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ABSTRACT 

A Secure Communication System for Early Childhood Collaboration System 

by 

Hao Kang, Master of Science 

Utah State University, Dec, 2014 

Major Professor: Dr. Stephen W. Clyde 

Department: Computer Science 

The Early Childhood collaboration System (ECCS) is a distributed health data 

system which provides coordinated, de-identified healthcare information to various 

types of data consumers. To satisfy this requirement, the ECCS needs a matcher that 

utilizes Personal Identifying Information (PII) to coordinate information from a wide 

range of data sources. Due to the sensitivity of PII, the ECCS also needs to guarantee 

that only matcher can access PII. This report describes a reusable subsystem, called 

Medical Records Secure Messaging (MRSecureMessaging), which utilizes a reliable 

cryptographic algorithm to encrypt PII and other confidential data so that matcher and 

data consumers cannot access each other’s data. It also contains a customized 

authentication protocol that allows data sources to verify the intended recipient. 

(64 pages) 
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CHAPTER 1 

INTRODUCTION 

A collaborative person information system (CPIS) is a software system that 

integrates and coordinates data from a diverse set of data sources in a way that allows 

various data consumers to have de-duplicated and unified views of all that is known 

about a person across those data sources. In healthcare, a CPIS deals with patients’ 

personal identifying information (PII), their health histories, medical conditions, 

clinical data, lab results, economic data, and much more. This kind of information is 

extremely valuable for social and medical research, but is also very sensitive data. 

A CPIS must secure data carefully to guarantee privacy and confidentiality. 

Privacy, in the context of healthcare, is the patient’s right to determine who see his or 

her information and for purposed they must use it [24]. Confidentiality is the system’s 

responsibility of ensure that no unauthorized person accesses a person’s data and that 

authorized person only use it for the prescribed purposes [24]. Security is the policies, 

physical protections, and electronic protections that an organization uses to enforce 

confidentiality [24]. In essence, privacy of an individual’s health information depends 

on the amount of control and level of confidentiality that a health data system affords, 

which in turn depends on the security measures that stewards of the health data 

system implemented. 

The Utah Department of Health (UDOH) contracted with Utah State University 
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(USU) to build a distributed health data system, called Early Childhood Collaboration 

System (ECCS), that reuses and extends a CPIS, namely the Public Health Master 

Patient Index or phMPI. ECCS’s high-level requirements include: 

• collecting child health care and educational data from 11 distinct data 

sources (participants) with the possibility of expanding set several times 

over, 

• correlating that data so an individual’s records from one source matches 

his/her records from other sources without duplicates, 

• de-identifying that combined data, and then, 

• sending those correlated data to a data consumer, which will store them in a 

data warehouse for later analysis. 

Figure 1-1 and Figure1-2 provide a high-level architectural view of ECCS. The 

orange components represent the data sources; the purple components are the CPIS, 

which handles the data correlation and transmission; and the green components 

represent a target data consumer. 

As mentioned above, the initial system will have 11 data sources. Table 1-1 

lists these sources. Each data source uses a different kind of database manager and 

different data scheme. The heterogeneities among the data sources are an interesting 

problem, but beyond the scope of this report. 
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High-Level Architecture:
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Figure 1-1: phMPI Components 

High-Level Architectural Design:
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Figure 1-2: ECCS Components 
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Table 1-1: Data sources that need to feed ECCS (at the time of the report) 

Agency Software System(s) 

Early Intervention – Part C BTOTS 

Child Care CC 

Foster Care FC 

Head Start Multiple Systems 

Help Me Grow HMG 

Early Hearing Detection and Intervention HiTrack 

Office of Home Visiting OHV 

United Way UW 

Utah State Wide Immunization Information System USISS 

Office of Vital Records and Statistics VS 

Utah State Office of Education UTREx 

     As mentioned above, the CPIS for ECCS is the phMPI, see Figure 1-1. The 

phMPI is itself a distributed system, designed around a service-oriented architecture 

and built on top of Vitruvian framework. Vitruvian was initially built at USU by a 

master student to facilitate object distribution and inter-object communications [22], 

but USU licenses it to a company, namely Multimedia Data Services Corporation, for 

commercialization. More information about Vitruvian framework is provided in 

Chapter 2 Section 2.3. 

The phMPI includes several types of independent services or agents. First, there 
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are Data Monitors for each data source. A Data Monitor periodically checks its data 

source for new or changed records and sends processing requests to a central Request 

Queue when it detects such events. A Workflow Manager grabs the processing 

requests out of the Request Queue and executes a specific Workflow for each one, 

depending on the type of request, the data source, and what kinds of data a consumer 

needs to know about that new or changed record. The Workflow may involve any 

number of actions, including matching person identities with those from other data 

sources, querying additional person data from the data source on which the event was 

detected, extracting person data from other data sources, merging all of the person’s 

data in a combined person snapshot, and publishing that snapshot to one or more data 

consumers. 

Out of necessity, matching operations require PII to find person identities from 

other data sources that represent the same person as the one for which a new or 

changed event was detected. In other words, the phMPI needs to know certain amount 

confidential information. However, it doesn’t need to have access to complete health 

histories, medical conditions, clinic data, lab results, or other personal details. 

To handling the querying of additional person data, the phMPI includes Pull 

Agents that can retrieve, in real time, a snapshot of given person’s data, specific its 

data source. There is a custom-configured Pull Agent for every data source. 

The publishing of combined person snapshots is handled through Push Agents, 

one configured for each possible data consumer. For ECCS, the data consumer of 
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interest is the EC Data Analysis System shown in Figure 1-2. When publishing, the 

Workflow Manager first sends a combined person snapshots to the EC Push Agent, 

which in turn sends them to the Translator inside the EC Data Analysis System 

(ECDS). The Translator transforms the incoming data into its own format and 

converts any embedded terminology into its own lexicon using a Terminology Service, 

and sends the resulting data onto the Data Loader, which then stores it in the EC Data 

Warehouse (ECDW). A Report Generator accesses that data through a Data Access 

Service to create interesting reports that highlight possible trends child health or 

healthcare. 

For the ECCS to guarantee privacy and confidentiality, it has to satisfy the 

following requirements. 

1. The phMPI should only have access to the minimal amount of PII that is 

needed to accurately match person identities. In other word, the phMPI 

should not have access to health histories, medical conditions, clinic data, 

lab result, economic data, or any other details not specifically need for 

record matching. 

2. When a Pull Agent extracts data intended for only the EC Data Analysis 

System (as requested by a Workflow), ECCS must ensure that only the EC 

Data Analysis System can access that data. Similarly, if a Pull Agent 

extracts data from other data sources, then ECCS must guarantee that only 

those intended data consumers can access the data. 
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3. ECCS must allow individuals to opt out of sharing any type of data with any 

of the possible data consumers. 

This report describes the development of such subsystem named the Medical 

Records Secure Messaging (MRSecureMessaging) that addresses the first two 

requirements. The thirds is handled by another subsystem called Consent 

Management System [23]. MRSecureMessaging includes a customized authentication 

protocol that allows data sources to verify the intended recipient. It also utilizes a 

reliable cryptographic algorithm to encrypt confidential data that phMPI and other are 

not allowed to view. Different recipients’ data would be encrypted by different keys 

so they cannot see each other’s data. These two features work together to satisfy the 

first two requirements.  

Figure 1-3 provides a high-level architectural view of the MRSecureMessaging. 

The red components represent the MRSecureMessaging’s encryptors and decryptors. 

When a Pull Agent tries to grab data, data source first lets the Encryptor encrypt it. 

The Encryptor uses asymmetric cryptography to handle this (more information about 

asymmetric cryptography is provided in Chapter 2 Section 2.2). As mentioned above, 

it encrypts PII with phMPI’s key and other confidential data with ECCS’s key. In this 

way, when the data arrives at phMPI, the Matcher can only decrypt PII with its own 

key. It then uses this information to finish correlating. Matcher doesn’t have access to 

other data since it doesn’t have the corresponding secret key to decrypt it. When 

correlating and merging process is done, the Push Agent sends a combined person 
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snapshot encrypted with ECCS’ key to the Translator. Translator decrypts incoming 

data with its own key and then transforms data into its own format. Finally, the Data 

Loader sends transformed data to the ECDS. 

High-Level Architectural Design:

MRSecureMessaging Encrypting and Decrypting
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Figure 1-3: Encryptors and Decryptors in the phMPI and ECCS 

So far we have a clear understanding of the ECCS and the 

MRSecureMessaging’s requirements. Chapter 2 provides sufficient background 

knowledge related with them. Then Chapter 3 introduces the theoretical design of 

MRSecureMessaging. Chapter 4 covers the system analysis of MRSecureMessaging. 

With the information from these two chapters, I illustrate the architectural design in 

Chapter 5. Chapter 6 discusses technique details of the implementation and Chapter 7 

mainly focuses on the testing process. Finally, in Chapter 8, I summarize the 
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contribution of the MRSecureMessaging and possible future work. 
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CHAPTER 2 

BACKGROUND 

The ECCS is dealing with healthcare data, so it is essential to understand the 

confidentiality of healthcare data to appreciate the contribution of this paper. Section 

2.1 provides some high-level background in area. As a subsystem of both the phMPI 

and ECCS, the MRSecureMessaging encrypts PII and other confidential data with 

public key cryptographic algorithm. It also contains a customized public key 

authentication protocol to ensure secure communication. Section 2.2 first explains 

what a cryptographic algorithm is. It then introduces the concept of authentication 

protocol and lists three main attacks to authentication protocol. Both phMPI and the 

MRSecureMessaging are built on top of the Vitruvian framework; having some 

knowledge about it is necessary. Section 2.3 gives a high-level overview of the 

Vitruvian framework. 

2.1 Confidentiality of healthcare data 

Person’s healthcare data must keep confidential and be handled carefully for the 

following reasons: 

First of all, healthcare data is person’s privacy. Person’s healthcare data 

contains PII, such as names, gender, birth date, parents, siblings, children, race, 

ethnicity, residential location, medical identifiers, and contact information. In general, 
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PII is any data that can be used by itself or in conjunction with other information to 

identify an individual. An organization should only request PII if the PII is absolutely 

necessary [25]. The Likelihood of harm caused by a breach involving PII is greatly 

reduced if an organization minimizes the amount of PII it uses, collects and stores 

[25]. 

Some cases, a person’s health history data or medical conditions could also be 

used to determine identity; but these kinds of information are not typically used by 

records matchers, so we put them in the category of confidential non-PII data. Besides 

a health history and medical conditions, a person’s non-PII data may include all kinds 

of details and very sensitive information, such as medications, clinical data, lab results, 

and economic or financial data. At an individual level, this data is extremely sensitive 

and must be keep confidential.  

Organizations can de-identify records by removing enough PII such that the 

remaining information does not identify an individual and there is no reasonable basis 

to believe that the information can be used to identify an individual [25]. 

De-identified records can be used when full records are not necessary [25]. In ECCS, 

a data source sends de-identified snapshots of these kinds of information to the ECDS 

in a way that guarantees that others, and even the phMPI, cannot access them. Then, 

the ECDS only allows these data to be reported on in aggregate so no single 

individual data can be view directly. 

Secondly, any data requestor must strictly abide by the data-sharing agreement 
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its steward agency has with the data source. A data-sharing agreement is legal 

agreement that defines the terms of data access [26]. It may include:  

• Intent and scope of data sharing 

• Potential benefits (including projected efficiencies) and risks of sharing, 

benefits and risks of not sharing , and methods to monitor these benefits 

and risks 

• Methods that will be used to share data and roles and responsibilities of 

staff involved 

• Minimum data elements needed to achieve the objective(s), including need 

for PII 

• Steps that will be taken to ensure the confidentiality and security of shared 

data 

• Provisions for physical and electronic security 

• How shared data will be used, analyzed, published, released, and 

retained/destroyed 

• Confidentiality agreements 

• Knowledge and training requirements including annual training for staff 

who have access to PII and non-PII data 

ECCS has data-sharing agreement with its 11 data sources to share all kinds of 

patient data, but phMPI only has data-sharing agreements that grant it access to PII. 

As mentioned in Chapter 1, the ECCS collects data from a wide range of data sources 
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and reuses phMPI’s matcher to correlate that data. When multiple medical records 

with the same patient name come to the matcher, the phMPI uses PII to determine 

whether these records belong to the same person. So, the systems must ensure that the 

phMPI cannot access non-PII data as it flows from the data sources through the 

phMPI to ECCS.  

Finally, federal laws such as Health Insurance Portability and Accountability 

Act and Confidentiality of Alcohol and Drug Abuse Patient Records, limit the use of 

healthcare data. But this is beyond the scope of this report. 

2.2 Introduction to Secure Communications 

Secure communications are needed when two principals exchange messages 

and want to guarantee that a third party cannot access the message content, modify 

that content, or reproduce/resend it [20]. One way to realize secure communication is 

hiding the content or nature of messages, namely encryption. In addition, secure 

communications also requires each of the principals to authenticate their identity so 

other principal has some assurance that it communicates with the right entity. An 

authentication protocol can address this requirement. 

2.2.1 Overview of Encryption and cryptographic algorithm 

Encryption is the process of encoding messages or information in such a way 

that only authorized parties can read it [28]. A concept closely related with encryption 

is cryptographic algorithm. In an encryption scheme, the message or information, 
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referred to as plaintext, is encrypted using a cryptographic algorithm, generating 

ciphertext that can only be read if decrypted [27]. 

Cryptographic Algorithms can roughly be divided into three different types: 

Symmetric Key Cryptography, Public Key Cryptography and One-way Hash 

Algorithm [1]. 

Symmetric Key Cryptography is a class of algorithms that use the same 

cryptographic keys for both encryption and decryption [2]. To ensure security of 

communication, keys are kept secret between the communicating principals [1]. 

However the requirement that both principals have access to the key is one of the 

main drawbacks of symmetric key cryptography [2]. Carelessness of either principal 

will make key to compromise. Modern-day symmetric key algorithms are principally 

block ciphers or stream ciphers [1]. A block cipher will encrypt a block of (typically 

64 or 128) plaintext bits at a time. The best known block cipher is the Data 

Encryption Standard [7]. In contrast, stream ciphers encrypt one bit of plaintext at a 

time.  

Public Key Cryptography, also known as asymmetric cryptography, is a class of 

algorithms that require two separate keys, one of which is secret (or private) and the 

other is public [3]. The public key is made publicly available but the principal would 

never reveal its private key. Although different, the two parts of this key pair are 

mathematically linked [3].Unlike symmetric key cryptography, in public key 

cryptography there is no shared secret between communicating parties [1]. Usually 
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(but not always) public key is used for encrypt information and secret key is used for 

decrypt. In 1976, Whitfield Diffie and Martin Hellman published the first paper on 

this topic [4]. The most widely known public key algorithm was developed by Rivest, 

Shamir and Adleman [5] and is universally referred to as RSA. Comparing to 

symmetric key cryptography, public key cryptography’s encryption speed is 

considered slower. 

One-way Hash Algorithm maps an input to a hash value of specific length. This 

hash value is often referred to as a digest. The mapping of inputs to digests is one-way; 

so it is practically impossible to recreate an input from its hash value alone. It is also 

infeasible to find two inputs with the same hash values. Hence, the recipient of a 

message could use a hash algorithm to yield its own digest, and then compare this 

digest with the received digest to check whether the received message was modified. 

This type of algorithms is intended for use in conjunction with cryptography to 

provide signatures [1]. 

2.2.2 Overview of Authentication Protocols 

Before introducing authentication protocol, we need to understand another 

concept first, namely that of a cryptographic protocol. A cryptographic protocol is an 

abstract or concrete protocol that performs a security-related function and applies 

cryptographic algorithm [29]. Cryptographic protocols are widely used for secure 

application-level data transport. An authentication protocol is a type of cryptographic 

protocol with the purpose of authenticating entities wishing to communicate securely 
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[30]. 

According to the cryptographic algorithm taken, authentication protocols could 

be categorized into two main types: symmetric key protocol and public key protocol. 

Further distinctions are made on whether they use trusted third parties (TTP) or not. 

Notice that authentication protocols could also be categorized by many other different 

ways, but we will not discuss them in this report. 

The first type is Symmetric Key Protocol without TTP. This type of protocol 

operates purely between two communicating principals that wish to achieve some 

mode of authentication [1]. Communicating principals need to share a key before 

sending messages to each other. Keys may be generated by a trusted organization and 

send to each principal individually. This requirement restricts them from changing the 

shared key frequently. Once the key is compromised, a malicious principal could keep 

eavesdropping on the network until they change it.  

To improve this, the second type, Symmetric Key Protocol with TTP, was 

introduced. This type of protocol uses TTP to carry out some agreed function [1]. 

Usually third parties are trusted for key generation and distribution, but they may be 

trusted for activities other than that. With TTP, principals could change shared keys 

every time they plan to communicate so security is improved. 

The third type is Public Key Protocol. This type of protocol also needs TTP to 

distribute principals’ public key. When a principal wants to talk to another principal, it 

needs to get the other one’s public key from TTP first. Then use this public key to 
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encrypt messages. On the other side, the recipient is able to decrypt messages with its 

own secret key.  

As mentioned above, public key cryptographic algorithms are usually slower 

than symmetric key cryptographic algorithms. This also restricts the efficiency of 

corresponding protocols. To achieve a better efficiency without compromising 

security too much, Hybrid Protocol was introduced. This type of protocol uses both 

public and symmetric key cryptography. The trick is exchanging symmetric 

encryption keys using public key cryptography. 

Protocols can fail in many different ways. The following paragraphs discuss 

three main types of attack related with secure communication. 

Freshness attacks. A freshness attack occurs when a message (or message 

component) from a previous run of a protocol is recorded by an intruder and replayed 

as a message component in the current run of the protocol [1]. This type of attack 

could be fixed by the use of timestamps. Every time when a principal receives a 

message, it first checks whether the timestamp is within an allowable clock skew or 

not. If yes, it responds that message. If no, it discards that message and logs an error. 

Man-in-the-middle. This type of attacks is a form of active eavesdropping in 

which the attacker makes independent connections with the victims and relays 

messages between them, making them believe that they are talking directly to each 

other over a private connection, when in fact the entire conversation is controlled by 

the attacker [21]. A man-in-the-middle attack can succeed only when the attacker can 
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impersonate each endpoint to the satisfaction of the other. This enlightens us that to 

prevent this attack, we need to find a way to stop impersonating. Chapter 3 discusses 

this in details. 

Guessing attacks. This type of attacks happens when the intruder grains useful 

information from communicating messages and then uses this information to verify 

his guess. This attack can be very dangerous when the intruder has powerful 

computational resource and is able to verify his guess off-line. To avoid this attack, 

the protocol designers need to ensure that data available to intruder is sufficiently 

unpredictable [8]. 

2.3 Overview of the Vitruvian Framework 

Technologies and frameworks that support communication, distribution, and 

replication for distributed systems are not new. However they all suffer from one 

problem which is exposing too much communication and distribution details to 

developers. Vitruvian is a service-oriented distribution framework that tries to 

minimize developers’ effort to distribute objects, without compromising functionality, 

extensibility, good modularization, performance, or maintainability. 

Vitruvian mainly handles two challenges:  

1. Designing new distributed systems from the ground up 

2. Accommodating new requirements for distribution in mid development 

stream. 

MRSecureMessaging is built on top of Vitruvian, which help the developer 
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achieve a reasonable degree of access, location, and communication transparencies. 

Transparency is defined as the concealment from the user and the application 

programmer of the separation of components in a distributed system, so that the 

system is perceived as a whole rather than as a collection of independent components 

[16]. The implications of transparency are a major influence on the design of the 

system software [16]. Specifically, access transparency enables local and remote 

resources to be accessed using identical operations [16]. Location transparency 

enables resources to be accessed without knowledge of their physical or network 

location [16]. Communication transparency enables different parties to communicate 

without knowing the low-level details. Vitruvian distributes objects using dynamically 

generated proxies which are specializations of the application classes. Vitruvian also 

provides various synchronization patterns for proxies. Chapter 6 Section 6.1 provides 

this information in details. 
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CHAPTER 3 

THEORETICAL DESIGN 

The MRSecureMessaging adapts and extends Needham-Schroeder public key 

protocol for authentication and encryption. It also utilizes the public key cryptography 

to enforce the data access constraint. Considering sensitive data is distributed and 

exchanged, the protocol must be stable. Unfortunately, some protocols are found to be 

flawed many years after their publications. Actually Needham-Schroeder protocol 

itself is an example. Lowe found a flaw (will be discussed in Section 3.3) 17 years 

after it was first published. However after many corrections and refinements, it is now 

considered a reliable protocol. 

Secondly, public key cryptography algorithms can provide better secrecy and 

access control. It could cause serious consequences once children’s healthcare 

information is compromised. The MRSecureMessaging and the ECCS must guarantee 

data’s privacy, confidentiality and security. More importantly, public key algorithms 

can easily handle data access issues. Different data is encrypted with different 

viewer’s public keys; only corresponding private keys could decrypt it. Getting others’ 

private keys is very hard since private keys are never distributed through network and 

always stored safely by their owner (Symmetric keys are distributed through network 

and therefore have greater chance to compromise). In sum, although public key 
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algorithms are generally slower than symmetric key algorithms, considering the 

problems mentioned above, it is still preferred. Also considering that computing 

power is increasing rapidly, the speed of encryption and decryption is acceptable. 

Finally, using public key algorithm simplifies the communication flows. 

Suppose a symmetric key algorithm is used, then data sources need to communicate 

with phMPI and ECDS individually to distribute their symmetric keys (generated by a 

key server), which in turns increases the MRSecureMessaging’s complexity. In 

contrast, when public key algorithm is used, data sources only need to communicate 

with phMPI. 

Section 3.1 introduces the notational conventions used in this report; Section 

3.2 reviews the Needham-Schroeder public key protocol; Section 3.3 lists a few 

modifications to the original protocol and explains the reasons; Section 3.4 gives a 

summary of the MRSecureMessaging’s theoretical design. 

3.1 Notational Conventions 

In this report, I use the notation {M}PK(A) to denote the result of encrypting 

message plaintext M with public key of principal A. PK stands for public key and SK 

stands for secure key. In general, capitals denote principals, such as A, B, S (for a 

server) and I (for an Intruder). A sends a message M1 to B would be denoted like this: 

A�B: M1 

Na denotes a random number generated by principal A. Such numbers are 

intended to be used only once for the purposes of the current run of the protocol and 
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are generally termed nonces [1]. Ca denotes a confounder generated by principal A. 

Section 3.3 will explain this concept in details. 

A message may have several components; some will be plaintext and some will 

be encrypted. Message components will be separated by commas. Unified Modeling 

Language (UML) sequence diagram is used to describe protocols’ message flows. 

3.2 Introduction to Needham-Schroeder Public Key Protocol 

Needham and Schroeder proposed this protocol in 1978 [6]. Figure 3-1 

illustrates the message flows of the protocol. 

 

Figure 3-1: Needham-Schroeder public key protocol 

In this protocol, server S stores all principals’ public keys and distributes them 

when request is received. Principal A first uses Messages 1, 2 to obtain principal B’s 
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pubic key. A then encrypts a nonce and its own identifier with by B’s public key. B 

receives Message 3 and decrypts it to obtain A’s nonce. Similarly, B uses Message 4, 5 

to obtain A’s public key. After that, B forms its own nonce and encrypts both nonces 

with A’s public key as Message 6. A decrypts Message 6 and knows that B is 

operational and has responded. The reason is that B is the only one who has necessary 

information to create Message 6. A then encrypts Nb using B’s public key and sends 

back to B. B then decrypts and checks if Message 7 contains its nonce. If the answer is 

yes, B concludes that A is operational and indeed initiated the protocol. 

However, Gavin Lowe showed that this protocol flawed relative to 

man-in-the-middle attacks [9]. Other than that, it also needs some modifications to 

fulfill security requirements in the ECCS. These will be discussed in the next section. 

3.3 Customized Authentication Protocol for the MRSecureMessaging 

This section covers several modifications to Needham-Schroeder public key 

protocol. 

3.3.1 Adding timestamps into messages 

The purpose of timestamp is to make ensure the “freshness” of a message. Each 

message should contain a timestamp in it. Then, if a message is not received within an 

allowable clock skew, the recipient can discard it and log a failure. Freshness attacks 

are therefore avoided. 

3.3.2 Fixing a man-in-the-middle attack 



 

As mentioned above, 

public key protocol is susceptible to man

this kind of attack, where 

communication. A sends the nonce 

start another session with 

Although I could not decrypt this 

Finally A decrypts this message and return 

it to B. B believes that he has

Figure 3-2: A man-in

To prevent this attack, Lowe suggested including the identity of the responder 

within the encrypted part of Message 3

message of the original protocol)

since A is expecting a message containing 

As mentioned above, Gavin Lowe has showed that to Needham

is susceptible to man-in-the-middle attack. Figure 

, where A tries to communicate with B, but I intrudes on that 

sends the nonce Na encrypted with I’s key. I could impersonate 

start another session with B. B replies with a new nonce Nb encrypted with 

could not decrypt this message, he could simply replay this message to 

decrypts this message and return Nb to I, I decryptes the message and return 

believes that he has correctly carried out a run of protocol with 

in-the-middle attack to Needham-Schroeder public key protocol

To prevent this attack, Lowe suggested including the identity of the responder 

within the encrypted part of Message 3 (the third message in Figure 3

message of the original protocol). In this way, intruder I cannot successfully replay it 

is expecting a message containing I’s identity. The new Message 
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Needham-Schroeder 

. Figure 3-2 illustrates 

intrudes on that 

could impersonate A to 

encrypted with A’s key. 

message, he could simply replay this message to A. 

decryptes the message and return 

correctly carried out a run of protocol with A. 

 

Schroeder public key protocol 

To prevent this attack, Lowe suggested including the identity of the responder 

(the third message in Figure 3-2, not the third 

cannot successfully replay it 

Message 6 of 
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Needham-Schroeder protocol looks like this: 

B�A: {Na, Nb, B}PK(A) 

3.3.3 Adding confounders into messages 

A confounder is distinct from a nonce in that it has no purpose other than to 

confound guessing attack. The value of a confounder may be ignored by the recipient 

of the message in which it appears [9]. With the help of confounder, it is very difficult 

for the intruder to verify his guessing so that guessing attacks could be avoided. 

Suppose there is an intruder in the system. He may record Message 6 and try to 

guess the secret key of A to decrypt this message. Then he can get Na’, Nb’ and B’. If 

B’ = B, this guessing might be correct, he could generate two messages: {Na’, A}PK(B) 

and {Nb’}PK(B). By comparing these two messages with Message 3 and Message 7, the 

intruder could verify his guessing (see Table 3-1). 

This is a dangerous attack since the process of guessing can be done offline. 

The intruder may have very powerful computing recourse to make guessing and 

verifying. To avoid from this attack, confounders are added to the messages to stop 

the intruder from verifying his guessing (see the last column of Table 3-1). “⊕” 

stands for XOR. Suppose an intruder decrypts new Message 6 with his guessing key, 

he could get (Na⊕Ca1)’ and Nb’, but there is no way for him to verify his guessing due 

to the changings of Message 3 and Message 7. Therefore, guessing attacks are 

avoided. 



 

Table 3-1

Message # Original messages

Message 3: {Na, A}

Message 6: {Na, N

Message 7: {Nb

Figure 3-3 depicts the customized Needham

(notice that confounders have been added into messages).

Figure 3-3: Customized Needham

3.4 Summary 

Figure 3-4 describes a high level summary of the MRSecureMessaging 

(coordinating process is not included in this diagram since that is not part of the 

1: Fixed messages in Needham-Schroeder protocol

Original messages Intruder’s messages Fixed messages

, A}PK(B) {Na’, A}PK(B) {Na, A, C

, Nb, B}PK(A) N/A {Na⊕C

b}PK(B) {Nb’}PK(B) {Nb⊕C

depicts the customized Needham-Schroeder public key protocol

(notice that confounders have been added into messages). 

: Customized Needham-Schroeder public key protocol

describes a high level summary of the MRSecureMessaging 

coordinating process is not included in this diagram since that is not part of the 
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Fixed messages 

, A, Ca1, Ca2, Ta1}PK(B) 

Ca1, Nb, B, Tb1}PK(A) 

Ca2, Ca3, Ta2}PK(B) 

Schroeder public key protocol 

 

Schroeder public key protocol 

describes a high level summary of the MRSecureMessaging 

coordinating process is not included in this diagram since that is not part of the 



 

MRSecureMessaging)

1. A requests B

2. KeyServer S

3. A authenticates 

4. A encrypts Data1

5. A sends data to 

6. B authenticates 

7. B sends Data2

Figure 3-4

. The working flow is as follow: 

B and C’s public key separately. 

S replies A with corresponding public keys. 

authenticates B with customized Needham-Schroeder public key protocol.

Data1 and Data2 with B’s public key and C’s public key.

sends data to B. 

authenticates C with customized Needham-Schroeder public key protocol.

Data2 to C. 

4: A high level summary of the MRSecureMessaging
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Schroeder public key protocol. 

’s public key. 

Schroeder public key protocol. 

 

: A high level summary of the MRSecureMessaging 
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CHAPTER 4 

SYSTEM ANALYSIS 

System analysis is“the process of studying a procedure or business in order to 

identify its goals and purposes and create systems and procedures that will achieve 

them in an efficient way” [10]. Specifically, in software engineering, the purpose of 

system analysis is to understand and document the essential characteristics of the 

system being studied. However, these types of documents could be highly-abstracted 

and hard to understand. I used UML diagrams to visualize the system analysis and 

again here to communicate the analysis to the readers. The UML is a general-purpose 

modeling language which is designed to provide a standard way to visualize the 

design of a system [11]. 

The use-case diagrams in Section 4.1 provide a high-level overview of actor 

and its goals. The class diagrams in Section 4.2 summarize the key objects in the 

system and their relationships to each other from an analysis perspective. The 

functional requirements listed in Section 4.3 details these goals. Non-functional 

requirements listed in Section 4.4 specify the criteria that can be used to judge the 

operation of the system. 

4.1 Actor Goals 

The actor is any external entity that has an interest in interacting with the 



29 

 

system. Often, it is a human user of the system, but it can also be another system or 

some kind of hardware device that needs to interact with the system [11]. Actor’s 

goals are captured by use-case diagrams. A use-case diagram shows actors, use cases 

and their relationships [11]. 

Three main actors closely relate with the MRSecureMessaging. Figure 4-1, 4-2 

and 4-3 describe their primary goals. 

 

Figure 4-1: Data sources’ primary goals 

Data sources have three primary goals. First, they need to authenticate MPI to 

make sure healthcare data is sent to the “right” place. Second, they should be able to 

encrypt data. This goal includes two sub goals. In short, data sources needs to encrypt 

different data with different recipients’ public keys. Third, data sources need to deliver 

healthcare data to the ECDW through MPI since the data needs to be coordinated and 

de-identified in MPI. 
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Figure 4-2: MPI’s primary goals 

MPI has four primary goals. First, similar to data sources, it needs to 

authenticate the ECDW. Second, it should have access to PII; this one includes 

decrypting received data with its own private key. Third, it must not have access to 

other confidential healthcare data. Fourth, it needs to deliver coordinated, 

de-identified data to the ECDW. 

 

Figure 4-3: ECDW’s primary goals 

The ECDW only has one goal, namely the receiving of coordinated, 
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de-identified data from MPI. This goal includes one sub goal that it needs to be able 

to decrypt received data with its own private key. 

4.2 Object-oriented Structural Analysis 

Structural analysis could give developers a better understanding of a system’s 

components and structure. UML class diagrams are used to illustrate such analysis. A 

class diagram describes the static view of a system in terms of classes and 

relationships among the classes [11]. Class diagrams are not just for visualizing and 

documenting structure models, but also for constructing an executable system. An 

object-oriented programming language can directly implement a class, making the 

class diagram one of the core diagrams for generating code and making UML 

executable [11]. 

 

Figure 4-4: Class diagram of the MRSecureMessaging 

Figure 4-4 shows the class diagram of the MRSecureMessaging. KeyService 
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stores keys generated by KeyGenerator and distributes them when key requests are 

received. Clients use messages to request keys from KeyService; they also use 

messages to communicate with each other. Each client also has relations with three 

other classes: Encryptor, Decryptor and RandomNumGenerator. The first two’s jobs 

are handling cryptography and the last is used to generate nonces and confounders. 

The following subsections describe the purpose of these classes and design 

considerations. 

4.2.1 Key-related classes 

The KeyGenerator class is responsible for generating both public key and secret 

key. KeyService stores clients’ public keys and clients store their own secret keys. As 

the trusted third party, KeyService also distributes public keys when requests are 

received from clients. Each class has a clear and independent functionality so that 

flexibility and reusability are achieved. KeyGenerator could be used in other projects. 

KeyService could also easily substitute current KeyGenerator with another one. 

4.2.2 Client-related classes 

     ClientDefinition defines the common properties of all clients. This design 

avoids redundant code and reflects a good practice of encapsulation. Various types of 

concrete client classes could inherit from it. Currently there are three: ClientAlice, 

ClientBob and ClientCarol, which represent the three different parties mentioned in 

previous chapters. More clients could be added in the future. Clients also need to 



33 

 

handle cryptography, nonces and confounder issues. These requirements are fulfilled 

by three independent classes: Encryptor, Decryptor and RandomNumGenerator so 

that they can be reused. 

4.2.3 Message-related classes 

Messages could be categorized into two types: RequestMessage and 

ResponseMessage. These two classes plus Message class capture common properties 

of messages. A few concrete message classes extend these two classes. This design is 

very flexible, since new message class can be added easily by simply adding 

additional specializations. Figure 4-5 describes different message classes and their 

relationships. 

 

Figure 4-5: Class diagram of messages 

4.3 Functional Requirements 

In software engineering, functional requirements capture the intended behavior 

of the system. This behavior may be expressed as calculations, technical details, data 
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manipulation or other specific functionality the system is required to perform [12]. 

The detailed functional requirements for the MRSecureMessaging are as follows: 

4.3.1 Data Sources Requirements 

1. The MRSecureMessaging should allow data sources to authenticate the 

MPI. 

2. The MRSecureMessaging should allow data sources to encrypt healthcare 

information. 

2.1 The MRSecureMessaging should allow data sources to encrypt PII 

with MPI’s public key. 

2.2 The MRSecureMessaging should allow data sources to encrypt other 

private healthcare information with ECDW’s public key. 

3. The MRSecureMessaging should allow data sources to deliver healthcare 

information to the ECDW through MPI. 

4.3.2 MPI Requirements 

1. The MRSecureMessaging should allow MPI to authenticate the ECDW. 

2. The MRSecureMessaging should allow MPI to access sufficient PII to 

coordinate data. 

2.1 The MRSecureMessaging should allow MPI to decrypt PII with its 

own private key. 

3. The MRSecureMessaging must prevent MPI from accessing other private 



35 

 

healthcare information. 

4. The MRSecureMessaging should allow MPI to deliver coordinated, 

de-identified healthcare information to the ECDW. 

4.3.3 ECDW Requirement 

1. The MRSecureMessaging should allow ECDW to receive coordinated, 

de-identified healthcare information. 

1.1 The MRSecureMessaging should allow ECDW to decrypt received 

information with its own private key. 

4.4 Non-functional Requirements 

A non-functional requirement defines how a system is supposed to be, in other 

words, it is a requirement that specifies criteria that can be used to judge the operation 

of a system, rather than specific behaviors [13]. Followings are 

MRSecureMessaging’s non-functional requirements: 

1. Operating System 

1.1 The MRSecureMessaging should be compatible with the Microsoft 

Windows operating system. 

2. Languages and Platform 

2.1 The programming language should be C# (C-Sharp). 

2.2 UML should be used to document the system analysis, specification 

and architectural design 
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2.3 The system should use Vitruvian for distribution. 

3. Quality Control 

3.1 The system should have comprehensive unit tests for each class. 

3.2 Integration testing is essential to ensure functionality, reliability and 

performance of the MRSecureMessaging. 

4. Documentation 

4.1 Design documents and a report about the system should be given to 

assist the end users in understanding the design and functionalities of 

the MRSecureMessaging. 

5. Logging 

5.1 The system should use Vitruvian framework to support logging. 
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CHAPTER 5 

ARCHITECTURAL DESIGN 

Software architecture is the process of defining a structured solution that meets 

all of the technical and operational requirements, while optimizing common quality 

attributes such as performance, security and manageability. It involves a series of 

decisions based on a wide range of factors and each of these decisions can have 

considerable impact on the quality, performance, maintainability and overall success 

of the application [14]. A good architectural design should have high cohesion and 

loose coupling so that the application can be easily understood, maintained, reused 

and tested. 

The MRSecureMessaging’s design needs to address two concerns. The first one 

is flexibility. The MRSecureMessaging’s classes should be designed with good 

encapsulation so that if one class is changed later, the others won’t be affected. In this 

way, future update will be greatly facilitated. The second concern is reusability. This 

includes two aspects: first, the MRSecureMessaging’s classes should have very clear 

functionality so that they could be reused in other projects; second, the 

MRSecureMessaging should also try to reuse code from other projects, for instance, 

code from Vitruvian framework. This could help the programmer to focus on solving 

specific problems and keep them away from handling bottom layer issues. Section 5.1 
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covers these two concerns by illustrating the packages and reusable components of the 

MRSecureMessaging. Section 5.2, Section 5.3 and Section 5.4 explain the design 

decisions and dependencies of individual packages separately. 

5.1 MRSecureMessaging System Design 

The Vitruvian Framework provides a service-oriented architecture that 

distributes objects using dynamically generated proxies that are specializations of the 

application classes [15]. It also facilitates serialization and logging. 

 

Figure 5-1: The MRSecureMessaging’s abstract class diagram 
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Figure 5-1 shows the MRSecureMessaging’s abstract class diagram. The 

package Vitruvian contains classes and methods for distributing and logging. It also 

contains classes and methods for serialization and communications. Specifically, the 

KeyService class implements an IService interface. In another word, it extends 

DistributedService class which implements an IService interface. This class contains 

the method required for distributing public keys. Package Client uses BinarySerializer 

and BinaryDeserializer that are defined in package Vitruvian.Serialization. Package 

Messages contains various types of messages which extend generic Message class in 

package Vitruvian.Communicatons. 

5.2 Design Decisions and Dependencies of Package Messages 

Authentication is a core functionality of the MRSecureMessaging. To realize 

this functionality, each principal needs various types of messages. Package Messages 

is designed for this purpose. Fortunately, Vitruvian has provided related classes in it. 

Figure 5-2 shows them in details. 

 

Figure 5-2: Message classes of Vitruvian 
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The Messages package contains four message classes that inherit from 

RequestMessage and two message classes inherit from ResponseMessage. 

Acknowledge is a reply to AuthenticationFeedback, OriginalDataMessage and 

ForwardedDataMessage. Obviously, it replies different requests with different 

information. AckInfos stores this information in it. Similarly, MessageTypes includes 

different message types (see Figure 5-3). ForwardedData contains data which needs 

to be forwarded in it. 

 

Figure 5-3: Messages classes of the MRSecureMessaging 

5.3 Design Decisions and Dependencies of package Security 

All security-related classes are defined in this package to improve reusability 

and reduce redundant code (see Figure 5-4).  

As the names would imply, Encryptor and Decryptor are a pair of classes 

designed for encrypting and decrypting messages. They are designed in this way so 
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that reusability and flexibility are achieved. Each of them has a static method in it. 

When a client wants to encrypt/decrypt a message, it just needs to pass the 

corresponding key to Encryptor/Decryptor’s method. Since these two classes are in an 

independent package, they can also be used in other places as long as the 

cryptography algorithms are the same. 

 

Figure 5-4: Security-related classes of the MRSecureMessaging 

RandomNumGenerator generates nonces and confounders which both are 

random numbers essentially. The object of this class is also contained in 

ClientDefinition class. 

PublicKey stores other principals’ public key, but it also contains a timestamp in 

it to record the time when this public key is received. Once this public key expires, the 

client will ask KeyService for a new one. 

DataWrapper is a simple wrapper which has two byte arrays in it to store two 

encrypted data. This class is closely related to three other classes: ForwardedData, 

OriginaldataMessage and ForwardedDataMessage. The first client would encrypt the 
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objects of the first two classes separately and put them into DataWrapper when he is 

sending data to the second client. The second client would remove the 

OriginaldataMessage in that wrapper object and substitute it with 

ForwardedDataMessage when he is forwarding data to the third client. 

5.4 Design Decisions and Dependencies of package Client 

This package contains classes and methods related to authentication protocol 

and data distribution. The Vitruvian framework is also used in it. ClientDefinition is 

the base class which contains all fundamental attributes in it. ClientAlice, ClientBob 

and ClientCarol inherit this class and contain authentication related methods 

respectively. 

Clients need to communicate with each other. To realize this, ClientDefinition 

extends an abstract class called DistributedService in Vitruvian. This class simplifies 

the process of distributing applications, and makes it possible to distribute the 

application anywhere in the software development cycle. BinarySerializer and 

BinaryDeserializer are also defined in Vitruvian. ClientDefinition uses them to 

serialize messages or deserialize byte arrays. Other attributes like client name, client 

id, guest id and key storages are also contained in its definition (see Figure 5-5).  

ClientAlice, ClientBob and ClientCarol have authentication related methods in 

them. These methods could be categorized into two types: local method and remote 

procedure call. Local method typically has three steps: first, generate a message; 

second, serialize this message into a byte array; third, encrypt this byte array with the 
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recipient’s public key. Remote procedure call has six steps: first, decrypt the input 

with its secret key; second, deserialize the byte array from the first step into a message 

object; third, check if the information contained in this message is as expected or not. 

If yes, generate corresponding response message and follow the same three steps as 

used in local method. If no, log an error. 

 

Figure 5-5: Client classes and their inheritance hierarchy 
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CHAPTER 6 

IMPLEMENTATION DETAILS 

The MRSecureMessaging is implemented in C# programming language on 

the .NET Framework 4.5, using the Vitruvian Framework to the handle key and data 

distribution. The following sections introduce what implementation challenges were 

met and how they were addressed. Section 6.1 gives a brief introduction to Vitruvian 

Framework and how it is used in the MRSecureMessaging. Section 6.2 describes the 

cryptography algorithm used in the MRSecureMessaging. 

6.1 Introduction to Vitruvian Distribution 

One of the key functionalities of the MRSecureMessaging is distributing 

various types of information (include public key, authentication messages and 

healthcare information). This is also the main challenge encountered when 

implementing it.  

The Vitruvian Framework provides a service-oriented architecture that 

distributes objects using dynamically generated proxies that are specializations of the 

application classes [15]. These proxies use one or more SyncPatterns to manage the 

synchronization between all the replicas of a given patient object. Because the 

SyncPattern is external to the proxy, it can be changed dynamically. A proxy type 

overrides designated methods and properties in the original type and seamlessly 
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connects them to the synchronization patterns. A programmer can declare a 

synchronization pattern by simply adding an attribute to a property or method. Since 

the communication and synchronization are handled by the framework, there is no 

differentiation between a local object and a distributed object from a programmer's 

perspective. 

The Vitruvian Framework has several different types of SyncPatterns. As 

described in Chapter 5, the SyncPattern used in the MRSecureMessaging is Remote 

Procedure Call or RPC. In RPC, procedures on remote machines can be called as if 

they are procedures in the local address space. The underlying RPC system then hides 

important aspects of distribution, including the encoding and decoding of parameters 

and results, the passing of messages and the preserving of the required semantics for 

the procedure call [16]. 

Take public key distribution as an example to illustrate this implementation 

details. First, at KeyService side, the function needs to be annotated like this: 

 

Figure 6-1: Sample remote procedure call code 

A proxy of KeyService would be generated at client side. When a client is 

requesting a public key, it simply calls this proxy’s GetPublicKey method as if it is a 

local method. Figure 6-2 shows the details of the remote proxy and Figure 6-3 shows 

the details of the local proxy (“r” means remote and “l” means local). 



46 

 

 

Figure 6-2: RPC remote proxy 

 

Figure 6-3: RPC local proxy 

6.2 Cryptographic Algorithm 

The MRSecureMessaging utilizes RSA algorithm [5] for encryption and 

decryption. It works as follow: 

1. pick two large primes p and q, let n = p * q 

2. choose e relatively prime to ø(n) = (p - 1)(q - 1) 

3. use Euclid’s algorithm to generate a d such that e * d = 1 mod ø(n) 

4. make the pair (n, e) publicly available – this is the public key. The secret 
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key is d 

5. a message block M is now encrypted by calculating C = M
e
 mod n 

6. the encrypted block C is decrypted by calculating M = C
d
 mod n 

The .Net Framework 4.5 provides the RSACryptoServiceProvider for this 

purpose. This class creates a public/secret key pair when the default constructor is 

used to create a new instance. After a new instance of the class is created, the key 

information can be exported in to two formats: either a string of XML representation 

or an RSAParameters structure. You can also use a Boolean value to indicate whether 

to return only the public key information or to return both the public key and the 

secret key information.  

In KeyGenerator, keys are exported into XML representation. On KeyService 

side, only public keys are exported; On client side, both public keys and secret keys 

are exported. 

Secret keys should never be stored verbatim or in plain text on the local 

computer. A key container is needed to store it. Specifically, CspParameters is used in 

the MRSecureMessaging. This is another class provided by the .Net Framework; it 

guarantees secret keys cannot easily be compromised. 
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CHAPTER 7 

SOFTWARE TESTING 

7.1 Introduction 

Software testing is an investigation conducted to provide stakeholders with 

information about the quality of the product or service under test [31]. Software 

testing can also provide an objective, independent view of the software to allow the 

business to appreciate and understand the risks of software implementation [17]. 

Software testing involves the execution of a software component or system to 

evaluate one or more properties of interest. In general, these properties indicate the 

extent to which the component or system under test [17]: 

• meets the requirements that guided its design and development,  

• responds correctly to all kinds of inputs,  

• performs its functions within an acceptable time,  

• is sufficiently usable,  

• can be installed and run in its intended environments, and 

• achieves the general result its stakeholders desire. 

From the above we could conclude that testing is more than just debugging. But 

debugging is still a very important part of testing. Software bugs will almost always 

exist in any software module with moderate size: not because programmers are 
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careless or irresponsible, but because the complexity of software is generally 

intractable, and humans have only limited ability to manager complexity. It is also 

true that for any complex systems, design defects can never be completely ruled out 

[18]. 

Testing is also expensive. Typically, more than 50% percent of the development 

time is spent in testing [18]. So testing is a trade-off between budget, time and quality. 

The MRSecureMessaging is thoroughly tested. Section 6.2 discusses the unit 

testing and Section 6.3 explains the integration testing. 

7.2 Unit Testing 

Unite testing, also known as component testing, refers tests that verify the 

functionality of a specific section of code, usually at the function level. In an 

object-oriented environment, this is usually at the class level, and the minimal unit 

tests include the constructors and destructors [32]. Unit testing alone cannot verify the 

functionality of a piece of software, but rather is used to ensure that the building 

blocks of the software work independently from each other [17]. 

Extensive test cases have written for almost all classes in the 

MRSecureMessaging. These classes include various message classes, client classes, 

KeyGenerator, KeyService, Encryptor and Decryptor. Test cases were designed such 

that they met MRSecureMessaging’s functional requirement discussed in Chapter 4. 

Different types of inputs that user may provide were also covered in those test cases. 
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7.3 Integration Testing 

Integration testing is the phase in software testing in which individual software 

modules are combined and tested as a group. It occurs after unit testing. Integration 

testing takes as its input modules that have been unit tested, groups them in a larger 

aggregates, applies tests defined in an integration test plan to those aggregates, and 

delivers as its output the integrated system ready for further testing [19]. Integration 

testing works to expose defects in the interfaces and interaction between integrated 

components. Progressively larger groups of tested software components 

corresponding to elements of the architectural design are integrated and tested until 

the software works as a system [17].  

For this project, testing focused on the flows of key/authentication/data from 

one component to another. Specifically, they are as follows: 

1. Testing of communication between clients and KeyService 

2. Testing of authentication process between clients 

3. Testing of data (PII and other confidential data) flow between ClientAlice 

and ClientBob 

4. Testing of data (coordinated, de-identified data) flow between ClientBob 

and ClientCarol 
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CHAPTER 8 

SUMMARY 

The MRSecureMessaging utilizes a reliable public key cryptographic algorithm 

to encrypt PII and other confidential data to make sure that phMPI and data 

consumers can only access their own data. It also contains the built-in customized 

Needham-Schroeder protocol that allows data sources to authenticate the intended 

recipients. Specifically, data sources first use it to verify recipients and then encrypt 

different types of data with different keys so that only corresponding recipients can 

decrypt it. This approach guarantees privacy, security and communication efficiency. 

Although the MRSecureMessaging is specific to the ECCS, it can actually be 

used in any system where secure communication is needed. With minor changes, it 

could be used in two-client communication or multiple-client (more than three) 

communication. It can also be used in systems where access control is needed. The 

design of the MRSecureMessaging strictly follows the software engineering 

principles which allow high cohesion and loose coupling among classes. Modules are 

easy to understand, maintain and reuse. Changes in one module do not affect other 

modules. 

Future work could focus on changing the cryptographic algorithms used in it. 

The MRSecureMessaging is using public key cryptographic algorithm right now. If 
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symmetric cryptographic algorithm is needed in future, as mentioned in Chapter 3, the 

communication architecture will be changed dramatically and becomes more 

complicated. The trade-off between these two architectures will need further research. 

While working on this project, I had the opportunity to practice the theory and 

principles learned from software engineering class and object-oriented software 

development class. I also gained experience from almost all phases of the software 

development process. These precious experiences improved my skills in documenting, 

implementing and testing. It also improved my system design ability and coding style. 
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