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Abstract 

 
The Responsive Space Initiative, the ability for 
mission-specific payloads and support systems to 
be rapidly integrated within a short period, is a 
goal within the spacecraft community. However, 
as components are added to the spacecraft, the 
complex interactions between subsystems must 
be noted and, if possible, modeled. This process 
is extremely time consuming and if not done 
properly, can be a major contributor to spacecraft 
failure.  A new paradigm is needed for Rapid 
Integration and System Modeling.  
 
At the 2006 Conference on Small Satellites in 
Logan, Utah, Washington University and Santa 
Clara University demonstrated Rapid Integration 
and Testing by functionally combining their 
respective satellites, Akoya and Onyx. Both 
vehicles were connected via a common power 
and data wiring harness, allowing one spacecraft 
to operate any device on either vehicle. Despite 
possessing minimal prior knowledge of the other 
school’s subsystems, functional integration was 
achieved in less than thirty minutes. This was 
accomplished by using a distributed computing 
architecture with a standardized interface and 
communication protocol; this architecture allows 
each subsystem to be developed separately and 
rapidly integrated into the spacecraft.   
 
The Dallas EEProm Equipment Profile (DEEP) 
Architecture extends this standardized bus to 
include improved support for rapid integration 
and system modeling.  DEEP is a protocol 
standard using the Maxim/Dallas 1-Wire bus, 
which allows for low level control and 
monitoring of the spacecraft using commercial-
off-the-shelf devices including memory and 

sensor devices.  DEEP specifies a standard with 
which a representation of subsystem 
functionality is encoded within the subsystem 
itself, allowing for the creation of a satellite-wide 
model paralleling the physical integration of the 
spacecraft.  This allows for the creation of a 
stockpile of flight DEEP enabled subsystems, 
ready to be rapidly composed into a functional 
spacecraft.  Each subsystem includes a 
subsystem model, with parameters such as 
thermal and power characteristics, allowing an 
anomaly management system to identify off-
nominal conditions through model-based 
reasoning.  Additional functionality includes 
automated ground operations and ground 
integration and test software generation, standard 
command planning, resource allocation, and 
other areas of command and control. 
 
DEEP is currently being developed at Santa 
Clara University and Washington University in 
Saint Louis as part of the University 
Nanosatellite competition operated by the Air 
Force Research Laboratory.  This paper 
describes the current success of both universities 
with rapid integration, current development of 
the DEEP architecture, and future advances 
regarding responsive space.  
 
 

Introduction 
 
Current spacecraft integration is a major barrier 
to the responsive space initiative.  The goal is to 
reduce integration to under a week.  Historically, 
spacecraft subsystems have been developed in 
isolation from other subsystems requiring 
lengthy Interface Control Documents (ICD) to 
interact with the rest of the spacecraft.  Complex 
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spacecraft-level system modeling is needed so 
that all subsystems interact correctly.  As 
subsystems are added, new ICDs need to be 
written, and modification must be made to all 
connecting subsystems, causing a cascading 
mound of paperwork.  Many people are involved 
in developing, maintaining, verifying, 
implementing, and cross-checking ICDs, which 
consumes large quantities of time and resources.  
In addition to the ICD modifications, the 
intricate subsystem interactions must be changed 
in the system model.   
 
System level changes are needed to meet the 
challenges of a responsive design and integration 
timeline; the goal is to reduce integration time to 
under a week.  Modular subsystem design allows 
components to be designed separately from one-
another and to be quickly swapped with similar 
components that meet mission-specific 
requirements.  Standards are needed for modular 
design; these standards must be at the physical 
interface, wiring connection, and data protocol 
levels.  One successful example is the Space 
Plug-and-Play Avionics (SPA) standard being 
developed by the Air Force Research Laboratory 
(AFRL).  The AFRL, along with other 
organizations, is currently finalizing an AIAA 
published SPA standard [1] that has been used 
on the Lockheed Martin HexPak Testbed [2] and 
is currently being implemented as part of the 
AFRL Responsive Space Testbed effort. 
 
As part of the SPA standard, the Satellite Data 
Model (SDM) provides unified plug and play 
mechanisms for applications to coordinate and 
share data, resources, and services without a 
prior knowledge of the physical location and 
properties of a the spacecraft components. XML 
Transducer Electronic Data Sheets (XTEDS), 
included with each component, provide 
characteristics of spacecraft hardware and 
software, and allows devices and applications to 
register to the Data manager.  A Common Data 
Dictionary gives semantic or contextual meaning 
to the SDM/XTEDS elements.  The Satellite 
Data Model along with SPA physical standards 
eliminates the need for the ICDs that consume 
time and money. 
 
This paper focuses on a similar design 
architecture created to meet the needs of 
university-class satellites.  The purpose of 

university-class missions is to train students in 
the design, integration and operation of 
spacecraft, and this is accomplished by giving 
students direct control over the progress of the 
program [3].  They often use a modular design 
which reuses heritage subsystem designs.  
Typically, the missions are constrained to be 
small, low-cost satellites with short design 
timelines, allowing them to take higher risks 
with potentially larger pay-offs.   
 
The Dallas EEProm Equipment Profile (DEEP) 
Architecture was developed to meet the needs of 
university-class satellites.  It offers a low-power, 
non-complex, inexpensive means of creating a 
plug and play system by using commercially-off-
the-self components. While DEEP is designed 
specifically for university-class satellites, many 
of the DEEP concepts can be applied in more 
complex systems. 
 
 

Past Rapid Integration and Testing Success 
 
The Emerald Protocol suite has enabled past 
successes in rapid integration and testing.  
Excellent examples include parallel integration 
of two complete satellites within a two week 
time span and a 30 minute subsystem integration 
demonstration at the 2006 Small Satellite 
Conference.  These events have shown the power 
of standardization being used in the university 
environment.  Both will be expanded on later in 
this paper. 
 
Santa Clara University’s (SCU) Robotic Systems 
Laboratory and the Aerospace Systems 
Laboratory at Washington University in St. 
Louis (WashU) have had many successes in past 
Rapid Integration and Testing (RIT) 
demonstrations. SCU has developed the 
EMERALD and ONYX satellites.  ONYX is 
designed to support a unique multispectral 
imager and provide a testbed for model based 
anomaly management through the entire space 
system.  WashU has built the Akoya and Bandit 
satellites. Bandit’s mission is to flight-test 
proximity operations technologies, including 
docking, safe navigation within 5 m of a target 
vehicle, on-orbit charging and image-based 
navigation. Akoya is the host vehicle that 
provides docking, recharging and ground 
communication capabilities. 
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Each satellite uses a distributive computing 
architecture where each subsystem is controlled 
by an individual microprocessor.  Inter-
subsystem communication uses the Emerald 
Protocol Suite [4][7][8] which extends existing 
I2C and Dallas 1-wire data protocols.  The 
University of Texas-Austin also uses the 
Emerald Protocol Suite on their FASTRAC 
satellite.  Figure 1 shows an example of this 
architecture on the Akoya satellite. 
 
All subsystems send and receive commands 
based on the Emerald Data Protocol (EDP).  The 
Inter-Integrated Circuit (I2C) provides the 
physical layer responsible for transmitting 
messages. To expedite message decoding, header 
information (source and destination address etc.) 
is included with every packet. A subsystem 
receives a packet bearing its address and 
deciphers the command.  The command is 
interpreted and requisite action taken. .  
 
Distributed computing architectures offer 
numerous advantages in the development of 
complex devices and systems. These advantages 
include well-defined interfaces, flexible 

composition, streamlined integration, 
straightforward function-structure mappings, 
standardized components, incremental testing, 
and other benefits.  The distributive processing 
architecture along with the Emerald Data 
Protocol allows subsystems to be developed 
separately and rapidly integrated into the 
spacecraft upon completion. Because of this 
architecture, the three schools saw three 
improvements: accelerated integration and 
training of new students; rapid modifications of 
existing systems; and school-wide collaboration 
among robotics projects [5]. 
 
At the 2006 Conference on Small Satellites in 
Logan, Utah, Washington University and Santa 
Clara University demonstrated Rapid Integration 
and Test by functionally combining Akoya and 
ONYX.  Both vehicles were connected via a 
common power and data wiring harness, 
allowing one spacecraft to operate any device on 
either vehicle. Despite possessing minimal prior 
knowledge of the other school’s subsystems, 
functional integration was achieved in less than 
thirty minutes. 
 

Figure 1 - Akoya's Distributive Computing Architecture 
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In March 2007, SCU and WashU completed 
parallel flight integration processes in 
preparation for the AFRL/AIAA University 
Nanosat-4 competition Flight Competition 
Review (FCR).  Both schools completed 
integration in two weeks.  At FCR for the 
AFRL/AIAA competition, WashU and SCU 
repeated the demonstration from the 2006 
Conference on Small Satellites in slightly over 2 
minutes.  This was possible only through 
modular design and use of the Emerald Data 
Protocol.  
 
 

Motivation 
 
Although the integration was completed in less 
than thirty minutes, the process could have gone 
smoother if additional tasks were automated.  
More specifically, all interactions between 
subsystems must be coded before integration 
because each subsystem is not necessarily aware 
of all other subsystems and their capabilities.  
DEEP is an approach to remove this dependency. 
 
An additional challenge each system has is a 
hard coded address which limits the extendibility 
of the system in a number of ways.  First, there 
could be an address conflict during integration 
or, if an address is changed, any interacting 
systems must be recompiled with the new 
address.  Second, in order for one system to talk 
to another, the commands accepted and replies 
given by the second system must be known in 
advance.  Third, there is no way for a new 
system to be announced when it joins the 
network.  For a basic plug-and-play network, 
each device must: announce its presence and 

capabilities, discover who else is a member, and 
selectively interact with other members of the 
federation.  DEEP was developed to eliminate 
pre-integration coordination and create 
subsystem-level embedded operational 
intelligence. 
 

 
DEEP Concept 

 
DEEP fulfills two particular objectives.  DEEP 
enables rapid spacecraft assembly and assists in 
generating an entire spacecraft model.  The 
implementation of common services such as turn 
subsystem X on or off may functionally consist 
of a complex sequence of events.  Through 
abstraction of this functionality to a higher level, 
“turn subsystem X on” is associated with that 
complex sequence of events.  This abstraction is 
held within the subsystem it is specific to.  Each 
subsystem can now share this information with 
other subsystems on the bus and awareness of 
available services is achieved through the 
sharing of this information.  Another way to 
think about this is as a functional model of the 
subsystem embedded in the subsystem itself. 
 
While such functional models may not be 
required for rapid assembly, this information 
allows a complete model of the integrated system 
to be constructed, completing the second DEEP 
objective.  A variety of operationally relevant 
tasks utilize this model such as automated 
ground-station software generation and model 
based anomaly management.  Additionally, the 
integration and test process can make use of this 
model information in the same manner. 
 

Figure 2 - DEEP Flow Diagram 
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Regardless of hardware implementation, three 
elements must be present for the DEEP concept 
to work:  

• A standardized communications bus 
• A common memory device directly 

accessible on this bus 
• A common memory structure (hardware 

profile) across all memory devices 
 
Provided this structure exists, information is held 
dynamically, updating to reflect changes in bus 
state (Figure 2).  This is true because any 
connected node can temporarily become master 
of the bus and obtain the profiles of all other 
nodes on the bus, parallel maps of the bus can be 
maintained at each network node, and each 
hardware element has its own model of the 
services available on the bus.   
 
Many interesting variations arise from this 
concept.  Suppose a single data bus wire harness 
connects two trays of subsystems in a spacecraft.   
If this connection is broken, subsystems on both 
trays would update to maintain valid lists of 
available services, potentially permitting 
continued operation despite a critically damaged 
state. 
 
Utilizing this framework, a functional map of the 
bus is generated.  For example, suppose two 
communication systems were integrated on a 
bus.  The first is designed for general bus 
telemetry gathering tasks and transmitting this 
data to the ground at a low data rate.  The second 
system is designed for high data throughput but 
has high pointing requirements and is designed 
to transmit payload data to communication 
satellites in geostationary orbits (GEO).  The 
model of these two hardware elements would 
capture these unique design traits.  The system 
model would allow for unintended 
configurations to be automatically recognized.  If 
the first communication system ceases to 
function, a model of the system would instantly 
present a secondary route for the bus telemetry 
formerly reported by the first system.  This 
action might occur through the existing GEO 
link or through an attitude adjustment for a direct 
ground link. 
 
This capability can be used to augment ground 
test software.  For the most basic degree of 

ability, the software would only need to be able 
to recognize and exercise advertised hardware 
functionality.  Presumably, the operational 
capacity of the spacecraft will be a specifically 
sequenced subset of these advertised functions.  
Ground operations software could once again 
take advantage of this framework and automate 
much of its creation as well.   
 
DEEP additionally provides the flexibility for 
transient services to exist in a hardware system.  
Interesting examples of this could be other 
DEEP enabled spacecraft and ground systems.  
For example, suppose a satellite in a low earth 
orbit (LEO) comes into communications contact 
with a ground-station.  DEEP enables the 
satellite to recognize that the services of the 
ground segment are now available by sharing its 
own profiles with those available on the ground.  
If the ground-station provides the ability to 
synchronize a system clock, the satellite 
recognizes the availability of this service and can 
utilize it.  The same functionality that enables 
rapid integration provides an opportunity to 
transcend the traditional system definition.  An 
unmanned aerial vehicle (UAV) utilizing live 
imagery from a LEO satellite for navigation 
purposes does not need to understand these 
distinctions. It can simply recognize an 
additional navigational aid which happens to be 
available on a cyclical basis, due to orbit. 
 
DEEP was initially conceived without 
knowledge of standards such as IEEE 1451, the 
Transducer Electronic Data Sheet.  In retrospect, 
significant similarities are present between the 
two.  However, critical differences exist: DEEP 
does not limit itself to a standard definition of 
Transducers as IEEE 1451 [6][9] specifies.  
DEEP leaves this open to the system designer.  
Any hardware element with an interface to the 
standard bus and a memory device that is 
accessible on this bus can be DEEP enabled.  
This means any component of the spacecraft 
could be DEEP enabled from an Attitude 
Determination and Control subsystem to the tray 
it is affixed to. 
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An Example of DEEP Implementation 
 
A demonstration implementation was 
constructed to show the potential of DEEP at 
SCU.  Due to time constraints, sacrifices were 
made in this implementation and the full 
potential of the technology was not completely 
brought to fruition.  Despite this, the results were 
impressive and have inspired continued 
development of the DEEP concept. 
 

 
Figure 3 – AVR-Sat Hardware 

 
 As mentioned previously, DEEP requires a 
standardized communications bus, a common 
memory device directly accessible on this bus, 
and a common memory structure (hardware 
profile) across all memory devices.  It is 
important to note this implementation only 
requires conformity with the communications 
bus and memory device.  The subsystem 
designer is left the flexibility to define the 
subsystem beyond this requirement.  As a 
demonstration of this functionality, 4Kbit 
EEPROM devices were added to an existing 
avionics package developed at Santa Clara 

University.  The avionics hardware, named 
AVRSat modules (Figure 3) were designed 
around the Emerald Protocol suite, a standard 
communications and interface definition also 
developed in the University environment. 
 
Dallas 1-Wire devices were chosen because the 
support framework was already well 
implemented on existing hardware. Additionally, 
low cost, high availability, and usage simplicity 
made this hardware a suitable choice. 
 
Instead of maintaining a network image at each 
node, a centralized approach was taken.  This 
was a key factor in simplifying implementation.  
A subsystem dubbed the Dallas Master was 
created to perform this role.  This subsystem was 
responsible for periodically polling the bus in 
order to update the internal map of subsystem 
connectivity.  The profile of each DEEP-enabled 
device was stored in this device, which permitted 
the Dallas Master to service requests such as 
“Turn the Communications System On.”  The 
requesting subsystem element does not need to 
know any details specific to this operation in 
order to command its occurrence.    
 
The device profile stored in the small EEPROM 
device onboard each hardware element is 
populated as seen in Figure 4. 
 
Following a generic header, a DEEP Version 
value is present, enabling support for future 
modifications.  The I2C address, the primary 
address needed for commanding of the hardware 
specified by the Emerald Protocol suite, is listed.  
An important future modification would be to 
design around the static nature of embedding an 
address in the DEEP profile.  Functionality 

Byte 0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F
0 D E E P DEEP Version # Dev Count

0008 Subsystem Name
0010 Hardware Version Number
0018 Hardware Configuration Number Hardware Serial Number
0020 Timestamp of Programming Header CRC16 Data CRC16
0028 Dallas Name String 0 Type
0030 Dallas ID 0
0038 Dallas Name String ... Type
0040 Dallas ID ...

I2C Addr

Figure 4 - DEEP Hardware Profile 
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similar to Dynamic Host Configuration Protocol 
(DHCP) would free the bus of this constraint but 
the complexity of this issue made it unfeasible 
for this sample implementation.  Another 
simplification made in this approach was to limit 
all of the control elements to be Dallas 1-Wire 
devices.  The device count field in the profile 
captures the count of Dallas devices that are 
available on the hardware this profile is 
describing.  An 8-byte ASCII encoded name 
follows.  This embeds a human readable 
identification tag of the device which is generally 
helpful during development.   
 
The Hardware Version number captures a 
specific hardware design revision.  This will 
allow for a higher fidelity model to be referenced 
for information specific to this hardware 
revision.  The excessive bit length of this value 
enables future expansion of the meaning of this 
value.  The Hardware Configuration Number 
provides numerically referenced configuration 
bins for the designer to utilize.  For example, if 
there is a certain grounding configuration that is 
being utilized on a collection of hardware, that 
distinction could be captured in this field.  It is 
important to note that that type of detail is not 
specifically held within that value; an external 
reference is assumed to exist to maintain this 
contextual information.  The implementation of 
this external reference, be it an XML document, 
SQL database, or similar technology, is not 
specified and should be chosen based on 
requirements external to DEEP.  The Hardware 
Serial number is a unique identifier of each 
hardware element maintaining the same 
Subsystem Names.  This value is not necessarily 
unique between Subsystems and, similar to the 
other fields, does not need to be globally 
coordinated.   
 
Following a typical UNIX style timestamp, two 
separate CRC check-sums are included.  The 
intention here is to decouple data held within the 
following payload section from that of the 
header.  The payload section maintains Dallas 1-
Wire addresses, an ASCII description of their 
functions, and a more general type identifier.  
This type identifier allows an interpreting 
subsystem to immediately classify that device 
and automatically generate usage guidelines.  
Very specific categories were created for this 
sample implementation, (Table 1). Should 

corruption occur in the payload component, it 
can still be retrieved from a remote mirror of the 
data similar to the other specifics of the hardware 
which, under this implementation, need to be 
externally referenced anyway.  

Table 1 - Device Type Classification 
 
Five hardware elements configured with a DEEP 
Profile including a Dallas Master subsystem 
compose the demonstration, (Figure 5).  Any of 
the five hardware elements could be integrated 
and removed from the bus and the internal map 
of the configuration onboard the Dallas Master 
would immediately recognize this change.  The 
Dallas Master could accept generic commands 
by specifying only a general description of the 
hardware, such as communications system, and 
the type of device to modify along with the 
status or state desired.   

 
 
 

Device Type Table
Value Description

00 Latch-up V1 5V Control
01 Latch-up V2 12V Control
02 Latch-up V2 5V Alt
03 Board Temperature
04
05 Temperature 5V Regulator
06 Temperature 12V Regulator
07 Current Solar Panels 1-4
08 Current Solar Panels 5-8
09 Power Regulated
10 Power Batteries 1-2
11 Power Unregulated
12 Temperature Battery 1
13 Temperature Battery 2

INFOsw (Non-DEEP Memory)

Figure 5 - DEEP Demonstration Unit 



 

 
- 8 - 

21st  Annual Conference on Small Satellites 2007 
 

Conclusion 
 
The DEEP architecture builds on past RIT 
successes at both Washington University and 
Santa Clara University.  DEEP provides dynamic 
system modeling while decreasing integration 
and testing time.  Inherent in this idea is the 
notion of embedding a functional model of the 
hardware within itself.   
While a demonstration implementation has been 
constructed, much future work exists.  DEEP 
will be extended to allow dynamic addressing 
with more sensor types added.  Sensor operating 
limits will allow the use of Anomaly 
management algorithms.  Embedded command 
lists with response types will allow for 
subsystem interaction and dynamic ground 
control and modeling. 
 
DEEP will be integrated into the existing Akoya 
and ONYX satellites and used on future satellites 
built at the two labs.  Akoya and ONYX have 
dedicated payload space for the other school.  
Because the payloads adhere to the Emerald and 
DEEP protocols, no a prior knowledge will be 
needed for integration.  While DEEP is designed 
specifically for university-class satellites, much 
of its design implementation can be applied to 
more complex spacecraft systems. 
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