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ABSTRACT 
 

 
Nitrogen Transport, Transformation, and Cycling Through a Mountain Lake, 

Bull Trout Lake, Idaho, USA 
 
 

by 
 
 

Ryan S. Lockwood, Master of Science 
 

Utah State University, 2009 
 
 
Major Professor: Dr. Wayne A. Wurtsbaugh 
Department: Watershed Science 
 
 

The effects of a mountain lake on nitrogen dynamics in a sub-alpine watershed 

were examined via watershed monitoring, mesocosm experiments, microcosm 

experiments, and enzymatic assays during spring and summer of a single year.  Our study 

addressed the questions: (1) How does hydrologic transport through the lake affect the 

net fluxes of dissolved nitrogen (N) species?  (2) What are the net effects of the littoral 

zone biota on dissolved N fluxes?  (3) What are the seston and benthic uptake rates of 

nitrate?  (4) What is the magnitude of N retention in littoral zone sediments?  (5) What 

role does microbial hydrolysis of amino-groups from organic matter play in the uptake of 

dissolved nitrogen, relative to rates of nitrate uptake?  Our study found a net positive flux 

of total dissolved N and dissolved organic N (DON), and a net negative flux of nitrate 

through the lake.  During snowmelt, when the majority of nutrients are transported in this 

watershed, DON was retained in the lake.  Several experiments were run to more closely 

examine the mechanisms behind these observations.  Experiments in 2.1 m3 mesocosms 
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in June and July measured rates of DON flux from the littoral zone sediments into the 

water column that were similar to increments measured in the lake.  15N-nitrate 

mesocosm and microcosm tracer experiments quantified benthic and pelagic nitrate 

uptake and retention of that nitrate in the benthic sediments.  Areal nitrate uptake was 65-

times greater in the sediments than in the water column seston and the turnover rate (half 

life) of the newly input nitrate pool in the sediments was 33-64 days.  Finally, the 

prevalence of DON relative to dissolved inorganic N (DIN) and high measured rates of 

enzymatic amino acid hydrolysis suggest the importance of DON as a source of N for this 

aquatic system.   

(50 pages) 
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INTRODUCTION 
 
 

Nitrogen (N) availability has been recognized as an important regulator of 

ecosystem productivity across a wide array of aquatic systems (Rabalais 2002; Elser et al. 

2007), and landscape features such as lakes can be important regulators of the transport 

and transformation of N (Swanson et al. 1988; Kling et al. 2000).  Observed patterns of N 

import and export in Bull Trout Lake, located in the Sawtooth Mountains of Idaho, USA 

and other lakes suggest the importance of lakes as sites of N retention and processing 

(Kaste et al. 2003; Arp and Baker 2007; Brown et al. 2008).  N import to lakes via 

inflowing water often occurs in temporally short, relatively high flux spikes triggered by 

events such as snowmelt or precipitation that bring in pulses of dissolved inorganic 

nitrogen (DIN) and dissolved organic nitrogen (DON).  N export via outflowing water is 

then potentially temporally attenuated due to heterotrophic and autotrophic uptake, 

storage and release.  Furthermore, proportionally more of the total dissolved N pool is 

often exported as DON versus DIN when comparing the outflow and inflow of many 

lakes (Kling et al. 2000; Fairchild and Velinsky 2006; Brown et al. 2008).  This N 

transformation by the lake biota will likely affect productivity and nutrient cycling in the 

surface water network downstream of the lake.   

In lakes the site of N uptake and storage can be coarsely partitioned into two 

compartments: benthic and pelagic.  Consideration of both of these compartments is 

critical in lake studies (Vadeboncoeur et al. 2002).  It was traditionally thought that 

nitrate inputs were predominately incorporated into the phytoplankton community of the 

water column because phytoplankton have higher N affinities and uptake rates than the
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benthic community (Goldman and Horne 1983), because the benthic community can be 

constrained by boundary layer kinetics (Reuter and Axler 1992), and because the 

phytoplankton often show a greater relative response in growth or atomic enrichment to 

nutrient or 15N additions relative to the benthic community (K. R. Nydick and W. A. 

Wurtsbaugh unpublished data).  However, whole-lake and mesocosm experiments have 

demonstrated the importance of the benthic zone as a site of N uptake, processing and 

denitrification (Axler and Reuter 1996; Vadeboncoeur et al. 2003; K. R. Nydick and W. 

A. Wurtsbaugh unpublished data).  When examining lake N cycling the importance of the 

littoral zone (defined here as the area of a lake that is in contact with both sediments and 

the epilimnion) becomes apparent once the biotic processing of the benthic zone is taken 

into account.  Littoral zone sediments in particular are areas of high biomass and biologic 

activity because: (1) They underlie epilimnetic water and are therefore exposed to higher 

temperatures than sediments deeper in the lake; (2) They are commonly exposed to 

quantities of light that allow for the growth of epiphytes, and; (3) Nutrient levels in the 

sediment are far higher than in the overlying water column.  Studies of lakes have shown 

a positive relationship between extent of the littoral area and productivity of the 

phytoplankton (Fee 1979), suggesting that the epilimnetic sediments may cycle nutrients 

back into the water column.   

Although the majority of studies in lakes and streams have focused on inorganic 

N processing, recent workers have recognized that organic matter is an important pool 

and source of N in aquatic systems (Perakis and Hedin 2002; Hood et al. 2003; Judd et al. 

2006).  Many DON studies have focused on pools such as urea and dissolved free and 

combined amino acids (DFAA and DCAA) due to their utility as the most labile 
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constituents of the naturally occurring DON pool (e.g. Findlay and Sinsabaugh 2003; 

Brookshire et al. 2005).  However DFAA and DCAA usually comprise a minor portion of 

the total DON pool in aquatic environments (Berman and Bronk 2003; McKnight et al. 

2003).  Most naturally occurring DON occurs in molecules that are too large for direct 

uptake.  For instance, proteinaceous matter greater than 5 to 7 amino acids long (~650 

Daltons) is too large for cross-membrane transport (Law 1980; Payne 1980) and requires 

extracellular breakdown before it is available to other organisms.  Microbial uptake of 

most DON is therefore regulated by extracellular enzymatic activity.   

Much of the bio-available organic N resides in large, heterogeneous molecules 

that defy classification due to their complex and non-repetitive structures.  Consequently, 

studying this portion of DON presents the difficulty of designing an assay that will be 

applicable across variations in DON quality, microbial community composition and 

environmental conditions.  Quantifying enzymatic activity is a useful alternative because 

unlike the heterogeneous structure of naturally occurring dissolved organic matter, an 

enzymatic pathway operates in the same manner across microbial communities.   

Two enzymatic pathways appear to be the most relevant in microbial processing 

of dissolved organic matter: oxidative and hydrolytic.  Oxidative pathways break apart 

large organic ring structures and other more recalcitrant molecules.  These smaller 

organic molecules are then available for hydrolytic pathways.  Hydrolysis cleaves 

specific functional groups from organic molecules and the functional group is 

subsequently transported across the membrane into the cell (Chróst 1991; Münster 1991).  

Extracellular hydrolysis is often the rate-limiting step in aquatic microbial nutrient uptake 

(Chróst 1991; Münster 1991).  Most DON cleavage occurs via a hydrolytic pathway 
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using an enzyme such as an aminopeptidase.  Leucine aminopeptidase (L-AMP) is a 

common hydrolytic enzyme that is an important regulator of microbial DON uptake 

(Münster and De Haan 1998).  The microbial community produces L-AMP in proportion 

to the size and lability of the DON pool, in proportion to the community’s demand for N, 

and in inverse proportion to the availability of other more labile forms of N (Chróst 1991; 

Münster 1991; Francoeur and Wetzel 2003).  Because of these three factors, L-AMP 

activity should change in proportion to the actual rate of DON hydrolysis that is 

occurring in the environment.  Despite many detailed studies on both DON and DIN 

utilization, little work has been done to compare DIN and DON utilization in natural 

lakes.   

This study examines how the presence of a lake in a small alpine watershed 

affects N cycling in regard to the following topics: rates of nitrate uptake by seston 

(suspended organic matter, including phytoplankton) and the benthic zone, relative 

partitioning of nitrate between the two pools, and rates of DON production in the littoral 

zone.  Planktonic DON hydrolysis was also quantified in a manner that allowed for 

comparison of this rate and the rate of nitrate uptake by seston.  In summary, the goals of 

this study were to examine and quantify (1) net lake and littoral zone N chemistry 

changes, (2) benthic and pelagic nitrate uptake, and (3) DON cycling.   
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STUDY SITE 
 
 

Bull Trout Lake watershed is located in the Sawtooth Mountains of central Idaho, 

USA (44º 17’ 58” N, 115º 15’ 16” W).  Watershed lithology is biotite granodiorite from 

the Idaho Batholith (Kiilsgaard et al. 2003).  The physical hydrology of the watershed has 

been studied extensively (see: Arp et al. 2006).  The watershed above Bull Trout Lake 

drains an area of 11.7 km2 with a maximum elevation of 2550 m.  During midsummer the 

lake has a single inflow and a single outflow.  The inflow, Spring Creek, is a second 

order gravel-bedded creek that flows from South to North.  The outflow, Warm Springs 

Creek, flows to the South Fork Payette River.   

Bull Trout Lake is dimictic and completely ices over from approximately 

November to May.  The lake is oligotrophic with a maximum pelagic chlorophyll a 

concentration recorded for any stratum of 6.6 µg L-1 and the average epilimnetic summer 

concentration of 1.1 µg L-1 (2007 data).  Epilimnetic total phosphorous (TP) and total 

nitrogen (TN) concentrations in the summer average 0.14 and 6.1 µmol L-1 respectively.  

The lake has an average surface area of 0.30 km2 and lies at an elevation of 2118 m.  

Maximum lake depth is 15.0 m with an average depth of 4.3 m (Fig. 1).  The lake has 

extensive littoral zone shelves and 17% of the lake’s surface area is <1 m deep (Arp et al. 

2006).  In Bull Trout Lake’s littoral zone there are limited peripheral areas of emergent 

macrophyte growth; however flocculent sediments with negligible macrophyte growth 

are dominant to a depth of 3 m.  Below this depth submerged macrophytes become 

abundant to 9 m.  We suspect that ice scour during spring prevents more extensive 

macrophyte development in water < 1.5 m deep.   
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Figure 1.  Bull Trout lake morphometry.  Contour labels are depth increments in meters.  

The arrows show the location of the inflow and outflow.  The shaded oval shows the 

locations of the mesocosm experiments.   
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METHODS 
 
 

General field sampling and nutrient analyses–In all sampling scenarios water was 

obtained either via a grab-sample for surface waters, or with a hand driven or battery 

operated peristaltic pump for deeper waters.  Samples for analysis of dissolved fractions 

were filtered (Whatman GF/F, nominal pore size of 0.7 µm) either in the field or at the 

laboratory during the same day as collection.  Samples for nutrient analysis were stored 

in acid-washed high-density polyurethane bottles and frozen within 24 h of sampling.  

Samples for seston chlorophyll a analysis were filtered (Whatman GF/F) in the field and 

immediately placed into 95% ethanol for extraction.  Chlorophyll a samples were 

extracted for 24 h in the dark before reading on a Turner 10AU field fluorometer using a 

non-acidification method (Welschmeyer 1994).   

Nitrate (+ nitrite) concentrations were measured using a cadmium reduction 

method (Nydahl 1976) using an Astoria flow injection autoanalyzer (Astoria-Pacific Int. 

2004, method A173).  Total N was measured using the same method after the samples 

were subjected to a recrystallized potassium persulfate digestion that oxidized all organic 

N to nitrate (Ameel et al. 1993).  DON was calculated as nitrate concentration subtracted 

from total dissolved N (TDN).  Past work has shown that ammonium concentrations in 

the lake are almost always below detection (< 0.05 µmol L-1) and consequently 

ammonium concentrations were not measured and were not included in the calculations 

of DON concentrations.   

Sediments were sampled by pushing a 3.75 cm diameter section of polyvinyl 

chloride pipe into the soft littoral zone sediments to a depth of ~25 cm, plugging the top 
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of the pipe with a rubber stopper to create a vacuum and then removing and plugging the 

bottom of the pipe with another stopper as the pipe was removed from the water.  The 

cores were then immediately transported to the laboratory for extrusion.  Each core was 

extruded and sectioned into 0-2, 2-4 and 4-8 cm horizons.  Once in the sample cup, the 

sections were shaken to homogenize the sample.  For measurement of benthic 

chlorophyll a, a 0.5 ml subsample of the slurry was taken from the 0-2 cm horizon and 

extracted in 10 ml of 95% ethanol for 24 h before reading on a Turner 10 AU field 

fluorometer using a non-acidification method (Welschmeyer 1994).  The rest of the 

sample was dried to constant weight at 70ºC and weighed.   

Net lake and littoral zone N chemistry changes: Lake and stream monitoring–

From June to October of 2007 routine monitoring of several physical, chemical and 

hydrologic variables in Bull Trout Lake watershed was used to measure patterns of 

downstream and through-lake N transport and transformation.  At 1-3 week intervals 

from ice-out through summer and into the fall, discharge was measured and water 

samples were taken for determination of TDN and nitrate concentrations at the inflow 

and outflow of Bull Trout Lake.  Measurement of hydrologic flux and chemical 

constituency at the lake’s inflow and sole outflow allows for a calculation of the net 

change in chemical flux that results from the presence of the lake along the watershed’s 

flow path.  Net flux was calculated as:  

 

Fluxsp  = Qout × ([Sp]out – [Sp]in) 
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Where fluxsp  is the net flux of a given chemical species or class in µmol s-1, Qout is the 

hydrologic discharge of the outflow in L s-1, [Sp]out is the chemical activity of the species 

at the outflow and [Sp]in is the chemical activity of the species at the inflow in µmol L-1.  

Discharge from only the outflow was used because it forms a more singular flow path, 

whereas the inflow site can be braided during snowmelt and storms and has significant 

flow occurring in the hyporheic zone (Arp et al. 2006).  This calculation assumes that the 

unaccounted inflow water has the same chemistry as the water in the inflow channel.  

This assumption will affect the calculation of fluxsp if it does not hold.  If the calculated 

fluxsp is positive and the unaccounted for inflow water has a higher [Sp]in than channel 

inflow water or if the calculated fluxsp is negative and the unaccounted inflow water has a 

lower [Sp]in than channel inflow water, then fluxsp will be overestimated.  If the 

calculated fluxsp is positive and the unaccounted for inflow water has a lower [Sp]in than 

channel inflow water or if the calculated fluxsp is negative and the unaccounted inflow 

water has a higher [Sp]in than channel inflow water, then fluxsp will be underestimated.  

Stream discharge was measured with a Marsh-McBirney flow meter (Model 2000) 36 

times in the inflow and 35 times in the outflow.  Stream stage was continuously 

monitored with TruTrack® WT-HR water height data loggers.  Rating curves were 

developed to relate stage and discharge for interpolation of discharge data.   

Lake profiles of temperature, chlorophyll a, TDN and nitrate were recorded at two 

established monitoring sites at depths of 0.5, 1, 3, 5.5, 8, 10.5 and 13 m.  One site was 

located at maximum depth toward the south end of the lake, and the other towards the 

north end of the lake at 10 m depth.  Sampling at the shallower station did not include the 

10.5 and 13 m depths.  Temperature was measured using a submersible probe.   
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Net lake and littoral zone N chemistry changes: Mesocosm experiments–To 

examine the relative influence of the littoral zone in affecting the observed watershed-

scale patterns, triplicate reinforced polyethylene mesocosms (Aquatic Research 

Instruments®, Hope, Idaho, USA) that isolated a 1.5-m diameter column of water from 

the water surface to a depth of 30 cm below the substrate surface were installed at 1.2 m 

water column depth.  A flotation collar kept the tops of the mesocosms 30 cm above the 

lake level to reduce or eliminate water exchange and the bottoms were anchored to a 30 

cm high steel sediment ring.  The mesocosms were placed 100 m from the outlet of the 

lake in a representative section of the littoral zone overlying soft, flocculent sediments 

with negligible macrophyte growth.  Samples for water column chemistry were taken 

from the mid-section of the water column (0.5-0.6 m depth) in all of the mesocosm 

experiments.  Seston chlorophyll a concentration was monitored and water samples for 

TDN and nitrate analysis were taken every 48 h for 6 d.  Chemistry changes in the 

mesocosms illustrated the net effects of the littoral zone specifically and decoupled the 

zone from changes observed in the lake as a whole.  This experiment was repeated twice, 

once in June and once in July, 2007.   

Benthic and pelagic N cycling–The mesocosm experiments described above were 

continued to assess nitrate uptake by the benthic and pelagic communities.  At the 

conclusion of each of the chemistry flux experiments, the mesocosm walls were lowered 

and the water column was mixed with ambient lake water for 48 h.  The walls were then 

raised and a stable isotope tracer, 0.122 g of 98 atom% 15N as NaNO3, was added at a 

target initial water column enrichment of δ15N = 50,000‰ in order to track nitrate uptake 

in the mesocosm.  Following the addition the water column was mixed with an oar.  The 
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target peak isotopic enrichment of the seston was δ
15N = 1,000‰ and surficial sediments 

was δ15N = 100‰.  Seston and benthic samples for initial N content and background 15N 

mole fraction (MF) were taken immediately before the addition.   

Sample water for seston 15N content analysis was transported to the laboratory 

and filtered (Gelman A/E, nominal pore size of 1.0 µm) on the same day as sampling.  

The filters were immediately dried at 70ºC in an oven for 24 h.  After drying they were 

sealed in scintillation vials until encapsulation into 9 x 12 mm tin capsules (Elementar 

Americas, Inc.).  Samples for sediment 15N content analysis were taken as described 

above.  After drying and weighing, the sample was ground with a mortar and pestle.  A 

subsample of known mass was taken from each sample and encapsulated into 9 x 12 mm 

tin capsules (Elementar Americas, Inc.) for isotope ratio mass spectrometry 15N analysis 

at the University of California at Davis Stable Isotope Facility.   

Seston was sampled at 0.5 m depth from each replicate mesocosm for N and 15N 

content every 3 h for 15 h, then again at 24 and 48 h, then every 48 h until 6 d after the 

addition.  The sediments were sampled for N and 15N content every 48 h until 6 d after 

the addition.  Three subsample cores were taken from each experimental replicate and 

pooled after extrusion and sectioning.  The activity of coring the sediments may have 

enhanced benthic nitrate uptake by facilitating transport of the label into the sediments.  

Benthic nitrate uptake in this case would be overestimated relative to the actual rate of 

benthic nitrate uptake.  Chemical parameters were measured at the same depths and time 

intervals as in the initial mesocosm experiments.   

Seston nitrate uptake was also measured in separate 15N-NO3 addition 

experiments done in 20-L translucent polyethylene Cubitainers® using waters from 0.5 m 
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and 5.5 m depth that was sampled on 8 Aug 2007.  Seston total N content and 15N AR 

was measured every 3 h for 12 h.  These assays allowed for measurement of seston 

nitrate uptake across a broader range of the water column (82% of lake water volume lies 

at or above 6 m depth in Bull Trout Lake).  Another purpose of these assays was to 

separate seston nitrate uptake measurements from any competition from simultaneous 

benthic nitrate uptake that was possible in the mesocosm experiments.  As benthic nitrate 

uptake reduced the pool size of nitrate in the water column during the mesocosm 

experiment, the rate of sestonic nitrate uptake may not have been as enhanced as in the 

microcosm experiments.  The cubitainer experiments mimicked the conditions of the 

enzymatic hydrolysis assays (see below) and allowed for a comparison of seston rates of 

nitrate uptake and DON hydrolysis.   

Seston nitrate uptake at a given time point was calculated as:  

 

Uptaket = Nt × (MFt – MFi) × (MFiw)-1 

 

where Nt is the size of the total N seston pool at time t, MFt is the mole fraction of seston 

15N at time t, MFi is the initial mole fraction of seston 15N and MFiw is the initial mole 

fraction of 15N-NO3 of the source water.  Source water mole fraction was calculated by 

measuring the background concentration of nitrate, assuming a value for background 

nitrate MF (0.367 atom %) and adding a known amount of 98 atom % 15N-NO3.  This 

addition increased the total nitrate-N 0.67 µmol L-1 in each case which likely saturated 

the uptake of most phytoplankton.  The calculation of nitrate uptake is robust to errors in 

the calculation of MFiw because all additions were greater than 20 atom %.  Interpreting 
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the data using this formula corrects for the amount of experimental enrichment to yield 

actual nitrate uptake rather than 15N uptake.  Dilution of the 15N-NO3 pool due to 

nitrification would have caused uptake rates to be underestimated but significant 

nitrification is unlikely to occur in this system due to the consistently low concentrations 

of both ammonium and nitrate.   

Temporal nitrate uptake trends of the seston were evaluated with repeated 

measures analysis of variance (ANOVA) modeling using PROC MIXED in SAS V. 9 

(SAS Institute, Cary, NC).  The ANOVA tested the null hypothesis that the slope of the 

trend in nitrate uptake was equal to zero.  Variables were transformed as necessary in 

order to meet the assumptions of normality and homoscedasticity.   

Benthic nitrate uptake for a given time point was calculated differently from that 

of seston nitrate uptake.  Due to inherent variability in the sampling of the sediments, 

there were large and inconsistent temporal variations in the measurement of the size of 

the total benthic N pool at each horizon.  Since the benthic N pool is far larger and has a 

longer residence time than the seston N pool, we assume a steady state for this model in 

order to remove the sampling variability.  Benthic nitrate uptake at a given time point was 

consequently calculated as: 

 

Uptaket = Nave × (MFt – MFi) × (MFiw) -1 

 

Where Nave is the average of all of the measured values for N content at a given sediment 

horizon, MFt is the mole fraction of benthic 15N at time t, MFi is the initial mole fraction 

of benthic 15N and MFiw is the initial mole fraction of 15N-NO3 of the source water.   As 



14 

with the interpretation of the seston data, the calculation of nitrate uptake is robust to 

errors in the calculation of MFiw because all additions were greater than 20 atom % and 

interpreting the data using this formula also yields actual nitrate uptake rather than 15N 

uptake.   

Loss of the added nitrate from the sediments was monitored following each of the 

two nitrate uptake mesocosm experiments.  Following each 6 d nitrate labeling period, 

the mesocosm walls were lowered to allow for water column mixing with ambient lake 

water.  Loss of the 15N label from the sediments was then monitored at 2-5 d sampling 

intervals for 9 d in the first experiment and at 2-24 d intervals for 52 d in the second 

experiment.   

Enzymatic assays–The potential enzymatic activity of L-AMP for the whole water 

community was assayed using waters from the surface (0.5 m) and from a deeper stratum 

(5.5 m) of Bull Trout Lake and also from the inflow and outflow of the lake.  Lake 

surface water was assayed on 16 July 2007 and 13 August 2007.  Lake water from 5.5 m 

was assayed on 13 August 2007.  Inflow and outflow water was assayed on 20 August 

2007.  In all experiments source water was obtained on the same day that the experiment 

took place.  The water was transported to the laboratory in an insulated container and 

temperature was monitored during the assay.  The assays run on 16 July were held at 

12ºC, the assays run on 13 August were held at 14ºC and the assays run on 20 August 

were held at 10ºC.   

All assays were run in triplicate 12 cm glass cuvettes that were acid washed, 

rinsed with deionized water, and then heat sterilized prior to inoculation.  For each assay, 

4.4 ml of source water and 0.6 ml of an L-leucine 7-amido-4-methyl coumarin 
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hydrochloride (L-AMC, Sigma) stock solution was added to each cuvette, resulting in a 

200 µmol L-1 final L-AMC concentration for the incubation.  A preliminary L-AMP 

assay was run using 200, 500 and 1250 µmol L-1 incubation concentrations of L-AMC to 

test for substrate saturation, an important assumption of the assay.  Enzymatic activity 

was similar at all three concentrations so 200 µmol L-1 was used for future assays.  

Furthermore, Chróst (1991) reported half saturation constant (Km) values for lake waters 

of 12-130 µmol L-1.   

Calibration of the fluorometer based on a deionized water blank and a 7-amino-4-

methylcoumarin (AMC, Sigma) standard allowed for quantification of the assay based on 

a mole of leucine hydrolyzed per unit time basis.  Immediately following inoculation, 

initial AMC fluorescence (380 nm excitation and 440 nm emission wavelengths) was 

measured on a Turner 10AU field fluorometer.  Readings were taken every 30 min for a 

minimum of 2 h.   

 Enzymatic activity was interpreted as a linear trend in the change in fluorescence 

over the time of the incubation.  The rate was then corrected for the dilution of the source 

water that occurs from the addition of the L-AMC stock solution.  The rate of increase of 

AMC concentration corresponds, on a mole/mole basis, to the rate of enzymatic 

hydrolysis of a leucine molecule from an L-AMC molecule.   

Temporal trends in L-AMP activities were evaluated with repeated measures 

ANOVA modeling using PROC MIXED in SAS V. 9 (SAS Institute, Cary, NC).  The 

ANOVA tested the null hypothesis that the slope of the trend in hydrolysis was equal to 

zero.  Separate analyses were run to evaluate the significance of differences in L-AMP 

activity between different dates for Bull Trout Lake surface water and between different 
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sites on a given date.  Bull Trout Lake surface waters (0.5 m and outflow) were 

considered to be the same site because the outflow sampling site was on the lake 

perimeter.   
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RESULTS 
 
 

Net lake and littoral zone N chemistry changes: Lake and stream monitoring–Bull 

Trout Lake showed an overall pattern of nitrate retention and DON production during the 

period of ice-out through fall (Table 1, Fig. 2).  However, 10 May was the only sampling 

date on which the lake was a sink of DON.  This sampling date was during spring 

snowmelt and had the highest inflow discharge and one of the highest outflow discharges.  

This suggests an interaction between hydrologic discharge and DON dynamics through 

the lake.  As the season progressed nitrate concentrations dropped to low levels (< 1 

µmol L-1) both in the stream and lake water and the lake acted as a net sink of nitrate and 

a net source of DON.  Throughout the study, dissolved N transport occurred primarily as 

DON rather than nitrate (Table 1).   

Net lake and littoral zone N chemistry changes: Mesocosm experiments–DON 

increased in both mesocosm experiments examining isolated littoral zone chemistry 

changes (Fig. 3).  During the June mesocosm experiments, epilimnetic temperature 

averaged 12.8ºC, mean pelagic chlorophyll a concentration was 1.01 µg L-1 and mean 

nitrate concentration was 0.12 µmol L-1.  During the experimental period from 8 to 14 

June 2007, DON increased at a rate of 0.332 µmol L-1 d-1 or 398 µmol m-2 d-1 (r2 = 0.625, 

p = 0.020).  During the July mesocosm experiments, epilimnetic temperature was 18.5ºC, 

mean chlorophyll a concentration was 0.75 µg L-1 and mean nitrate concentration was 

0.038 µmol L-1.  During the experimental period from 10 to 16 July 2007, DON increased 

at a rate of 0.301 µmol L-1 d-1 or 361 µmol m-2 d-1 (r2 = 0.983, p = 0.019).  These patterns  
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Table 1.  Sampling dates, chemistry and discharges for Bull Trout Lake inflow and 
outflow during 2007.  The net flux error terms represent 95% confidence intervals from 
the rating curve of the outflow stream stage from each date.  Sampling and analytical 
error is unaccounted for.   
 
 
Date Inflow 

DON 
(µmol 
L-1) 

Outflow 
DON 
(µmol 
L-1) 

Inflow 
NO3 
(µmol 
L-1) 

Outflow 
NO3 
(µmol 
L-1) 

Inflow 
discharge 
(L s-1) 

Outflow 
discharge 
(L s-1) 

NO3 

net 
flux 
(µmol 
s-1) 

DON 
net 
flux 
(µmol 
s-1) 

7 April 2.64 2.92 1.01 1.04 100 160 4.57 ± 
0.29 

45.0 ± 
2.84 

10 
May 

4.46 3.90 1.15 0.50 631 613 -398 ± 
27.0 

-343 ± 
23.3 

26 
May 

3.62 4.34 0.57 0.02 505 668 -363 ± 
27.9 

483 ± 
37.1 

4 June 2.90 4.96 0.29 0.07 434 640 -137 ± 
9.92 

1315 ± 
95.1 

13 
June 

1.87 4.97 0.34 0.48 362 515 71.7 ± 
3.58 

1597 ± 
79.7 

20 
June 

2.00 5.10  0.26 0.02 281 362 -85.3 
± 1.23 

1121 ± 
16.2 

14 
August 

1.37 7.50 0.07 0.09 107 88 1.26 ± 
0.15 

540 ± 
62.7 
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Figure 2.  Net flux of dissolved N constituents between the inflow and outflow of Bull 

Trout Lake during seven sampling dates during spring and summer.  Positive bars 

indicate that Bull Trout Lake is acting as a source of the constituent, negative bars 

indicate that it is acting as a sink.  The sampling dates are displayed in chronological 

order and were 7 April, 10 May, 26 May, 4 June, 13 June, 21 June and 15 August.  The 

error bars represent 95% confidence intervals from the rating curve of the outflow stream 

stage from each date.  Sampling and analytical error is unaccounted for.   
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Figure 3.  DON production during the (A) June and (B) July mesocosm experiments to 

examine littoral zone N fluxes.  The rate of DON increase was 0.332 µmol L-1 d-1 in June 

and 0.301 µmol L-1 d-1 in July.  Data points are mean +/- standard error (n=3).  The linear 

regressions displayed are statistically significant (p < 0.05).   
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demonstrate that the littoral zone produces and releases DON on a sustained basis during 

the summer.   

 We calculated total littoral zone DON production based on lake morphometrics 

and the release rates measured in the mesocosms.  Our temperature profiles indicated that 

the epilimnion resided at a depth of 0-6 m from the lake surface during the June and July 

experimental periods.  If we define the littoral zone as the area of the epilimnion that is in 

contact with sediments then Bull Trout Lake’s littoral zone had an area of 227,253 m2.  

Allowing the assumption that the littoral zone acts similarly regardless of depth we can 

extrapolate our mesocosm experiments to estimate total littoral zone net DON fluxes of 

90.5 mol d-1 or 1050 µmol s-1 during mid-June and 82.0 mol d-1 or 949 µmol s-1 during 

mid-July.  These estimated whole-lake littoral zone DON production rates fall within a 

factor of 2 of the observed net DON fluxes from the lake (Table 1, Fig. 2) suggesting that 

the mesocosm experiments provided a reasonable estimate of littoral zone DON 

production rates.  In June, the mesocosm experiment underestimated DON production 

rate by roughly 40% when compared to the lake-scale positive net flux.  The unaccounted 

lake DON production could come from pelagic DON production or the lake-scale 

positive net flux could be overestimated if the unaccounted inflow water has a higher 

DON concentration than the in-channel inflow water.  In July, the mesocosm experiment 

estimated a DON production rate that falls within the interpolated lake-scale positive net 

flux.   

Pelagic nitrate uptake–Seston nitrate uptake in the June tracer mesocosm 

experiment was low relative to the net change in DON concentration that was observed 

during the June net N chemistry change experiment.  Nitrate uptake by seston was 0.121 
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nmol L-1 hr-1 or 2.90 nmol L-1 d-1 (r2 = 0.979, p = 0.032) at 0.5 m depth (Fig. 4).  

Although the seston was sampled for N and 15N content for 6 d in the June mesocosm 

experiment, only data from the first 12 h of the experiment was used for calculation of 

nitrate uptake rates because uptake during this time was nearly exactly linear and 

exclusion of the later data eliminates the need for correction of uptake rate due to N 

turnover (Stark 2000).  We could not calculate seston nitrate uptake for the July 

mesocosm experiment due to the loss of several samples during the analysis.   

 

 

Figure 4.  Seston nitrate uptake during the June mesocosm experiment.  Nitrate uptake 

was 0.120 nmol L-1 hr-1 at 0.5 m depth.  Data points are mean +/- standard error (n=2, 3 

or 6).  The linear regression displayed is statistically significant (p < 0.05).   

 
In the August microcosm assays (Fig. 5) the estimated seston nitrate uptake was 

2.54 nmol L-1 hr-1 or 61.0 nmol L-1 d-1 (r2 = 0.978, p < 0.01) and 3.81 nmol L-1 hr-1 or 

91.4 nmol L-1 d-1 (r2 = 0.987, p < 0.01) at 0.5 and 5.5 m depth, respectively.  Average 

standard error was 5% of the measured value.  Nitrate uptake at 5.5 m was significantly 

higher than nitrate uptake at 0.5 m (p < 0.01).  Seston nitrate uptake rate at 0.5 m depth 
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was 21 times greater in the August assay versus the June assay despite there being little 

change in seston biomass as measured by chlorophyll a (Table 2).  In all three 

experiments the addition of the tracer resulted in a large increase in the concentration of 

nitrate (+ 0.67 µmol L-1) and the nitrate uptake rates presented therefore more closely 

approximate potential uptake rates than actual rates.   

 

 

Figure 5.  Seston nitrate uptake during the microcosm experiment on 8 August 2007.  

Nitrate uptake is 2.54 and 3.81 nmol L-1 hr-1 at 0.5 and 5.5 m depth respectively.  Data 

points are mean +/- standard error (n=2).  The linear regressions displayed are 

statistically significant (p < 0.05).   

 
 Benthic nitrate uptake and loss in mesocosm experiments–Benthic nitrate uptake 

rates from 0-8 cm were 85 (r2 = 0.953, p = 0.023) and 133 (r2 = 0.888, p = 0.042) µmol 

m-2 d-1 in the June and July mesocosm experiments respectively (Table 3, Fig. 6).  If 

labeled N moved into sediments deeper than 8 cm then total benthic uptake rates are 

underestimated.   
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Table 2.  Sample date, site, biomass, nutrient abundance and potential rates of nitrate 
uptake and amino acid hydrolysis for Bull Trout Lake’s microbial and seston 
communities measured in mesocosm and microcosm experiments during 2007.  N 
concentrations are pre-addition concentrations.  Additions in the nitrate uptake assays 
resulted in a + 0.67 µmol L-1 increase in pool size.  Additions in the enzymatic assays 
resulted in a + 200 µmol L-1 increase in pool size.  “nd” denotes “no data”.   
 
 
Date Site Chl a 

(µg L-1) 
TDN 
(µmol  
L-1) 

NO3 
(µmol  
L-1) 

DON 
(µmol  
L-1) 

NO3 

uptake 
(nmol  
L-1 hr-1) 

L-AMP 
Vmax 
(nmol  
L-1 hr-1) 

15 June 0.5 m  0.98 5.50  0.06 5.44 0.121 ± 
0.024 

nd 

16 July 0.5 m 0.74 7.04 0.07 6.97 nd 55.6 ± 
3.2 

8 August 0.5 m 1.11 5.48 0.18  5.30 2.54 ± 
0.015 

nd 

8 August  5.5 m 1.27 5.41 0.54 4.87 3.81 ± 
0.120 

nd 

13 
August 

0.5 m 0.83 5.48 0.18 5.30 nd 77.7 ± 
10.9 

13 
August  

5.5 m 1.29 5.41 0.54 4.87 nd 68.4 ± 
8.9 

20 
August  

Inflow 0.10 1.44 0.07 1.37 nd 32.0 ± 
2.7 

20 
August 

Outflow 0.97 7.59 0.09 7.50 nd 63.6 ± 
6.8 
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Table 3.  Quantity of nitrogen derived from nitrate recovered in different layers during 
the A. June and B. July mesocosm experiments.  Error estimates are standard error (n=3).   
 
 
A      
Date Experiment Nitrogen uptake and loss (mmol m-2) 
 day 0-2 cm  2-4 cm  4-8 cm  Total  
14 June 0 0 0 0 0 
16 June  2 0.191 ± 0.021 0.020 ± 0.006 0.005 ± 0.001 0.216 ± 0.027 

18 June 4 0.229 ± 0.032 0.033 ± 0.011 0.016 ± 0.010  0.278 ± 0.033 

20 June 6 0.410 ± 0.068 0.100 ± 0.037 0.030 ± 0.007 0.531 ± 0.028 

Mesocosm walls were lowered following sampling on 20 June. 
22 June 2 0.336 ± 0.087 0.156 ± 0.074 0.061 ± 0.033  0.553 ± 0.110 

24 June 4 0.241 ± 0.104 0.118 ± 0.049 0.123 ± 0.073 0.482 ± 0.220  

29 June 9 0.228 ± 0.010 0.115 ± 0.016 0.039 ± 0.009 0.382 ± 0.003 

B      
Date Experiment  Nitrogen uptake and loss (mmol m-2) 
 day 0-2 cm  2-4 cm  4-8 cm Total 
18 July  0 0 0 0 0 
20 July 2 0.278 ± 0.083 0.066 ± 0.009 0.049 ± 0.017 0.393 ± 0.078 

22 July 4 0.534 ± 0.062 0.057 ± 0.012 0.026 ± 0.002 0.617 ± 0.069 

24 July 6 0.449 ± 0.097 0.143 ± 0.053 0.106 ± 0.069 0.698 ± 0.211 

Mesocosm walls were lowered following sampling on 24 July. 
26 July 2 0.302 ± 0.048 0.235 ± 0.116  0.086 ± 0.030  0.623 ± 0.136 

28 July 4 0.474 ± 0.080 0.159 ± 0.038 0.108 ± 0.014 0.741 ± 0.088 

3 August 10 0.393 ± 0.111 0.110 ± 0.034 0.189 ± 0.131 0.692 ± 0.163 

7 August 14 0.318 ± 0.131 0.178 ± 0.098 0.093 ± 0.040 0.589 ± 0.253 

21 August 28 0.235 ± 0.079 0.166 ± 0.030 0.102 ± 0.022 0.503 ± 0.098 

14 September 52 0.127 ± 0.017 0.112 ± 0.019 0.068 ± 0.018 0.307 ± 0.053 
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In both the June and July experiments, N derived from labeled nitrate was 

recovered from the sediments in significant quantities throughout the loss period.  At the 

end of the 9-day loss period of the June experiment, 72% of the N that had moved into 

the sediments during the labeling period remained in the sediments.  Assuming an 

exponential loss rate, 4.1 ± 0.9% of the newly incorporated nitrogen was lost per day and 

the estimated half life of the nitrogen for this experiment was 33 days.  At the end of the 

52-day loss period of the July experiment, 44% of the N remained in the sediments.  

Making the same assumptions, 1.5 ± 0.2% of the newly incorporated nitrogen was lost 

per day and the half life of N in this experiment was 64 days.  Dividing the amount of N 

lost by the number of days of the experimental period yields estimated linear loss rates of 

17 and 8 µmol m-2 d-1, respectively, for the June and July experiments.  These loss rates 

are less than the uptake rates indicating that nitrate moves into littoral zone sediments at a 

faster rate than the N is subsequently lost due to transport to other compartments such as 

sediment strata deeper than 8 cm or the water column or lost due to denitrification.  The 

dominant N loss pathway is suspected to be transport rather than denitrification because 

dissolved dinitrogen gas samples taken in situ during the July uptake period of the 

experiment showed no isotopic enrichment of the gas (R. Lockwood unpublished data) 

indicating that the labeled N was not being denitrified. 

The overall size of the N pool from 0-8 cm was 3.59 and 3.64 mol m-2 during the 

June and July experiments, respectively.  Allowing the assumption that nitrate movement 

into the sediments is the sole input of N, then dividing the pool size by the rate of nitrate 

uptake yields N mean residence times of 116 and 75 years.  This assumption is flawed 

because there are other inputs such as sedimentation that are likely to be important  
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Figure 6.  Benthic nitrate uptake and subsequent loss during the (A) June and (B) July 

15N tracer mesocosm experiments.  The top line in each chart shows the mean +/- 

standard error (n=3) for the total (0-8 cm) sediment uptake in the three replicate 

mesocosms.  The uptake and loss is expressed for 3 sediment horizons.  White is 0-2 cm, 

grey is 2-4 cm and black is 4-8 cm.   
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contributors of N to the sediments and these residence times are therefore probably 

overestimated.  Allowing the assumption that the loss rate of recently input N derived 

from nitrate accurately reflects the overall output rate of N from the sediments, then 

dividing the pool size by the rate of N loss yields N mean residence times of 579 and 

1250 years.  This assumption is also likely flawed because recently input N derived from 

nitrate is probably more labile than older more recalcitrant N and these residence times 

are therefore probably underestimated.  Overall these assumptions and estimations reveal 

a great uncertainty in sediment N mean residence time but indicate that it is on the order 

of tens to hundreds of years.  Overall, these estimations yield a conceptual model 

whereby nitrate moves rapidly into the sediments when it is available.  The majority of 

this N input is then transported to other compartments and therefore leaves the 0-8 cm 

horizon during the following months.  However, some of the N remains, most likely as 

recalcitrant material, and the remaining sediment N has a mean residence time of tens to 

thousands of years.   

The overall quantity of nitrate uptake was much higher in the sediments than in 

the seston during the June mesocosm experiment (Fig. 4, 6).  Mean peak value for nitrate 

uptake in the seston community occurred on day six of the experiment and was 8.18 

µmol m-2.  Mean peak value of nitrate uptake in the benthic community also occurred on 

day six of the experiment and amounted to 530 µmol m-2.  Movement into the sediments 

accounted for 98.5% of benthic/pelagic nitrate uptake in the June mesocosm experiment.  

There was also a pronounced and similar difference in the standing stock of chlorophyll a 

in the seston vs. the sediments during the experiment.  Chlorophyll a in the 1.2 m deep 

study area of the littoral zone amounted to 1.82 mg m-2 in the seston and 86.9 mg m-2 in 
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the 0-2 cm horizon of the sediments amounting to 98% of the littoral zone chlorophyll a 

residing in the sediments.  These observations point to benthic dominance over littoral 

zone N biogeochemistry and metabolism.   

Enzymatic assays–While nitrate uptake was measured for seston, particles and 

cells larger than 0.7 µm, L-AMP activity can also be attributed to dissolved fractions 

(Münster 1991) so it was measured for the entire planktonic community.  Planktonic L-

AMP activities ranged from 32.0 to 77.7 nmol L-1 hr-1 (Table 2, Fig. 7).  The L-AMP 

activity in Bull Trout Lake surface water was higher on 13 Aug compared to 16 July and 

20 August (p < 0.01) but there was no difference between 16 July and 20 August (p > 

0.05).  This shows that L-AMP activity varied with date but did not have an increasing or 

decreasing trend during the mid-summer.  L-AMP activity did not differ between 0.5 and 

5.5 m depth in Bull Trout Lake in the 13 August assay (p > 0.05) suggesting that L-AMP 

activity may be consistent throughout the epilimnion.  The L-AMP activity of outflow 

water was twice that of inflow water during the 20 August assay and was significantly 

different (p < 0.01) showing that the presence of the lake in the flow path did affect 

enzymatic processing of DON.  However, this is less than the relative difference of seston 

biomass between the inflow and outflow.  On the assay date, the seston chlorophyll a 

concentration was 0.10 µg L-1 in the inflow and 0.97 µg L-1 in the outflow.  
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Figure 7.  Planktonic L-AMP activities of Bull Trout Lake surface waters at (A) three 

dates at 0.5 m, (B) two depths on 13 Aug, and (C) the inflow and outflow on 20 Aug.  

Data points are mean +/- standard error (n=3).   
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DISCUSSION 
 
 

The dominance of DON over DIN in our study waters (Table 1) indicates that the 

ecosystem is relatively pristine with low atmospheric N deposition, consistent with the 

biogeochemical theory of Hedin et al. (1995) and the results of Perakis and Hedin (2002).  

The atmospheric N deposition that does occur in the Bull Trout Lake watershed most 

likely occurs as forms of DIN (Vitousek et al. 1997).  That the watershed losses of 

dissolved N are predominately organic indicates strong biotic control over the processing 

and transport of N.  Furthermore, the net retention of nitrate and net positive flux of DON 

between the inflow and outflow of Bull Trout Lake (Fig. 2) shows the importance of the 

lake as a site of biotic processing.  We suspect that the main sink of nitrate is biological 

assimilation and that much of the DON is produced via littoral zone N cycling, 

particularly by the benthic biota.  Bull Trout Lake’s shallow mean depth and littoral shelf 

is likely a key feature of its ability to act as a nitrate sink, consistent with an analysis of 

100 northern European lakes that found a negative relationship between mean lake depth 

and seasonal nitrate depletion from the epilimnion (Weyhenmeyer et al. 2007).   

Bull Trout Lake was a net sink of DON on a single sampling date, 10 May, during 

peak snowmelt flooding (Fig. 2, Table 1).  This suggests that there is a positive 

interaction between DON bioavailability and peak discharge and other researchers have 

observed similar patterns.  Wikner et al. (1999) found that spring flood DOC was of a 

higher nutritional quality for bacterioplankton than DOC transported during base flow.  

Stepanauskas et al. (2000) observed high DON bioavailability for bacteria during spring 

flooding using waters from boreal streams where TDN transport occurs primarily as 
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DON.  It is likely that spring snowmelt delivers a pulse of nitrate and a pulse of more 

bioavailable DON to Bull Trout Lake and that the downstream delivery of this N is both 

temporally attenuated and delivered as more refractory forms.   

Our data indicates that there is more dissolved N exported than imported in Bull 

Trout Lake, at least during spring through fall when most nutrients are transported.  N 

fixation is a possible explanation that would provide for mass balance of the system; 

however this pathway has been examined in this watershed and the process cannot fully 

explain the initial N source of the observed DON production.  N fixation was measured 

for the pelagia and several benthic habitat types seasonally in Bull Trout Lake during 

2002 and 2003.  The fixation rate was 38 µmol m-2 d-1 averaged from June to November 

(Marcarelli and Wurtsbaugh 2009).  Scaled to the lake level this corresponds to an 

average input of 131 µmol s-1.  Even if all of the autochthonous fixed N was exported 

from the lake, this source would account for only 8-32% of the observed dissolved N flux 

during these months.  Annual direct atmospheric deposition of inorganic N to Bull Trout 

Lake is circa 3,000 mol yr-1 or 95 µmol s-1 (NADP site ID15 2005).  Again, even if all of 

this input were exported there is still not mass balance for the spring and summer.  We 

suspect allochthonous inputs such as fine and course particulate organic matter to be 

important sources of N to the system.   

Benthic and littoral zone metabolism and biogeochemistry have been under-

examined in limnology relative to pelagic processes (Reynolds 2008).  Benthic 

dominance of ecosystem metabolic functioning has been observed in studies of 

oligotrophic lakes and other aquatic systems.  In our study, nitrate movement into the 

sediments accounted for 98.5% of benthic/pelagic nitrate uptake in the June mesocosm 
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experiment.  Similarly, 15N-NO3 addition studies of oligotrophic Castle Lake in 

California, USA showed strong dominance of periphyton over phytoplankton 

assimilation.  Periphyton uptake accounted for ~90% of the disappearance of added 

nitrate in whole-epilimnion enrichments and epipelic periphyton incorporation accounted 

for 56% of the disappearance of labeled nitrate in a mesocosm experiment (Axler and 

Reuter 1996).  Similarly, periphyton accounted for 80-98% of primary production in a 

study of 11 shallow oligotrophic lakes in Greenland (Vadeboncoeur et al. 2003).  In a 

15N-NO3 addition study of a New England estuary, essentially all of the in-site nitrate 

processing occurred in the sediments (Tobias et al. 2003).   

 Our observed long-term retention of nitrogen in sediments (44% after 52 d) is less 

than the retention observed in a tracer study of a tidal freshwater marsh (Gribsholt et al. 

2009).  One hundred and eighty-two days after that addition, 42-48% of the added label 

remained in plants, roots and sediment.  The dominant retention processes in the marsh 

study were bacterial immobilization and plant root assimilation.  Plant roots were strong 

long-term sinks and the lack of macrophytes in Bull Trout Lake’s shallow littoral zone 

may explain the shorter measured benthic N turnover time.   

The measured quantity of N lost during the benthic N-loss mesocosm experiments 

is far less than the amount of DON production measured during the initial littoral zone 

net N chemistry change observation period.  The estimated rates of littoral zone DON 

production were 23 and 45 times greater than the amount of N that was lost from the 

sediments after labeling.  This indicates that littoral zone DON production is supported 

by N that moved into the sediments over a long period of time.  These observations 
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support the hypothesis that nitrate uptake by littoral zone sediments is rapid and that this 

N is then gradually released back to the water column as DON.   

The pronounced difference in measured rate of seston nitrate uptake between June 

and August is probably due to two factors.  Due to a seasonal decline in epilimnetic 

nitrate concentration (Table 1) there is likely an increase in nitrate demand for the seston 

community that explains some of the difference.  However, the rate of nitrate uptake 

measured in June in the mesocosm experiment may also have been underestimated due to 

immediate post-addition reduction of the pool size due to uptake into other pools such as 

the benthic community.  The August microcosm experiments did not have the potential 

for benthic uptake and therefore represent more realistic estimates of potential seston 

nitrate uptake.  Other unknown experimental artifacts from the two types of experiments 

may also have contributed to the observed differences.   

It is noteworthy that in the enzymatic assays, particularly in the inflow/outflow 

assays, there was not a 1:1 correlation between DON concentration and enzymatic 

activity (Table 2), showing that DON quality, as well as microbial biomass and 

community composition, are important in determining microbial DON utilization.  At the 

time of the inflow and outflow comparison L-AMP assay, the concentration of DON was 

1.37 µmol L-1 in the inflow and 7.50 µmol L-1 in the outflow.  With this 5.5-fold increase 

in DON concentration L-AMP activity only doubled when temperature was held 

constant.  This suggests that while the presence of the lake in the flow path leads to a 

marked increase in DON concentration, the resultant DON has a lesser per molecule 

abundance of hydrolysable amino acids.  The decrease in per molecule DON quality 

probably results from repeated microbial utilization leading to a lower abundance of 
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amine-bearing bioavailable molecules.  This repeated microbial cycling in the lake can 

occur because water mean residence times in the summer range from 15-160 days (W. 

Wurtsbaugh, unpublished data), whereas those in the inflow are 4-6 hours (M. Baker, 

unpublished data).   

Although the L-AMP activity of the outflow was twice that of the inflow during 

the 20 August assay (Table 2, Fig. 7), this is likely an underestimate of the actual 

difference in activity between the two sites because assays for both sites were run at 

10ºC; however on this date the temperature of the inflow was 10º C and the temperature 

of the outflow was 22ºC.  Applying a biological Q10 temperature coefficient correction 

that assumes that the enzymatic rate doubles with a 10ºC increase in accordance with the 

Arrhenius equation (Leskovac 2003) yields a corrected outflow enzymatic activity of 

146.2 nmol L-1 hr-1 or a 4.6 times increase in the enzymatic potential of the outflow water 

versus the inflow water.  These two calculated differences in L-AMP activity show two 

aspects of Bull Trout Lake’s influence on the flow path’s enzymatics.  First, the increase 

in DON concentration and the 10-fold increase in microbial biomass that results from the 

surface water’s residence time in the epilimnion increase the enzymatic potential of the 

community from 32.0 to 63.6 nmol L-1 hr-1.  Second, the temperature difference that 

results from epilimnetic warming further enhances the enzymatic activity of the outflow 

community from 63.6 to 146.2 nmol L-1 hr-1.   

Extracellular planktonic L-AMP activities were measured in two river systems in 

the United Kingdom and the values obtained for Vmax in those studies correspond to the 

measurements presented here.  The range of L-AMP activities measured in the 

headwaters of the River Swale was 33 to 201 with a mean of 78 nmol L-1 hr-1 (Ainsworth 



36 

and Goulder 1998) and in the headwaters of the River Tweed was 14 to 481 with a mean 

of 228 nmol L-1 hr-1 (Ainsworth and Goulder 2000).  The values presented in our 

headwater system ranged from 32 to 78 nmol L-1 hr-1.  Both of the UK systems showed 

patterns of downstream increase similar to the pattern we found between the inflow and 

outflow of Bull Trout Lake.   

The nitrate uptake rates and enzymatic activities presented are both potential rates 

so they can be directly compared to each other when they were run in parallel.  Both 

parameters were measured for the seston community in the same week for Bull Trout 

Lake waters at 0.5 m and 5.5 m in August.  At both depths the potential for DON 

hydrolysis was greater than the potential for nitrate uptake on mole/mole of N basis.  In 

the surface waters the hydrolytic potential was 31 times greater than the potential nitrate 

uptake and at depth the difference was 18 times.  This, combined with the greater 

concentration of DON versus DIN, underscores the importance of the DON pool as a 

potential N source in this system.  These observations also suggest the importance of the 

microbial community as a means of amino acid hydrolysis.  Because the amino acids are 

hydrolyzed extracellularly they are not necessarily incorporated into the heterotrophic 

microbial community but rather a portion of the newly freed dissolved amino acids may 

be incorporated into the primarily photosynthetic seston community.  Once incorporated 

into the seston community, the N will be more available to grazing organisms such as 

zooplankton and then more available to planktivorous organisms such as larval fish.   

This study provides evidence for the importance of DON and microbial DON 

processing at the landscape level and there is room for more detailed work.  A study that 

both pinpoints the rates of DON hydrolysis and traces the uptake of the hydrolyzed amino 
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acids into the microbial loop and the higher seston, zooplankton, vertebrate food web 

would be useful for understanding the role of DON in sustaining aquatic ecosystem 

production.   
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CONCLUSION 
 
 

This study demonstrated the influence of a lake on the N cycling of a surface 

water network.  Between the inflow and outflow of the lake there were pronounced 

increases in temperature, sestonic chlorophyll a concentration, and L-AMP activity.  

There was also net retention of nitrate and net positive flux of DON that was sustained 

during the spring and summer.  This study quantified some of the mechanisms for the 

observed patterns.  The uptake and release of nitrogen from littoral zone sediments in 

mesocosm experiments correspond with the lake-scale observations suggesting the 

importance of littoral sediments as an area of N processing.  The magnitude of nitrate 

uptake by the seston was overshadowed by the magnitude of nitrate uptake by the littoral 

zone sediments and by the potential for hydrolysis of amine groups from DON.  This 

study supports three main conclusions: (1) The impoundment of water in a lake produces 

pronounced changes in chemistry and biology; (2) benthic N processing is prevalent over 

pelagic N processing, and; (3) DON is likely an important N source for the biota both due 

to the larger pool size and apparent ability of the microbial community to hydrolyze 

labile functional groups from it.   

 

 
 



39 

REFERENCES 
 
 

Ainsworth, A. M., and R. Goulder.  1998.  Microbial organic-nitrogen transformations 
along the Swale-Ouse river system, Northern England.  Sci. Total Environ.  
210/211: 329-355.   

Ainsworth, A. M., and R. Goulder.  2000.  Epilithic and planktonic leucine 
aminopeptidase activity and leucine assimilation along the River Tweed, Scottish 
Borders.  Sci. Total Environ.  251: 83-93.   

Ameel, J.J., R.P. Axler, and C.J. Owen.  1993.  Persulfate digestion for determination of 
total nitrogen and phosphorus in low nutrient water.  Amer. Environ. Laboratory 
5: 2-11.   

Arp, C. D., and M. A. Baker.  2007.  Discontinuities in stream nutrient uptake below 
lakes in mountain drainage networks.  Limnol. Oceanogr. 52: 1978-1990.   

Arp, C. D., M. N. Gooseff, M. A. Baker, and W. A. Wurtsbaugh.  2006.  Surface-water 
hydrodynamics and regimes of a small mountain stream-lake ecosystem.  J. 
Hydrol.  329: 500-513.   

Axler, R. P., and J. E. Reuter.  1996.  Nitrate uptake by phytoplankton and periphyton: 
Whole-lake enrichments and mesocosm-15N experiments in an oligotrophic lake.  
Limnol. Oceanogr.  41: 659-671.   

Berman, T. and, D. A. Bronk.  2003.  Dissolved organic nitrogen: a dynamic participant 
in aquatic ecosystems.  Aquat. Microb. Ecol.  31: 279-305.   

Brookshire, E. N. J., H. M. Valett, S. A. Thomas, and J. R. Webster.  2005.  Coupled 
cycling of dissolved organic nitrogen and carbon in a forest stream.  Ecology 86: 
2487-2496.   

Brown, P. D., W. A. Wurtsbaugh, and K. R. Nydick.  2008.  Lakes and forests as 
determinates of downstream nutrient concentrations in small mountain 
watersheds.  Arctic, Antarctic and Alpine Res.  40: 462-469.   

Chróst, R. J.  1991.  Environmental control of the synthesis and activity of aquatic 
microbial ectoenzymes, p. 29-59.  In R. J. Chróst [ed.], Microbial enzymes in 
aquatic environments.  Springer-Verlag.   

Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, 
J. T. Ngai, E. W. Seabloom, J. B. Shurin, and J. E. Smith.  2007.  Global analysis 
of nitrogen and phosphorous limitation of primary producers in freshwater, 
marine and terrestrial ecosystems.  Ecology Letters 10: 1-8.   



40 

Fairchild, G. W., and D. J. Velinsky.  2006.  Effects of small ponds in stream water 
chemistry. Lake and Reservoir Manage. 22: 321-330.   

Fee, E. J.  1979.  A relation between lake morphometry and primary productivity and its 
use in interpreting whole-lake eutrophication experiments.  Limnol. Oceanogr.  
24: 401-416.   

Findlay, S., and R. L. Sinsabaugh.  2003.  Response of hyporheic biofilm metabolism and 
community structure to nitrogen amendments.  Aquat. Microb. Ecol.  33: 127-
136.   

Francoeur, S. N., and R. G. Wetzel.  2003.  Regulation of periphytic leucine-
aminopeptidase activity. Aquat. Microb. Ecol.  31: 249-258.   

Goldman, C. R., and A. J. Horne.  1983.  Modern limnology.  McGraw-Hill.   

Gribsholt, B., B. Veuger, A. Tramper, J. J. Middleburg, and H. T. S. Boschker.  2009.  
Long-term 15N-nitrogen retention in tidal freshwater marsh sediment: Elucidating 
the microbial contribution.  Limnol. Oceanogr.  54: 13-22.   

Hedin, L. O, J. J. Armesto, and A. H. Johnson.  1995.  Patterns of nutrient loss from 
unpolluted, old-growth temperate forests: Evaluation of biogeochemical theory.  
Ecology 76: 493-509.   

Hood, E. W., M. W. Williams, and N. Caine.  2003.  Landscape controls on organic and 
inorganic nitrogen leaching across an alpine/subalpine ecotone, Green Lakes 
Valley, Colorado Front Range.  Ecosystems 6: 31-45.   

Judd, K. E., B. C. Crump, and G. W. Kling.  2006.  Variation in dissolved organic matter 
controls bacterial production and community composition. Ecology 87: 2068-
2079.   

Kaste, Ø., J. L. Stoddard, and A. Henriksen.  2003.  Implication of lake water residence 
time on the classification of Norwegian surface water sites into progressive stages 
of nitrogen saturation.  Water, Air and Soil Pollution 142: 409-424.   

Kiilsgaard, T., L. Stanford, and R. Lewis.  2003.  Preliminary geologic map of the 
northeast part of the Deadwood River 30 x 60 minute quadrangle, Idaho.  Idaho 
Geologic Survey.   

Kling, G. W., G. W. Kipphut, M. M. Miller, and W. J. O’Brien.  2000.  Integration of 
lakes and streams in a landscape perspective: The importance of material 
processing on spatial patterns and temporal coherence. Freshw. Biol.  43: 477-
497.   



41 

Law, B. A.  1980.  Transport and utilization of proteins by bacteria, p. 381-409.  In J. W. 
Payne [ed.] Microorganisms and nitrogen sources. John Wiley and Sons.  

Leskovac, V.  2003.  Comprehensive enzyme kinetics.  Springer.   

Marcarelli, A. M., and W. A. Wurtsbaugh.  2009.  Nitrogen fixation varies spatially and 
seasonally in linked stream-lake ecosystems. Biogeochem.  94: 95-101.   

McKnight, D. M., E. Hood, and E. Klepper.  2003.  Trace moieties of dissolved organic 
material in natural waters, p. 71–96.  In S. E. G. Findlay and R. L. Sinsabaugh  
[eds.], Aquatic ecosystems: Interactivity of dissolved organic matter.  Academic 
Press. 

Münster, U.  1991.  Extracellular enzyme activity in eutrophic and polyhumic lakes. In: 
Chróst, R. J. (ed) Microbial enzymes in aquatic environments. Springer-Verlag, 
New York, p 96-122.   

Münster, U., and H. De Haan.  1998.  The role of microbial extracellular enzymes in the 
transformation of dissolved organic matter in humic waters, p. 199-257.  In D. O. 
Hessen and L. J. Tranvik  [eds.], Aquatic humic substances. Springer-Verlag.   

Nydahl, F.  1976.  On the optimum conditions for the reduction of nitrate to nitrite by 
cadmium.  Talanta 23: 349-357.   

Payne, J. W.  1980.  Transport and utilization of peptides by bacteria, p. 211-256.  In J. 
W. Payne  [ed.], Microorganisms and nitrogen sources. John Wiley and Sons.   

Perakis, S. S., and L. O. Hedin.  2002.  Nitrogen loss from unpolluted South American 
forests mainly via dissolved organic compounds.  Nature 415: 416-419.   

Rabalais, N. N.  2002.  Nitrogen in aquatic ecosystems.  Ambio 31: 102-112.   

Reuter, J. E. and R. P. Axler.  1992.  Physiological characteristics of inorganic nitrogen 
uptake by spatially separate algal communities in a nitrogen deficient lake.  
Freshw. Biol.  27: 227-236.   

Reynolds, C. S.  2008.  A changing paradigm of pelagic food webs.  Int. Rev. Hydrobio.  
93: 517-531.   

Stark, J. M.  2000.  Nutrient transformations, p. 215-234.  In O. E. Sala, R. B. Jackson, H. 
A. Mooney and R. W. Howarth  [eds.], Methods in ecosystem science.  Springer-
Verlag.   

Stepanauskas, R., H. Laudon, and N. O. G. Jorgensen.  2000.  High DON bioavailability 
in boreal streams during a spring flood.  Limnol. Oceanogr.  45: 1298-1307.   



42 

Swanson, F. J., T. K. Kratz, N. Caine, and R. G. Woodmansee.  1988.  Landform effects 
on ecosystem patterns and processes. Bioscience 38: 92-98.   

Tobias, C. R., M. Cieri, B. J. Peterson, L. A. Deegan, J. Vallino, and J. Hughes.  2003.  
Processing watershed-derived nitrogen in a well-flushed New England estuary.  
Limnol. Oceanogr.  48: 1766-1788.   

Vadeboncoeur, Y., M. J. Vander Zanden, and D. M. Lodge.  2002.  Putting the lake back 
together: Reintegrating benthic pathways into lake food web models.  Bioscience 
52: 44-54.   

Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H. Schierup, K. Christoffersen, 
and D. M. Lodge.  2003.  From Greenland to green lakes: Cultural eutrophication 
and the loss of benthic pathways in lakes. Limnol. Oceanogr.  48: 1408-1418.   

Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. 
Schindler, W. H. Schlesinger, and D. G. Tilman.  1997.  Human alteration of the 
global nitrogen cycle: Sources and consequences.  Ecol. Appl. 7: 737-750.   

Welschmeyer, N. A.  1994.  Fluorometric analysis of chlorophyll a in the presence of 
chlorophyll b and phaeopigments.  Limnol. Oceanogr. 39: 1985-1992.   

Weyhenmeyer, G. A., E. Jeppesen, R. Adrian, L. Arvola, T. Blenckner, T. Jankowski, E. 
Jennings, P. Nõges, T. Nõges, and D. Straile.  2007.  Nitrate-depleted conditions 
on the increase in shallow northern European lakes.  Limnol. Oceanogr.  52: 
1346-1353.   

Wikner, J., R. Cuadros, and M. Jansson.  1999.  Differences in consumption of 
allochthonous DOC under limnic and estuarine conditions in a watershed.  Aquat. 
Microb. Ecol.  17: 289-299.   


	Utah State University
	DigitalCommons@USU
	5-2009

	Nitrogen Transport, Transformation and Cycling through a Mountain lake, Bull Trout Lake, Idaho, USA
	Ryan Settle Lockwood
	Recommended Citation


	Microsoft Word - $ASQ30065_supp_75B8BEA4-AD31-11DE-873E-8D249E1A67F9.doc

