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Abstract  

  The Permian Phosphoria Formation is a reservoir for oil and gas in the western 

United States, as well as a major source of phosphate. This study examined the 

relationship between phosphate richness and porosity exhibited in the formation. 

Petrographic analysis was carried out on rock samples collected from the Phosphoria 

(Park City) Formation located north of Vernal, Utah, on the southern flank of the Uinta 

Mountains.  

The analysis demonstrated an inverse relationship between organic richness and 

porosity in the Phosphoria Formation. Porosity is controlled by lithology, amount of 

cementation, weathering, and amount of fecal pellets, which are the source of phosphate 

within the unit. Fecal pellets in the Phosphoria Formation contain and concentrate 

phosphate. Porosity is highest in strata with low levels of organic matter, near the middle 

of the geological unit, with increased organic matter near the upper and lower contacts, 

yet the relationship between porosity and organic matter is not necessarily a linear one, as  

other factors likely control the amount of porosity observed in the unit. Contributing 

factors include acidic ground waters, diagentic history, and the amount of calcite cement.   

A clear understanding of what controls porosity within the Phosphoria Formation 

has important implications for evaluating the unit as it is an important reservoir unit, as 

well as assessing phosphate richness for mineral extraction in the Western United States.  

Introduction 

As an important source for phosphate, a century of research has gone into the 

study of the Phosphoria Formation (Cheney, 1957 & Maughan, 1979). The formation is 

Permian in age and varies in thickness from 0 meters up to 67 meters (Maughan, 1979).  



3 
 

 
 

The Phosphoria Formation is exposed across Utah, Montana, Idaho, Nevada, 

Colorado, and Wyoming (McKelvey et. al, 1959), while the type locality for the 

formation is located near Georgetown, Idaho (Cheney, 1957). The Phosphoria Formation 

is the major contributing formation in the western phosphate field (Figure 2). The 

formation consists of marine limestone, siltstones, mudstones, chert, and shale, with 

certain beds rich in phosphate and fossils. The formation is divided into regional 

members based on slight differences in lithology. In the study area, on the Southern Flank 

of the Uinta Mountains the Phosphoria Formation is split into two members: the lower 

Meade Peak Phosphatic Shale Member and the upper Rex Chert Member (McKelvey et. 

Al, 1959). The Meade Peak Member is a sequence of mudstone and dolomite, with cherty 

intervals; the Rex Chert is a sequence of chert with limited beds of limestone.   

 Because of its high levels of porosity, the Phosphoria Formation historically has 

served as an important reservoir for water and hydrocarbons (Cheney, 1975; Inden, 

1996). It is also an important source of phosphate (Inden, 1996). Phosphate is PO4
-3

, 

which originates from organic matter and is used as a fertilizer. Phosphate is an important 

part of plant cells and is a restricted resource in nature. The purpose of this study is to 

examine the petrography of the formation to better understand what controls porosity, 

particularly the relationship it has to organic matter and dissolution history within the 

unit’s layers.  

Research into the porosity and relationship with controlling factors is limited in 

the Phosphoria Formation. This research looks at expanding on the controlling 

conditions. The three research questions that are being examined to study this 

relationship are: 1) is there variability in porosity between the beds, 2) what is the 
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diagentic history of the porosity, and 3) what is the source of the phosphate deposits. 

These three question will expand on our knowledge of the Phosphoria Formation and 

increase availability of data to mineral exploration and petroleum companies.   

Depositional Environment 

 The Phosphoria formation was deposited in the Phosphoria Sea during the mid-

Permian (Ketner, 2009).  According to Peterson (1984) and Inden (1996), the 

depositional environment of the Phosphoria Formation is identified as a broad carbonate 

ramp. Inden (1996), envisioned a depositional environment of shallow waters with 

limited terrestrial sediment influence and wave action similar to the environment found in 

present day Shark Bay, Australia. Shark Bay represents a marine bay, with a restricted 

connection to the open ocean. This type of depositional environment would have 

produced significant quantities of phosphate over time. However, geographically the 

Phosphoria Formation is widespread, covering much of the western United States; 

including Utah, Idaho, Colorado, Montana, Wyoming, and Nevada and was not limited to 

a specific restricted bay region like present day Shark Bay. Orogenic events likely 

resulted in the exceptionally large geographic extent of the formation. According to 

Maughan (1979), the unit formed in a “deep-water trough between the orogenic Antler 

foreland to the west and the North America Craton to the east”. The trough was wide 

enough and had a gentle enough slope that an extensive carbonate platform could form 

upon it. Phosphate deposition was enhanced by the upwelling of deeper cold ocean 

waters (McKelvey et al.,1959), which provided an abundance of nutrients for organisms 

living within the shallow waters. Phosphate accumulated over time as organisms died, 
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and contributed skeletal and fecal matter to the sedimentary record. After deposition, the 

phosphate could also have been concentrated through the movement of ground water and 

digenesis. This special regional geology helped to form an environment where massive 

amounts of phosphate could be deposited and today is an important economic source of 

phosphate.        

Modeled as a carbonate ramp depositional system as according to Read (1985), 

the offshore slope would have been very gentle (usually less than one degree), with 

shallow wave agitation to transport sediment into deeper oceans. No break in the slope 

would be present, although Read (1985) classified two groups of carbonate ramps, 

homoclinal and distally steepened ramps, based on change in their slope. The 

depositional environment for the Phosphoria Formation would be considered a 

homoclinal ramp. Further characteristics of carbonate ramps (Ahr, 1973), include 

concentric facies belts that follow bathymetric contours, deposition of grainstones up dip 

and mudstones down dip, wedge shaped deposits that thicken towards the basin, and the 

absence of large reefs, although patch reefs could be present.  Concentrations of 

phosphate rich carbonate matrix would be deposited in the lowest areas of the carbonate 

ramp. Research in the Phosphoria Formation demonstrates all these characteristics of a 

gentle widespread carbonate ramp (Ahr, 1973; Peterson, 1984; Read, 1985). 

METHODS  

 etro rap i  samples  ere  olle ted from an out rop on t e sout ern flan  of t e 

 inta  ountains  nort  of  ernal   ta .   e     lo ation of t e samplin  site is         

  .                   .      W, (see Figure 4). The unit lies near the top of the Phosphoria 
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Formation, and was subdivided into seven units based on surface lithology and porosity. 

The total section measured 2.68 meters in thickness. One hand sample was then taken 

from each bed, as well as specific samples from points of interest, as shown in Figure 6 

and 7.  

 The hand samples were then made into thin sections (two per hand sample), 

measuring roughly 30 microns in thickness. The slides were studied under a Leica DM 

750P light microscope and pictures were taken with a Leica ICC50 HD camera. The hand 

samples and slides  ere  lassified usin  Fol ’s and Dun am’s classification schemes. 

The slides were then point counted to document the percentage of porosity in each bed. A 

total of 300 points were counted for each slide totaling 600 points per hand sample. Total 

organic carbon concentrations were determined using the aqueous method presented in 

Komada et. al. 2008. The total organic carbon research was conducted in the Utah State 

University biochemistry lab at the Unitah Basin. The point count data and total organic 

carbon concentrations are presented in Table 1. 

Results 

In the study area, the Phosphoria Formation is underlain by the Permian Weber 

Sandstone and is overlain by the Triassic Dinwoody Formation (Figure 3). In the study 

area the Meade Peak Phosphatic Shale Member is present, while the Rex Chert Member 

is absent. The studied section measures 2.68 meters (8.79 feet) in thickness. The research 

section is in the Upper Meade Peak Phosphatic Shale Member.  Cheney (1957, pg. 28) 

des ribed t e  eade  ea   ember as “ mostly t in-bedded, light gray to grayish-brown, 

pelletal phosphate rock and subordinate amounts of mudstone.” The observed lithology in 
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the study area (Figure 5) and in C eney’s paper is similar enou   to dra  t e  on lusion 

that they represent the same member, the Meade Peak Member.   

The samples have micrite matrix as the cement and fecal pellets and other small 

organic grains as the grains (Figure 8). Some fragmentary fossils were intermixed with 

the grains, most were completely unrecognizable. Quartz, calcite and dolomite crystals 

were also present in low abundance resulting in the classification of a pelmicrite, using 

Folk’s Classifi ation. Using Dunham classification method the samples were a 

wackestone, because of the samples having more than 10% mud matrix. This 

classification compares closely with classifications done by Cheney (1957). He stated 

that most of the Meade Peak member near Vernal is mudstone. 

All samples represented pelmicrite with varying degrees of pelletal material and 

porosity (Figure 8). Sampled beds differed by exposed surface weathering. The beds were 

divided based on the exposed surface characteristics, such as vugs, nature of bedding, and 

the presence of nodules, shown in Figure 6. The two main characteristics were surface 

porosity and surface lithology.  

Point counting reveled that there was a large difference in porosity between beds 

(Table 1). Porosity varied from 1- 27 %. Comparing the two slides from each bed, the 

amount of pore space remained constant within the sample.  

McKelvey et. al. (1959) mentioned that the Phosphoria Formation had abundant 

pore spaces or vugs. Vugs were present in both hand samples and thin sections. The 

formation of the vugs was through diagentic processes (McKelvey et. al.). The vugs were 
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determined to range in size depending on the bed in which they were found. See Figure 

8A and 8B. The sizes ranged from over 200 µm down to less than 10 µm (Figure 8).   

Two additional thin sections were made from bed 3. The sample was collected to 

examine the porosity of a nodule. It was hypothesized that the nodules were an area of 

increased phosphate and decreased porosity. The percentage of the porosity in the nodule 

was half of a percent less than that of the surrounding bed (Extra Samples, Table 1).  

 The Phosphoria Formation is known to have fecal pellets (McKelvey, et. al., 

1959), but the organisms that produced the fecal pellets have not previously been 

identified (McKelvey et. al., 1959). During the point counting process it became apparent 

that the beds had an abundance of organic material, especially fecal pellets (Figure 9). 

Haven and Kraeuter (1970) examined modern fecal pellets produced by modern 

invertebrates in Virginia. Based on their descriptions, the fecal pellets from the 

Phosphoria Formation can be identified based on shape and size. The pellets appeared to 

be gastropod (Figure 9A & 9B). The conclusion was based on the overall shape and the 

ratio between the length and width of the specimen. The pellet has two areas in the 

interior which had been replaced by calcite. Originally a vug(s) formed inside the pellet. 

The vugs were later recrystallized with the present calcite crystals (Figure 9B). Also 

identified were crustacea fecal pellets based on shape and the segmentation of the pellets. 

Other pellets were broken up or had been completely re-crystallized by calcite or other 

minerals, (Figure 9D). Each of the conclusions is based on comparison between fossilized 

organisms present in the Phosphoria and modern day analogs.     
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The total organic carbon concentration for the studied samples varied from 0.063 

to 3.156 percent of the total gases that were produced. The beds with the highest 

concentration of carbon were the upper and lower beds of the studied section; beds 1 and 

7, see Figure 1.   

Discussion 

The point counting data strongly supports that there is a large degree of difference 

in porosity. The porosity varies across the sampled beds from 1 to 27 %.   

Although each of the beds are a pelmicrite, research revealed that the amount of 

cementation has a direct effect on the modern porosity. Bed 4 is the least cemented of the 

seven beds, which resulted in the highest percentage of porosity at 27 %. Bed 6 was less 

cemented and had a percentage of porosity of 10 %. The beds which have the greater 

degree of cementation are the beds with the lowest porosity; for example bed 2 is very 

well cemented and the porosity is only 1 %. 

The amount of dissolution both from weathering and in the subsurface increased 

porosity in the stratigraphic units. Surface weathering is an action of removing the rock, 

either through chemical or physical means. In this formation the exterior becomes 

weathered at a much higher rate than the interior. The weathering action on the exterior 

forms a rind on the exposed weathered rock, see Figure 7a. In this weathering rind, which 

is usually less than a quarter of a centimeter in thickness, the porosity is increased by as 

much as 5%. Internal weathering in the form of ground water moving through the beds 

causes new vugs to form. Crystallization and de-crystallization are the results of multiple 

dissolution events.  
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Observed fecal pellets are more abundant in stratigraphic units with the lowest 

porosity, indicating an inverse relationship between porosity and organic matter. The 

organic matter is not limited to fecal pellets, but can include calcareous fossils and 

miscellaneous organic matter (slime). Fecal pellets do not halt the formation of vugs but 

can restrict it. The vugs can form in the pellets or between pellets. In areas with denser 

amounts of organic matter including, fecal pellets, there is less probability for the 

formation of vugs, and hence less porosity. 

McKelvey et al. (1959) theorized that the initial source of the phosphate resulted 

from upwelling of phosphate-rich deep ocean waters, which once near the surface, 

facilitated growth of shallow marine organisms on the carbonate shelf. Phosphate would 

precipitate over time both from the water column, as well as fecal pellets produced by the 

abundant marine organisms (Porter and Robbins, 1981). 

Most organisms found in the Phosphoria grew calcite exoskeletons, enriched in 

phosphate. Once these organisms died and settled to shallow ocean floor their remains 

became buried (Piper, 2002). The phosphate would then build up in the rocks, and later 

be dissolved by acidic ground water. Once dissolved, the PO4
-3

 ions could migrate in the 

subsurface and precipitate in higher concentrations to form large deposits (Piper, 2002). 

Other researchers such as Ketner (2009), have found evidence that supports that 

the phosphate deposits were not a product of an upwelling event. The main supporting 

evidence was that the largest phosphate deposits were geographically isolated from 

epicenters of the upwelling events (Ketner, 2009). Ketner, states that the shallow sea that 

the formation was deposited in would have limited the ability of the phosphate to be 
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transported from the upwelling sites to the areas of deposition. Another valid hypothesis 

is that fecal pellets are the source of the phosphate.          

Porter and Robbins (1981) suggest that fecal pellets produced by organisms living 

in the shallow waters contributed the largest amount of phosphate deposited in 

depositional environments. The peritrophic membrane surrounding the fecal pellets 

would contain the phosphate until ruptured during lithification of the rock layer. The 

released phosphate would contribute to the rich phosphate deposits observed today in the 

unit.   

During this study, numerous un-ruptured and ruptured fecal pellets were observed 

in thin section (Figure 9), suggesting that biological activities within the depositional 

system contributed to the observed abundance of phosphate. However these fecal pellets, 

and the organic matter they contain also controlled the total amount of porosity observed 

in the samples. Higher porosity stratigraphic units contained fewer fecal pellets in thin 

section. Total organic carbon content within these units were typically lower, with 

highest amounts of organic carbon found in units with the least amount of porosity. 

Although other factors including, cementation, amount of phosphate, total amount of 

clay, and diagenetic history could control the amount of observed porosity. Highest levels 

of organic carbon were observed in the lower and upper boundaries of the measured 

section, suggesting some migration of organic carbon from bounding carbonaceous 

shales (Table 1 and Figure 1). 
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Conclusion 

This petrographic study gives new understanding regarding the nature, 

distribution, and the relationship of porosity and organic richness in the Phosphoria 

Formation. This petrographic study of the Phosphoria Formation documents the 

relationship between the distribution of porosity within the unit, and phosphate-rich fecal 

pellets observed in thin section. Results show a measurable difference in the percent of 

porosity between various beds within the section. Porosity was found to be inversely 

proportional to the amount of observed fecal matter found within the thin sections.  Total 

organic concentrations show an inverse relationship with the amount of porosity seen in 

the beds. Lithology, cementation, total organic matter, and surface weathering also 

contributed to the amount of porosity observed within each bed. Evidence for deposition 

of phosphate from biological fecal matter from marine organisms living on a shallow 

ocean carbonate platform is also documented.    

The information gathered from this research gives insights into the role of fecal 

pellets in the formation of phosphate deposits in modern and ancient environments, as 

well as the relationship to observed porosity.           
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Table 1: Point count data and total organic carbon concentrations (%).  

 

 

  

 

 

 

 

 

 

 

Bed and Slide 

Number  

Vugs Present  

(Out of 300 points) 

Porosity Percentage 

(%) 

Porosity Percentage 

Average 

Total Organic Carbon 

Concentrations (%) 

Bed 1, Slide A  6 2.0    

Bed 1, Slide B 10 3.33 2.67 3.156 

Bed 2, Slide A 3 1.0    

Bed 2, Slide B 3 1.0 1.0 0.117 

Bed 3, Slide A  0 0    

Bed 3, Slide B 11 3.67 1.83 0.264 

Bed 4, Slide A 80 26.67    

Bed 4, Slide B 84 28.0 27.33 0.101 

Bed 5, Slide A 13 4.33    

Bed 5, Slide B 3 1.0 2.67 0.063 

Bed 6, Slide A 31 10.33    

Bed 6, Slide B 29 9.7 10.0 0.170 

Bed 7, Slide A 3 1.0    

Bed 7, Slide B 3 1.0 1.0 1.895 

 

Extra Samples (Bed 3 phosphate nodule) 

Sample A, Slide A 4 1.33    

Sample A, Slide B  4 1.33 1.33  

Notes: 300 Point Counts were conducted for each slide 

Figure 1: Correlation between porosity and total organic carbon in the sampled beds.  
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Figure 2: Shaded area shows the extent of the Western Phosphate Field (Phosphoria      

Formation) in the United States. (Modeled after McKelvey and others (1959). 
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Age Formation 
Members 

(If Separated) 

Thickness 

(meters) 
Lithology 
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Chinle Formation  70-140 
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n
 Phosphoria or 

Park City 

Formation 

Meade Peak 
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20-75 

Rex Chert 

Member 

Weber SS  200-400 

 

Figure 3: Stratigraphic column of the research area located on the southern 

flank of the Uinta Mountains. (Modified from Sprinkel (2006)). 
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Figure 4: Map showing the studied area. The map shows the extent of the Phosphoria 

Formation (Pp) on the southern flank of the Uinta Mountains. (Modified from Sprinkel (2006).  
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Figure 6: Pictures of research section. A) Full research section, bed 1 bottom and bed 7 at the 

top B) Vugs present in bed 2 C) Completely phosphatized brachiopod in bed 4 D) Closer picture 

of section shows the platy nature of bed 7.  
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Figure 7: Photos of cut hand samples. A) Bed 6, vugs and matted bedding.  B) Bed 3, no internal 

structure or vugs. C) Bed 7, shows how porosity increases on the exterior where weathering occurs 

(weathering rind). D) Bed 4, loosely compacted and high number of large vugs.  
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Figure 8: Pictures of thin sections. Beds consist of small grains and micrite matrix, vugs (size 

and number) and amounts of organic matter differ depending on the bed. A) Large vug in bed 6 

in normal polarized light (NPL), B) Smaller vugs in bed 3 in crossed polar light (CP), C) bed 6 in 

NPL, D) bed 2 in NPL.   
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Figure 9: Photos of thin sections, normal polarized light A) Gastropod? fecal pellet B) 

Gastropod? fecal pellet C) Crustacean? fecal pellet, 10x D) slide with numerous fecal pellets and 

organic matter.  
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