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ABSTRACT 

Space missions produce value through the production of mission data products and services.  In doing so, however, 
significant resources are expended in order to maintain system health and to manage anomalies as they occur.  These 
tasks are costly in terms of the expertise, personnel, and time required to detect, diagnose and resolve problems.  Our 
recent work in model-based reasoning (MBR) techniques has demonstrated the applicability of this technology to 
the small satellite domain.  MBR uses fundamental design knowledge of a system in order to compute reasoning 
conjectures relating to the existence of symptoms, diagnosis estimates, and resolution control actions.  In doing so, it 
provides a systematic and efficient framework for automated reasoning, which in turn can dramatically accelerate 
the analysis of anomalies with significantly improved results.  In this paper, we describe the MBR approach to 
anomaly management and review our theoretical and algorithmic contributions to this field.  We outline our 
software toolboxes that implement these algorithms, and we highlight the tools that are being developed to apply 
this software to real space systems.  Finally, we review results of using this reasoning system for several small 
satellite missions, ranging from the student-built Sapphire microsatellite to the NASA GeneSat-1 spacecraft. 
 
INTRODUCTION 
 
Historically, system anomalies have been managed 
through the use of human-based “experiential” 
reasoning techniques.  Highly trained and experienced 
engineers embed their compartmentalized 
understanding, rules of thumb, intuitions, heuristics, 
and past experiences into a loose knowledge base 
composed of procedures, diagrams, handbooks, 
manuals, and remembered information.   
 
Widespread reports in the space operations literature, as 
well as years of the authors’ own experiences in 
operating a number of space systems, attest to the 
significant drawbacks of this approach.  Human-based 
experiential systems suffer from high training and 
staffing costs, sensitivity to personnel changes, the 
impacts of human error, the inability to reuse 
knowledge and procedures across lifecycle phases and 
missions, the sensitivity of the knowledge base to small 
changes in the system, and many other factors 1,2,3.   
 
Together, these drawbacks can result in on-orbit 
operations costs that constitute 25-60% of overall 
mission lifecycle costs4; for the $100 billion space 
industry, such system operations costs range in the tens 
of billions of dollars annually5.  Declining federal 
outlays for space projects and increased market 
pressures on commercial space ventures are forcing the 

space industry to lower these costs.  As a result, new 
approaches for detecting, diagnosing and responding to 
system anomalies are of great interest.   
 
Expert Systems 
 
The first step in automating systems health 
management often consists of the implementation of an 
“expert system.”  More precisely, these systems are 
often production rule systems that process simple 
“rules” based on accumulated experience in operating 
the space system. 
 
These expert systems have many benefits.  As an 
automated tool, they are simple in concept and 
implementation, and they are able to execute 
established flight rules more precisely and considerably 
faster than human operators.  The computational power 
required to execute them is minimal, making them 
viable even in embedded environments.  The 
conclusions they draw are transparent in the sense that 
it is straightforward for a human to understand the 
rationale for conjectures made by or actions taken by 
the system6,7. 
 
Unfortunately, expert systems have numerous 
drawbacks.  Computationally, they are limited given 
that their typical “if-then” rule construct limits 
sophisticated analysis.  Furthermore, their reliance on 
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experiential knowledge leaves them susceptible to the 
drawbacks of an informal knowledge base that is often 
nothing more than a loose collection of facts with no 
consistency in detail or coverage8.   
 
Even with these drawbacks, expert systems have been 
used successfully within the space industry in order to 
improve analysis and cut costs.  The Magellan and 
Cassini missions both used expert systems, allowing 
rapid automated response when these probes were out 
of contact with the Earth; to enhance their reasoning 
capabilities, the systems were augmented with the 
ability to execute rules when the motivating condition 
persisted over time2,9.  The EUVE mission used an 
expert system in order to dramatically improve the cost-
effectiveness of ground-based health management10; 
this innovation culminated in a period of “lights-out” 
operation and was instrumental in extending the 
mission’s operating life11.  Finally, the Sapphire 
microsatellite employed an on-board persistence-based 
production rule system that served to test several 
automation experiments8; one particular innovation was 
its use to inform a beacon-based health management 
system that was validated as a method for enabling 
cost-effect health management operations12. 
 
Model-Based Reasoning13 

 
Model-based reasoning (MBR) is one of many alternate 
reasoning approaches for computing conjectures that 
can support the health management process.  In MBR, 
reasoning conjectures are computed from fundamental 
design information regarding the design of the 
engineering system; as such, MBR is often defined as 
reasoning from first principles.  For example, a system 
description is used to define the behavior of each 
component within a system and to declare the 
connectivity (e.g., the structure) of the components.  
With this information, the performance of the system 
can be modeled or simulated, thus allowing the 
predictions of output values given values for the 
system’s inputs and an assumption that the system is 
operating nominally.   
 
One of the most significant contributions in the field of 
MBR is a formal theory of fault detection and 
diagnosis14,15 . This theory defines a fault as a condition 
within a component that prevents it from performing in 
accordance with its explicitly defined (e.g., modeled) 
behavior.  Stated formally, the definition of a behavior 
prescribes a specific value of a component’s output 
signal given the values of its inputs; mathematically, 
the behavior is a constraint on the output value.  
Detection of a fault using an MBR technique is 
accomplished by comparing the outputs of the real 
system to the outputs of the modeled system; as shown 

in Figure 1, an inconsistency between these values is 
interpreted as the symptom of a fault (given a number of 
assumptions, such as the accuracy of the model, etc.).  
A crucial distinction between MBR and other 
approaches to reasoning about faults is that MBR 
exploits models of proper functionality (which are 
developed extensively in the design phase of a system) 
rather than attempting to enumerate all possible failure 
modes. 
 
Once the symptom of a fault has been detected, a 
diagnosis process isolates the specific components that 
may be faulted.  The MBR approach to identifying 
these components relies on a process known as 
constraint relaxation.  For a given component 
suspected of being faulty, its behavioral constraint is 
relaxed, which means that its output is permitted to 
range over its set of all valid output values.  The system 
is then re-simulated in order to compute new values for 
the system’s outputs.  Depending on the nature of the 
system, the range of valid values from the possibly 
faulted component may lead to a range of possible 
values for one or more of the system’s outputs.  The 
observed values from the real system are compared to 
these new simulated values/ranges; if the observed 
values are members of the simulated sets of possible 
values, then the assumed component fault is, in fact, a 
valid diagnosis.   
 

 
Figure 1:  The Anomaly Management Process 

 
MBR has been applied to fault detection and diagnosis 
in a variety of fields ranging from electronic circuitry 
16,17 to spacecraft health management18-21.  These 
applications have motivated numerous extensions to the 
basic theory in order to incorporate empirical 
knowledge about failures16,22,23, to generate optimal 
sensing plans for efficient diagnosis9, to address 
computational loading through the use of hierarchical 
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models and truth maintenance24-26, to incorporate time-
varying behavior and observations into the analysis27, 
and to address the task of fault recovery28,29. 
 
EXTENDED MBR FOR ANOMALY 
MANAGEMENT 
 
Motivated by our work in operating numerous 
spacecraft ranging from military to university satellites, 
we have developed several conceptual extensions to 
MBR-based fault detection and diagnosis methods.  
These extensions have resulted in an extended MBR 
theory for anomaly management, a set of initial 
algorithms for executing this theory, and a toolbox of 
software that implements these algorithms. 
 
The extended theory uses a fundamental view of a 
component.  In this view, a component has inputs, 
outputs and internal states.  The component implements 
one or more behaviors, and these behaviors drive the 
value of outputs as a function of inputs and states.  The 
behaviors may only be valid under certain conditions, 
such as specific input or state operating ranges, and the 
design may call for associated constraints based on 
these conditions.  Finally, connections link inputs and 
outputs to output and input ports on other components. 
 
For as simple as this view is, a phenomenal level of 
information can be formally and systematically derived 
from it in the context of an operational multi-
component system.  MBR provides the framework for 
achieving this through explicit behavioral modeling and 
the comparison of model outputs with real-world 
telemetry. Although the full theoretical framework is 
too extensive to detail here (see [30-32] for complete 
details), we provide a qualitative description of some of 
the highlights of the conceptual foundation.   
 
Anomaly Types 
 
We define three different types of anomalies: 
• Fault: In keeping with the original theory, a fault is 

defined as the misbehavior of a component, as 
called for by the behavioral description of that 
component. 

• Hazard: A hazard is a condition that violates an 
operating constraint that has been levied upon the 
design. 

• Misconfiguration: A misconfiguration is an 
improper assumption regarding what the actual 
input configuration is. 

 
The fundamental point of view that unifies these as 
anomalies is one of violated assumptions or 
mathematical constraints.  With MBR, each aspect of 
the component definition provided in Figure 2 is 

formally expressed through mathematical or logical 
representation.  A behavior is an assumption, or 
constraint, on the value of a component output given 
the values of the associated inputs and states; a fault, 
therefore, as a condition that violates this assumption.  
Similarly, an operating condition is a constraint on 
component input or state values; a hazard is a violation 
of this type of constraint.  And a configuration 
statement is an assumption regarding the value of a 
system input; a misconfiguration is a violation of this 
type of assumption. 
 
All three of these types of anomalies occur regularly in 
the field operation of complex engineering systems 
such as space systems.  These anomalies may exist 
independently of each other, and they may interact 
through causal relationships.  All are potential threats to 
the health and performance of a system, and each has 
distinct implications regarding their effect and possible 
remedies.  Being able to explicitly and formally detect, 
diagnose, and resolve each is fundamental to effectively 
controlling a space system in an efficient manner. 
 
While these designations may seem straightforward, 
their definitions have heretofore not been used in a 
reasoning system that has formalized them in this 
manner nor which considers the relaxation of associated 
constraints as part of a diagnosis project.  Furthermore, 
while anomalies such as misconfigurations may seem 
mundane due to their association with operator error 
and therefore unworthy of formal consideration, they 
play a significant role in the occurrence of anomalies; 
our unified framework allows them to be addressed as 
part of a coherent strategy of detecting, diagnosing and 
resolving an anomaly of any type. 
 
Reasoning Framework 13 

 
We have formalized our expanded set of operational 
anomalies, as well as a complementary suite of 
resolution actions, into a new, more comprehensive, 
model-based theory of anomaly management.  Like the 
previous theory of fault detection and diagnosis, this 
conceptual foundation uses a consistency-based 
approach that identifies and resolves inconsistencies 
among assumptions in the model of the system and 
observations of the real system.  Key elements of the 
theory include: 
� The engineering system description, a collection of 

design-time model information indicating the 
systems structure, behavior, and intended use. 

� The operational system description, a collection of 
operational-time model information that includes 
the engineering system, the intended application 
requirements, and real-time configuration and 
observation data. 
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� The definition of anomaly predicates for faults, 
hazards, and misconfigurations. 

� The definition of resolution predicates for formally 
over-riding operating constraints and altering a 
mission application. 

� Formal definitions for a detected symptom, a 
diagnosis conjecture, and a resolution action. 
 

Management Tasks 13 
 
Detection involves identifying inconsistencies between 
observations of the real system and the model of our 
system, to include a) the system’s structure, behavior 
and intended operation, b) the intended application of 
the system, c) our belief that no anomalies exist, d) our 
initial policy of not over-riding any operating 
constraints or relaxing any mission requirements, and e) 
our understanding of the current configuration.   
 
Diagnosis is also a reasoning process grounded in 
logical consistency.  In effect, diagnosis implies finding 
all possible anomaly conjectures that relax an 
assumption in our model in order to re-establish 
consistency between the model and our observations.  
For example, assume that a fault or hazard for a 
particular component relaxes the component’s output 
value; if this effect ripples through the system, as 
determined via simulation, in order to support the real 
observations as one possible effect, then the fault and 
hazard are both viable diagnoses.   
 
The generation of resolution options continues the use 
of logical consistency in order to determine the options 
that re-establish consistency between the model, the 
observations, and the belief in a specific diagnosis.  
Resolution options include combinations of system 
reconfigurations (e.g., swap out a faulted component 
with its redundant unit, turn on the heater for an under-
temperature component, etc.), constraint over-rides 
(e.g., explicitly accepting a violated component 
operating condition), and mission alterations (e.g., 
explicitly relaxing one or more system requirements). 
 
ALGORITHMIC IMPLEMENTATION  
 
We have developed reasoning algorithms to implement 
our extended MBR theory of anomaly management, 
and these algorithms have been prototyped as a Matlab 
toolbox for use in both test and operational 
environments.  This software methodically computes 
symptoms, diagnoses and resolutions in accordance 
with the criteria specified in the theory’s formal 
definitions.   
 

Process Algorithms 
The anomaly detection process is executed periodically, 
typically after telemetry acquisition and certainly in 
response to a command.  For a given input 
configuration, the model is evaluated in order to predict 
system outputs.  These outputs are then compared to 
telemetry from the actual space system.  Specific 
checks identify conflicts with configuration 
assumptions, violations of intended component 
operating conditions, or inconsistencies with predicted 
observation outputs. 
 
The diagnosis algorithm is invoked only when the 
detection algorithm identifies a symptom.  As shown in 
Figure 2, the algorithm is implemented as a two-stage 
process given the appropriateness of two distinct 
decision-making approaches: 
• In the first stage, a production rule process is used 

to directly identify misconfiguration and hazard 
diagnoses. 

� In the second phase, symptoms generated by 
inconsistencies between the predictions and 
observations of the system state are addressed.  A 
candidate generation algorithm produces a set of 
assumptions to evaluate, and these constraints are 
systematically relaxed to see if the resulting 
simulation re-establishes consistency with 
observations; if this occurs, the assumption is a 
possible diagnosis.  To date, versions of this 
algorithm phase have been implemented in order to 
identify sets of diagnoses for multi-symptom 
single-remaining-anomaly cases. 

 
The resolution process executes when the diagnosis 
algorithm returns a set of diagnosis conjectures.  For a 
specific diagnosis, the algorithm is performed by 
systematically considering mission alterations, 
constraint overrides, and new configurations.  The first 
two are easily generated: if any mission-critical system 
outputs or intended component conditions are violated, 
simply accepting these facts by relaxing the mission or 
overriding the constraints become resolution options.  
Of course, these are usually accepted only as a last 
resort.      Therefore,     it     is    critical     to     evaluate 
reconfiguration options.  This is done be re-evaluating 
the model for permutations of configuration options 
upstream of the diagnosis; new configuration 
combinations that result in the satisfaction of a violated 
mission requirement are saved as possible resolution 
options.  Finally, the three types of resolution options 
are considered in systematic combinations; minimal 
combinations that re-establish consistency within the 
system (given the assumed diagnosis) are saved as valid 
resolutions.   
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Figure 2:  Simplified View of a 2-Phase Diagnosis Algorithm. 

 
 
Reflections on MBR Processing  
 
There are several characteristics of the anomaly 
management process worth highlighting. First, different 
types of anomalies can lead to the same symptom.  This 
many-to-one correlation makes operational anomaly 
management a difficult task.   

Second, the ability of an anomaly to be observed and to 
affect the rest of the system is a function of the 
system’s configuration.  Exploiting this dependence 
through computation is what ultimately allows MBR to 
be far more precise in its diagnosis and resolution 
conjectures compared to an experiential system, which 
often diagnoses problems using an “anything upstream” 
strategy.   

START 
Given OS & symptoms 

Given evaluated model from Detection process

Are any observed/modeled states inconsistent with the 
assumed configuration? 

Are any observed/modeled states inconsistent with the 
intended component operating constraints? 

Those states are 
misconfigurations 

Those states are 
hazards 

Yes 

Yes 

No 

No 

Re-evaluate System with Asserted Hazards & Misconfigurations 
Relax constraints associated with these anomalies and  

re-evaluate modeled states of the system 

Are there any remaining symptoms? 

Identify candidate constraints 

Yes
No 

Are observations now consistent with the model? 

Relax constraint & re-evaluate model 

For each candidate constraint… 

Add the relaxation of this constraint to the set of 
possible diagnoses: fault, hazard or misconfiguration

Yes
No 

…more candidate constraints? 
Yes 

No 

END 

Phase 1 
Implemented 
via a 
production 
rule system

Phase 2 
Implemented 
via a constraint
relaxation 
technique 
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Finally, because anomaly observability is configuration 
dependent, operational anomaly management is 
necessarily parsimonious; if there is no indication of an 
anomaly, then no anomaly is assumed given that 
mission critical systems cannot be arbitrarily 
reconfigured in order to verify a healthy state. 
 
SMALL SATELLITE MISSION APPLICATION 
 
We have experimentally verified and validated our 
anomaly management reasoning system by applying it 
to the operational control of the Sapphire and GeneSat 
space systems.  In each case, this has been done in the 
context of configuration management for the end-to-end 
distributed space systems to include components in the 
mission control center, the remote communication 
stations, and on-board the satellites.  A few examples 
are provided here. 
 
To our knowledge, this is the most comprehensive 
application to date of MBR techniques to managing 
anomalies within space systems. 
 
Sapphire 
 
Launched in 2001, Sapphire was developed by students 
at Stanford University and supported a variety of 
missions to include digital communications, Earth 
photography, and sensor characterization33.  Faculty 
and students at Washington University in St. Louis 
prepared and integrated the satellite for launch, and 
primary control of the satellite was turned over to the 
U.S. Naval Academy to support student education.  
Faculty, staff and students at Santa Clara University 
operated the satellite through 2005 in order to conduct a 
series of research experiments involving automation 
technologies.  In 2005, operations ceased do to the 
degraded state of the satellite’s power system; the five 
years of operational life dramatically exceeded the one-
year of planned design life. 
 

  
Figure 3: Elements of the Sapphire Space System 

 
For the experiments reported on here, the 
comprehensive Sapphire space system consisted of the 
Sapphire microsatellite, several automated 
communication stations located throughout the United 

States, and a centralized mission control complex in the 
Center for Robotic Exploration and Space Technologies 
building in the NASA Ames Research Park, Moffett 
Field, California.  Elements of this system are depicted 
in Figure 3.  The communication stations were remotely 
controlled via the Internet by operators in the mission 
operations center, and amateur radio was used to 
communicate between these stations and the satellite 
when it was in view.  The ground segment portion of 
this system, developed by students at Santa Clara 
University, is used to support the operation of a variety 
of other spacecraft and robotic missions34,35. 
 
Fortunately (or unfortunately, depending on the 
applicable point of view), several real and unanticipated 
anomalies involving the flight system were identified 
during these contacts.  Combined with the many 
unplanned ground segment anomalies that occurred, 
these events provided a wonderful opportunity to 
exercise the anomaly management system in a realistic 
setting.   
 
In all of the following cases, the anomaly management 
software successfully detected symptoms and generated 
a valid set of possible diagnoses (although on occasion 
this list was long and required active testing in order to 
narrow down the possibilities): 
• Unresponsive operating system on the 

communication station computer. 
• Misconfigured IP address on the communication 

station computer (the host institution changed the 
IP address without notifying the operations team). 

• Power outage at the communication station facility. 
• Out of date Keplerian elements used by the 

communication station autotrack software. 
• Incorrect time on the communications computer 

resulting in inaccurate autotrack computations. 
• Overheating of the transmitter amplifier leading to 

undesired performance. 
• Misconfiguration of TNC settings by the operator. 
• Misconfiguration of autotrack software settings by 

the operator. 
• Failure of an antenna positioning servomotor (on 

several occasions). 
• Improperly executed operations procedures 

resulting in misconfigurations. 
 
One particularly interesting on-board anomaly involved 
the attempt to collect data from experimental infrared 
sensors that were one of the primary payloads on the 
Sapphire spacecraft13.  During this procedure, the 
operator improperly executed the relevant command 
plan, failing to enable the sensors prior to collecting 
data thereby yielding a data set that was effectively 
garbled.  When data was acquired from these parallel 
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sensors, it was inconsistent with the expected values 
thereby triggering an initial, automated diagnosis 
process that returned three possible diagnoses.  Of these 
three, a possible resolution (short of altering the 
mission) existed for the “misconfigured sensor” 
conjecture.  This resolution, to command the sensor to 
its enabled configuration, was executed and solved the 
problem.  The speed of the diagnosis process, which 
executed in approximately 3.5 seconds, allowed the 
operator to properly configure the satellite, collect the 
desired sensor data, and complete other operational 
tasks within the 12-minute contact window. 
 
For this example, it is instructive to consider the 
diagnoses that were not made.  A simplified block 
diagram of the relevant on-board component 
configuration is shown in Figure 5 to illuminate this 
discussion.  Diagnoses relating to component power 
were not made given that power was being properly 
supplied to other units within the satellite, as reflected 
by other telemetry that was consistent with simulated 
predictions.  It is also interesting to note that faulty 
sensors were not a diagnosis.  This is because the initial 
diagnosis that was executed assumed only a single 
anomaly had occurred; because the sensors are in 
parallel, both would have had to fail in order to produce 
the observed data.  
 
GeneSat-1 
 
Launched in December 2006, GeneSat-1 is a 
technology demonstration spacecraft used to validate 
the use of research-quality instrumentation for in situ 
biological research and processing.  Development and 
execution of the GeneSat-1 mission was led by NASA 
Ames Research Center, and NASA biologists served as 
the Principle Investigators for the associated science 

experiment involving the evaluation of E. coli. 
metabolism in the microgravity environment.   
 
NASA included significant university involvement in 
the GeneSat-1 mission.  Stanford University graduate 
students performed early prototyping of the GeneSat-1 
bus, Cal Poly students developed a P-POD launch 
ejector for the “triple-CubeSat” vehicle, and Santa 
Clara University students developed the entire ground 
segment and performed all on-orbit mission operations.  
In February 2007 with all primary mission objectives 
successfully complete, NASA turned full operational 
responsibility for GeneSat-1 over to Santa Clara 
University for the purposes of student training and 
engineering research until the satellite de-orbits in late 
2007. 
 
As shown in Figure 5, the GeneSat-1 space system 
includes the satellite itself, a primary communication 
station that uses an 18-meter parabolic dish, and Santa 
Clara’s distributed internet-based command and control 
network.  For primary science operations, the NASA 
Ames Multi-Mission Operations Center (MMOC) was 
configured to serve as a Control Node within this 
network.  
 
With respect to MBR anomaly management, the 
demonstrations performed for GeneSat-1 built upon the 
Sapphire contributions and other work36 in order to 
integrate the reasoning software with Santa Clara’s 
operational command and telemetry analysis 
environment.  A graphical environment, shown in 
Figure 6, was also developed in order to support system 
modeling as well as to convey reasoning outputs of the 
MBR agent; this was specifically done to provide 
decision support to a human operator37.   Extensions 
were also made to enhance to dynamic manner in which 
command and telemetry operations were simulated.

 
Figure 4: The Sapphire Infrared Sensor Configuration. 
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Figure 5: Elements of the GeneSat-1 Space Systems. 
 
 

 
Figure 6: A View of the Graphical Model of the GeneSat-1 Space Systems. 

 
 
Operationally, the refined reasoning system has 
successfully detected and diagnosed several anomalies.  
For example, several Internet link outages occurred 
(some during critical phases of the mission) between 
the communication station and the command and 
telemetry database located in the Ames MMOC.  These 
were routinely detected, diagnosed, and resolved 

through the instantiation of a local database at the 
communication station (appropriate early in the mission 
when the Control Node was located at the station). 
In another compelling case, the system detected (in 
post-processing) a condition that had been missed by 
expert operators.  This was an incremented vehicle 
command count indicating the reception of commands 
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for which the telemetry response was not received.  
Although the operational implications of this anomaly 
were benign, catching and subsequently tracking this 
deviation became instrumental in studying the link 
performance of the vehicle. 
 
Algorithm Performance 
 
Speed of processing is of obvious importance given the 
need to quickly return a space system to a healthy state 
in the event of an anomaly.  Executing on a Pentium IV 
PC, the implementations of the algorithms used for the 
experiments presented here execute detection, diagnosis 
and resolution (for a specific diagnosis) on the order of 
seconds to tens of minutes.  Broken down, detection 
generally occurs on the order of hundredths of seconds, 
diagnosis typically takes seconds or minutes, and 
resolution ranges from seconds to tens of minutes.  This 
is for systems with ~30 components (which is the 
general resolution of operational anomaly management 
performed by humans) which typically require 
hundreds or thousands of mathematical constraints.   
 
To put this performance level into the proper 
perspective, it is important to note two facts.  First, 
state-of-the-practice anomaly diagnosis and resolution 
in the space industry often takes hours, days, or even 
weeks given the reliance on manual and experiential 
processing and the fact that the engineers that perform 
these tasks are generally not the operators that perform 
realtime command and telemetry operations.  Second, 
our current implementations can be significantly 
improved given that computational performance has 
been sacrificed in order to promote exploratory 
implementation, to examine alternate modeling and 
computational approaches, and to assess the 
computational similarities in computing diagnoses and 
resolutions for different classes of anomalies.  
Furthermore, the current software runs as interpreted 
Matlab scripts and graphical Simulink models on multi-
tasking computers rather than as a set of compiled 
executable functions on a dedicated workstation; 
optimization of the algorithms is expected to improve 
their computational speed by more than a factor of 
ten38.  Given these facts, we believe that MBR anomaly 
management is capable of providing valuable decision 
support in current space system operations 
environments. 
 
Lessons Learned 
 
These experiments yielded a number of “lessons 
learned” regarding the value of the model-based 
anomaly management strategy30,37,38: 

• MBR provided a systematic approach to evaluating 
the solution space for each anomaly management 
task. 

• MBR served as a strong complement to the 
advantages and disadvantages of the experiential 
techniques routinely used by human operators, 
thereby making its use as a decision support tool 
particularly compelling.  From this perspective, we 
see MBR not as a panacea for the anomaly 
management process but as a technology to 
complement other approaches that draw from 
experience and employ time-saving heuristics.   

• Human interaction with the model-based reasoning 
system “rubbed-off” on the human operators and 
improved their ability to systematically evaluate 
anomaly scenarios.  

• Discrepancies between the conclusions drawn by 
human operators using experiential techniques and 
those by the automated model-based system often 
took hours to resolve (e.g., for the human operators 
to understand why their conclusions were incorrect 
and/or incomplete).  It is clear that the future 
acceptance of MBR systems (and, in fact, any high 
performance reasoning system) will require tools 
and mechanisms for providing insight into how the 
results were generated.  This lesson is the 
motivation for current work in the graphical 
analysis environment. 

• Development of the design models themselves was 
also tedious, again leading to our current work on 
our graphical modeling and analysis environment.   

• The experiments demonstrated the power of using 
symbolic representations of engineering 
functionality in order to draw strong conclusions 
regarding the state of a system.  There is a healthy 
tension between the need to use simple and abstract 
models to promote speedy computation and the 
need for modeling detail in order to provide the 
required level of reasoning resolution.  

 
SUMMARY AND CONCLUSIONS 
  
Our developed MBR techniques use fundamental 
knowledge of a system in order to compute reasoning 
conjectures relating to the existence of symptoms, 
diagnosis estimates, and resolution control actions.  In 
doing so, these techniques provide a systematic and 
efficient framework for automated reasoning, which in 
turn can dramatically accelerate the analysis of 
anomalies with significantly improved results.  Our 
work includes an expanded theoretical framework to 
address and conceptually unify the practical anomalies 
that are routinely experienced in the operation of space 
systems.  This theory has been implemented through 
algorithms that currently execute as MATLAB 
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programs and which have been used as the engine for a 
Simulink-based graphical model of the system.  
Experimental evaluation of these systems has been used 
to verify functionality and to validate the benefits of the 
technology relevant to the speed and accuracy of 
reasoning conjectures.  This work has been performed 
relating to the configuration control of the Sapphire and 
GeneSat-1 small spacecraft. 
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