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PHYSICAL REVIEW D, VOLUME 62, 062001

Sensitivity curves for spaceborne gravitational wave interferometers

Shane L. Larsohand William A. Hiscock
Department of Physics, Montana State University, Bozeman, Montana 59717

Ronald W. Helling$
Jet Propulsion Laboratory, Pasadena, California 91103
(Received 24 September 1999; revised manuscript received 20 March 2000; published 1 August 2000

To determine whether particular sources of gravitational radiation will be detectable by a specific gravita-
tional wave detector, it is necessary to know the sensitivity limits of the instrument. These instrumental
sensitivities are often depictddfter averaging over source position and polarizatlmngraphing the minimal
values of the gravitational wave amplitude detectable by the instrument versus the frequency of the gravita-
tional wave. This paper describes in detail how to compute such a sensitivity curve given a set of specifications
for a spaceborne laser interferometer gravitational wave observatory. Minor errors in the prior literature are
corrected, and the firgmostly) analytic calculation of the gravitational wave transfer function is presented.
Example sensitivity curve calculations are presented for the proposed LISA interferometer.

PACS numbd(s): 04.80.Nn, 95.55.Ym

[. INTRODUCTION continuous sources at well-determined strengths and fre-
guencieg 5], for which a signal-to-noise ratio only slightly

Advances in modern technology have ushered in an era dgreater than one is needed for detection, as well as specula-
large laser interferometers designed to be used in the deteive short-lived “burst” sources requiring a much greater
tion of gravitational radiation, both on the ground and inSignal-to-noise ratio for detection. _
space. Such projects include the Laser Interferometric Gravi- 1his paper reviews the mathematical formalism and meth-
tational Wave Observatory(LIGO) and VIRGO [1,2] odology for generating noise curves for a class of spaceborne
ground-based interferometers, and the proposed Laser Integravitational wave !nterferometers. A synthesis is provided
ferometer Space Antenr(alSA) and OMEGA[3,4] space- here of material which has hitherto been scattered across the
based interferometers. As these detectors C(;me on-line literature, and a variety of new results are incorporated. The

. . ravitational wave transfer function of an interferometer, av-
new branch of astronomy will be created and a radically new?

view of the Universe is expected to be revealed. With the ereraged over source direction and polarization, is calculated
o P N Rere for the first timé,and a number of minor errors in the
of gravitational wave astronomy on the horizon, much effort

has b d d h bl f - existing literature are corrected. Although the results of this
as been evotg .to the problem 0 categpnzmg sources aper are applicable to any spaceborne laser interferometer
gravitational radiation, and extensive studies are underw.

. ) >t g ystem designed for gravitational wave detection, specifics
to determine what sources will be visible to the variousys ihe proposed LISA mission are used as an example.
detectors. The outline of the paper is as follows. In Sec. Il, the
Typically, the sensitivity of detectors to sources of gravi- concept of instrumental operation for a spaceborne interfer-
tational radiation has been illustrated using graphs whiclhmeter is described. Section Il discusses noise sources that
compare source strengttidimensionless strajnto instru-  Jimit the sensitivity of the detector and Sec. IV presents the
ment noise as functions of the gravitational wave frequencymathematical formalism for generating sensitivity curves
Many different types of plots have appeared in the literaturefrom these noise sources. Section V considers the various

ranging from single plots of spectral density to separate amtypes of sensitivity curves which currently exist in the litera-
plitude plots for each class of source. When considering théyre and reconciles the different methods.

possibility of observing a new source, or comparing aspects
of various proposed gravitational wave observatories, it is Il. INSTRUMENT OPERATION
important to be able to generate consistent and accurate noise
curves for a given instrument and to understand what as-

sumptions have gone into generating the curves. This is es- The common design concept for proposed spaceborne in-
pecially important in the case of spaceborne gravitationaterferometers consists of a constellation of probes arranged
observatories which are sensitive to low frequenty)
gravitational wavesin the band from 10* Hz to 1 H2. In
this LF band, the sources of radiation include b&tiown

A. Instrument design

Iwhile this paper was in preparation, we became of aware of
recent work by Armstrong, Estabrook, and Tifh€d which numeri-
cally estimates the gravitational wave transfer function using Monte

*Electronic mail address: shane@physics.montana.edu Carlo simulations to conduct the averaging. A visual inspection of
"Electronic mail address: hiscock@montana.edu the sensitivity curve derived from the transfer function derived by
*Electronic mail address: hellings@graviton.jpl.nasa.gov [6] shows agreement with the results derived in this paper.
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Av(t,6,y)

(o]

1
=§cos 24 (1—cosh)h(t)+2 coséd

Xh(t—7—7cosf)—(1+cosd)h(t—27)],
(1)

where is the light travel time between end massess the
angle between the lines-of-sight to the probe and to the
source, andy is a principal polarization angle of the quad-
rupole gravitational wave.
The anglesy and ¢ will, for a general spaceborne inter-
FIG. 1. A typical configuration for a spaceborne gravitational ferometer, be slowly varying functions of time, dependent
wave interferometer. Three probes form an equilateral triangle, inupon the orbital configuration of the detector. This paper
scribed on the relative orbits of the spacecraft. A single Michelsorignores these time dependencies, which are specific to a par-
interferometer is formed using any two legs of the triangle, and ajcular mission design, so that the only time dependence as-
second(non-independeitinterferometer can be formed using the symed in Eq(1) is the time varying amplitude of the gravi-
third arm of th_e configuration in conjunction with an arm already in tational waveh(t). The sky-averaged sensitivity obtained by
use for the primary signal. averaging over the antenna pattern associated with a particu-
lar interferometer orbital configuration will be negligibly dif-
ferent from the all-sky average obtained here for a fictitious
in an equilateral triangle inscribed on the circle of thespatially fixed interferometer.
probes’ relative orbits. In the simplest configuration, 3 It is useful to writeh(t) in terms of its Fourier transform
probes are used to form a single Michelson interferometer, as(w). If the Doppler record is sampled for a tirfiehenh(t)
shown in Fig. 1. The probe at the vertex of the angle correis related to its Fourier transform by
sponds to the central mirror in the interferometer, while the
two probes on the ends of the arms correspond to the end ﬁJ‘+wF( )
Z . w

mirrors. The effect of a gravitational wave passing by the h(t)= e'“'do, )
detector is to stretch or contract space in the arms of the

interferometer. The effects in the two arms will in general be o .
different, due to the different orientation of the two arms inwhere theyT normalization factor is used to keep the power

space. The wave is detected by monitoring the times of ﬂigh§pectrum rc_)ughly independent of time. Using this dgfinition
; . of the Fourier transform and E@L), the frequency shift can
of laser signals between the probes in order to observe a written as
measure this difference. The basic operation of a space gravi-
tational wave detector consists in measuring the phases of
: ‘ . . ; JT [+ 1 ~
the incoming laser signals rglatlve to those of thg outgoing A y(t, 9, 4) = ,,O_J = cod2¢)h(w, 0, )[(1— )
signals in both arms of the interferometer and differencing 2m 2
these relative phases to cancel common phase noise in the
two arms.
In order to avoid spurious motions of the spacecraft that (3
could mimic the effect of a gravitational wave on the laser
tracking signals, each spacecraft is equipped with a positiowhereu=cosé. The quantity that is actually read out by the
control system. This system consists of, first, an acceleromaser interferometer tracking system is phase, so(Bgis
eter that measures the motion of the spacecraft relative to igtegrated to find the phase in cycles
proof mass that floats freely at the center of the accelerom-
eter and, second, a set of thrusters that accelerate the space- t ,
craft. A control loop fires the thrusters in such a way aspto Ad(t.0.9)= fOAV(t/'e’ p)dt’. @
null the output from the accelerometer and maintain the
spacecraft on a purely gravitational trajectory.

— o0

+ZMe—iwr(l-f—,u)_(1+M)e—i2w7]eiwtdw’

If the phase is divided by the laser frequency and the one-
way light travel time of each arm, one obtains

B. Gravitational wave response

The response of an electromagnetic tracking signal to the2the angless and y will vary at the orbital period of the inter-
passage of a gravitational wave has been shown by ESgrometerT,,,. In calculating the response to a gravitational wave
tabrook and Wahlquigi9] to be a Doppler shift in the fre-  of period Tqw. the relative error in the power spectrum made by
quency of the received signal relative to the outgoing signalassuming the angles to be constant will be of ordgi( Tor) . As
For a gravitational wave of amplitude(t), the shift in a long as the orbital period is much longer than the gravitational wave
signal of fundamental frequenay, will be given by period, this error will be negligible.
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2(t,60,¢)= 2et.6.9) X(1)=5;(t) = Sp(t) = S1(t—275) +Sy(t—2174)
0, VoT =25(1) = 2(t) =24 (t = 272) + Z5(t = 27y)
T [+= 5 o B )

:4—57 J_wdwcowcﬂ)h(w)[(l—m FNy(1) =Ny (t=27) —np(t) +Ny(t—=27y),  (8)

which is devoid of laser phase noise for all values of the two
light travel timesr; andr,. In order for the laser phase noise
to cancel exactly, both light travel times must be known
exactly so that the combination of signals in E§). can be

(5) correctly formed. In practice, however, all that is necessary is

_ for the armlengths to be known well enough for the laser
where Eq.(3) has been used to expadd(t, 6,y), and ar hase noise to become insignificant relative to the indepen-

bitrary constant phases have been set to zero in the integrg- . )
tion of Eq. (4). The lk in the Fourier integral arises from ent noise source@liscussed next
the integration in the time domain in EG). This z(t, 8, ¢)
has the property that, in the limit of low frequency, it reduces
to a pure spatial strain. At high frequencies, the signal is Since noise common to the two arms of an interferometer
much more complicated due to the thiegerms that enter at can be significantly reduced by the procedure just described,
different times. Nevertheless, in what follows we will the limiting sensitivity of the space-based gravitational wave
loosely refer to the quantity(t,d,y) as the gravitational missions is actually determined by noise sources that are
wave strain. independent in the two arms of the interferometer. The quan-
The goal of gravitational wave detection is to detect thetity that needs to be calculated for each such noise source is
strain produced by a gravitational wave signal, as given irthe phase noise the source produces in a round-trip signal.
Eq. (5), in the presence of competing noise. The primaryThis will produce strain noise(t) to compete with the
sources and spectra of this noise will be discussed in the negfravitational wave signa(t) [see Eq(6)]. From Eq.(5), the
section. relation between the spectral density of strain noise and the
spectral density of phase noise is seen to be

: . 1 .
+ZMefle(lJrM)_(1+M)efl2w'r]melwt,

B. Independent noise spectra

IIl. NOISE SPECTRA

S
A. Common noise spectra S,= Vziz. (9)
0
The signal received in a single arm of the interferometer
is given by In Eq.(9), S, is assumed to represent the total noise contri-
bution of a specific type, produced in the one-arm round-trip
si(t)=2z(t,0; ;) + p(t) —p(t—27) +ni(1), (6)  signal. However, each arm is composed of two spacecraft

whose leading noise sources are statistically independent of

wheres, (t) ands,(t) are the two noisy strain signals in the each other. Redefining, to be the noise of a particular type
two arms of the interferometep(t) is the laser phase noise i each spacecraft, E¢9) can be rewritten

which is common to the two arms;(t) is the strain noise in
thei™ arm produced by all other noise sources, anis the 2S,
one-way light travel time in thé" arm. The major source of Sn:?? (10
noise in each arm, by several orders of magnitude, ip{he 0
phase noise in the lasers. However, this noise is common t@hereS, is now the noise contributed by a single spacecraft.
both arms of the interferometer and can be eliminated The noise curves for space gravitational wave detectors
through signal processing. When an interferometer signal are dominated by acceleration noise at low frequencies and
by position noise at high frequencies. In what follows, we
Z(t)=s1(t) —sy(t) will consider some of the major sources of this noise.
_ _ _ it _ The most important single source of position noise in the
=M= 2O+ =(O) =p(t=2r) +p(t=2r) o0 designs is shot noise in the detection of the weak
(7)  laser signals. Shot noise produces a phase r{oiseycles

. . . given by
is formed, the laser phase noise will cancelrgs> 7,. Un-

fortunately, a space-based interferometer consisting of freely

hy
flying spacecraft will necessarily have unequal armlengths, Sy= 2° (12
preventing effective use &(t) as a signal for data analysis. 4P,

However, a new data reduction procedure for space inter- here hy. is the photon enerav an®. is the received
ferometry has been recently discovered and discussed in v‘gower 'Il'}ﬁe receivef)d oWer is cggllculater d from
paper by Tinto and Armstrondl0]. This method eliminates P ' P

all laser phase noise even if the two light travel timesnd 2 22 2

U . . . emvgD 1 ||ewnD
7, are unequal. Working in the time domain, one defines the P,=P, (12
combination c? 4mr2|| 4
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where P; is the transmitted power, the quantity in the first -15
square brackets is the directional gain of the transmitter op-

tics with diameteD and efficiencye for light of frequency -16
vy, the quantity in the second square brackets is the spac
loss at a distance and the quantity in the last square brack-
ets is the effective cross section of the receiving optics. Com-
bining Egs.(10)—(12), the formula for the strain noise pro-
duced in each arm by laser shot noise is

-17
-18

-19
_2404 hv, 1
ot 62D4Pt vg’

Log VS, (Hz''?)

13

-20

where we have used the fact that c. The leading factor . 4 3 5 1 0

of 2 comes from Eq(10) and accounts for the fact that there Log f (Hz)

are two lasers in each arm of the interferométgre in each

spacecraft FIG. 2. The root spectral density of the noise in the LISA inter-
There are other one-way noises that affect either the inferometer formed by adding the strain noises induced by accelera-

coming signal only(such as thermal noise in the receiver tion noise and by total position noise in quadrature.

electronic$ or the outgoing signal onlysuch as pointing

errors that rotate the outgoing nonspherical wave frofit  acting on the proof mass of the accelerometer. Accelerom-

the effective position noise of such errors has spectral dereters are very complex and the noise is difficult to character-

sity S,, then the phase noise they produce in the round-trigze, especially in the laboratory tests where the proof mass

signal will have spectral density must be suspended in ogerather than being allowed to
5 float freely in space. Nevertheless, from what has been
s :ﬁsx (14) learned in the laboratory, it appears that a flat acceleration
¢ c? noise spectrum at a level &,=9x103% m? s74 Hz !

should be achievable over most of the frequency band
whereS, is in cycle$ Hz ' andS, is in m* Hz *. Other  of interest(this is the level assumed in the present LISA
position noise sources, such as thermal variations in the paifesign[3]).
through one spacecraft's optics, will affect both incoming  The total noise curves for space gravitational wave detec-
and outgoing signals and so will produce phase noise Wwithiors are found by adding the various noise spectra in quadra-

spectral density given by ture. Using the values given above for the LISA mission, this
) total root spectral density of the instrument is as plotted in
4 Fig. 2.
s¢=4€§sx. (15) 9

. . . . IV. GENERATION OF SENSITIVITY CURVES
Acceleration noise acting on the proof mass in each space-

craft is a noise source of this second type, since a physical The sensitivity of an instrument to a gravitational wave

motion of the proof mass will change the path length of bothdepends on the relationship between the amplitude of the
incoming and outgoing signals. Acceleration noise from awave and the size of the signal that eventually appears in the
single proof mass will thus produce phase noise in the reeetector. It also depends on the size of the noise in the final

ceived two-way signal given in cycles by output signal of the instrument. The connection between am-
5 plitude and signal is calculated in frequency space and is
S,(f)=4 VoSa (16) called thetransfer function|f the interferometer outpu. (t)
¢ c’(2mf)? has a gravitational wave contribution to it given by

whereS, is the acceleration spectral density ifsn*Hz !

_ _ A(t)=2zy(t) —z(1), 17)

and the factor of 4 comes from doubling the effect by acting
on both incoming and outgoing signals. Equatiéh—(16)  then the transfer functioR(w) is defined by
are the phase noises produced from position noise in a single
spacecraft; the total position noise in an interferometer arm is _
found by using the appropriat, in Eq. (10). Si(@)=S(@)R(w), (18

For the current LISA design, the strengths of many of o . .
these noise sources have been budgeted. The shot noise’y ere.the _grawtatlonal wave amplitude spectral density
expected to have phase spectral denSjjyf)=1.2x10"1° (@) is defined by
cycleg Hz !, while the total one-way position noigén- 5
cluding shot noisgis allowed spectral densit$,(f)=1.6 Sh(w)=[h(w)|?, (19
X102 m? Hz ! [3]. The major source of acceleration
noise in the space detectors is expected to be parasitic forcee that the mean-square gravitational wave strain is given by

062001-4
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Ly andL, point along the arms of the interferometer, and the
—_— vectork points along the propagation vector of the gravita-
Y tional wave. The quantitieg measure the angular separation

between the arm vectors and the propagation vector. The
value vy is the opening angle of the interferometer, anis
01 the inclination of the plane containingandL ; to the plane
L of the interferometer.
Not shown are the principal polarization vectors of the
gravitational wave, which lie in a plane 90° away frdm

(%} . .
2 The polarization anglesy;, are measured from the point
where the plane of thé" arm and the propagation vector
k intersects the plane containing the principal polarization vec-

tor. The anglex in Fig. 3 is simply the difference of the two

FIG. 3. The geometrical relationship of the interferometer to thepolarization anglese= y,— ;.
propagation vector of a gravitational wave, used to conduct spatial The average power in the interferometer is given by
averaging. The arms are designated by vectorsand L, (solid
black vectory while the propagation vector of the gravitational A
wave is given byk (open white arroiw One arm of the interferom- <A2>: lim ff |A|2dt, (22)
eter is aligned along the polar axis of a 2-sphere, the other arm lying Toe 0
an angular distance away long a line of constant longitude. The . ) . .
anglesé; relate the vectok to the arms of the interferometer, and where A is de_f'ned by Eq(17). Using ,the definition ofz
the anglee is the inclination of the plane containifigandL , to the 1M Eq. (5) this can be expanded to yield

plane of the interferometer.
1

2 :i T2 _
(A%) o) dwh (w)(wT)z[Tl(cu)+T2(w) 2T4()],

1(= 1 (=
<h2>:$f0 h(t)?dt= Efo Si(w)do. (20 @3

Similarly, the instrumental responSx(w) is defined such Where

that Ti(w)=cof(2¢))[ ni(1+coS(wr)) +Sirf(wT)
m: %f:%(w)daﬁ (21) —2,11«% coY wT)Cof wTw)
=21 sSi(w7)sin(wTuy)], (24

where the brackets indicate a time average and the bar over ) .
the A in Eq. (21) indicates that it is averaged over source To(w)=C0S(2¢)[ u5(1+cos(wr)) +sinf(wr)
polarization and direction.

In the next section, the transfer function from the gravita- —2u} codwr)Cog wTpy)
tional wave amplitudeh to the interferometer signal =2, SiN(w7)siN(wTus)], (25
(which is the signal part af) is worked out. As discussed in
Sec. lll A, the preferred instrumental output would actually Ta(w)=c0g 2¢,)cog 2¢,) N(w), (26)

be X(t), defined in Eq(8), since it exactly cancels the laser

phase noise in the data. HowevE(t) is a difficult quantity  with u;=cosé, and where

to work with since its transfer function will depend on the

particular values of the interferometer arm lengthg,and  7(w,6;,0,) =[cofw7)—Ccof wTw1)][COL wT)

7. One approach to simplify the calculation is to assume )

T,=7,. (This approach is taken in Ref6].) At the end of —Cod W) |uapot[SiN(@T)

the next section, we will give the transfer function #6(t _ i i _ ;

with this assumption mac?e, and will show that in thig)limit #a sif@Tpy) JIsiNoT) = p Sifw L))
3.(t) and X(t) yield the same instrumental sensitivity. 27

has been defined for convenience. The expression for the
power in the detector, as given by Eg3), is a complicated
Previous estimates of sensitivit§] have often resorted to function of frequency and of the orientation between the
working in the long wavelength approximation, beginning propagation vector of the gravitational wave and the interfer-
from the Doppler tracking signal described by Ed), or  ometer. It represents the antenna pattern for a laser interfer-
have combined results for independent single arms. Here themeter gravitational wave detector. At low frequencies, the
exactgravitational wave transfer function is computed, with- frequency dependence drops out and the expressions sim-
out such approximations, from the gravitational wave strainplify greatly [11], but at higher frequencies it remains a very
Consider the geometry shown in Fig. 3. The vectofs complicated frequency-dependent object.

A. Gravitational wave transfer function

062001-5
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To characterize the average sensitivity of the instrument it 0
is customary to consider the isotropic power, obtained by
averaging the antenna pattern over all propagation vector:
and all polarizations: -1

. 1 27 2w T é
(A= Wf dzpf def singdo(A®). (28 A |

0 0 0 %0

|

Since the variablesd; , ;) and (0, , ) that figure in Eq.
(23) each locate the same propagation vector of the gravita
tional wave, they are not independent of one another. How-
ever, examination of Eq$24)—(26) shows thafl, depends
only on the @,,,) variables, whileT, depends only on -3 ” - 5 » 0 I p
(6,,4,). This allows the integration of Eq28) to be per- Log u
formed very easily for thd, andT, terms without convert-
ing to a common set of angular variables. In each case, the FIG. 4. The transfer functioR(u) is shown as a function of the
averaging of theT, and T, terms over the §;,4;) gives dimensionless variabla=w. Note that it is roughly constant at

precisely the same value: low frequencies, and has a “knee” locatedwst w7~ 1.
— — ) The functionn(w, 61,65) in Eq. (27) has terms containing
1:T2:8W2f di, de d6, sind, Ty Mo=C0s#,, which must be re-expressed in terms of the inte-
gration variablef,;. The relationship betwee#i; and 6, is
1 1 2 ) given by
=—|(1+ -———|+
5@ cos’-(wa—))(3 (wT)Z) Sirf(wr)
C0S6,=C0Sy COSH,+ Siny Sin 6,COSe, (33

+ iSin(wT)COE(wT) . (29

(w7)°

wherey is the opening angle of the interferometer, anis
the inclination of the gravitational wave propagation vector
The average isotropic power can then be expressed as  tg the interferometer. Due to the complexity pfw) when
Eq. (33 is substituted into Eq27), we have not been able to

calculate an expression fdr analytically, so it will be kept
as an explicit integral.
Using the definition ofR(w) from Egq. (18) with the av-
To complete the integration, the functidiy [which de- — €rage isotrop_ic power in Eq30), the gravitational wave
pends on both §;,;) and (6,,4,)] must finally be ex- transfer function is found to be
pressed in terms of a single set of angular variables. One may

1(=
A%=—| do h%()
(&%= do o)

m™Jo

1 [
)2 [T1—Tsl. (30

choose to eliminate 5, ¢») in favor of (61,¢7) by using 1 - —
conventional spherical trigonometry in Fig. 3. For the polar- R(w)=2(w7)2[T1—T3]
ization angle, the relationship is particularly simple
=+ _ 1 1+ cog (1 2 +sir?
o=yt a = (on? (1+cos(w7)) 3 (w2 (wT)
and the integration ovey, may be carried out analytically, 4
ivin i

g g +mg$ln(w7')C05{wT)

— 1 . 1

TSZWJ dy de d6y sin6, Ty - EJ de d6; sind,(1—2 sifa) p(w)|. (34)

1
=gJ’ de doy sindy cod2a)n(w,01,6,). (31 It is straightforward to evaluate the remaining integral using
simple numerical techniques. The exact transfer function, in-
cluding the numerical evaluation of the last integral, is
shown in Fig. 4 as a function of the dimensionless quantity
U=wr.
The high frequency structure in Fig. 4 dominates the
: . shape of the transfer function at frequencies greater than
sina= M (32  =1/7. Atthese frequencies, the armlengttof the interfer-
sin6, ometer becomes comparable to the wavelength of the gravi-

The cost of carrying out the, integration is the introduction
of the anglea, which can be related to the, 6,} variables
using the law of sines in Fig. 3:

062001-6
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tational wave. The extrema in the transfer function are am-  -15
plifications due to interference of the signals in the arms. The
minima occur at frequencies
f=n/2r. 35 &
N
The appearance of these periodic amplifications is familiard,
from basic interferometry. =
Taking the limit of smallw 7 in Eq. (34) will yield a low on
e 5)
frequency limit forSy of —
4
Si=g sinfy S, (36)
which is in agreement with a previous result from Hellings Log f (Hz)

8].2

(8] FIG. 5. The sensitivity curve for the proposed LISA observatory

is shown. The low frequency rise is due to acceleration noise in the

system. The high frequency rise is due to the “knee” in the transfer
The sensitivity curve for a gravitational wave observatoryfunction atf=(2#7) 1. The structure at high frequencies is a con-

is obtained from Eq(18) in the case where the spectral den- sequence of the high frequency structure in the gravitational wave

sity of the isotropic powerSy, is equal to the spectral den- transfer function.

sity of noise in the detector. The noise in the final instrumen-

tal signal may be related to the hardware noise in each

detector by inspection of Eq7). Assuming thain,(t) and eter. The low frequency rise occurs when acceleration noise

n,(t) are uncorrelated, the spectral density of the signal probegins to dominate over position noise; the high frequency

B. Sensitivity curves

duced by phase measurement noise is rise is caused by the turnover in the transfer functionf at
=1/(277).
SN=2S,, (37)
whereS, is the spectral density of noise. The factor of 2 in C. Comparison with prior results
Eq. (37) comes from the twan;(t) in Eq. (7) adding in One may compare the transfer function of E8¢d) with
quadrature, since they are uncorrelated. The final equationthers that have previously appeared in the literature. In gen-
for gravitational wave amplitude sensitivity is thus eral, previous results have approximated the transfer function

by working in the low frequency limit, where the transfer
function becomes constafg].*

For the specific case of LISA, the transfer functions which
have previously been publishel8,7] represent a time-
The spectral amplitude sensitivity is simply the square rootiverage over the LISA orbit and averages over azimuth and

Sy S 25,
STRTR-R (38)

of S, or polarization, but not over source declinatiGseparate trans-
fer functions are shown for specific values of source decli-
~ 5 - [ Sh nation. The work presented in this paper is more general,
he=VSh= ZE' (39) averaging over source declinations rather than the specific

characteristics of the LISA orbit. The transfer function of Eq.
Using the noise curve given in Fig. 2, and using the LISA(34) is the first with true all-sky averaging valid at all fre-
value of c7=5x10° m, the LISA sensitivity curve, com- quencies. Also, the previous transfer functions for LISA
puted using Eq(39), is shown in Fig. 5. The position of the have been incorrectly normalized at high frequencies. The
high frequency “knee” occurs at=1/(277)=10"2 Hz. problem with these transfer functions is they have been ob-
The greatest sensitivity is seen to occur in a mid-tained by multiplying the maximal response of the interfer-
frequency “floor;” the level of this floor is set by the size of ometer to a high-frequency sourceith optimal polarization
the position noise. The width of the floor is a function of theand direction by the value of the transfer function in the
acceleration noise level and the arm length of the interferomlow-frequency limit, as given by E¢36). The actual transfer
function, given by Eq(34), is much more complicated than
this, as may be seen in the complicated dependence on fre-

3In the notation of this paper, the interferometer signal has been___
multiplied by the laser period and divided by the arm length of the
interferometer, as described in E@). To agree with the expres-  “The full transfer function has not been needed for the ground-
sions for the spectral density of the interferometer si@ain the based interferometers such as LIGO since in their operatsn
literature, this factor must be accounted for above, so Bt Fabry-Peot cavities the low frequency limit is valid up to about
=(7v,)°Sy. 40— 50 kHz.
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quency and interferometer opening ange (y enters S, 4sif(w7)Sy(w) 28, 47
oo T OIS 4
through the parameterg and «). Sh Ry Ry =
D. The transfer function for X(t) where the second equality follows from E@5) and the

As discussed at the beginning of Sec. IV, the preferredl€finition of N in terms of then; . o
signal from the interferometer for purposes of data analysis _1hus, in the limit asr,— 7, the sensitivity curve foX(t)
is not 3(t), but X(t), since the common laser phase noiseWill be identical to that previously computed fax(t), as
exactly cancels irX(t). Unfortunately, the transfer function Shown in Fig. 5. We are investigating transfer functions for
for X(t) depends in a complicated way on the particularunequa| arm cases and intend to present these in a future
values ofr; and r,. However, substantial simplification oc- Paper.
curs in the special casg~ 7,= 7, which was treated in Ref.

[6]. In this case, the formula foX(t) becomes V. DISCUSSION AND RECONCILIATION
X(t)=2zy(t) = Z5(t) —[z4(t— 27) — Zo(t— 27) ]+ Nny(1) The final goal of producing noise curves and response
functions is to answer the question of what gravitational
—Na(t) =[Ny (t—=27)—ny(t—27)], (40 wave sources are detectable. Several different approaches
] ) have been used in the literature to answer this question. It is
which may also be written as the purpose of this section to discuss these different ap-
—_ proaches and to try to reconcile them.
X =2 +o(t) (41) Section Il discussed the actual strain noise spectral den-
where sity [ S,(f); see Fig. 2, and Sec. IV showed how the gravi-
tational wave transfer functiofR(f); Fig. 4] is used to de-
() =A()—A(t—27), (42) termine the gravitational wave sensitivity cuivg,(f); Fig.
5)]. The gravitational wave transfer function actually repre-
and sents an averaged response of the interferometer, averaged
over waves coming from different directions and having dif-
o(t)=N(t)—N(t—27). (43 ferent wave polarizations. The transfer function, however,
ignores the nature of the source creating the wave; no aver-
Here A(t) is given by Eq.(17) andN(t)=ny(t) —nx(t). aging was performed over parameters describing the sources

The portion ofX(t) which is a gravitational wave signal themselves. Thus, the resulting gravitational wave sensitivity
is then, by Eq42), simply two copies of theA signal we  curve is equally appropriate for most types of sources. Of
have previously analyzed. The transfer function B(t)  course, because of the averaging over direction, it is not
may be calculated fO||0Wing the procedure in Sec. IVA, tOComp|ete|y appropriate for a sourdéike the interacting

find white dwarf binary AM CVn) whose direction is known.
2 2 Nevertheless, this sensitivity curve seems to us to be a valu-
Sz(w)=4siM(w7)Si(w)=4siT(w7)S(w)R(w), able intermediate tool to characterize the capability of gravi-

tational wave detectors, especially since the strengths of the

where EQ.(18) has been used for the second equality. TheVaves from many different types of sources may be plotted
transfer function forX will then be on this same graph. To calculate the gravitational-wave
strength for a particular type of source as it is to be plotted

Ry(w)=4 si(w7)R(w), (45) on the sensitivity curve graph requires some additional steps

specific to each class of sources.

whereR(w) is the previously derived transfer function for
A, given by Eq.(34). A. Sensitivity to particular types of sources

At first glance, it appears the that transfer function Xor
could be as large as four times the transfer functionXor
and hence that weaker gravitational waves could be observ
by constructingX. However, to determine the sensitivity of
the interferometer, one must equ&e(w) in Eq. (44) to the
appropriate spectral density of noise. BQrthis is formed
using theo(t) combination defined in Eq43). Because the
noise contribution taX is formed by the same subtraction
process, it will similarly have

For continuous monochromatic sourdése circular com-

ct binaries, the ultimate source sensitivity comes when the

urce is sampled for a long period of time so as to narrow
the bandwidth,Af. A continuous source with frequendy
and amplitudéh that is observed over a tinfewill appear in
a Fourier spectrum of the data as a single spectral line with
root spectral density

h
hy=——— =hyT. 48
S,(w)=4 Siff(w7)Sy(w). (46) T AT T 49

The additional factors due to the subtraction process used fbhe frequencyf and the amplitudeh will depend on the

form X, which appear in Egqsi44),(46), will cancel in the several parameters of the binary such as total mass, semi-
computation of the sensitivity limit of the interferometer:  major axis, distance to the binary, inclination to the line-of-
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sight, etc. If one wants to consider a population of mono-ational waves. This section describes how to relate the
chromatic binaries, then an average over the parameters afethods used in this work to the approach usually taken in
possible systems should be taken, and the value usdddor the literature associated with the proposed LISA mis§&in
each frequency should reflect this process. and the comprehensive development of sensitivity limits pro-

For signals that arshort bursts such as would be pro- vided in the review article of Thorngl4].
duced by a compact body in highly elliptical orbit about a As in this paper, other analyses create an initial sensitivity
massive black hole or by high-velocity encounters of mas<urve for LISA by analyzing the various noise sources in the
sive compact bodies in a region of high stellar density, thenterferometer and then dividing by a transfer functidi].
signal would typically have a characteristic pulse width The LISA instrumental sensitivity, in terms bf, is gener-
with a broad spectral content and would occur only once irally converted to an effective gravitational wave amplitude
the lifetime of the detector. The detection of such a source isensitivity, h, by dividing the value oh; at each frequency
optimal when the bandwidth f is not much larger tham™*. by the square root of an assumed one year integration time.
The relationship between the amplitude of the puisend The resulting sensitivity curve ih is also multiplied by a
the strength of the signal as it would be plotted on the roofactor of 5, so that the final curve indicates a one-year inte-
spectral density graph is therefore given by grated threshold for a signal with signal-to-noise ratié.

The combination of these factors is

hi=—=h7 4 W= =

Y

Again, if a population of burst sources is to be Co”SiderediNherehf is the spectral amplitude in units of H¥2
e

then one should average the amplitudes over the possib It should be emphasized that, after having assumed a one-
parameters pf the source, including all source orientation%(,ﬂr integration time, it is onIy’ appropriate to plot mono-
and accounting for the short duty cycles that such Source omatic gravitational wave sources against this type of
typlc_ally have. . . . sensitivity curve, and only for a case where a signal-to-noise
Finally, one may c;onS|der how to include stochastic . ratio of 5 is actually required. The danger in using such a
backgroundof gravitational waves as a source on the gravi-g o1, 14 characterize the overall detector sensitivity is that it

tational wave sensitivity graph. In some cases, such as thg g iect to easy misinterpretation, which has often occurred
case of a stocr_lasnc superposition of. close compact blnari)/1 the literature. An example is the paper by Aguéral.
stars, the amplitude spectral dens8ly is known. In these 151 \hich simply overestimates the LISA sensitivity to
cases, the root spectral density bursts from black hole oscillations lasting a few minutes by
e using the curves representing coherent integration of a signal
he()=VSn() (50 for a year On the other hand, the usual LISA sensitivity
curve graph underestimates LISA’s sensitivity to monochro-
tic known sources, such as A@Vn, for which a signal-
-noise ratio of 5 is an excessive requirement.
Another approach is taken in the comprehensive review
article by Thorng 14]. In this review, Thorne carefully dis-
H2 tinguishes between the three types of source, and analyzes
Sy(f)= mﬂ(f) (51  the response of a detector to each type. For each type of
. source, he finally derives a detector sensitivity which is de-
noted byhs, (), defined as

can be plotted directly on the sensitivity graph. In other
cases, what is assumed is a spectrum of the cosmic ener
density, Q) (f). The relationship between amplitude and en-
ergy density is given by

whereH is the Hubble constant. The square rootSx{f)
may again be plotted directly on the sensitivity graph. Fi-
nally, a cosmic background is often assumed to be simply
peaked at some frequendy,, and spread over a decade of
bandwidth. In this case, the bandwidth will be approximately
equal to the peak frequency, and a point plotted at

hay (f)=11fS,(f)]¥? burst sources, (54

hay(f)=3.8S,(f)x10"7 Hz]¥? periodic sources,

3H (55
hi=—3 AL (52
g
—1/4
would represent the peak of the decade-wide spectrum cor- h3/yr(f):4-5<f) [fSh(F)]Y?
responding to a total integrated energy density)of 107" Hz
stochastic background. (56)

B. Reconciliation with other results from the literature

Substantially different methods have often been used in
the previous literature to illustrate the capability of a space- °The LISA team has recognized the difficulty of using such plots
borne interferometer to detect astrophysical sources of gravie characterize the detector sensitivity to bufdt3].
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Here S, (f) is the same spectral density of detector noise VI. SUMMARY
utilized in this paper. The derived sensitivitlyg,, repre-

sents the weakest level at which one has 90% confidence of Constructing the sensitivity curves for a space_borne Ot.)'

. . . . . Servatory, such as those shown in Fig. 5, is the first step in
detecting a signal using two cross-correlated identical detec- . . o

. ; understanding the response of the instrument to gravitational

tors. For burst sources, the level is set by demanding threg diation. The f lism develobed h b dto d

detections per year. For periodic sourdes,, represents the ra |qt|on. € formalism developed here can be use to de-

level obtained in a. 1/3 year integration rassumin the fre:[ermme the sensitivity ofany space-based interferometer

y 9 ' ming simply in terms of the essential parameters which describe

guency and phase of the source are known. Finally, for sto;

X the overall design of the instrument. Not only does this allow
chastic sourced)s, represents the weakest source that ca g y

i ) . n ickly an ratel h rforman f on
be detected with a 1/3 year integration of the crossr—b € to quickly and accurately assess the performance of one

: . . roposed observatory compared to another, but it also pro-
correlation function between two independent detectors. brop y b P

The development of Thorne’s three dicta for detection of;g?; ZZS?;:;I( and easy method for considering new observa-

burst,t.perlodlrc]:_, ﬁnd stgchasgc dsm:rlces t'EvplvFe{ng?t;]”?d as- Carefully detailing the response of any new instrument
sumptions which are described at length in , that prepares us for the inevitable detection of unexplainable sig-

discussion will not be reproduced in full here. It is worth nals from distant astrophysical sources, and provides a clear

noting, however, that nqt all of the _assumptlons made In th?dea of how to improve our instrumentation for the construc-
development of these dicta are valid for a space-based inte,

ferometer. For example, Thorne assumes one has two ind({alpn of the next generation of observatories.
pendent cross-correlated detectors. While this is a valid as-
sumption for LIGO, it is not for a LISA-style instrument.
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