
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

12-2014

A Secure Communication System for Early Childhood A Secure Communication System for Early Childhood

Collaboration System Collaboration System

Hao Kang
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kang, Hao, "A Secure Communication System for Early Childhood Collaboration System" (2014). All
Graduate Plan B and other Reports. 447.
https://digitalcommons.usu.edu/gradreports/447

This Report is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fgradreports%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/447?utm_source=digitalcommons.usu.edu%2Fgradreports%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

A SECURE COMMUNICATION SYSTEM FOR EARLY CHILDHOOD

COLLABORATION SYSTEM

by

Hao Kang

A report submitted in partial fulfillment

of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

_________________________ _________________________

Dr. Stephen W. Clyde Dr. Xiaojun Qi

Major Professor Committee Member

Dr. Ming Li

Committee Member

UTAH STATE UNIVERSITY

Logan, Utah

Dec, 2014

ii

Copyright © Hao Kang Dec, 2014

All Rights Reserved

iii

ABSTRACT

A Secure Communication System for Early Childhood Collaboration System

by

Hao Kang, Master of Science

Utah State University, Dec, 2014

Major Professor: Dr. Stephen W. Clyde

Department: Computer Science

The Early Childhood collaboration System (ECCS) is a distributed health data

system which provides coordinated, de-identified healthcare information to various

types of data consumers. To satisfy this requirement, the ECCS needs a matcher that

utilizes Personal Identifying Information (PII) to coordinate information from a wide

range of data sources. Due to the sensitivity of PII, the ECCS also needs to guarantee

that only matcher can access PII. This report describes a reusable subsystem, called

Medical Records Secure Messaging (MRSecureMessaging), which utilizes a reliable

cryptographic algorithm to encrypt PII and other confidential data so that matcher and

data consumers cannot access each other’s data. It also contains a customized

authentication protocol that allows data sources to verify the intended recipient.

(64 pages)

iv

ACKNOWLEDGMENTS

I am deeply indebted to my advisor, Dr. Stephen W. Clyde, for his invaluable

advice, insightful guidance and constant patience. Without his persistent help, this

dissertation would not have been possible.

I would also like to thank my committee members, Dr. Ming Li and Dr. Xiaojun

Qi (in alphabetical order), for their support and suggestions.

Many thanks to Vicki Anderson, Cammie Dodds and Genie Hanson (in

alphabetical order); their great work and help were indispensable for completing the

report.

Finally, I am grateful to my family and friends for their continuous support and

encouragement through all my academic pursuits.

Hao Kang

v

CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 BACKGROUND .. 10

2.1 Confidentiality of healthcare data ...10

2.2 Introduction to Secure Communications ...13

2.2.1 Overview of Encryption and cryptographic algorithm ...13

2.2.2 Overview of Authentication Protocols ...15

2.3 Overview of the Vitruvian Framework ..18

CHAPTER 3 THEORETICAL DESIGN .. 20

3.1 Notational Conventions ...21

3.2 Introduction to Needham-Schroeder Public Key Protocol ..22

3.3 Customized Authentication Protocol for the MRSecureMessaging23

3.3.1 Adding timestamps into messages ..23

3.3.2 Fixing a man-in-the-middle attack ...23

3.3.3 Adding confounders into messages ..25

3.4 Summary ...26

CHAPTER 4 SYSTEM ANALYSIS .. 28

4.1 Actor Goals ..28

4.2 Object-oriented Structural Analysis ..31

4.2.1 Key-related classes ...32

4.2.2 Client-related classes ..32

4.2.3 Message-related classes ..33

4.3 Functional Requirements ...33

4.3.1 Data Sources Requirements ..34

4.3.2 MPI Requirements ..34

4.3.3 ECDW Requirement ...35

vi

4.4 Non-functional Requirements ...35

CHAPTER 5 ARCHITECTURAL DESIGN .. 37

5.1 MRSecureMessaging System Design ...38

5.2 Design Decisions and Dependencies of Package Messages ..39

5.3 Design Decisions and Dependencies of package Security ..40

5.4 Design Decisions and Dependencies of package Client ..42

CHAPTER 6 IMPLEMENTATION DETAILS ... 44

6.1 Introduction to Vitruvian Distribution ...44

6.2 Cryptographic Algorithm ..46

CHAPTER 7 SOFTWARE TESTING ... 48

7.1 Introduction ...48

7.2 Unit Testing ...49

7.3 Integration Testing ...50

CHAPTER 8 SUMMARY .. 51

REFERENCES .. 53

vii

LIST OF TABLES

Table Page

1-1: Data sources that need to feed ECCS (at the time of the report) 4

3-1: Fixed messages in Needham-Schroeder protocol .. 26

viii

LIST OF FIGURES

Figure Page

1-1: phMPI Components ... 3

1-2: ECCS Components .. 3

1-3: Encryptors and Decryptors in the phMPI and ECCS ... 8

3-1: Needham-Schroeder public key protocol ... 22

3-2: A man-in-the-middle attack to Needham-Schroeder public key protocol 24

3-3: Customized Needham-Schroeder public key protocol ... 26

3-4: A high level summary of the MRSecureMessaging ... 27

4-1: Data sources’ primary goals ... 29

4-2: MPI’s primary goals ... 30

4-3: ECDW’s primary goals .. 30

4-4: Class diagram of the MRSecureMessaging ... 31

4-5: Class diagram of messages .. 33

5-1: The MRSecureMessaging’s abstract class diagram ... 38

5-2: Message classes of Vitruvian ... 39

5-3: Messages classes of the MRSecureMessaging .. 40

5-4: Security-related classes of the MRSecureMessaging .. 41

5-5: Client classes and their inheritance hierarchy .. 43

6-1: Sample remote procedure call code ... 45

ix

6-2: RPC remote proxy ... 46

6-3: RPC local proxy ... 46

CHAPTER 1

INTRODUCTION

A collaborative person information system (CPIS) is a software system that

integrates and coordinates data from a diverse set of data sources in a way that allows

various data consumers to have de-duplicated and unified views of all that is known

about a person across those data sources. In healthcare, a CPIS deals with patients’

personal identifying information (PII), their health histories, medical conditions,

clinical data, lab results, economic data, and much more. This kind of information is

extremely valuable for social and medical research, but is also very sensitive data.

A CPIS must secure data carefully to guarantee privacy and confidentiality.

Privacy, in the context of healthcare, is the patient’s right to determine who see his or

her information and for purposed they must use it [24]. Confidentiality is the system’s

responsibility of ensure that no unauthorized person accesses a person’s data and that

authorized person only use it for the prescribed purposes [24]. Security is the policies,

physical protections, and electronic protections that an organization uses to enforce

confidentiality [24]. In essence, privacy of an individual’s health information depends

on the amount of control and level of confidentiality that a health data system affords,

which in turn depends on the security measures that stewards of the health data

system implemented.

The Utah Department of Health (UDOH) contracted with Utah State University

2

(USU) to build a distributed health data system, called Early Childhood Collaboration

System (ECCS), that reuses and extends a CPIS, namely the Public Health Master

Patient Index or phMPI. ECCS’s high-level requirements include:

• collecting child health care and educational data from 11 distinct data

sources (participants) with the possibility of expanding set several times

over,

• correlating that data so an individual’s records from one source matches

his/her records from other sources without duplicates,

• de-identifying that combined data, and then,

• sending those correlated data to a data consumer, which will store them in a

data warehouse for later analysis.

Figure 1-1 and Figure1-2 provide a high-level architectural view of ECCS. The

orange components represent the data sources; the purple components are the CPIS,

which handles the data correlation and transmission; and the green components

represent a target data consumer.

As mentioned above, the initial system will have 11 data sources. Table 1-1

lists these sources. Each data source uses a different kind of database manager and

different data scheme. The heterogeneities among the data sources are an interesting

problem, but beyond the scope of this report.

3

High-Level Architecture:

Automated Data Extraction, Translation and Monitoring

Matcher

ECCS

phMPI

EC Push

Agent

Communication Link, where tail is initiator of link

Control

Request

Queue

Workflow

Manager

Output

Workflows

MPI Core

Data

MPI Pull

Agent

Matcher

Data

DS
DS

DS Data

Monitor

Data

Source’s

Production

Database

DS Pull

Agent

Figure 1-1: phMPI Components

High-Level Architectural Design:

ECDS Translating, Loading, and Reporting

ECDS

Translator

Data Loader Standard

Report

Generator

phMPI

ECCS Standard Reports

EC Push

Agent

Data Access

Service

Terminology

Service

Communication Link, where tail is initiator of link

Control

Output

Figure 1-2: ECCS Components

4

Table 1-1: Data sources that need to feed ECCS (at the time of the report)

Agency Software System(s)

Early Intervention – Part C BTOTS

Child Care CC

Foster Care FC

Head Start Multiple Systems

Help Me Grow HMG

Early Hearing Detection and Intervention HiTrack

Office of Home Visiting OHV

United Way UW

Utah State Wide Immunization Information System USISS

Office of Vital Records and Statistics VS

Utah State Office of Education UTREx

 As mentioned above, the CPIS for ECCS is the phMPI, see Figure 1-1. The

phMPI is itself a distributed system, designed around a service-oriented architecture

and built on top of Vitruvian framework. Vitruvian was initially built at USU by a

master student to facilitate object distribution and inter-object communications [22],

but USU licenses it to a company, namely Multimedia Data Services Corporation, for

commercialization. More information about Vitruvian framework is provided in

Chapter 2 Section 2.3.

The phMPI includes several types of independent services or agents. First, there

5

are Data Monitors for each data source. A Data Monitor periodically checks its data

source for new or changed records and sends processing requests to a central Request

Queue when it detects such events. A Workflow Manager grabs the processing

requests out of the Request Queue and executes a specific Workflow for each one,

depending on the type of request, the data source, and what kinds of data a consumer

needs to know about that new or changed record. The Workflow may involve any

number of actions, including matching person identities with those from other data

sources, querying additional person data from the data source on which the event was

detected, extracting person data from other data sources, merging all of the person’s

data in a combined person snapshot, and publishing that snapshot to one or more data

consumers.

Out of necessity, matching operations require PII to find person identities from

other data sources that represent the same person as the one for which a new or

changed event was detected. In other words, the phMPI needs to know certain amount

confidential information. However, it doesn’t need to have access to complete health

histories, medical conditions, clinic data, lab results, or other personal details.

To handling the querying of additional person data, the phMPI includes Pull

Agents that can retrieve, in real time, a snapshot of given person’s data, specific its

data source. There is a custom-configured Pull Agent for every data source.

The publishing of combined person snapshots is handled through Push Agents,

one configured for each possible data consumer. For ECCS, the data consumer of

6

interest is the EC Data Analysis System shown in Figure 1-2. When publishing, the

Workflow Manager first sends a combined person snapshots to the EC Push Agent,

which in turn sends them to the Translator inside the EC Data Analysis System

(ECDS). The Translator transforms the incoming data into its own format and

converts any embedded terminology into its own lexicon using a Terminology Service,

and sends the resulting data onto the Data Loader, which then stores it in the EC Data

Warehouse (ECDW). A Report Generator accesses that data through a Data Access

Service to create interesting reports that highlight possible trends child health or

healthcare.

For the ECCS to guarantee privacy and confidentiality, it has to satisfy the

following requirements.

1. The phMPI should only have access to the minimal amount of PII that is

needed to accurately match person identities. In other word, the phMPI

should not have access to health histories, medical conditions, clinic data,

lab result, economic data, or any other details not specifically need for

record matching.

2. When a Pull Agent extracts data intended for only the EC Data Analysis

System (as requested by a Workflow), ECCS must ensure that only the EC

Data Analysis System can access that data. Similarly, if a Pull Agent

extracts data from other data sources, then ECCS must guarantee that only

those intended data consumers can access the data.

7

3. ECCS must allow individuals to opt out of sharing any type of data with any

of the possible data consumers.

This report describes the development of such subsystem named the Medical

Records Secure Messaging (MRSecureMessaging) that addresses the first two

requirements. The thirds is handled by another subsystem called Consent

Management System [23]. MRSecureMessaging includes a customized authentication

protocol that allows data sources to verify the intended recipient. It also utilizes a

reliable cryptographic algorithm to encrypt confidential data that phMPI and other are

not allowed to view. Different recipients’ data would be encrypted by different keys

so they cannot see each other’s data. These two features work together to satisfy the

first two requirements.

Figure 1-3 provides a high-level architectural view of the MRSecureMessaging.

The red components represent the MRSecureMessaging’s encryptors and decryptors.

When a Pull Agent tries to grab data, data source first lets the Encryptor encrypt it.

The Encryptor uses asymmetric cryptography to handle this (more information about

asymmetric cryptography is provided in Chapter 2 Section 2.2). As mentioned above,

it encrypts PII with phMPI’s key and other confidential data with ECCS’s key. In this

way, when the data arrives at phMPI, the Matcher can only decrypt PII with its own

key. It then uses this information to finish correlating. Matcher doesn’t have access to

other data since it doesn’t have the corresponding secret key to decrypt it. When

correlating and merging process is done, the Push Agent sends a combined person

8

snapshot encrypted with ECCS’ key to the Translator. Translator decrypts incoming

data with its own key and then transforms data into its own format. Finally, the Data

Loader sends transformed data to the ECDS.

High-Level Architectural Design:

MRSecureMessaging Encrypting and Decrypting

Matcher

phMPI

EC Push

Agent

Communication Link, where tail is initiator of link

Control

Workflow

Manager

Output

Matcher

Data
DS

DS

ECDS

Translator

Data Loader

ECCS

Encryptor DS Pull

Agent

Data

Source’s

Production

Database

phMPI

Decryptor

ECCS

Decryptor

Figure 1-3: Encryptors and Decryptors in the phMPI and ECCS

So far we have a clear understanding of the ECCS and the

MRSecureMessaging’s requirements. Chapter 2 provides sufficient background

knowledge related with them. Then Chapter 3 introduces the theoretical design of

MRSecureMessaging. Chapter 4 covers the system analysis of MRSecureMessaging.

With the information from these two chapters, I illustrate the architectural design in

Chapter 5. Chapter 6 discusses technique details of the implementation and Chapter 7

mainly focuses on the testing process. Finally, in Chapter 8, I summarize the

9

contribution of the MRSecureMessaging and possible future work.

10

CHAPTER 2

BACKGROUND

The ECCS is dealing with healthcare data, so it is essential to understand the

confidentiality of healthcare data to appreciate the contribution of this paper. Section

2.1 provides some high-level background in area. As a subsystem of both the phMPI

and ECCS, the MRSecureMessaging encrypts PII and other confidential data with

public key cryptographic algorithm. It also contains a customized public key

authentication protocol to ensure secure communication. Section 2.2 first explains

what a cryptographic algorithm is. It then introduces the concept of authentication

protocol and lists three main attacks to authentication protocol. Both phMPI and the

MRSecureMessaging are built on top of the Vitruvian framework; having some

knowledge about it is necessary. Section 2.3 gives a high-level overview of the

Vitruvian framework.

2.1 Confidentiality of healthcare data

Person’s healthcare data must keep confidential and be handled carefully for the

following reasons:

First of all, healthcare data is person’s privacy. Person’s healthcare data

contains PII, such as names, gender, birth date, parents, siblings, children, race,

ethnicity, residential location, medical identifiers, and contact information. In general,

11

PII is any data that can be used by itself or in conjunction with other information to

identify an individual. An organization should only request PII if the PII is absolutely

necessary [25]. The Likelihood of harm caused by a breach involving PII is greatly

reduced if an organization minimizes the amount of PII it uses, collects and stores

[25].

Some cases, a person’s health history data or medical conditions could also be

used to determine identity; but these kinds of information are not typically used by

records matchers, so we put them in the category of confidential non-PII data. Besides

a health history and medical conditions, a person’s non-PII data may include all kinds

of details and very sensitive information, such as medications, clinical data, lab results,

and economic or financial data. At an individual level, this data is extremely sensitive

and must be keep confidential.

Organizations can de-identify records by removing enough PII such that the

remaining information does not identify an individual and there is no reasonable basis

to believe that the information can be used to identify an individual [25].

De-identified records can be used when full records are not necessary [25]. In ECCS,

a data source sends de-identified snapshots of these kinds of information to the ECDS

in a way that guarantees that others, and even the phMPI, cannot access them. Then,

the ECDS only allows these data to be reported on in aggregate so no single

individual data can be view directly.

Secondly, any data requestor must strictly abide by the data-sharing agreement

12

its steward agency has with the data source. A data-sharing agreement is legal

agreement that defines the terms of data access [26]. It may include:

• Intent and scope of data sharing

• Potential benefits (including projected efficiencies) and risks of sharing,

benefits and risks of not sharing , and methods to monitor these benefits

and risks

• Methods that will be used to share data and roles and responsibilities of

staff involved

• Minimum data elements needed to achieve the objective(s), including need

for PII

• Steps that will be taken to ensure the confidentiality and security of shared

data

• Provisions for physical and electronic security

• How shared data will be used, analyzed, published, released, and

retained/destroyed

• Confidentiality agreements

• Knowledge and training requirements including annual training for staff

who have access to PII and non-PII data

ECCS has data-sharing agreement with its 11 data sources to share all kinds of

patient data, but phMPI only has data-sharing agreements that grant it access to PII.

As mentioned in Chapter 1, the ECCS collects data from a wide range of data sources

13

and reuses phMPI’s matcher to correlate that data. When multiple medical records

with the same patient name come to the matcher, the phMPI uses PII to determine

whether these records belong to the same person. So, the systems must ensure that the

phMPI cannot access non-PII data as it flows from the data sources through the

phMPI to ECCS.

Finally, federal laws such as Health Insurance Portability and Accountability

Act and Confidentiality of Alcohol and Drug Abuse Patient Records, limit the use of

healthcare data. But this is beyond the scope of this report.

2.2 Introduction to Secure Communications

Secure communications are needed when two principals exchange messages

and want to guarantee that a third party cannot access the message content, modify

that content, or reproduce/resend it [20]. One way to realize secure communication is

hiding the content or nature of messages, namely encryption. In addition, secure

communications also requires each of the principals to authenticate their identity so

other principal has some assurance that it communicates with the right entity. An

authentication protocol can address this requirement.

2.2.1 Overview of Encryption and cryptographic algorithm

Encryption is the process of encoding messages or information in such a way

that only authorized parties can read it [28]. A concept closely related with encryption

is cryptographic algorithm. In an encryption scheme, the message or information,

14

referred to as plaintext, is encrypted using a cryptographic algorithm, generating

ciphertext that can only be read if decrypted [27].

Cryptographic Algorithms can roughly be divided into three different types:

Symmetric Key Cryptography, Public Key Cryptography and One-way Hash

Algorithm [1].

Symmetric Key Cryptography is a class of algorithms that use the same

cryptographic keys for both encryption and decryption [2]. To ensure security of

communication, keys are kept secret between the communicating principals [1].

However the requirement that both principals have access to the key is one of the

main drawbacks of symmetric key cryptography [2]. Carelessness of either principal

will make key to compromise. Modern-day symmetric key algorithms are principally

block ciphers or stream ciphers [1]. A block cipher will encrypt a block of (typically

64 or 128) plaintext bits at a time. The best known block cipher is the Data

Encryption Standard [7]. In contrast, stream ciphers encrypt one bit of plaintext at a

time.

Public Key Cryptography, also known as asymmetric cryptography, is a class of

algorithms that require two separate keys, one of which is secret (or private) and the

other is public [3]. The public key is made publicly available but the principal would

never reveal its private key. Although different, the two parts of this key pair are

mathematically linked [3].Unlike symmetric key cryptography, in public key

cryptography there is no shared secret between communicating parties [1]. Usually

15

(but not always) public key is used for encrypt information and secret key is used for

decrypt. In 1976, Whitfield Diffie and Martin Hellman published the first paper on

this topic [4]. The most widely known public key algorithm was developed by Rivest,

Shamir and Adleman [5] and is universally referred to as RSA. Comparing to

symmetric key cryptography, public key cryptography’s encryption speed is

considered slower.

One-way Hash Algorithm maps an input to a hash value of specific length. This

hash value is often referred to as a digest. The mapping of inputs to digests is one-way;

so it is practically impossible to recreate an input from its hash value alone. It is also

infeasible to find two inputs with the same hash values. Hence, the recipient of a

message could use a hash algorithm to yield its own digest, and then compare this

digest with the received digest to check whether the received message was modified.

This type of algorithms is intended for use in conjunction with cryptography to

provide signatures [1].

2.2.2 Overview of Authentication Protocols

Before introducing authentication protocol, we need to understand another

concept first, namely that of a cryptographic protocol. A cryptographic protocol is an

abstract or concrete protocol that performs a security-related function and applies

cryptographic algorithm [29]. Cryptographic protocols are widely used for secure

application-level data transport. An authentication protocol is a type of cryptographic

protocol with the purpose of authenticating entities wishing to communicate securely

16

[30].

According to the cryptographic algorithm taken, authentication protocols could

be categorized into two main types: symmetric key protocol and public key protocol.

Further distinctions are made on whether they use trusted third parties (TTP) or not.

Notice that authentication protocols could also be categorized by many other different

ways, but we will not discuss them in this report.

The first type is Symmetric Key Protocol without TTP. This type of protocol

operates purely between two communicating principals that wish to achieve some

mode of authentication [1]. Communicating principals need to share a key before

sending messages to each other. Keys may be generated by a trusted organization and

send to each principal individually. This requirement restricts them from changing the

shared key frequently. Once the key is compromised, a malicious principal could keep

eavesdropping on the network until they change it.

To improve this, the second type, Symmetric Key Protocol with TTP, was

introduced. This type of protocol uses TTP to carry out some agreed function [1].

Usually third parties are trusted for key generation and distribution, but they may be

trusted for activities other than that. With TTP, principals could change shared keys

every time they plan to communicate so security is improved.

The third type is Public Key Protocol. This type of protocol also needs TTP to

distribute principals’ public key. When a principal wants to talk to another principal, it

needs to get the other one’s public key from TTP first. Then use this public key to

17

encrypt messages. On the other side, the recipient is able to decrypt messages with its

own secret key.

As mentioned above, public key cryptographic algorithms are usually slower

than symmetric key cryptographic algorithms. This also restricts the efficiency of

corresponding protocols. To achieve a better efficiency without compromising

security too much, Hybrid Protocol was introduced. This type of protocol uses both

public and symmetric key cryptography. The trick is exchanging symmetric

encryption keys using public key cryptography.

Protocols can fail in many different ways. The following paragraphs discuss

three main types of attack related with secure communication.

Freshness attacks. A freshness attack occurs when a message (or message

component) from a previous run of a protocol is recorded by an intruder and replayed

as a message component in the current run of the protocol [1]. This type of attack

could be fixed by the use of timestamps. Every time when a principal receives a

message, it first checks whether the timestamp is within an allowable clock skew or

not. If yes, it responds that message. If no, it discards that message and logs an error.

Man-in-the-middle. This type of attacks is a form of active eavesdropping in

which the attacker makes independent connections with the victims and relays

messages between them, making them believe that they are talking directly to each

other over a private connection, when in fact the entire conversation is controlled by

the attacker [21]. A man-in-the-middle attack can succeed only when the attacker can

18

impersonate each endpoint to the satisfaction of the other. This enlightens us that to

prevent this attack, we need to find a way to stop impersonating. Chapter 3 discusses

this in details.

Guessing attacks. This type of attacks happens when the intruder grains useful

information from communicating messages and then uses this information to verify

his guess. This attack can be very dangerous when the intruder has powerful

computational resource and is able to verify his guess off-line. To avoid this attack,

the protocol designers need to ensure that data available to intruder is sufficiently

unpredictable [8].

2.3 Overview of the Vitruvian Framework

Technologies and frameworks that support communication, distribution, and

replication for distributed systems are not new. However they all suffer from one

problem which is exposing too much communication and distribution details to

developers. Vitruvian is a service-oriented distribution framework that tries to

minimize developers’ effort to distribute objects, without compromising functionality,

extensibility, good modularization, performance, or maintainability.

Vitruvian mainly handles two challenges:

1. Designing new distributed systems from the ground up

2. Accommodating new requirements for distribution in mid development

stream.

MRSecureMessaging is built on top of Vitruvian, which help the developer

19

achieve a reasonable degree of access, location, and communication transparencies.

Transparency is defined as the concealment from the user and the application

programmer of the separation of components in a distributed system, so that the

system is perceived as a whole rather than as a collection of independent components

[16]. The implications of transparency are a major influence on the design of the

system software [16]. Specifically, access transparency enables local and remote

resources to be accessed using identical operations [16]. Location transparency

enables resources to be accessed without knowledge of their physical or network

location [16]. Communication transparency enables different parties to communicate

without knowing the low-level details. Vitruvian distributes objects using dynamically

generated proxies which are specializations of the application classes. Vitruvian also

provides various synchronization patterns for proxies. Chapter 6 Section 6.1 provides

this information in details.

20

CHAPTER 3

THEORETICAL DESIGN

The MRSecureMessaging adapts and extends Needham-Schroeder public key

protocol for authentication and encryption. It also utilizes the public key cryptography

to enforce the data access constraint. Considering sensitive data is distributed and

exchanged, the protocol must be stable. Unfortunately, some protocols are found to be

flawed many years after their publications. Actually Needham-Schroeder protocol

itself is an example. Lowe found a flaw (will be discussed in Section 3.3) 17 years

after it was first published. However after many corrections and refinements, it is now

considered a reliable protocol.

Secondly, public key cryptography algorithms can provide better secrecy and

access control. It could cause serious consequences once children’s healthcare

information is compromised. The MRSecureMessaging and the ECCS must guarantee

data’s privacy, confidentiality and security. More importantly, public key algorithms

can easily handle data access issues. Different data is encrypted with different

viewer’s public keys; only corresponding private keys could decrypt it. Getting others’

private keys is very hard since private keys are never distributed through network and

always stored safely by their owner (Symmetric keys are distributed through network

and therefore have greater chance to compromise). In sum, although public key

21

algorithms are generally slower than symmetric key algorithms, considering the

problems mentioned above, it is still preferred. Also considering that computing

power is increasing rapidly, the speed of encryption and decryption is acceptable.

Finally, using public key algorithm simplifies the communication flows.

Suppose a symmetric key algorithm is used, then data sources need to communicate

with phMPI and ECDS individually to distribute their symmetric keys (generated by a

key server), which in turns increases the MRSecureMessaging’s complexity. In

contrast, when public key algorithm is used, data sources only need to communicate

with phMPI.

Section 3.1 introduces the notational conventions used in this report; Section

3.2 reviews the Needham-Schroeder public key protocol; Section 3.3 lists a few

modifications to the original protocol and explains the reasons; Section 3.4 gives a

summary of the MRSecureMessaging’s theoretical design.

3.1 Notational Conventions

In this report, I use the notation {M}PK(A) to denote the result of encrypting

message plaintext M with public key of principal A. PK stands for public key and SK

stands for secure key. In general, capitals denote principals, such as A, B, S (for a

server) and I (for an Intruder). A sends a message M1 to B would be denoted like this:

A�B: M1

Na denotes a random number generated by principal A. Such numbers are

intended to be used only once for the purposes of the current run of the protocol and

22

are generally termed nonces [1]. Ca denotes a confounder generated by principal A.

Section 3.3 will explain this concept in details.

A message may have several components; some will be plaintext and some will

be encrypted. Message components will be separated by commas. Unified Modeling

Language (UML) sequence diagram is used to describe protocols’ message flows.

3.2 Introduction to Needham-Schroeder Public Key Protocol

Needham and Schroeder proposed this protocol in 1978 [6]. Figure 3-1

illustrates the message flows of the protocol.

Figure 3-1: Needham-Schroeder public key protocol

In this protocol, server S stores all principals’ public keys and distributes them

when request is received. Principal A first uses Messages 1, 2 to obtain principal B’s

23

pubic key. A then encrypts a nonce and its own identifier with by B’s public key. B

receives Message 3 and decrypts it to obtain A’s nonce. Similarly, B uses Message 4, 5

to obtain A’s public key. After that, B forms its own nonce and encrypts both nonces

with A’s public key as Message 6. A decrypts Message 6 and knows that B is

operational and has responded. The reason is that B is the only one who has necessary

information to create Message 6. A then encrypts Nb using B’s public key and sends

back to B. B then decrypts and checks if Message 7 contains its nonce. If the answer is

yes, B concludes that A is operational and indeed initiated the protocol.

However, Gavin Lowe showed that this protocol flawed relative to

man-in-the-middle attacks [9]. Other than that, it also needs some modifications to

fulfill security requirements in the ECCS. These will be discussed in the next section.

3.3 Customized Authentication Protocol for the MRSecureMessaging

This section covers several modifications to Needham-Schroeder public key

protocol.

3.3.1 Adding timestamps into messages

The purpose of timestamp is to make ensure the “freshness” of a message. Each

message should contain a timestamp in it. Then, if a message is not received within an

allowable clock skew, the recipient can discard it and log a failure. Freshness attacks

are therefore avoided.

3.3.2 Fixing a man-in-the-middle attack

As mentioned above,

public key protocol is susceptible to man

this kind of attack, where

communication. A sends the nonce

start another session with

Although I could not decrypt this

Finally A decrypts this message and return

it to B. B believes that he has

Figure 3-2: A man-in

To prevent this attack, Lowe suggested including the identity of the responder

within the encrypted part of Message 3

message of the original protocol)

since A is expecting a message containing

As mentioned above, Gavin Lowe has showed that to Needham

is susceptible to man-in-the-middle attack. Figure

, where A tries to communicate with B, but I intrudes on that

sends the nonce Na encrypted with I’s key. I could impersonate

start another session with B. B replies with a new nonce Nb encrypted with

could not decrypt this message, he could simply replay this message to

decrypts this message and return Nb to I, I decryptes the message and return

believes that he has correctly carried out a run of protocol with

in-the-middle attack to Needham-Schroeder public key protocol

To prevent this attack, Lowe suggested including the identity of the responder

within the encrypted part of Message 3 (the third message in Figure 3

message of the original protocol). In this way, intruder I cannot successfully replay it

is expecting a message containing I’s identity. The new Message

24

Needham-Schroeder

. Figure 3-2 illustrates

intrudes on that

could impersonate A to

encrypted with A’s key.

message, he could simply replay this message to A.

decryptes the message and return

correctly carried out a run of protocol with A.

Schroeder public key protocol

To prevent this attack, Lowe suggested including the identity of the responder

(the third message in Figure 3-2, not the third

cannot successfully replay it

Message 6 of

25

Needham-Schroeder protocol looks like this:

B�A: {Na, Nb, B}PK(A)

3.3.3 Adding confounders into messages

A confounder is distinct from a nonce in that it has no purpose other than to

confound guessing attack. The value of a confounder may be ignored by the recipient

of the message in which it appears [9]. With the help of confounder, it is very difficult

for the intruder to verify his guessing so that guessing attacks could be avoided.

Suppose there is an intruder in the system. He may record Message 6 and try to

guess the secret key of A to decrypt this message. Then he can get Na’, Nb’ and B’. If

B’ = B, this guessing might be correct, he could generate two messages: {Na’, A}PK(B)

and {Nb’}PK(B). By comparing these two messages with Message 3 and Message 7, the

intruder could verify his guessing (see Table 3-1).

This is a dangerous attack since the process of guessing can be done offline.

The intruder may have very powerful computing recourse to make guessing and

verifying. To avoid from this attack, confounders are added to the messages to stop

the intruder from verifying his guessing (see the last column of Table 3-1). “⊕”

stands for XOR. Suppose an intruder decrypts new Message 6 with his guessing key,

he could get (Na⊕Ca1)’ and Nb’, but there is no way for him to verify his guessing due

to the changings of Message 3 and Message 7. Therefore, guessing attacks are

avoided.

Table 3-1

Message # Original messages

Message 3: {Na, A}

Message 6: {Na, N

Message 7: {Nb

Figure 3-3 depicts the customized Needham

(notice that confounders have been added into messages).

Figure 3-3: Customized Needham

3.4 Summary

Figure 3-4 describes a high level summary of the MRSecureMessaging

(coordinating process is not included in this diagram since that is not part of the

1: Fixed messages in Needham-Schroeder protocol

Original messages Intruder’s messages Fixed messages

, A}PK(B) {Na’, A}PK(B) {Na, A, C

, Nb, B}PK(A) N/A {Na⊕C

b}PK(B) {Nb’}PK(B) {Nb⊕C

depicts the customized Needham-Schroeder public key protocol

(notice that confounders have been added into messages).

: Customized Needham-Schroeder public key protocol

describes a high level summary of the MRSecureMessaging

coordinating process is not included in this diagram since that is not part of the

26

Schroeder protocol

Fixed messages

, A, Ca1, Ca2, Ta1}PK(B)

Ca1, Nb, B, Tb1}PK(A)

Ca2, Ca3, Ta2}PK(B)

Schroeder public key protocol

Schroeder public key protocol

describes a high level summary of the MRSecureMessaging

coordinating process is not included in this diagram since that is not part of the

MRSecureMessaging)

1. A requests B

2. KeyServer S

3. A authenticates

4. A encrypts Data1

5. A sends data to

6. B authenticates

7. B sends Data2

Figure 3-4

. The working flow is as follow:

B and C’s public key separately.

S replies A with corresponding public keys.

authenticates B with customized Needham-Schroeder public key protocol.

Data1 and Data2 with B’s public key and C’s public key.

sends data to B.

authenticates C with customized Needham-Schroeder public key protocol.

Data2 to C.

4: A high level summary of the MRSecureMessaging

27

Schroeder public key protocol.

’s public key.

Schroeder public key protocol.

: A high level summary of the MRSecureMessaging

28

CHAPTER 4

SYSTEM ANALYSIS

System analysis is“the process of studying a procedure or business in order to

identify its goals and purposes and create systems and procedures that will achieve

them in an efficient way” [10]. Specifically, in software engineering, the purpose of

system analysis is to understand and document the essential characteristics of the

system being studied. However, these types of documents could be highly-abstracted

and hard to understand. I used UML diagrams to visualize the system analysis and

again here to communicate the analysis to the readers. The UML is a general-purpose

modeling language which is designed to provide a standard way to visualize the

design of a system [11].

The use-case diagrams in Section 4.1 provide a high-level overview of actor

and its goals. The class diagrams in Section 4.2 summarize the key objects in the

system and their relationships to each other from an analysis perspective. The

functional requirements listed in Section 4.3 details these goals. Non-functional

requirements listed in Section 4.4 specify the criteria that can be used to judge the

operation of the system.

4.1 Actor Goals

The actor is any external entity that has an interest in interacting with the

29

system. Often, it is a human user of the system, but it can also be another system or

some kind of hardware device that needs to interact with the system [11]. Actor’s

goals are captured by use-case diagrams. A use-case diagram shows actors, use cases

and their relationships [11].

Three main actors closely relate with the MRSecureMessaging. Figure 4-1, 4-2

and 4-3 describe their primary goals.

Figure 4-1: Data sources’ primary goals

Data sources have three primary goals. First, they need to authenticate MPI to

make sure healthcare data is sent to the “right” place. Second, they should be able to

encrypt data. This goal includes two sub goals. In short, data sources needs to encrypt

different data with different recipients’ public keys. Third, data sources need to deliver

healthcare data to the ECDW through MPI since the data needs to be coordinated and

de-identified in MPI.

30

Figure 4-2: MPI’s primary goals

MPI has four primary goals. First, similar to data sources, it needs to

authenticate the ECDW. Second, it should have access to PII; this one includes

decrypting received data with its own private key. Third, it must not have access to

other confidential healthcare data. Fourth, it needs to deliver coordinated,

de-identified data to the ECDW.

Figure 4-3: ECDW’s primary goals

The ECDW only has one goal, namely the receiving of coordinated,

31

de-identified data from MPI. This goal includes one sub goal that it needs to be able

to decrypt received data with its own private key.

4.2 Object-oriented Structural Analysis

Structural analysis could give developers a better understanding of a system’s

components and structure. UML class diagrams are used to illustrate such analysis. A

class diagram describes the static view of a system in terms of classes and

relationships among the classes [11]. Class diagrams are not just for visualizing and

documenting structure models, but also for constructing an executable system. An

object-oriented programming language can directly implement a class, making the

class diagram one of the core diagrams for generating code and making UML

executable [11].

Figure 4-4: Class diagram of the MRSecureMessaging

Figure 4-4 shows the class diagram of the MRSecureMessaging. KeyService

32

stores keys generated by KeyGenerator and distributes them when key requests are

received. Clients use messages to request keys from KeyService; they also use

messages to communicate with each other. Each client also has relations with three

other classes: Encryptor, Decryptor and RandomNumGenerator. The first two’s jobs

are handling cryptography and the last is used to generate nonces and confounders.

The following subsections describe the purpose of these classes and design

considerations.

4.2.1 Key-related classes

The KeyGenerator class is responsible for generating both public key and secret

key. KeyService stores clients’ public keys and clients store their own secret keys. As

the trusted third party, KeyService also distributes public keys when requests are

received from clients. Each class has a clear and independent functionality so that

flexibility and reusability are achieved. KeyGenerator could be used in other projects.

KeyService could also easily substitute current KeyGenerator with another one.

4.2.2 Client-related classes

 ClientDefinition defines the common properties of all clients. This design

avoids redundant code and reflects a good practice of encapsulation. Various types of

concrete client classes could inherit from it. Currently there are three: ClientAlice,

ClientBob and ClientCarol, which represent the three different parties mentioned in

previous chapters. More clients could be added in the future. Clients also need to

33

handle cryptography, nonces and confounder issues. These requirements are fulfilled

by three independent classes: Encryptor, Decryptor and RandomNumGenerator so

that they can be reused.

4.2.3 Message-related classes

Messages could be categorized into two types: RequestMessage and

ResponseMessage. These two classes plus Message class capture common properties

of messages. A few concrete message classes extend these two classes. This design is

very flexible, since new message class can be added easily by simply adding

additional specializations. Figure 4-5 describes different message classes and their

relationships.

Figure 4-5: Class diagram of messages

4.3 Functional Requirements

In software engineering, functional requirements capture the intended behavior

of the system. This behavior may be expressed as calculations, technical details, data

34

manipulation or other specific functionality the system is required to perform [12].

The detailed functional requirements for the MRSecureMessaging are as follows:

4.3.1 Data Sources Requirements

1. The MRSecureMessaging should allow data sources to authenticate the

MPI.

2. The MRSecureMessaging should allow data sources to encrypt healthcare

information.

2.1 The MRSecureMessaging should allow data sources to encrypt PII

with MPI’s public key.

2.2 The MRSecureMessaging should allow data sources to encrypt other

private healthcare information with ECDW’s public key.

3. The MRSecureMessaging should allow data sources to deliver healthcare

information to the ECDW through MPI.

4.3.2 MPI Requirements

1. The MRSecureMessaging should allow MPI to authenticate the ECDW.

2. The MRSecureMessaging should allow MPI to access sufficient PII to

coordinate data.

2.1 The MRSecureMessaging should allow MPI to decrypt PII with its

own private key.

3. The MRSecureMessaging must prevent MPI from accessing other private

35

healthcare information.

4. The MRSecureMessaging should allow MPI to deliver coordinated,

de-identified healthcare information to the ECDW.

4.3.3 ECDW Requirement

1. The MRSecureMessaging should allow ECDW to receive coordinated,

de-identified healthcare information.

1.1 The MRSecureMessaging should allow ECDW to decrypt received

information with its own private key.

4.4 Non-functional Requirements

A non-functional requirement defines how a system is supposed to be, in other

words, it is a requirement that specifies criteria that can be used to judge the operation

of a system, rather than specific behaviors [13]. Followings are

MRSecureMessaging’s non-functional requirements:

1. Operating System

1.1 The MRSecureMessaging should be compatible with the Microsoft

Windows operating system.

2. Languages and Platform

2.1 The programming language should be C# (C-Sharp).

2.2 UML should be used to document the system analysis, specification

and architectural design

36

2.3 The system should use Vitruvian for distribution.

3. Quality Control

3.1 The system should have comprehensive unit tests for each class.

3.2 Integration testing is essential to ensure functionality, reliability and

performance of the MRSecureMessaging.

4. Documentation

4.1 Design documents and a report about the system should be given to

assist the end users in understanding the design and functionalities of

the MRSecureMessaging.

5. Logging

5.1 The system should use Vitruvian framework to support logging.

37

CHAPTER 5

ARCHITECTURAL DESIGN

Software architecture is the process of defining a structured solution that meets

all of the technical and operational requirements, while optimizing common quality

attributes such as performance, security and manageability. It involves a series of

decisions based on a wide range of factors and each of these decisions can have

considerable impact on the quality, performance, maintainability and overall success

of the application [14]. A good architectural design should have high cohesion and

loose coupling so that the application can be easily understood, maintained, reused

and tested.

The MRSecureMessaging’s design needs to address two concerns. The first one

is flexibility. The MRSecureMessaging’s classes should be designed with good

encapsulation so that if one class is changed later, the others won’t be affected. In this

way, future update will be greatly facilitated. The second concern is reusability. This

includes two aspects: first, the MRSecureMessaging’s classes should have very clear

functionality so that they could be reused in other projects; second, the

MRSecureMessaging should also try to reuse code from other projects, for instance,

code from Vitruvian framework. This could help the programmer to focus on solving

specific problems and keep them away from handling bottom layer issues. Section 5.1

38

covers these two concerns by illustrating the packages and reusable components of the

MRSecureMessaging. Section 5.2, Section 5.3 and Section 5.4 explain the design

decisions and dependencies of individual packages separately.

5.1 MRSecureMessaging System Design

The Vitruvian Framework provides a service-oriented architecture that

distributes objects using dynamically generated proxies that are specializations of the

application classes [15]. It also facilitates serialization and logging.

Figure 5-1: The MRSecureMessaging’s abstract class diagram

39

Figure 5-1 shows the MRSecureMessaging’s abstract class diagram. The

package Vitruvian contains classes and methods for distributing and logging. It also

contains classes and methods for serialization and communications. Specifically, the

KeyService class implements an IService interface. In another word, it extends

DistributedService class which implements an IService interface. This class contains

the method required for distributing public keys. Package Client uses BinarySerializer

and BinaryDeserializer that are defined in package Vitruvian.Serialization. Package

Messages contains various types of messages which extend generic Message class in

package Vitruvian.Communicatons.

5.2 Design Decisions and Dependencies of Package Messages

Authentication is a core functionality of the MRSecureMessaging. To realize

this functionality, each principal needs various types of messages. Package Messages

is designed for this purpose. Fortunately, Vitruvian has provided related classes in it.

Figure 5-2 shows them in details.

Figure 5-2: Message classes of Vitruvian

40

The Messages package contains four message classes that inherit from

RequestMessage and two message classes inherit from ResponseMessage.

Acknowledge is a reply to AuthenticationFeedback, OriginalDataMessage and

ForwardedDataMessage. Obviously, it replies different requests with different

information. AckInfos stores this information in it. Similarly, MessageTypes includes

different message types (see Figure 5-3). ForwardedData contains data which needs

to be forwarded in it.

Figure 5-3: Messages classes of the MRSecureMessaging

5.3 Design Decisions and Dependencies of package Security

All security-related classes are defined in this package to improve reusability

and reduce redundant code (see Figure 5-4).

As the names would imply, Encryptor and Decryptor are a pair of classes

designed for encrypting and decrypting messages. They are designed in this way so

41

that reusability and flexibility are achieved. Each of them has a static method in it.

When a client wants to encrypt/decrypt a message, it just needs to pass the

corresponding key to Encryptor/Decryptor’s method. Since these two classes are in an

independent package, they can also be used in other places as long as the

cryptography algorithms are the same.

Figure 5-4: Security-related classes of the MRSecureMessaging

RandomNumGenerator generates nonces and confounders which both are

random numbers essentially. The object of this class is also contained in

ClientDefinition class.

PublicKey stores other principals’ public key, but it also contains a timestamp in

it to record the time when this public key is received. Once this public key expires, the

client will ask KeyService for a new one.

DataWrapper is a simple wrapper which has two byte arrays in it to store two

encrypted data. This class is closely related to three other classes: ForwardedData,

OriginaldataMessage and ForwardedDataMessage. The first client would encrypt the

42

objects of the first two classes separately and put them into DataWrapper when he is

sending data to the second client. The second client would remove the

OriginaldataMessage in that wrapper object and substitute it with

ForwardedDataMessage when he is forwarding data to the third client.

5.4 Design Decisions and Dependencies of package Client

This package contains classes and methods related to authentication protocol

and data distribution. The Vitruvian framework is also used in it. ClientDefinition is

the base class which contains all fundamental attributes in it. ClientAlice, ClientBob

and ClientCarol inherit this class and contain authentication related methods

respectively.

Clients need to communicate with each other. To realize this, ClientDefinition

extends an abstract class called DistributedService in Vitruvian. This class simplifies

the process of distributing applications, and makes it possible to distribute the

application anywhere in the software development cycle. BinarySerializer and

BinaryDeserializer are also defined in Vitruvian. ClientDefinition uses them to

serialize messages or deserialize byte arrays. Other attributes like client name, client

id, guest id and key storages are also contained in its definition (see Figure 5-5).

ClientAlice, ClientBob and ClientCarol have authentication related methods in

them. These methods could be categorized into two types: local method and remote

procedure call. Local method typically has three steps: first, generate a message;

second, serialize this message into a byte array; third, encrypt this byte array with the

43

recipient’s public key. Remote procedure call has six steps: first, decrypt the input

with its secret key; second, deserialize the byte array from the first step into a message

object; third, check if the information contained in this message is as expected or not.

If yes, generate corresponding response message and follow the same three steps as

used in local method. If no, log an error.

Figure 5-5: Client classes and their inheritance hierarchy

44

CHAPTER 6

IMPLEMENTATION DETAILS

The MRSecureMessaging is implemented in C# programming language on

the .NET Framework 4.5, using the Vitruvian Framework to the handle key and data

distribution. The following sections introduce what implementation challenges were

met and how they were addressed. Section 6.1 gives a brief introduction to Vitruvian

Framework and how it is used in the MRSecureMessaging. Section 6.2 describes the

cryptography algorithm used in the MRSecureMessaging.

6.1 Introduction to Vitruvian Distribution

One of the key functionalities of the MRSecureMessaging is distributing

various types of information (include public key, authentication messages and

healthcare information). This is also the main challenge encountered when

implementing it.

The Vitruvian Framework provides a service-oriented architecture that

distributes objects using dynamically generated proxies that are specializations of the

application classes [15]. These proxies use one or more SyncPatterns to manage the

synchronization between all the replicas of a given patient object. Because the

SyncPattern is external to the proxy, it can be changed dynamically. A proxy type

overrides designated methods and properties in the original type and seamlessly

45

connects them to the synchronization patterns. A programmer can declare a

synchronization pattern by simply adding an attribute to a property or method. Since

the communication and synchronization are handled by the framework, there is no

differentiation between a local object and a distributed object from a programmer's

perspective.

The Vitruvian Framework has several different types of SyncPatterns. As

described in Chapter 5, the SyncPattern used in the MRSecureMessaging is Remote

Procedure Call or RPC. In RPC, procedures on remote machines can be called as if

they are procedures in the local address space. The underlying RPC system then hides

important aspects of distribution, including the encoding and decoding of parameters

and results, the passing of messages and the preserving of the required semantics for

the procedure call [16].

Take public key distribution as an example to illustrate this implementation

details. First, at KeyService side, the function needs to be annotated like this:

Figure 6-1: Sample remote procedure call code

A proxy of KeyService would be generated at client side. When a client is

requesting a public key, it simply calls this proxy’s GetPublicKey method as if it is a

local method. Figure 6-2 shows the details of the remote proxy and Figure 6-3 shows

the details of the local proxy (“r” means remote and “l” means local).

46

Figure 6-2: RPC remote proxy

Figure 6-3: RPC local proxy

6.2 Cryptographic Algorithm

The MRSecureMessaging utilizes RSA algorithm [5] for encryption and

decryption. It works as follow:

1. pick two large primes p and q, let n = p * q

2. choose e relatively prime to ø(n) = (p - 1)(q - 1)

3. use Euclid’s algorithm to generate a d such that e * d = 1 mod ø(n)

4. make the pair (n, e) publicly available – this is the public key. The secret

47

key is d

5. a message block M is now encrypted by calculating C = M
e
 mod n

6. the encrypted block C is decrypted by calculating M = C
d
 mod n

The .Net Framework 4.5 provides the RSACryptoServiceProvider for this

purpose. This class creates a public/secret key pair when the default constructor is

used to create a new instance. After a new instance of the class is created, the key

information can be exported in to two formats: either a string of XML representation

or an RSAParameters structure. You can also use a Boolean value to indicate whether

to return only the public key information or to return both the public key and the

secret key information.

In KeyGenerator, keys are exported into XML representation. On KeyService

side, only public keys are exported; On client side, both public keys and secret keys

are exported.

Secret keys should never be stored verbatim or in plain text on the local

computer. A key container is needed to store it. Specifically, CspParameters is used in

the MRSecureMessaging. This is another class provided by the .Net Framework; it

guarantees secret keys cannot easily be compromised.

48

CHAPTER 7

SOFTWARE TESTING

7.1 Introduction

Software testing is an investigation conducted to provide stakeholders with

information about the quality of the product or service under test [31]. Software

testing can also provide an objective, independent view of the software to allow the

business to appreciate and understand the risks of software implementation [17].

Software testing involves the execution of a software component or system to

evaluate one or more properties of interest. In general, these properties indicate the

extent to which the component or system under test [17]:

• meets the requirements that guided its design and development,

• responds correctly to all kinds of inputs,

• performs its functions within an acceptable time,

• is sufficiently usable,

• can be installed and run in its intended environments, and

• achieves the general result its stakeholders desire.

From the above we could conclude that testing is more than just debugging. But

debugging is still a very important part of testing. Software bugs will almost always

exist in any software module with moderate size: not because programmers are

49

careless or irresponsible, but because the complexity of software is generally

intractable, and humans have only limited ability to manager complexity. It is also

true that for any complex systems, design defects can never be completely ruled out

[18].

Testing is also expensive. Typically, more than 50% percent of the development

time is spent in testing [18]. So testing is a trade-off between budget, time and quality.

The MRSecureMessaging is thoroughly tested. Section 6.2 discusses the unit

testing and Section 6.3 explains the integration testing.

7.2 Unit Testing

Unite testing, also known as component testing, refers tests that verify the

functionality of a specific section of code, usually at the function level. In an

object-oriented environment, this is usually at the class level, and the minimal unit

tests include the constructors and destructors [32]. Unit testing alone cannot verify the

functionality of a piece of software, but rather is used to ensure that the building

blocks of the software work independently from each other [17].

Extensive test cases have written for almost all classes in the

MRSecureMessaging. These classes include various message classes, client classes,

KeyGenerator, KeyService, Encryptor and Decryptor. Test cases were designed such

that they met MRSecureMessaging’s functional requirement discussed in Chapter 4.

Different types of inputs that user may provide were also covered in those test cases.

50

7.3 Integration Testing

Integration testing is the phase in software testing in which individual software

modules are combined and tested as a group. It occurs after unit testing. Integration

testing takes as its input modules that have been unit tested, groups them in a larger

aggregates, applies tests defined in an integration test plan to those aggregates, and

delivers as its output the integrated system ready for further testing [19]. Integration

testing works to expose defects in the interfaces and interaction between integrated

components. Progressively larger groups of tested software components

corresponding to elements of the architectural design are integrated and tested until

the software works as a system [17].

For this project, testing focused on the flows of key/authentication/data from

one component to another. Specifically, they are as follows:

1. Testing of communication between clients and KeyService

2. Testing of authentication process between clients

3. Testing of data (PII and other confidential data) flow between ClientAlice

and ClientBob

4. Testing of data (coordinated, de-identified data) flow between ClientBob

and ClientCarol

51

CHAPTER 8

SUMMARY

The MRSecureMessaging utilizes a reliable public key cryptographic algorithm

to encrypt PII and other confidential data to make sure that phMPI and data

consumers can only access their own data. It also contains the built-in customized

Needham-Schroeder protocol that allows data sources to authenticate the intended

recipients. Specifically, data sources first use it to verify recipients and then encrypt

different types of data with different keys so that only corresponding recipients can

decrypt it. This approach guarantees privacy, security and communication efficiency.

Although the MRSecureMessaging is specific to the ECCS, it can actually be

used in any system where secure communication is needed. With minor changes, it

could be used in two-client communication or multiple-client (more than three)

communication. It can also be used in systems where access control is needed. The

design of the MRSecureMessaging strictly follows the software engineering

principles which allow high cohesion and loose coupling among classes. Modules are

easy to understand, maintain and reuse. Changes in one module do not affect other

modules.

Future work could focus on changing the cryptographic algorithms used in it.

The MRSecureMessaging is using public key cryptographic algorithm right now. If

52

symmetric cryptographic algorithm is needed in future, as mentioned in Chapter 3, the

communication architecture will be changed dramatically and becomes more

complicated. The trade-off between these two architectures will need further research.

While working on this project, I had the opportunity to practice the theory and

principles learned from software engineering class and object-oriented software

development class. I also gained experience from almost all phases of the software

development process. These precious experiences improved my skills in documenting,

implementing and testing. It also improved my system design ability and coding style.

53

REFERENCES

[1] Clark, John Andrew, and Jeremy Lawrence Jacob. A survey of authentication

protocol literature Version 1.0. (1997).

[2] en.wikipedia.org/wiki/Symmetric-key_algorithm

[3] en.wikipedia.org/wiki/Public-key_encryption

[4] Diffie, Whitfield, and Martin Hellman. "New directions in cryptography."

Information Theory, IEEE Transactions on 22.6 (1976): 644-654.

[5] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures

and Public Key Cryptosystems. Communications of the ACM, 21(2):120–126,

February 1978.

[6] Needham, Roger M., and Michael D. Schroeder. "Using encryption for

authentication in large networks of computers." Communications of the ACM 21.12

(1978): 993-999.

[7] Federal Information Processing Standard 46 – the Data Encryption Standard,

1976.

[8] Gong, Lomas, et al. "Protecting poorly chosen secrets from guessing attacks."

Selected Areas in Communications, IEEE Journal on 11.5 (1993): 648-656.

[9] Lowe, Gavin. "Breaking and fixing the Needham-Schroeder public-key protocol

using FDR." Tools and Algorithms for the Construction and Analysis of Systems.

54

Springer Berlin Heidelberg, 1996. 147-166.

[10] en.wikipedia.org/wiki/Systems_analysis

[11] Eriksson, Hans-Eric; Penker, Magnus; Lyons, Brian; Fado, David. (2004). UML

2 Toolkit. Indianapolis, Indiana: Wiley Publishing Inc

[12] en.wikipedia.org/wiki/Functional_requirement

[13] en.wikipedia.org/wiki/Non-functional_requirement

[14] msdn.microsoft.com/en-us/library/ee658098.aspx

[15] B. Smith and S. Clyde, “An Orthogonal Approach To Distribution: An

Introduction to the Vitruvian Framework”, 2008 9th IEEE/ACM International

Conference on Grid Computing, pp. 192-200

[16] Coulouris G, Dollimore J, Kindberg T, Blair G. Distributed systems: concepts

and design Fifth Edition. Massachusetts: Addison Wesley, 2012

[17] en.wikipedia.org/wiki/Software_testing

[18] users.ece.cum.edu/~koopman/des_s99/sw_testing/

[19] en.wikipedia.org/wiki/Integration_testing

[20] en.wikipedia.org/wiki/Secure_communication

[21] en.wikipedia.org/wiki/Man-in-the-middle_attack

[22] Smith, Brian G., "Two Highly Diverse Studies In Computing: A Vitruvian

Framework For Distribution And A Search Approach To Cancer Therapies" (2008).

[23] Pakalapati, Aditya, "A Flexible Consent Management System for Master Person

Indices" (2012).

55

[24] Dale G. O’Brien, William A. Yasnoff (1999). Privacy, confidentiality, and

security in information systems of state health agencies: American Journal of

Preventive Medicine, Volume 16, Issue 4

[25] McCallister, Erika. Guide to protecting the confidentiality of personally

identifiable information. Diane Publishing, 2010.

[26] Centers for Disease Control and Prevention (CDC). "Data security and

confidentiality guidelines for HIV, viral hepatitis, sexually transmitted disease, and

tuberculosis programs: standards to facilitate sharing and use of surveillance data for

public health action." Atlanta, GA: US Department of Health and Human Services,

Centers for Disease Control and Prevention (2011).

[27] Goldreich, Oded. Foundations of Cryptography: Volume 2, Basic Applications.

Vol. 2. Cambridge university press, 2004.

[28] en.wikipedia.org/wiki/Encryption

[29] en.wikipedia.org/wiki/Cryptographic_protocol

[30] en.wikipedia.org/wiki/Authentication_protocol

[31] Kaner, Cem (November 17, 2006). "Exploratory Testing". Florida Institute of

Technology, Quality Assurance Institute Worldwide Annual Software Testing

Conference, Orlando, FL. Retrieved November 22, 2014.

[32] Binder, Robert V. (1999). Testing Object-Oriented Systems: Objects, Patterns,

and Tools. Addison-Wesley Professional. p. 45. ISBN 0-201-80938-9.

	A Secure Communication System for Early Childhood Collaboration System
	Recommended Citation

	Microsoft Word - 423034-convertdoc.input.410953.N4etD.docx

