~46!, will cancel in the
computation of the sensitivity limit of the interferometer:

Sh5
Ss

RX
5

4 sin2~vt!SN~v!

RX
5

2Sn

R
, ~47!

where the second equality follows from Eq.~45! and the
definition of N in terms of theni .

Thus, in the limit ast1→t2, the sensitivity curve forX(t)
will be identical to that previously computed forD(t), as
shown in Fig. 5. We are investigating transfer functions for
unequal arm cases and intend to present these in a future
paper.

V. DISCUSSION AND RECONCILIATION

The final goal of producing noise curves and response
functions is to answer the question of what gravitational
wave sources are detectable. Several different approaches
have been used in the literature to answer this question. It is
the purpose of this section to discuss these different ap-
proaches and to try to reconcile them.

Section III discussed the actual strain noise spectral den-
sity @Sn( f ); see Fig. 2#, and Sec. IV showed how the gravi-
tational wave transfer function@R( f ); Fig. 4# is used to de-
termine the gravitational wave sensitivity curve@Sh( f ); Fig.
5!#. The gravitational wave transfer function actually repre-
sents an averaged response of the interferometer, averaged
over waves coming from different directions and having dif-
ferent wave polarizations. The transfer function, however,
ignores the nature of the source creating the wave; no aver-
aging was performed over parameters describing the sources
themselves. Thus, the resulting gravitational wave sensitivity
curve is equally appropriate for most types of sources. Of
course, because of the averaging over direction, it is not
completely appropriate for a source~like the interacting
white dwarf binary AM CVn! whose direction is known.
Nevertheless, this sensitivity curve seems to us to be a valu-
able intermediate tool to characterize the capability of gravi-
tational wave detectors, especially since the strengths of the
waves from many different types of sources may be plotted
on this same graph. To calculate the gravitational-wave
strength for a particular type of source as it is to be plotted
on the sensitivity curve graph requires some additional steps
specific to each class of sources.

A. Sensitivity to particular types of sources

For continuous monochromatic sourceslike circular com-
pact binaries, the ultimate source sensitivity comes when the
source is sampled for a long period of time so as to narrow
the bandwidth,D f . A continuous source with frequencyf
and amplitudeh that is observed over a timeT will appear in
a Fourier spectrum of the data as a single spectral line with
root spectral density

hf5
h

AD f
5hAT. ~48!

The frequencyf and the amplitudeh will depend on the
several parameters of the binary such as total mass, semi-
major axis, distance to the binary, inclination to the line-of-
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sight, etc. If one wants to consider a population of mono-
chromatic binaries, then an average over the parameters of
possible systems should be taken, and the value used forh at
each frequency should reflect this process.

For signals that areshort bursts, such as would be pro-
duced by a compact body in highly elliptical orbit about a
massive black hole or by high-velocity encounters of mas-
sive compact bodies in a region of high stellar density, the
signal would typically have a characteristic pulse widtht
with a broad spectral content and would occur only once in
the lifetime of the detector. The detection of such a source is
optimal when the bandwidthD f is not much larger thant21.
The relationship between the amplitude of the pulseh and
the strength of the signal as it would be plotted on the root
spectral density graph is therefore given by

hf5
h

AD f
5hAt. ~49!

Again, if a population of burst sources is to be considered,
then one should average the amplitudes over the possible
parameters of the source, including all source orientations
and accounting for the short duty cycles that such sources
typically have.

Finally, one may consider how to include astochastic
backgroundof gravitational waves as a source on the gravi-
tational wave sensitivity graph. In some cases, such as the
case of a stochastic superposition of close compact binary
stars, the amplitude spectral densitySh is known. In these
cases, the root spectral density

hf~ f !5ASh~ f ! ~50!

can be plotted directly on the sensitivity graph. In other
cases, what is assumed is a spectrum of the cosmic energy
density,V( f ). The relationship between amplitude and en-
ergy density is given by

Sh~ f !5
3H2

p3f 2 V~ f ! ~51!

whereH is the Hubble constant. The square root ofSh( f )
may again be plotted directly on the sensitivity graph. Fi-
nally, a cosmic background is often assumed to be simply
peaked at some frequency,f p , and spread over a decade of
bandwidth. In this case, the bandwidth will be approximately
equal to the peak frequency, and a point plotted at

hf5
3H

p3/2f p
3/2

V1/2 ~52!

would represent the peak of the decade-wide spectrum cor-
responding to a total integrated energy density ofV.

B. Reconciliation with other results from the literature

Substantially different methods have often been used in
the previous literature to illustrate the capability of a space-
borne interferometer to detect astrophysical sources of gravi-

tational waves. This section describes how to relate the
methods used in this work to the approach usually taken in
the literature associated with the proposed LISA mission@3#,
and the comprehensive development of sensitivity limits pro-
vided in the review article of Thorne@14#.

As in this paper, other analyses create an initial sensitivity
curve for LISA by analyzing the various noise sources in the
interferometer and then dividing by a transfer function@3,7#.
The LISA instrumental sensitivity, in terms ofhf , is gener-
ally converted to an effective gravitational wave amplitude
sensitivity,h, by dividing the value ofhf at each frequency
by the square root of an assumed one year integration time.
The resulting sensitivity curve inh is also multiplied by a
factor of 5, so that the final curve indicates a one-year inte-
grated threshold for a signal with signal-to-noise ratio>5.
The combination of these factors is

hSNR5
1yr 58.931024hf , ~53!

wherehf is the spectral amplitude in units of Hz21/2.
It should be emphasized that, after having assumed a one-

year integration time, it is only appropriate to plot mono-
chromatic gravitational wave sources against this type of
sensitivity curve, and only for a case where a signal-to-noise
ratio of 5 is actually required. The danger in using such a
graph to characterize the overall detector sensitivity is that it
is subject to easy misinterpretation, which has often occurred
in the literature. An example is the paper by Aguiaret al.
@12#, which simply overestimates the LISA sensitivity to
bursts from black hole oscillations lasting a few minutes by
using the curves representing coherent integration of a signal
for a year.5 On the other hand, the usual LISA sensitivity
curve graph underestimates LISA’s sensitivity to monochro-
matic known sources, such as AMCVn, for which a signal-
to-noise ratio of 5 is an excessive requirement.

Another approach is taken in the comprehensive review
article by Thorne@14#. In this review, Thorne carefully dis-
tinguishes between the three types of source, and analyzes
the response of a detector to each type. For each type of
source, he finally derives a detector sensitivity which is de-
noted byh3/yr( f ), defined as

h3/yr~ f !511@ f Sh~ f !#1/2 burst sources, ~54!

h3/yr~ f !53.8@Sh~ f !31027 Hz#1/2 periodic sources,
~55!

h3/yr~ f !54.5S D f

1027 Hz
D 21/4

@ f Sh~ f !#1/2

stochastic background. ~56!

5The LISA team has recognized the difficulty of using such plots
to characterize the detector sensitivity to bursts@13#.
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Here Sh( f ) is the same spectral density of detector noise
utilized in this paper. The derived sensitivity,h3/yr , repre-
sents the weakest level at which one has 90% confidence of
detecting a signal using two cross-correlated identical detec-
tors. For burst sources, the level is set by demanding three
detections per year. For periodic sources,h3/yr represents the
level obtained in a 1/3 year integration, assuming the fre-
quency and phase of the source are known. Finally, for sto-
chastic sources,h3/yr represents the weakest source that can
be detected with a 1/3 year integration of the cross-
correlation function between two independent detectors.

The development of Thorne’s three dicta for detection of
burst, periodic, and stochastic sources involves detailed as-
sumptions which are described at length in Ref.@14#; that
discussion will not be reproduced in full here. It is worth
noting, however, that not all of the assumptions made in the
development of these dicta are valid for a space-based inter-
ferometer. For example, Thorne assumes one has two inde-
pendent cross-correlated detectors. While this is a valid as-
sumption for LIGO, it is not for a LISA-style instrument.
Although the data from the three LISA arms can be treated
as two interferometers, and hence measure both polarizations
of gravitational waves, the two interferometers are not com-
pletely independent, as they share an arm.

VI. SUMMARY

Constructing the sensitivity curves for a spaceborne ob-
servatory, such as those shown in Fig. 5, is the first step in
understanding the response of the instrument to gravitational
radiation. The formalism developed here can be used to de-
termine the sensitivity ofany space-based interferometer
simply in terms of the essential parameters which describe
the overall design of the instrument. Not only does this allow
one to quickly and accurately assess the performance of one
proposed observatory compared to another, but it also pro-
vides a quick and easy method for considering new observa-
tory designs.

Carefully detailing the response of any new instrument
prepares us for the inevitable detection of unexplainable sig-
nals from distant astrophysical sources, and provides a clear
idea of how to improve our instrumentation for the construc-
tion of the next generation of observatories.
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