

- 1 -

21st Annual Conference on Small Satellites 2007

DEEP: Dallas EEProm Equipment Profile
for Rapid Integration and Automatic System Modeling

Forrest Rogers-Marcovitz

Aerospace Systems Laboratory, Washington University in Saint Louis

Phelps Williams
Robotic Systems Laboratory, Santa Clara University

Abstract

The Responsive Space Initiative, the ability for
mission-specific payloads and support systems to
be rapidly integrated within a short period, is a
goal within the spacecraft community. However,
as components are added to the spacecraft, the
complex interactions between subsystems must
be noted and, if possible, modeled. This process
is extremely time consuming and if not done
properly, can be a major contributor to spacecraft
failure. A new paradigm is needed for Rapid
Integration and System Modeling.

At the 2006 Conference on Small Satellites in
Logan, Utah, Washington University and Santa
Clara University demonstrated Rapid Integration
and Testing by functionally combining their
respective satellites, Akoya and Onyx. Both
vehicles were connected via a common power
and data wiring harness, allowing one spacecraft
to operate any device on either vehicle. Despite
possessing minimal prior knowledge of the other
school’s subsystems, functional integration was
achieved in less than thirty minutes. This was
accomplished by using a distributed computing
architecture with a standardized interface and
communication protocol; this architecture allows
each subsystem to be developed separately and
rapidly integrated into the spacecraft.

The Dallas EEProm Equipment Profile (DEEP)
Architecture extends this standardized bus to
include improved support for rapid integration
and system modeling. DEEP is a protocol
standard using the Maxim/Dallas 1-Wire bus,
which allows for low level control and
monitoring of the spacecraft using commercial-
off-the-shelf devices including memory and

sensor devices. DEEP specifies a standard with
which a representation of subsystem
functionality is encoded within the subsystem
itself, allowing for the creation of a satellite-wide
model paralleling the physical integration of the
spacecraft. This allows for the creation of a
stockpile of flight DEEP enabled subsystems,
ready to be rapidly composed into a functional
spacecraft. Each subsystem includes a
subsystem model, with parameters such as
thermal and power characteristics, allowing an
anomaly management system to identify off-
nominal conditions through model-based
reasoning. Additional functionality includes
automated ground operations and ground
integration and test software generation, standard
command planning, resource allocation, and
other areas of command and control.

DEEP is currently being developed at Santa
Clara University and Washington University in
Saint Louis as part of the University
Nanosatellite competition operated by the Air
Force Research Laboratory. This paper
describes the current success of both universities
with rapid integration, current development of
the DEEP architecture, and future advances
regarding responsive space.

Introduction

Current spacecraft integration is a major barrier
to the responsive space initiative. The goal is to
reduce integration to under a week. Historically,
spacecraft subsystems have been developed in
isolation from other subsystems requiring
lengthy Interface Control Documents (ICD) to
interact with the rest of the spacecraft. Complex

SSC07-IX-1

- 2 -

21st Annual Conference on Small Satellites 2007

spacecraft-level system modeling is needed so
that all subsystems interact correctly. As
subsystems are added, new ICDs need to be
written, and modification must be made to all
connecting subsystems, causing a cascading
mound of paperwork. Many people are involved
in developing, maintaining, verifying,
implementing, and cross-checking ICDs, which
consumes large quantities of time and resources.
In addition to the ICD modifications, the
intricate subsystem interactions must be changed
in the system model.

System level changes are needed to meet the
challenges of a responsive design and integration
timeline; the goal is to reduce integration time to
under a week. Modular subsystem design allows
components to be designed separately from one-
another and to be quickly swapped with similar
components that meet mission-specific
requirements. Standards are needed for modular
design; these standards must be at the physical
interface, wiring connection, and data protocol
levels. One successful example is the Space
Plug-and-Play Avionics (SPA) standard being
developed by the Air Force Research Laboratory
(AFRL). The AFRL, along with other
organizations, is currently finalizing an AIAA
published SPA standard [1] that has been used
on the Lockheed Martin HexPak Testbed [2] and
is currently being implemented as part of the
AFRL Responsive Space Testbed effort.

As part of the SPA standard, the Satellite Data
Model (SDM) provides unified plug and play
mechanisms for applications to coordinate and
share data, resources, and services without a
prior knowledge of the physical location and
properties of a the spacecraft components. XML
Transducer Electronic Data Sheets (XTEDS),
included with each component, provide
characteristics of spacecraft hardware and
software, and allows devices and applications to
register to the Data manager. A Common Data
Dictionary gives semantic or contextual meaning
to the SDM/XTEDS elements. The Satellite
Data Model along with SPA physical standards
eliminates the need for the ICDs that consume
time and money.

This paper focuses on a similar design
architecture created to meet the needs of
university-class satellites. The purpose of

university-class missions is to train students in
the design, integration and operation of
spacecraft, and this is accomplished by giving
students direct control over the progress of the
program [3]. They often use a modular design
which reuses heritage subsystem designs.
Typically, the missions are constrained to be
small, low-cost satellites with short design
timelines, allowing them to take higher risks
with potentially larger pay-offs.

The Dallas EEProm Equipment Profile (DEEP)
Architecture was developed to meet the needs of
university-class satellites. It offers a low-power,
non-complex, inexpensive means of creating a
plug and play system by using commercially-off-
the-self components. While DEEP is designed
specifically for university-class satellites, many
of the DEEP concepts can be applied in more
complex systems.

Past Rapid Integration and Testing Success

The Emerald Protocol suite has enabled past
successes in rapid integration and testing.
Excellent examples include parallel integration
of two complete satellites within a two week
time span and a 30 minute subsystem integration
demonstration at the 2006 Small Satellite
Conference. These events have shown the power
of standardization being used in the university
environment. Both will be expanded on later in
this paper.

Santa Clara University’s (SCU) Robotic Systems
Laboratory and the Aerospace Systems
Laboratory at Washington University in St.
Louis (WashU) have had many successes in past
Rapid Integration and Testing (RIT)
demonstrations. SCU has developed the
EMERALD and ONYX satellites. ONYX is
designed to support a unique multispectral
imager and provide a testbed for model based
anomaly management through the entire space
system. WashU has built the Akoya and Bandit
satellites. Bandit’s mission is to flight-test
proximity operations technologies, including
docking, safe navigation within 5 m of a target
vehicle, on-orbit charging and image-based
navigation. Akoya is the host vehicle that
provides docking, recharging and ground
communication capabilities.

- 3 -

21st Annual Conference on Small Satellites 2007

Each satellite uses a distributive computing
architecture where each subsystem is controlled
by an individual microprocessor. Inter-
subsystem communication uses the Emerald
Protocol Suite [4][7][8] which extends existing
I2C and Dallas 1-wire data protocols. The
University of Texas-Austin also uses the
Emerald Protocol Suite on their FASTRAC
satellite. Figure 1 shows an example of this
architecture on the Akoya satellite.

All subsystems send and receive commands
based on the Emerald Data Protocol (EDP). The
Inter-Integrated Circuit (I2C) provides the
physical layer responsible for transmitting
messages. To expedite message decoding, header
information (source and destination address etc.)
is included with every packet. A subsystem
receives a packet bearing its address and
deciphers the command. The command is
interpreted and requisite action taken. .

Distributed computing architectures offer
numerous advantages in the development of
complex devices and systems. These advantages
include well-defined interfaces, flexible

composition, streamlined integration,
straightforward function-structure mappings,
standardized components, incremental testing,
and other benefits. The distributive processing
architecture along with the Emerald Data
Protocol allows subsystems to be developed
separately and rapidly integrated into the
spacecraft upon completion. Because of this
architecture, the three schools saw three
improvements: accelerated integration and
training of new students; rapid modifications of
existing systems; and school-wide collaboration
among robotics projects [5].

At the 2006 Conference on Small Satellites in
Logan, Utah, Washington University and Santa
Clara University demonstrated Rapid Integration
and Test by functionally combining Akoya and
ONYX. Both vehicles were connected via a
common power and data wiring harness,
allowing one spacecraft to operate any device on
either vehicle. Despite possessing minimal prior
knowledge of the other school’s subsystems,
functional integration was achieved in less than
thirty minutes.

Figure 1 - Akoya's Distributive Computing Architecture

- 4 -

21st Annual Conference on Small Satellites 2007

In March 2007, SCU and WashU completed
parallel flight integration processes in
preparation for the AFRL/AIAA University
Nanosat-4 competition Flight Competition
Review (FCR). Both schools completed
integration in two weeks. At FCR for the
AFRL/AIAA competition, WashU and SCU
repeated the demonstration from the 2006
Conference on Small Satellites in slightly over 2
minutes. This was possible only through
modular design and use of the Emerald Data
Protocol.

Motivation

Although the integration was completed in less
than thirty minutes, the process could have gone
smoother if additional tasks were automated.
More specifically, all interactions between
subsystems must be coded before integration
because each subsystem is not necessarily aware
of all other subsystems and their capabilities.
DEEP is an approach to remove this dependency.

An additional challenge each system has is a
hard coded address which limits the extendibility
of the system in a number of ways. First, there
could be an address conflict during integration
or, if an address is changed, any interacting
systems must be recompiled with the new
address. Second, in order for one system to talk
to another, the commands accepted and replies
given by the second system must be known in
advance. Third, there is no way for a new
system to be announced when it joins the
network. For a basic plug-and-play network,
each device must: announce its presence and

capabilities, discover who else is a member, and
selectively interact with other members of the
federation. DEEP was developed to eliminate
pre-integration coordination and create
subsystem-level embedded operational
intelligence.

DEEP Concept

DEEP fulfills two particular objectives. DEEP
enables rapid spacecraft assembly and assists in
generating an entire spacecraft model. The
implementation of common services such as turn
subsystem X on or off may functionally consist
of a complex sequence of events. Through
abstraction of this functionality to a higher level,
“turn subsystem X on” is associated with that
complex sequence of events. This abstraction is
held within the subsystem it is specific to. Each
subsystem can now share this information with
other subsystems on the bus and awareness of
available services is achieved through the
sharing of this information. Another way to
think about this is as a functional model of the
subsystem embedded in the subsystem itself.

While such functional models may not be
required for rapid assembly, this information
allows a complete model of the integrated system
to be constructed, completing the second DEEP
objective. A variety of operationally relevant
tasks utilize this model such as automated
ground-station software generation and model
based anomaly management. Additionally, the
integration and test process can make use of this
model information in the same manner.

Figure 2 - DEEP Flow Diagram

- 5 -

21st Annual Conference on Small Satellites 2007

Regardless of hardware implementation, three
elements must be present for the DEEP concept
to work:

• A standardized communications bus
• A common memory device directly

accessible on this bus
• A common memory structure (hardware

profile) across all memory devices

Provided this structure exists, information is held
dynamically, updating to reflect changes in bus
state (Figure 2). This is true because any
connected node can temporarily become master
of the bus and obtain the profiles of all other
nodes on the bus, parallel maps of the bus can be
maintained at each network node, and each
hardware element has its own model of the
services available on the bus.

Many interesting variations arise from this
concept. Suppose a single data bus wire harness
connects two trays of subsystems in a spacecraft.
If this connection is broken, subsystems on both
trays would update to maintain valid lists of
available services, potentially permitting
continued operation despite a critically damaged
state.

Utilizing this framework, a functional map of the
bus is generated. For example, suppose two
communication systems were integrated on a
bus. The first is designed for general bus
telemetry gathering tasks and transmitting this
data to the ground at a low data rate. The second
system is designed for high data throughput but
has high pointing requirements and is designed
to transmit payload data to communication
satellites in geostationary orbits (GEO). The
model of these two hardware elements would
capture these unique design traits. The system
model would allow for unintended
configurations to be automatically recognized. If
the first communication system ceases to
function, a model of the system would instantly
present a secondary route for the bus telemetry
formerly reported by the first system. This
action might occur through the existing GEO
link or through an attitude adjustment for a direct
ground link.

This capability can be used to augment ground
test software. For the most basic degree of

ability, the software would only need to be able
to recognize and exercise advertised hardware
functionality. Presumably, the operational
capacity of the spacecraft will be a specifically
sequenced subset of these advertised functions.
Ground operations software could once again
take advantage of this framework and automate
much of its creation as well.

DEEP additionally provides the flexibility for
transient services to exist in a hardware system.
Interesting examples of this could be other
DEEP enabled spacecraft and ground systems.
For example, suppose a satellite in a low earth
orbit (LEO) comes into communications contact
with a ground-station. DEEP enables the
satellite to recognize that the services of the
ground segment are now available by sharing its
own profiles with those available on the ground.
If the ground-station provides the ability to
synchronize a system clock, the satellite
recognizes the availability of this service and can
utilize it. The same functionality that enables
rapid integration provides an opportunity to
transcend the traditional system definition. An
unmanned aerial vehicle (UAV) utilizing live
imagery from a LEO satellite for navigation
purposes does not need to understand these
distinctions. It can simply recognize an
additional navigational aid which happens to be
available on a cyclical basis, due to orbit.

DEEP was initially conceived without
knowledge of standards such as IEEE 1451, the
Transducer Electronic Data Sheet. In retrospect,
significant similarities are present between the
two. However, critical differences exist: DEEP
does not limit itself to a standard definition of
Transducers as IEEE 1451 [6][9] specifies.
DEEP leaves this open to the system designer.
Any hardware element with an interface to the
standard bus and a memory device that is
accessible on this bus can be DEEP enabled.
This means any component of the spacecraft
could be DEEP enabled from an Attitude
Determination and Control subsystem to the tray
it is affixed to.

- 6 -

21st Annual Conference on Small Satellites 2007

An Example of DEEP Implementation

A demonstration implementation was
constructed to show the potential of DEEP at
SCU. Due to time constraints, sacrifices were
made in this implementation and the full
potential of the technology was not completely
brought to fruition. Despite this, the results were
impressive and have inspired continued
development of the DEEP concept.

Figure 3 – AVR-Sat Hardware

 As mentioned previously, DEEP requires a
standardized communications bus, a common
memory device directly accessible on this bus,
and a common memory structure (hardware
profile) across all memory devices. It is
important to note this implementation only
requires conformity with the communications
bus and memory device. The subsystem
designer is left the flexibility to define the
subsystem beyond this requirement. As a
demonstration of this functionality, 4Kbit
EEPROM devices were added to an existing
avionics package developed at Santa Clara

University. The avionics hardware, named
AVRSat modules (Figure 3) were designed
around the Emerald Protocol suite, a standard
communications and interface definition also
developed in the University environment.

Dallas 1-Wire devices were chosen because the
support framework was already well
implemented on existing hardware. Additionally,
low cost, high availability, and usage simplicity
made this hardware a suitable choice.

Instead of maintaining a network image at each
node, a centralized approach was taken. This
was a key factor in simplifying implementation.
A subsystem dubbed the Dallas Master was
created to perform this role. This subsystem was
responsible for periodically polling the bus in
order to update the internal map of subsystem
connectivity. The profile of each DEEP-enabled
device was stored in this device, which permitted
the Dallas Master to service requests such as
“Turn the Communications System On.” The
requesting subsystem element does not need to
know any details specific to this operation in
order to command its occurrence.

The device profile stored in the small EEPROM
device onboard each hardware element is
populated as seen in Figure 4.

Following a generic header, a DEEP Version
value is present, enabling support for future
modifications. The I2C address, the primary
address needed for commanding of the hardware
specified by the Emerald Protocol suite, is listed.
An important future modification would be to
design around the static nature of embedding an
address in the DEEP profile. Functionality

Byte 0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F
0 D E E P DEEP Version # Dev Count

0008 Subsystem Name
0010 Hardware Version Number
0018 Hardware Configuration Number Hardware Serial Number
0020 Timestamp of Programming Header CRC16 Data CRC16
0028 Dallas Name String 0 Type
0030 Dallas ID 0
0038 Dallas Name String ... Type
0040 Dallas ID ...

I2C Addr

Figure 4 - DEEP Hardware Profile

- 7 -

21st Annual Conference on Small Satellites 2007

similar to Dynamic Host Configuration Protocol
(DHCP) would free the bus of this constraint but
the complexity of this issue made it unfeasible
for this sample implementation. Another
simplification made in this approach was to limit
all of the control elements to be Dallas 1-Wire
devices. The device count field in the profile
captures the count of Dallas devices that are
available on the hardware this profile is
describing. An 8-byte ASCII encoded name
follows. This embeds a human readable
identification tag of the device which is generally
helpful during development.

The Hardware Version number captures a
specific hardware design revision. This will
allow for a higher fidelity model to be referenced
for information specific to this hardware
revision. The excessive bit length of this value
enables future expansion of the meaning of this
value. The Hardware Configuration Number
provides numerically referenced configuration
bins for the designer to utilize. For example, if
there is a certain grounding configuration that is
being utilized on a collection of hardware, that
distinction could be captured in this field. It is
important to note that that type of detail is not
specifically held within that value; an external
reference is assumed to exist to maintain this
contextual information. The implementation of
this external reference, be it an XML document,
SQL database, or similar technology, is not
specified and should be chosen based on
requirements external to DEEP. The Hardware
Serial number is a unique identifier of each
hardware element maintaining the same
Subsystem Names. This value is not necessarily
unique between Subsystems and, similar to the
other fields, does not need to be globally
coordinated.

Following a typical UNIX style timestamp, two
separate CRC check-sums are included. The
intention here is to decouple data held within the
following payload section from that of the
header. The payload section maintains Dallas 1-
Wire addresses, an ASCII description of their
functions, and a more general type identifier.
This type identifier allows an interpreting
subsystem to immediately classify that device
and automatically generate usage guidelines.
Very specific categories were created for this
sample implementation, (Table 1). Should

corruption occur in the payload component, it
can still be retrieved from a remote mirror of the
data similar to the other specifics of the hardware
which, under this implementation, need to be
externally referenced anyway.

Table 1 - Device Type Classification

Five hardware elements configured with a DEEP
Profile including a Dallas Master subsystem
compose the demonstration, (Figure 5). Any of
the five hardware elements could be integrated
and removed from the bus and the internal map
of the configuration onboard the Dallas Master
would immediately recognize this change. The
Dallas Master could accept generic commands
by specifying only a general description of the
hardware, such as communications system, and
the type of device to modify along with the
status or state desired.

Device Type Table
Value Description

00 Latch-up V1 5V Control
01 Latch-up V2 12V Control
02 Latch-up V2 5V Alt
03 Board Temperature
04
05 Temperature 5V Regulator
06 Temperature 12V Regulator
07 Current Solar Panels 1-4
08 Current Solar Panels 5-8
09 Power Regulated
10 Power Batteries 1-2
11 Power Unregulated
12 Temperature Battery 1
13 Temperature Battery 2

INFOsw (Non-DEEP Memory)

Figure 5 - DEEP Demonstration Unit

- 8 -

21st Annual Conference on Small Satellites 2007

Conclusion

The DEEP architecture builds on past RIT
successes at both Washington University and
Santa Clara University. DEEP provides dynamic
system modeling while decreasing integration
and testing time. Inherent in this idea is the
notion of embedding a functional model of the
hardware within itself.
While a demonstration implementation has been
constructed, much future work exists. DEEP
will be extended to allow dynamic addressing
with more sensor types added. Sensor operating
limits will allow the use of Anomaly
management algorithms. Embedded command
lists with response types will allow for
subsystem interaction and dynamic ground
control and modeling.

DEEP will be integrated into the existing Akoya
and ONYX satellites and used on future satellites
built at the two labs. Akoya and ONYX have
dedicated payload space for the other school.
Because the payloads adhere to the Emerald and
DEEP protocols, no a prior knowledge will be
needed for integration. While DEEP is designed
specifically for university-class satellites, much
of its design implementation can be applied to
more complex spacecraft systems.

Acknowledgments

The following people helped, developed and
supported the DEEP concept: Bryan Palmintier,
Christopher Kitts, Michael Swartwout, and Lane
Haury.

This work has been sponsored through a variety
of sources to include the National Science
Foundation via Grant No. EIA0079815
(development of the distributed command and
data handling architecture at SCU), the
USAF/AFRL via grant FA9550-05-1-0249, and
the SCU Technology Steering Committee via
grant TSC209; any opinions, findings, and
conclusions or recommendations expressed in
this material are those of the authors and do not
necessarily reflect the views of the National
Science Foundation, the USAF, or of Santa Clara
University.

References

[1] AIAA SPA Committee on Standards, Draft
Standards: Development Guidebook for Space
Plug and Play Avionics

[2] Orogo, C.D, Flaggs, D.L., Enoch, M.,
"Javabased Plug-N-Play (Flight) Control
Systems for Responsive Spacecraft", Paper No.
RS4 2006-6002, 4th Responsive Space
Conference, Los Angeles, CA, Apr. 2006.th

[3] Swartwout, Michael, "Twenty (plus) Years of
University-Class Spacecraft: A Review of What
Was, An Understanding of What Is, And a Look
at What Should Be Next," Proceedings of the
20th Annual AIAA/USU Conference on Small
Satellites, SSC06-I-3, Logan, UT, 14-17 August
2006.

[4] B. Palmintier, "The EMERALD Protocol
Suite: Design and Implementation of a Modular,
Distributed Architecture for Small Satellite
Command, Telemetry, and Power Systems,"
Engineer Thesis, Stanford University, June 2004

[5] Swartwout, Michael, Christopher Kitts,
Pascal Stang and E. Glenn Lightsey, "A
Standardized, Distributed Computing
Architecture: Results from Three Universities",
Proceedings of the 19th Annual AIAA/USU
Conference on Small Satellites, SSC05-VI-6,
Logan, UT, 8-11 August 2005.

[6] IEEE Std. 1451.2. IEEE Standard for a Smart
Transducer Interface for Sensors and Actuators-
Transducer to Microprocessor Communication
Protocols and Transducer Electronic Data Sheet
(TEDS) Formats, Institute of Electrical and
Electronics Engineers, Inc., Piscataway, New
Jersey 08855, 1997.

[7] Palmintier, B., Kitts, C., Stang, P., and
Swartwout, M., "A Distributed Control
Architecture for Small Satellite and Multi-
Spacecraft Missions," Proceedings of the 16th
AIAA/USU Conference on Small Satellites,
Logan Utah, August 2002.

- 9 -

21st Annual Conference on Small Satellites 2007

[8] B. Palmintier, R. Twiggs, C. Kitts,
“Distributed Computing on Emerald: A modular
approach for Robust Distributed Space Systems”
In Proceedings of the 2000 IEEE Aerospace
Conference, Big Sky, MT, March 2000.

[9] Conway, P.; Heffernan, D.; O'Mara, B.;
Burton, P.; Miao, T. “IEEE 1451.2: An
interpretation and example implementation”;
Instrumentation and Measurement Technology
Conference, 2000. IMTC 2000. Proceedings of
the 17th IEEE Volume 2, 1-4 May 2000
Page(s):535 - 540 vol. 2

