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that leaves tPo invariant, and vice-versa: 

U 0 tPo = «(; U (; t ) ( (; 1/;) = (; U 1/; = (; tP �~� 1/;0 

U1/; = «(;tUo(;)«(;ttPo) = (;tUotPo = (;t1/;o = 1/; 

Therefore, the group that leaves tP invariant is the same as the group that 
leaves tPo invariant. But this group was shown by �~�V�h�e�e�/�e�r� [61 to be SU(3), by a 
direct construction of the infinitesimal Hermitian generators. These generators 
are required to satisfy H tP = O. 

The existence of a one-parameter, bounded symmetry, C(1), follows immedi
ately from the expression for [g) in terms of t/J. Each component of tP is bounded 
by the norm of [g). Furthermore, t/J has four complex components, constrained 
by the constancy of the norm, tP t tP. Therefore, seven degrees of freedom in tP 
parameterize the six independent components of [g], leaving a one-parameter 
family of solutions to the algebraic equations for 1/;0 ([g)). Since the equations 
to be solved for 1/;([g)) are of quadratic or higher order, there will be more than 
a single root, providing a discrete symmetry, J(. Additional discrete symmetry 
may also be provided by the phase transformations of the components. 

The spacetime metric has definite Weyl weight if and only if [g) has only 
one nonvanishing component. In these cases tP has exactly two non vanishing 
components. For example, we may have 

If the phase of a is shifted by 6 and the phase of (3 by -6, [g) 12 = Re( a(3) 
remains invariant. This is a U(l) symmetry. Note that it does not commute 
with the SU (3) symmetry, but for any change of phase, 6, it is trivial to write 
down the new generators of SU(3). 

Finally, when the metric is of definite Weyl weight, there is an Hermitian 
transformation, A, which commutes with SU(3) satisfying AtP = tP. When ex
ponentiated, the net effect is a phase change 

UtP = ei6AtP = ei6tP 

In general this does not leave [g) invariant. However, when 6 = n7r, [gJ is un
changed. The transformation remains nontrivial when acting on spinors other 
than tP, and is distinct for different values of n. The symmetry group, K, there
fore contains the integers. 

4 The SU(2) symmetry 

There is a remaining symmetry of the metric choice, which is most naturally 
thought of as arising because the metric is symmetric in the gauge fields �e�~� a. 
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It is natural to ask about the character of the antisymmetric combination 

F i _,ci ei aeHT] - Fi a/3 - <"jk a /3 ab - - /3a 

where (ijk is the Levi-Civitasymbol. F~/3 has the index structure of a Yang-Mills 
field. Applying the same criteria used to arrive at SU( 4), we have the space 
R3_{O} covered by Rx 0(3), with compact part 0(3) and covering group SU(2) . 
This is precisely the additional group required to give the standard model. 

For F~/3 to be a gauge field, it must arise from a gauge potential. Interest
ingly, the necessary condition depends on the vanishing of part of the torsion. 
Normally, in the gauging of Poincare symmetry, we impose the condition 

D[a epl = T~/3 = 0 

on the vierbein. It is sufficient to demand that each metric in our class be 
torsion-free . We therefore require the same condition of each of the three vier
bein components, 

D[ae~la = 0 

Contracting with T]ab(} kei band antisymmetrizing yields the Bianchi identity for 

F~/3 : 
D[aF~/31 = 0 

F~/3 therefore arises from an SU(2) gauge potential, providing the final symme
try required for the standard model. 

5 Gauging 

We now have shown the existence of SU(3) x SU(2) x U(l) x Z symmetry as the 
residual gauge group following any choice of metric of definite scaling weight. 
The full symmetry is therefore the standard model, together with the Poincare 
group and a discrete symmetry. We assumed that the dilation symmetry is 
broken even though it does not directly give a scaling of the mass as assumed 
by Wess [4]. Even if dilations were allowed, the standard model symmetries 
would still remain. 

It is important to note that the new unitary symmetries are independent of 
the Poincare symmetry. The Poincare symmetry is the remnant of the original 
conformal symmetry. The unitary symmetry was introduced to classify the 
metrics allowed by the conformal gauge fields, but has no direct relationship 
to the translation, rotation or boost symmetries. The gauging of the group 
may proceed along the usual lines, with the exception that the product of the 
electromagnetic and strong symmetries is semi-direct and not direct. 

Still more interesting is the possibility of investigating what happens if the 
entire SU( 4) symmetry is maintained. The spacetime metric may be regarded 
as an SU( 4)-valued tensor field, g:/3' and the curvature for the full symmetry 
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derived. It remains to be seen whether an appropriate action emerges naturally 
in this approach. 

Finally, we conjecture that the correct way to iritroduce matter fields is 
through supersymmetrization of the model. 
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