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A Viable Form of Weyl's Theory

James T. Wheeler

Institute for Field Physics
Department of Physics and Astronom
Uiversity of North Carolina at Chapel Hill

Abstract

A reinterpretation of the Weyl vector in a Weyl geometry is shown to yield Dirac's 1951
classical theory of the electron, thereby avoiding the most obvious problems of measurement
inherent in Weyl's original geometric formulation of electromagnetisin. This paves the way for the
consistency of cecent metric-connection theories, for which similar questions of measurement can

arise.

A Viable Form of Weyl's Theary

A number of geometric theories have been proposed which generalize the ideas of Weyl [1}
concerning length change. These theories {2) allow the metric and the connection fo be varied
independently, and generically allow the possibility of nencompatible connections. Because of
this, such metric-connection theories must answer the objections to Weyl's ariginat theory. In this
paper we show that a simple reinterpretation of the Weyl vector gives a fully consistent classical
geomeltric theory of single-particle electromagnetism. It should be remembered that the theories of

real interest may also avoid objections in other ways:

1. Lengths may not change. 1t is possible for the metric and connection to be
noncompatible in ways that merely distort objects without altering spacetime volume. The

measurement of such distortions is not considered here.

2. The scale of metric-connection theories is generally the Planck length rather than the
atomic scale. If it can be shown that al atomic seales the metric and connection become compatible
then there will be no obvious conflict with experiment. While the accucacy with which the
compatibility must hold is rather high [3], it is actually less stringent than the cancellation of

charges required 1o produce the known electrical neutrality of bulk matter.

In this paper, the issue is addressed on its own ground. A different physical interpretation
of the Weyl vector is made which removes the immediate conflict with observation for the motion
of a point particle in an electromagnetic field. The reinterpretation preserves Weyl's view of
eleciromagnetism as a geometric phenomenon. The electromagnetic theory which emerges is
identical to that formulated by Dirac in the early 50's in an attempt 1o realize the quantization of

electric charge as a purely quantum phenomenon.

I Weyl's theory.

For a complete discussion of Weyl geometry in the language of fibre bundles, see
Audretsch, Gahter, and Straumann [4]. Here we will be content with a brief look at selected
Teatures. Weyl's theary of electromagnetism takes place in an extension of Riemannian geometry
in which not only the orientation, but also the length of a vector changes under parallel transport.
The additional vector required to describe the resulting non-Riemannian geometry is identified with

the electromagnetic potential, The aclion is conformally invariant. A conformal transformation



shifts the vector petentiat by a gradient, thereby giving a geometric virderstanding of

electromagnetic gavge transformation.

Briefly, the theory depends on a vector field W, related to the covariant derivative of the

metnic by:
Diap = Wygap )
W), is identified by Weyl with the electromagnetic potential, Ay. A conformally transformed metric
E'ap = e gp )
has the derjvative
Dyglap = (W' + 3,9)8'ap- 3)
Eq.(1) remains conformally invariant if W, is altered at the same time by
W,= W, -394 (4)

Now consider the consequence of this ansatz for the length of a vector when its

i
componenis are parallel-transported around a closed path with tangent vector whH ::j'—x. With
L
whDyv® =0 {5)
we have
wh D,,(L?) = Wl D, (gupvvP) = wh W, L2 {6)
so that after transport around a closed path the length-squared becomes:
L2 = 12 expf pW,dut] 0]

This expresses the principal diiference between the Weyl and Riemannian geometries, and it was
also the downfall of the theory. Einstein [5] pointed out that such a change in length is
incqmpaliblgﬁyith the abserved constancy of atomic Irequencies. If the size of a particle depends
upon the lields 'alopg its path, then atoms passing through different electromaguetic fields should

have differeny sizes and hence dilferent characteristic [requencies. The only way out of this

¥

difficulty is to imagine that the integral in eq.(7) vanishes. But Stoke's theorem then implies the
vanishing of the electromagnetic field strength, Fuy =2W (0

A second objection Lo the idea that length changes was put forward by Marvke and Wheeler
[3]. Itis based on the observation that masses as well as lengths should be altered in a Weyl-type
theory. If this is true then electrans would become distinguishable by their different masses. The
Pauli exclusion principal would no tonger apply and all atomic orbitals would collapse to the
lowest state. Based on rough estimates of the magnetic field near the earth's core a limit of about 1

pait in 1050 for length change is produced.

H. An alternalive interpretation of the Weyl potential, Wp.

We will now consider an alternative version of Weyl's theory which not only avoids these
problems, but turns the observations to some advantage. We will restrict the presentation to the
case af a single padticle moving in an electromagnetic field since our intent is to show the viability
of length change theories in general, and not to develop a detailed model. Our real interest lies in
establishing the consistency of metric-connection theeries, in which the spacetime confiection is

regarded as independent of the metric.

The new aspect Lo be introduced to the Weyl ansatz is motivated by, but not dependent
upon, the idea that all energy is equivalent in its efiect on geometry M this is the case then all

forms of energy should be able to produce length chunge, and not jusi eleciromagnetism
Therefore, the line integral of W), must be generalized to include the energy-momentum vertor.

In particular, consider the case of a point particle moving freely in empty, flat space. We
interpret W, as the momentum of the particle:

Wl_l = Py = my, 7 [t:)]
where the velocity u, satisfies
v U = ] )]

u

With this supposition. the condition of €q.(7) that ne change in size occur

§ poxt = 0 o



gives the requirement
Py * Py =0 (i1)
The projection of eq.(11) along the path of the particle is:
0= (- P L, (1)

Because of eq.(9) this reduces to Newton's law for & free particle:
d
) (13)
The spacelike part of eq.(11) only makes sense if the particle velocity is 'smeared out’ into a

velocity field. In this case it gives:

curl v = (. (14)

The particle therefore is not spin.ning. In its integral form, § p; dxt = D | this consequence of

eq.(14) is easy to see. Tt implies the vanishing of angutar momentum in a locat sense. In general
one might have counterrotating parts of a fluid with zero net angular momentum, but such a

situation is rufed out hese.

When the particle has charge q and an external eleciromagnetic field with potential Ay is
applied then W), must also include the elecicomagnetic contribution;:

Wo=py - qA, (15}
We then have the condilion
pu,v - Pp,v - q(Ap,v - Au.v) =0 (|6)

These are precisely the equations of motion postulated by Dirac[6] in his 1951 classical theory of
the electron. Dirac inteoduced his new formulation in an attempt to make the quantization of charge

a quantum property of electromagnetism.

The implications of eq.(16) are easy to find. When contracted with u¥ this gives the
Lorentz force law:

dp
u"(p“.v © Puw - quv) = ?f . un["uvz 0. (1N

9 .
"Jf = qu'F,,,. (18)

Again considering the particle to be composed of a velocity field so that we can take the spacclike

part we find a relation between the local spin and the applied magnetic lield.
curt v 23_% B. (19
In the integral form:
. e
ﬁ pidx' =~ o, felo))

where @ is the magnetic flux through any surface bounded by the line tntegral. One can find

distributions of material consistent with this law.

It should also be observed that €q.(19) is the Londan equation for superconductivity, so
that there is the possibility here for a nonstandard theory of superconducting matter. Perhaps ane
can think of the electron as being composed of same fundamental superconducting fluid which is

measucable only in discrete amounts when quantized.

It is important to note that the equation of motion, eq.(16), has a welt-posed initial value
formulation. To see this, note that q.(16) implies that the Weyl potential is a pure gradient,

W, = L 21)
so that eq.{15) becomes

Pu - qu = ¢-p (22)

This has a solution for the momentum field Py whenever there exists a gauge transformation such

that the potential has noem A? = - m2. Bt classically such a gauge always exists because this
condition

AZ=(qA =P - - m2 @3)



is the Hamilton-Jacobi equation for electromagnetism when ¢ is taken as the action evaluated along
the classical path. This gauge is called the Dirac gauge or the nonlinear gauge, and has been used
by Dirac[6] and Nambu{7).

I general what we find with this reinterpretation of W, is that in order for the system to
move without scale change it must follow the classical equations of motion, with a subsidiary

condition on the spin.

The subsidiary condition may be avoided if we introduce an additional term in our
expression for W), Taking our que from Dirac[8], eq.(15) is replaced by:

wj.l =P - qu: - @uﬂ (24)
where & and 1] are functions such that
paE= pan =0 (25)

Then the vanishing of the field strength of W, implies the existence of a gauge for Ay such that:

Pu - 94, - E3n=0 (26)
The equations of motion became:;
4p,
= = qu'F,,. 18
dt qutyy ) (18)
and
. .
culv = = B + V& x Vn, (19}

As shown by Dirac[8), the functions £ and 1} can be chosen to allow fully general electromagnetic
fields.

Therefore, with Lhe identification of W, as in eq.(24), a Wey! geomelry provides a consistent

geometric theory of electromagnetism which predicts no change in length measurements for a

charged particie obeying the classical equations of motion .

HI. Conclusions and some further ohservations.

We have briefly considered an alternate interpretation of Weyl's theory. While many of the
refations following from the change are suggestive, what one really needs is a complete theory of
measurement in a Weyl geometry. Rather, the claim to be stressed here is that even such a slight
reinterpretation of Weyl's theory as we have made can rescue the theory from its major criticisms.
The condition that no change in length be observed for 2 particle maving in an electromagnetic field
is now satisfied by requiring the particle to obey the Lorentz force Jaw. Rather than forcing us to
abandon the theory because fength changes would conflict with observalion, we now find that
there will be no conflict with our measurements as long as a charged particle follows its classical
trajectory. The interpretation suggests that classical physics may be regarded as emerging from a

thecry of tength change in the limit of negligible length change.

The objection raised by Marzke and Wheeler, that the resulling change in masses wil| cause
a breakdown in the exclusion principle, is also overcome. Since the Weyl geomelry is conformally
invariant, the notion of ‘identical particles’ must be modified to include particles which are identical
modulo conformal transformation. Then even for nonclassical paths the exclusion principle stifl
applies. No physical meaning can be ascribed to any differences which are related by tocal scate

changes.

If we try to extend this model to the quantum realm, there is a dramatic difference from
Weyl's theory. In Weyl's theory the magnitude of the deviation from identical masses depends on
the magnitude of the electromagnetic field. To produce large differences in atomic spectra requires
only moderate field sirengths. But in the theory presented here, any deviation is on the order of
Planck’s constant, since the deviation of electrons from the classical path is scaled by . Planck's
constant will therefore scale any spreading of specteal lines.  In Weyl's original theory the scale

for length change is set by the scale of electromagnetism. Here, the scale is still arbitrary since the
classical motion is scale invariant. A constant multiplier for W, does not aller the motion

"The importance the observation by Marzke and Wheeler that mass shoukd alter with length
can be appreciated by considering what would happen in a scaling theory if masscs did not change.
Fixed orbits would not exist, because the radius of the orhit would change but the momentum of
the orbiting body would not. Uniess all of the equations required to specify the motion of the
orbiting particle are invariant under scalings of the length, the orbit coutd not survive in a region of
nenzero field. We conclude that the length dependence of mass is necessary in order to make any
sense of classical measurement at all. In order to have a classical, lenglh-prgserving realm, mass

must scale as an inverse length in the length-changing reatm,



Finally, recafl that the models we really wish to motivate are spacetime theories in’ which
the connection and the metric are varied independently. In such theories, the metric is in general
not compatible with the connection and lengths can change. What we conclude from the examples
above is that these theories’ failure to preserve lengths does nol doom them at the outset, While
they may require significant rethinking of measurement theory, it is at least conceivable that a

metric-connection theory can describe the physical world.

The auvthor wishes R. Geroch, Y. Nambu, R. Wald, J. York and D. Zoller for stimulating
discussions. Special thanks are due to.J. Yark for raising the issue of measurement in metric-
cannection theories, and ta Y. Nambu for providing references to the Dirac theory and the

nontinear gauge.  This reseacch was supported in part by U.S. Department of Energy grant
aumber DE-FGO0S-85ER-40219.
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