

Kitts 21st Annual AIAA/USU
 Conference on Small Satellites 1

Model-Based Anomaly Management for Small Spacecraft Missions

Christopher Kitts
Robotic Systems Laboratory, Santa Clara University

500 El Camino Real, Santa Clara CA 95053 408.554.4382
ckitts@scu.edu

Richard M. Rasay

Robotic Systems Laboratory, Santa Clara University
500 El Camino Real, Santa Clara CA 95053; 408.551.6047

mikerasay@gmail.com

ABSTRACT

Space missions produce value through the production of mission data products and services. In doing so, however,
significant resources are expended in order to maintain system health and to manage anomalies as they occur. These
tasks are costly in terms of the expertise, personnel, and time required to detect, diagnose and resolve problems. Our
recent work in model-based reasoning (MBR) techniques has demonstrated the applicability of this technology to
the small satellite domain. MBR uses fundamental design knowledge of a system in order to compute reasoning
conjectures relating to the existence of symptoms, diagnosis estimates, and resolution control actions. In doing so, it
provides a systematic and efficient framework for automated reasoning, which in turn can dramatically accelerate
the analysis of anomalies with significantly improved results. In this paper, we describe the MBR approach to
anomaly management and review our theoretical and algorithmic contributions to this field. We outline our
software toolboxes that implement these algorithms, and we highlight the tools that are being developed to apply
this software to real space systems. Finally, we review results of using this reasoning system for several small
satellite missions, ranging from the student-built Sapphire microsatellite to the NASA GeneSat-1 spacecraft.

INTRODUCTION

Historically, system anomalies have been managed
through the use of human-based “experiential”
reasoning techniques. Highly trained and experienced
engineers embed their compartmentalized
understanding, rules of thumb, intuitions, heuristics,
and past experiences into a loose knowledge base
composed of procedures, diagrams, handbooks,
manuals, and remembered information.

Widespread reports in the space operations literature, as
well as years of the authors’ own experiences in
operating a number of space systems, attest to the
significant drawbacks of this approach. Human-based
experiential systems suffer from high training and
staffing costs, sensitivity to personnel changes, the
impacts of human error, the inability to reuse
knowledge and procedures across lifecycle phases and
missions, the sensitivity of the knowledge base to small
changes in the system, and many other factors 1,2,3.

Together, these drawbacks can result in on-orbit
operations costs that constitute 25-60% of overall
mission lifecycle costs4; for the $100 billion space
industry, such system operations costs range in the tens
of billions of dollars annually5. Declining federal
outlays for space projects and increased market
pressures on commercial space ventures are forcing the

space industry to lower these costs. As a result, new
approaches for detecting, diagnosing and responding to
system anomalies are of great interest.

Expert Systems

The first step in automating systems health
management often consists of the implementation of an
“expert system.” More precisely, these systems are
often production rule systems that process simple
“rules” based on accumulated experience in operating
the space system.

These expert systems have many benefits. As an
automated tool, they are simple in concept and
implementation, and they are able to execute
established flight rules more precisely and considerably
faster than human operators. The computational power
required to execute them is minimal, making them
viable even in embedded environments. The
conclusions they draw are transparent in the sense that
it is straightforward for a human to understand the
rationale for conjectures made by or actions taken by
the system6,7.

Unfortunately, expert systems have numerous
drawbacks. Computationally, they are limited given
that their typical “if-then” rule construct limits
sophisticated analysis. Furthermore, their reliance on

SSC07-XII-8

Kitts 21st Annual AIAA/USU
 Conference on Small Satellites 2

experiential knowledge leaves them susceptible to the
drawbacks of an informal knowledge base that is often
nothing more than a loose collection of facts with no
consistency in detail or coverage8.

Even with these drawbacks, expert systems have been
used successfully within the space industry in order to
improve analysis and cut costs. The Magellan and
Cassini missions both used expert systems, allowing
rapid automated response when these probes were out
of contact with the Earth; to enhance their reasoning
capabilities, the systems were augmented with the
ability to execute rules when the motivating condition
persisted over time2,9. The EUVE mission used an
expert system in order to dramatically improve the cost-
effectiveness of ground-based health management10;
this innovation culminated in a period of “lights-out”
operation and was instrumental in extending the
mission’s operating life11. Finally, the Sapphire
microsatellite employed an on-board persistence-based
production rule system that served to test several
automation experiments8; one particular innovation was
its use to inform a beacon-based health management
system that was validated as a method for enabling
cost-effect health management operations12.

Model-Based Reasoning13

Model-based reasoning (MBR) is one of many alternate
reasoning approaches for computing conjectures that
can support the health management process. In MBR,
reasoning conjectures are computed from fundamental
design information regarding the design of the
engineering system; as such, MBR is often defined as
reasoning from first principles. For example, a system
description is used to define the behavior of each
component within a system and to declare the
connectivity (e.g., the structure) of the components.
With this information, the performance of the system
can be modeled or simulated, thus allowing the
predictions of output values given values for the
system’s inputs and an assumption that the system is
operating nominally.

One of the most significant contributions in the field of
MBR is a formal theory of fault detection and
diagnosis14,15 . This theory defines a fault as a condition
within a component that prevents it from performing in
accordance with its explicitly defined (e.g., modeled)
behavior. Stated formally, the definition of a behavior
prescribes a specific value of a component’s output
signal given the values of its inputs; mathematically,
the behavior is a constraint on the output value.
Detection of a fault using an MBR technique is
accomplished by comparing the outputs of the real
system to the outputs of the modeled system; as shown

in Figure 1, an inconsistency between these values is
interpreted as the symptom of a fault (given a number of
assumptions, such as the accuracy of the model, etc.).
A crucial distinction between MBR and other
approaches to reasoning about faults is that MBR
exploits models of proper functionality (which are
developed extensively in the design phase of a system)
rather than attempting to enumerate all possible failure
modes.

Once the symptom of a fault has been detected, a
diagnosis process isolates the specific components that
may be faulted. The MBR approach to identifying
these components relies on a process known as
constraint relaxation. For a given component
suspected of being faulty, its behavioral constraint is
relaxed, which means that its output is permitted to
range over its set of all valid output values. The system
is then re-simulated in order to compute new values for
the system’s outputs. Depending on the nature of the
system, the range of valid values from the possibly
faulted component may lead to a range of possible
values for one or more of the system’s outputs. The
observed values from the real system are compared to
these new simulated values/ranges; if the observed
values are members of the simulated sets of possible
values, then the assumed component fault is, in fact, a
valid diagnosis.

Figure 1: The Anomaly Management Process

MBR has been applied to fault detection and diagnosis
in a variety of fields ranging from electronic circuitry
16,17 to spacecraft health management18-21. These
applications have motivated numerous extensions to the
basic theory in order to incorporate empirical
knowledge about failures16,22,23, to generate optimal
sensing plans for efficient diagnosis9, to address
computational loading through the use of hierarchical

Kitts 21st Annual AIAA/USU
 Conference on Small Satellites 3

models and truth maintenance24-26, to incorporate time-
varying behavior and observations into the analysis27,
and to address the task of fault recovery28,29.

EXTENDED MBR FOR ANOMALY
MANAGEMENT

Motivated by our work in operating numerous
spacecraft ranging from military to university satellites,
we have developed several conceptual extensions to
MBR-based fault detection and diagnosis methods.
These extensions have resulted in an extended MBR
theory for anomaly management, a set of initial
algorithms for executing this theory, and a toolbox of
software that implements these algorithms.

The extended theory uses a fundamental view of a
component. In this view, a component has inputs,
outputs and internal states. The component implements
one or more behaviors, and these behaviors drive the
value of outputs as a function of inputs and states. The
behaviors may only be valid under certain conditions,
such as specific input or state operating ranges, and the
design may call for associated constraints based on
these conditions. Finally, connections link inputs and
outputs to output and input ports on other components.

For as simple as this view is, a phenomenal level of
information can be formally and systematically derived
from it in the context of an operational multi-
component system. MBR provides the framework for
achieving this through explicit behavioral modeling and
the comparison of model outputs with real-world
telemetry. Although the full theoretical framework is
too extensive to detail here (see [30-32] for complete
details), we provide a qualitative description of some of
the highlights of the conceptual foundation.

Anomaly Types

We define three different types of anomalies:
• Fault: In keeping with the original theory, a fault is

defined as the misbehavior of a component, as
called for by the behavioral description of that
component.

• Hazard: A hazard is a condition that violates an
operating constraint that has been levied upon the
design.

• Misconfiguration: A misconfiguration is an
improper assumption regarding what the actual
input configuration is.

The fundamental point of view that unifies these as
anomalies is one of violated assumptions or
mathematical constraints. With MBR, each aspect of
the component definition provided in Figure 2 is

formally expressed through mathematical or logical
representation. A behavior is an assumption, or
constraint, on the value of a component output given
the values of the associated inputs and states; a fault,
therefore, as a condition that violates this assumption.
Similarly, an operating condition is a constraint on
component input or state values; a hazard is a violation
of this type of constraint. And a configuration
statement is an assumption regarding the value of a
system input; a misconfiguration is a violation of this
type of assumption.

All three of these types of anomalies occur regularly in
the field operation of complex engineering systems
such as space systems. These anomalies may exist
independently of each other, and they may interact
through causal relationships. All are potential threats to
the health and performance of a system, and each has
distinct implications regarding their effect and possible
remedies. Being able to explicitly and formally detect,
diagnose, and resolve each is fundamental to effectively
controlling a space system in an efficient manner.

While these designations may seem straightforward,
their definitions have heretofore not been used in a
reasoning system that has formalized them in this
manner nor which considers the relaxation of associated
constraints as part of a diagnosis project. Furthermore,
while anomalies such as misconfigurations may seem
mundane due to their association with operator error
and therefore unworthy of formal consideration, they
play a significant role in the occurrence of anomalies;
our unified framework allows them to be addressed as
part of a coherent strategy of detecting, diagnosing and
resolving an anomaly of any type.

Reasoning Framework 13

We have formalized our expanded set of operational
anomalies, as well as a complementary suite of
resolution actions, into a new, more comprehensive,
model-based theory of anomaly management. Like the
previous theory of fault detection and diagnosis, this
conceptual foundation uses a consistency-based
approach that identifies and resolves inconsistencies
among assumptions in the model of the system and
observations of the real system. Key elements of the
theory include:
� The engineering system description, a collection of

design-time model information indicating the
systems structure, behavior, and intended use.

� The operational system description, a collection of
operational-time model information that includes
the engineering system, the intended application
requirements, and real-time configuration and
observation data.

Kitts 21st Annual AIAA/USU
 Conference on Small Satellites 4

� The definition of anomaly predicates for faults,
hazards, and misconfigurations.

� The definition of resolution predicates for formally
over-riding operating constraints and altering a
mission application.

� Formal definitions for a detected symptom, a
diagnosis conjecture, and a resolution action.

Management Tasks 13

Detection involves identifying inconsistencies between
observations of the real system and the model of our
system, to include a) the system’s structure, behavior
and intended operation, b) the intended application of
the system, c) our belief that no anomalies exist, d) our
initial policy of not over-riding any operating
constraints or relaxing any mission requirements, and e)
our understanding of the current configuration.

Diagnosis is also a reasoning process grounded in
logical consistency. In effect, diagnosis implies finding
all possible anomaly conjectures that relax an
assumption in our model in order to re-establish
consistency between the model and our observations.
For example, assume that a fault or hazard for a
particular component relaxes the component’s output
value; if this effect ripples through the system, as
determined via simulation, in order to support the real
observations as one possible effect, then the fault and
hazard are both viable diagnoses.

The generation of resolution options continues the use
of logical consistency in order to determine the options
that re-establish consistency between the model, the
observations, and the belief in a specific diagnosis.
Resolution options include combinations of system
reconfigurations (e.g., swap out a faulted component
with its redundant unit, turn on the heater for an under-
temperature component, etc.), constraint over-rides
(e.g., explicitly accepting a violated component
operating condition), and mission alterations (e.g.,
explicitly relaxing one or more system requirements).

ALGORITHMIC IMPLEMENTATION

We have developed reasoning algorithms to implement
our extended MBR theory of anomaly management,
and these algorithms have been prototyped as a Matlab
toolbox for use in both test and operational
environments. This software methodically computes
symptoms, diagnoses and resolutions in accordance
with the criteria specified in the theory’s formal
definitions.

Process Algorithms
The anomaly detection process is executed periodically,
typically after telemetry acquisition and certainly in
response to a command. For a given input
configuration, the model is evaluated in order to predict
system outputs. These outputs are then compared to
telemetry from the actual space system. Specific
checks identify conflicts with configuration
assumptions, violations of intended component
operating conditions, or inconsistencies with predicted
observation outputs.

The diagnosis algorithm is invoked only when the
detection algorithm identifies a symptom. As shown in
Figure 2, the algorithm is implemented as a two-stage
process given the appropriateness of two distinct
decision-making approaches:
• In the first stage, a production rule process is used

to directly identify misconfiguration and hazard
diagnoses.

� In the second phase, symptoms generated by
inconsistencies between the predictions and
observations of the system state are addressed. A
candidate generation algorithm produces a set of
assumptions to evaluate, and these constraints are
systematically relaxed to see if the resulting
simulation re-establishes consistency with
observations; if this occurs, the assumption is a
possible diagnosis. To date, versions of this
algorithm phase have been implemented in order to
identify sets of diagnoses for multi-symptom
single-remaining-anomaly cases.

The resolution process executes when the diagnosis
algorithm returns a set of diagnosis conjectures. For a
specific diagnosis, the algorithm is performed by
systematically considering mission alterations,
constraint overrides, and new configurations. The first
two are easily generated: if any mission-critical system
outputs or intended component conditions are violated,
simply accepting these facts by relaxing the mission or
overriding the constraints become resolution options.
Of course, these are usually accepted only as a last
resort. Therefore, it is critical to evaluate
reconfiguration options. This is done be re-evaluating
the model for permutations of configuration options
upstream of the diagnosis; new configuration
combinations that result in the satisfaction of a violated
mission requirement are saved as possible resolution
options. Finally, the three types of resolution options
are considered in systematic combinations; minimal
combinations that re-establish consistency within the
system (given the assumed diagnosis) are saved as valid
resolutions.

Kitts 21st Annual AIAA/USU
 Conference on Small Satellites 5

Figure 2: Simplified View of a 2-Phase Diagnosis Algorithm.

Reflections on MBR Processing

There are several characteristics of the anomaly
management process worth highlighting. First, different
types of anomalies can lead to the same symptom. This
many-to-one correlation makes operational anomaly
management a difficult task.

Second, the ability of an anomaly to be observed and to
affect the rest of the system is a function of the
system’s configuration. Exploiting this dependence
through computation is what ultimately allows MBR to
be far more precise in its diagnosis and resolution
conjectures compared to an experiential system, which
often diagnoses problems using an “anything upstream”
strategy.

START
Given OS & symptoms

Given evaluated model from Detection process

Are any observed/modeled states inconsistent with the
assumed configuration?

Are any observed/modeled states inconsistent with the
intended component operating constraints?

Those states are
misconfigurations

Those states are
hazards

Yes

Yes

No

No

Re-evaluate System with Asserted Hazards & Misconfigurations
Relax constraints associated with these anomalies and

re-evaluate modeled states of the system

Are there any remaining symptoms?

Identify candidate constraints

Yes
No

Are observations now consistent with the model?

Relax constraint & re-evaluate model

For each candidate constraint…

Add the relaxation of this constraint to the set of
possible diagnoses: fault, hazard or misconfiguration

Yes
No

…more candidate constraints?
Yes

No

END

Phase 1
Implemented
via a
production
rule system

Phase 2
Implemented
via a constraint
relaxation
technique

Kitts 21st Annual AIAA/USU
 Conference on Small Satellites 6

Finally, because anomaly observability is configuration
dependent, operational anomaly management is
necessarily parsimonious; if there is no indication of an
anomaly, then no anomaly is assumed given that
mission critical systems cannot be arbitrarily
reconfigured in order to verify a healthy state.

SMALL SATELLITE MISSION APPLICATION

We have experimentally verified and validated our
anomaly management reasoning system by applying it
to the operational control of the Sapphire and GeneSat
space systems. In each case, this has been done in the
context of configuration management for the end-to-end
distributed space systems to include components in the
mission control center, the remote communication
stations, and on-board the satellites. A few examples
are provided here.

To our knowledge, this is the most comprehensive
application to date of MBR techniques to managing
anomalies within space systems.

Sapphire

Launched in 2001, Sapphire was developed by students
at Stanford University and supported a variety of
missions to include digital communications, Earth
photography, and sensor characterization33. Faculty
and students at Washington University in St. Louis
prepared and integrated the satellite for launch, and
primary control of the satellite was turned over to the
U.S. Naval Academy to support student education.
Faculty, staff and students at Santa Clara University
operated the satellite through 2005 in order to conduct a
series of research experiments involving automation
technologies. In 2005, operations ceased do to the
degraded state of the satellite’s power system; the five
years of operational life dramatically exceeded the one-
year of planned design life.

Figure 3: Elements of the Sapphire Space System

For the experiments reported on here, the
comprehensive Sapphire space system consisted of the
Sapphire microsatellite, several automated
communication stations located throughout the United

States, and a centralized mission control complex in the
Center for Robotic Exploration and Space Technologies
building in the NASA Ames Research Park, Moffett
Field, California. Elements of this system are depicted
in Figure 3. The communication stations were remotely
controlled via the Internet by operators in the mission
operations center, and amateur radio was used to
communicate between these stations and the satellite
when it was in view. The ground segment portion of
this system, developed by students at Santa Clara
University, is used to support the operation of a variety
of other spacecraft and robotic missions34,35.

Fortunately (or unfortunately, depending on the
applicable point of view), several real and unanticipated
anomalies involving the flight system were identified
during these contacts. Combined with the many
unplanned ground segment anomalies that occurred,
these events provided a wonderful opportunity to
exercise the anomaly management system in a realistic
setting.

In all of the following cases, the anomaly management
software successfully detected symptoms and generated
a valid set of possible diagnoses (although on occasion
this list was long and required active testing in order to
narrow down the possibilities):
• Unresponsive operating system on the

communication station computer.
• Misconfigured IP address on the communication

station computer (the host institution changed the
IP address without notifying the operations team).

• Power outage at the communication station facility.
• Out of date Keplerian elements used by the

communication station autotrack software.
• Incorrect time on the communications computer

resulting in inaccurate autotrack computations.
• Overheating of the transmitter amplifier leading to

undesired performance.
• Misconfiguration of TNC settings by the operator.
• Misconfiguration of autotrack software settings by

the operator.
• Failure of an antenna positioning servomotor (on

several occasions).
• Improperly executed operations procedures

resulting in misconfigurations.

One particularly interesting on-board anomaly involved
the attempt to collect data from experimental infrared
sensors that were one of the primary payloads on the
Sapphire spacecraft13. During this procedure, the
operator improperly executed the relevant command
plan, failing to enable the sensors prior to collecting
data thereby yielding a data set that was effectively
garbled. When data was acquired from these parallel

Kitts 21st Annual AIAA/USU
 Conference on Small Satellites 7

sensors, it was inconsistent with the expected values
thereby triggering an initial, automated diagnosis
process that returned three possible diagnoses. Of these
three, a possible resolution (short of altering the
mission) existed for the “misconfigured sensor”
conjecture. This resolution, to command the sensor to
its enabled configuration, was executed and solved the
problem. The speed of the diagnosis process, which
executed in approximately 3.5 seconds, allowed the
operator to properly configure the satellite, collect the
desired sensor data, and complete other operational
tasks within the 12-minute contact window.

For this example, it is instructive to consider the
diagnoses that were not made. A simplified block
diagram of the relevant on-board component
configuration is shown in Figure 5 to illuminate this
discussion. Diagnoses relating to component power
were not made given that power was being properly
supplied to other units within the satellite, as reflected
by other telemetry that was consistent with simulated
predictions. It is also interesting to note that faulty
sensors were not a diagnosis. This is because the initial
diagnosis that was executed assumed only a single
anomaly had occurred; because the sensors are in
parallel, both would have had to fail in order to produce
the observed data.

GeneSat-1

Launched in December 2006, GeneSat-1 is a
technology demonstration spacecraft used to validate
the use of research-quality instrumentation for in situ
biological research and processing. Development and
execution of the GeneSat-1 mission was led by NASA
Ames Research Center, and NASA biologists served as
the Principle Investigators for the associated science

experiment involving the evaluation of E. coli.
metabolism in the microgravity environment.

NASA included significant university involvement in
the GeneSat-1 mission. Stanford University graduate
students performed early prototyping of the GeneSat-1
bus, Cal Poly students developed a P-POD launch
ejector for the “triple-CubeSat” vehicle, and Santa
Clara University students developed the entire ground
segment and performed all on-orbit mission operations.
In February 2007 with all primary mission objectives
successfully complete, NASA turned full operational
responsibility for GeneSat-1 over to Santa Clara
University for the purposes of student training and
engineering research until the satellite de-orbits in late
2007.

As shown in Figure 5, the GeneSat-1 space system
includes the satellite itself, a primary communication
station that uses an 18-meter parabolic dish, and Santa
Clara’s distributed internet-based command and control
network. For primary science operations, the NASA
Ames Multi-Mission Operations Center (MMOC) was
configured to serve as a Control Node within this
network.

With respect to MBR anomaly management, the
demonstrations performed for GeneSat-1 built upon the
Sapphire contributions and other work36 in order to
integrate the reasoning software with Santa Clara’s
operational command and telemetry analysis
environment. A graphical environment, shown in
Figure 6, was also developed in order to support system
modeling as well as to convey reasoning outputs of the
MBR agent; this was specifically done to provide
decision support to a human operator37. Extensions
were also made to enhance to dynamic manner in which
command and telemetry operations were simulated.

Figure 4: The Sapphire Infrared Sensor Configuration.

Kitts 21st Annual AIAA/USU
 Conference on Small Satellites 8

Figure 5: Elements of the GeneSat-1 Space Systems.

Figure 6: A View of the Graphical Model of the GeneSat-1 Space Systems.

Operationally, the refined reasoning system has
successfully detected and diagnosed several anomalies.
For example, several Internet link outages occurred
(some during critical phases of the mission) between
the communication station and the command and
telemetry database located in the Ames MMOC. These
were routinely detected, diagnosed, and resolved

through the instantiation of a local database at the
communication station (appropriate early in the mission
when the Control Node was located at the station).
In another compelling case, the system detected (in
post-processing) a condition that had been missed by
expert operators. This was an incremented vehicle
command count indicating the reception of commands

Kitts 21st Annual AIAA/USU
 Conference on Small Satellites 9

for which the telemetry response was not received.
Although the operational implications of this anomaly
were benign, catching and subsequently tracking this
deviation became instrumental in studying the link
performance of the vehicle.

Algorithm Performance

Speed of processing is of obvious importance given the
need to quickly return a space system to a healthy state
in the event of an anomaly. Executing on a Pentium IV
PC, the implementations of the algorithms used for the
experiments presented here execute detection, diagnosis
and resolution (for a specific diagnosis) on the order of
seconds to tens of minutes. Broken down, detection
generally occurs on the order of hundredths of seconds,
diagnosis typically takes seconds or minutes, and
resolution ranges from seconds to tens of minutes. This
is for systems with ~30 components (which is the
general resolution of operational anomaly management
performed by humans) which typically require
hundreds or thousands of mathematical constraints.

To put this performance level into the proper
perspective, it is important to note two facts. First,
state-of-the-practice anomaly diagnosis and resolution
in the space industry often takes hours, days, or even
weeks given the reliance on manual and experiential
processing and the fact that the engineers that perform
these tasks are generally not the operators that perform
realtime command and telemetry operations. Second,
our current implementations can be significantly
improved given that computational performance has
been sacrificed in order to promote exploratory
implementation, to examine alternate modeling and
computational approaches, and to assess the
computational similarities in computing diagnoses and
resolutions for different classes of anomalies.
Furthermore, the current software runs as interpreted
Matlab scripts and graphical Simulink models on multi-
tasking computers rather than as a set of compiled
executable functions on a dedicated workstation;
optimization of the algorithms is expected to improve
their computational speed by more than a factor of
ten38. Given these facts, we believe that MBR anomaly
management is capable of providing valuable decision
support in current space system operations
environments.

Lessons Learned

These experiments yielded a number of “lessons
learned” regarding the value of the model-based
anomaly management strategy30,37,38:

• MBR provided a systematic approach to evaluating
the solution space for each anomaly management
task.

• MBR served as a strong complement to the
advantages and disadvantages of the experiential
techniques routinely used by human operators,
thereby making its use as a decision support tool
particularly compelling. From this perspective, we
see MBR not as a panacea for the anomaly
management process but as a technology to
complement other approaches that draw from
experience and employ time-saving heuristics.

• Human interaction with the model-based reasoning
system “rubbed-off” on the human operators and
improved their ability to systematically evaluate
anomaly scenarios.

• Discrepancies between the conclusions drawn by
human operators using experiential techniques and
those by the automated model-based system often
took hours to resolve (e.g., for the human operators
to understand why their conclusions were incorrect
and/or incomplete). It is clear that the future
acceptance of MBR systems (and, in fact, any high
performance reasoning system) will require tools
and mechanisms for providing insight into how the
results were generated. This lesson is the
motivation for current work in the graphical
analysis environment.

• Development of the design models themselves was
also tedious, again leading to our current work on
our graphical modeling and analysis environment.

• The experiments demonstrated the power of using
symbolic representations of engineering
functionality in order to draw strong conclusions
regarding the state of a system. There is a healthy
tension between the need to use simple and abstract
models to promote speedy computation and the
need for modeling detail in order to provide the
required level of reasoning resolution.

SUMMARY AND CONCLUSIONS

Our developed MBR techniques use fundamental
knowledge of a system in order to compute reasoning
conjectures relating to the existence of symptoms,
diagnosis estimates, and resolution control actions. In
doing so, these techniques provide a systematic and
efficient framework for automated reasoning, which in
turn can dramatically accelerate the analysis of
anomalies with significantly improved results. Our
work includes an expanded theoretical framework to
address and conceptually unify the practical anomalies
that are routinely experienced in the operation of space
systems. This theory has been implemented through
algorithms that currently execute as MATLAB

Kitts 21st Annual AIAA/USU
 Conference on Small Satellites 10

programs and which have been used as the engine for a
Simulink-based graphical model of the system.
Experimental evaluation of these systems has been used
to verify functionality and to validate the benefits of the
technology relevant to the speed and accuracy of
reasoning conjectures. This work has been performed
relating to the configuration control of the Sapphire and
GeneSat-1 small spacecraft.

ACKNOWLEDGEMENTS

The authors thank the all of the university students,
faculty and staff that have been an integral part of the
development of the Sapphire and GeneSat-1 satellites
and ground segments, with special acknowledgement to
Ignacio Mas, Dr. Michael Swartwout, Tom Van
Buskirk, and Daniel Schuet. We are also grateful to the
Mr. John Hines, Ms. Karolyn Ronzano, and all of our
partners on the NASA Ames Research Center GeneSat-
1 mission team for their support in allowing us to
conduct a portion of this work through the use of the
GeneSat-1 spacecraft. Elements of this work have been
supported through a wide variety of funding
mechanisms to include the DoD NDSEG fellowship
program, the National Science Foundation under Grant
Numbers EIA0079815 and EIA00882041, the NASA
Ames Research Center through Cooperative Agreement
Numbers NNA04CK35A and NNA06CB13A, and
through Santa Clara University’s Technology Grants;
any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of
the DoD, the National Science Foundation, NASA, or
Santa Clara University.

REFERENCES

1. Hovanessian, S., Raghavan, S. and D. Taggart,

“LIFELINE: A Concept for Automated Satellite
Supervision,” The Aerospace Corporation Report
No. TOR-93(3516)-1, El Segundo, CA, 1993.

2. G. Brown, D. Bernard, and R. Rasmussen,
“Attitude and Articulation Control for the Cassini
Spacecraft: A Fault Tolerance Overview,” in
Proceedings of the 14th AIAA/IEEE Digital
Avionics Systems Conference, Cambridge, MA,
November, 1995.

3. C. Kitts and M. Swartwout, “Experimental
Initiatives in Space Systems Operations,” in
Proceedings of the Annual Satellite Command,
Control and Network Management Conference,
Reston, Virginia, 1997.

4. N. Ely and T. O’Brien, "Space Logistics and
Reliability," Space Mission Analysis and Design,
Eds. J. Wertz and W. Larson, London: Kluwer
Academic Publishers, 1991, pp. 633-656.

5. State of the Space Industry, Space Publications,
Reston, VA, 2005.

6. Thurman, David A., David M. Brann, and
Christine M. Mitchel, “An Architecture to Support
Incremental Automation of Complex Systems,”
Proc 1997 IEEE Conference on Systems, Man and
Cybernetics, Orlando, FL, 12-15 October 1997, pp.
1174-1179.

7. Leveson, Nancy G., and Everett Palmer,
“Designing Automation to Reduce Operator
Errors,” Proc 1997 IEEE Conference on Systems,
Man and Cybernetics, Orlando, FL, 12-15 October
1997, pp. 1144-1150.

8. Swartwout, Michael A., Kitts, Christopher A., and
Rajesh K. Batra, “Persistence-Based Production
Rules for On-Board Satellite Automation,” IEEE
Aerospace Applications Conference Proceedings, v
1, 1999, p 273-281.

9. Johnson, Steven, “Fault Protection Design for
Unmanned Interplanetary Spacecraft,” Guidance &
Control 1987: Advances in the Astronautical
Sciences, v63, pp. 3-18.

10. Malina, R.F., “The EUVE Testbed: Innovations
Toward Low Cost Science and Mission Operations
Automation,” Proc if the 47th International
Astronautical Federation, Session IAA, 11.2:
Autonomous Control for Small Satellites, Beijing,
China, October 1996.

11. Stroozas, B.A.; Gunter, M.R.; Kaplan, G.C.;
Nevitt, R.; Hartnett, K.; Malina, R.F. “EUVE
Extends Automated ‘Lights Out’ Payload
Operations to Spacecraft Platform,”
Systems, Man, and Cybernetics, 1997.

12. C. Kitts and M. Swartwout, "Beacon Monitoring:
Reducing the Cost of Nominal Spacecraft
Operations," Journal of Reducing Space Mission
Cost, vol 1, no. 4, pp. 305-338, 2002.

13. C. Kitts, “A First Principles Approach for
Managing Anomalies in Space Systems,” IEEE
Robotics & Automation Magazine, Sp. Issue on
Automation Science, v 13 no 4, December 2006.

14. R. Reiter, “Theory of Diagnosis from First
Principles,” Artificial Intelligence, vol 32, no. 1 pp.
57-95, 1987.

15. J. de Kleer, A. Mackworth, and R. Reiter,
"Characterizing diagnoses and systems," Artificial
Intelligence, vol 56, pp. 197-222, 1992.

16. M. Genesereth, “The use of design descriptions in
automated diagnosis,” Artificial Intelligence, vol
24, pp. 411-436, 1984.

17. J. de Kleer and B. Williams, “Diagnosing multiple
faults,” Artificial Intelligence, vol 32, pp. 97-130,
1987.

18. R. Doyle, S. Chien, U. Fayyad, and E. Wyatt,
“Focused Real-time Systems Monitoring Based on
Multiple Anomaly Methods,” Proc 7th International

Kitts 21st Annual AIAA/USU
 Conference on Small Satellites 11

Workshop on Qualitative Reasoning, Seattle, WA,
May, 1993.

19. D. DeCoste, “Automated learning and monitoring
of limit functions,” in Proceedings of the Fourth
International Symposium on Artificial Intelligence,
Robotics, and Automation for Space (i-SAIRAS-
97), Japan, July, 1997.

20. L. Fesq, A. Stephan, and L. McNamee, "Modeling
Power Systems for Diagnosis: How good is good
enough," Proceedings 27th Intersociety Energy
Conversion Engineering Conference, San Diego,
CA, 1992, pp 203-208.

21. B. Williams, and P. Nayak, “A Model-based
Approach to Reactive Self-Configuring Systems,”
Proceedings AAAI National Conference on
Artificial Intelligence, Portland, OR, 1996, pp.
971-978.

22. G. Friedrich, G. Gottlob, and W. Nejdl, “Physical
impossibility instead of fault models,” Proceedings
of the 1990 AAAI National Conference on
Artificial Intelligence, Boston, MA, July, 1990, pp.
331-336.

23. P. Struss, and O. Dressler, “Physical Negation:
integrating fault models into the general diagnostic
engine,” Proceedings of the International Joint
Conference on Artificial Intelligence, San Mateo,
CA: Morgan Kaufmann, 1989, pp. 1318-1323.

24. R. Davis, “Diagnosis based on description of
structure and function,” Proceedings of the 1982
AAAI National Conference on Artificial
Intelligence, Pittsburg, PA, August, 1982, pp. 137-
142.

25. M. Genesereth, “Diagnosis using hierarchical
design models,” Proceedings of the AAAI National
Conference on Artificial Intelligence, Lost Altos,
CA: Morgan Kaufmann, 1982, pp. 278-283.

26. J. Doyle, “A truth maintenance system,” Artificial
Intelligence, vol 12, pp. 231-272, 1979.

27. H. Ng, “Model-based, multiple fault diagnosis of
time-varying, continuous physical devices,”
Proceedings of the 6th IEEE Conference on
Artificial Intelligence Applications, Santa Barbara,
CA, 1990, pp. 9-15.

28. J. Crow, and J. Rushby, “Model-based
reconfiguration: Toward an integration with
diagnosis,” Proceedings of the 1991 AAAI
National Conference on Artificial Intelligence, San
Mateo, CA: Morgan Kaufmann, 1991, pp. 836-841.

29. G. Friedrich, G. Gottlob, and W. Nejdl,
“Formalizing the Repair Process,” Proceedings of
the European Conference on Artificial Intelligence,
Vienna, August, 1992.

30. C. Kitts, “Theory and Experiments in Model-Based
Space System Anomaly Management,” Stanford
University Ph.D. Dissertation, Palo Alto, CA,
September 2005.

31. C. Kitts, “Model-Based Space System Anomaly
Management – Part 1: A First Principles
Foundation,” in draft for IEEE Transactions on
Automation Science and Engineering.

32. C. Kitts, “Model-Based Space System Anomaly
Management – Part 2: Implementation and
Application,” in draft for IEEE Transactions on
Automation Science and Engineering.

33. M. Swartwout, C. Kitts, R. Twiggs, B. Smith, T.
Kenny, R. Lu, K. Stattenfield, R. Batra, and F.
Pranajaya, “Sapphire: A Case Study in University
Class Satellites,” Accepted Acta Astronautica.

34. D. Schuet and C. Kitts, “A Distributed Satellite
Operations Testbed for Anomaly Management
Experimentation,” Collection of Technical Papers
– AIAA 3rd “Unmanned-Unlimited” Technical
Conference, Workshop, and Exhibit, Chicago, IL,
September, 2004.

35. Kitts, C., Rasay, M., Mas, I., Mall, PJ., Van
Buskirk, T., “Model-Based Anomaly Management
for Spacecraft Mission Operations at the NASA
Ames Space Technology Center.” Proceedings of
the 2nd International Conference on Space Mission
Challenges for Information Technology, Pasadena
CA, July 2006.

36. Van Buskirk, T., and Weiler, K., Enterprise Class
Mission Control Software Suite for the NASA
Genesat-1 Spacecraft, Advisor: C. Kitts, Santa
Clara University Undergraduate Thesis, June 2005.

37. Rasay, R., A Graphical Model-Based Reasoning
Analysis Environment for Space System Anomaly
Management, Advisor: C. Kitts, Santa Clara
University Master’s Thesis, June 2007.

38. E. Hall, “Maximizing Matlab Performance,”
University of Virginia Research Computing
Support Center, Charlotteville, VA, 2003.

39. Schuet, D., A Distributed Satellite Operations
Testbed for Anomaly Management
Experimentation, Advisor: C. Kitts, Santa Clara
University Master’s Thesis, June 2004.

