
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Plan B and other Reports Graduate Studies

5-2015

Efficient Parallel Approaches to Financial Derivatives and Rapid Efficient Parallel Approaches to Financial Derivatives and Rapid

Stochastic Convergence Stochastic Convergence

Mario Harper
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/gradreports

 Part of the Business Commons

Recommended Citation Recommended Citation
Harper, Mario, "Efficient Parallel Approaches to Financial Derivatives and Rapid Stochastic Convergence"
(2015). All Graduate Plan B and other Reports. 519.
https://digitalcommons.usu.edu/gradreports/519

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Plan B and
other Reports by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/gradreports
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/gradreports?utm_source=digitalcommons.usu.edu%2Fgradreports%2F519&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/622?utm_source=digitalcommons.usu.edu%2Fgradreports%2F519&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/gradreports/519?utm_source=digitalcommons.usu.edu%2Fgradreports%2F519&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

EFFICIENT PARALLEL APPROACHES TO FINANCIAL DERIVATIVES AND

RAPID STOCHASTIC CONVERGENCE

by

Mario Y. Harper

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Financial Economics

Approved:

Dr. Tyler Brough Dr. Jason Smith
Major Professor Committee Member

Dr. Jared DeLisle Dr. Richard Inouye
Committee Member Associate Dean of the School of Gradu-

ate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2015

ii

Copyright c© Mario Y. Harper 2015

All Rights Reserved

iii

Abstract

Efficient Parallel Approaches to Financial Derivatives and Rapid Stochastic Convergence

by

Mario Y. Harper, Master of Science

Utah State University, 2015

Major Professor: Dr. Tyler Brough
Department: Economics and Finance

This Thesis explores the use of different programming paradigms, platforms and lan-

guages to maximize the speed of convergence in Financial Derivatives Models. The study

focuses on the strengths and drawbacks of various libraries and their associated languages

as well as the difficulty of porting code into massively parallel processes. Key languages

utilized in this project are C++, Python, Java, C, and Matlab. Along with these lan-

guages, several multiprocessing libraries such as C++ AMP, Python NumbaPro, Numpy,

Anaconda, Finance Toolkit and such were compared. The results of the development and

implementation of code suggests that once we massively parallelize the operations, the only

difference in speeds accross systems are found only in the unique language’s overhead. The

findings also suggest that in terms of development and testing time, one should choose to

utilize a language they are most familiar with rather than to try a minimalistic approach

using a more base level language.

(52 pages)

iv

Public Abstract

Efficient Parallel Approaches to Financial Derivatives and Rapid Stochastic Convergence

by

Mario Y. Harper, Master of Science

Utah State University, 2015

Major Professor: Dr. Tyler Brough
Department: Economics and Finance

Finance is largely about how quickly one can act. When an opportunity comes, the

best time to act is immediately. However, with complex financial instruments, it is difficult

to quickly come to a solid conclusion. This study is about how different computational

methods were used to speed up the process of pricing these difficult instruments. On top

of that, some neat math is used to make the priced results more accurate.

v

To my wife Michaela who was willing to put up with me, my computers, and our baby girl
who tried to take the aforementioned computers apart.

vi

Contents

Page

Abstract . iii

Public Abstract . iv

List of Tables . viii

List of Figures . ix

Acronyms . x

1 Introduction . 1
1.1 Significance . 1
1.2 Background . 1
1.3 Transistor Dynamics and Quantum Effects 2
1.4 Multiprocessing . 3
1.5 The beautiful solution: GPU programming 6

2 Language Barriers . 8
2.1 Initial Considerations and Benchmarks . 8
2.2 Black Scholes as a Test model . 8
2.3 Testing Serial Processes . 9

2.3.1 Simple Serial C++ . 9
2.3.2 Simple Serial Python . 11
2.3.3 Simple Serial Matlab . 12
2.3.4 Simple Serial Java . 12
2.3.5 Serial Task Conclusions . 15

2.4 Multiprocessed Code . 15
2.4.1 CPU only with Numba . 16
2.4.2 CUDA with Python . 17
2.4.3 CUDA with C++ . 18
2.4.4 Limitations of Matlab . 19
2.4.5 Preliminary Multiprocessing Results 19

2.5 Inherent Difficulties . 19

3 Lookback Call Option Under Stochastic Volatility 23
3.1 A Quick Introduction . 23
3.2 The First approach . 24

3.2.1 The Control Variates . 25
3.2.2 Stochastic Volatility . 30

3.3 The initial results: . 31
3.4 Streamlining the Code . 31

vii

3.5 Multiprocessing with CUDA . 34
3.6 Conclusions . 34

4 Other Examples . 36
4.1 On Parasites . 36
4.2 On Asian Options . 38
4.3 Results of GPU computing . 40

5 Conclusions . 41

References . 42

viii

List of Tables

Table Page

2.1 Test Machine Specifications . 9

2.2 Software and IDE . 9

2.3 Serial Process Results . 15

2.4 Multiprocessing Results . 20

3.1 Simple Comparison of Control Variates . 31

3.2 Simple Comparison of Vectorized Control Variates 32

3.3 Time Trial Results of European Lookback Option 35

4.1 Other examples of CUDA speedup . 40

ix

List of Figures

Figure Page

1.1 Amdahl’s Law, used via Wikimedia Commons. Used under the CC-By-SA
3.0 license. 4

2.1 Python: From XKCD http://xkcd.com/353/ 13

x

Acronyms

APU Accelerated Processing Unit

CPU Central Processing Unit

GPU Graphical Processing Unit (Video Card)

CUDA Compute Unified Device Architecture (parallel computing platform)

DE Development Environment

ENIAC Electronic Numerical Integrator and Computer

I/O Inputs and Outputs

SDE Software Development Environment

SDK Software Development Kit

JVM Java Virtual Machine

JRE Java Runtime Environment

AMP Acellerated Massive Parallelism

1

Chapter 1

Introduction

1.1 Significance

One who wishes to take advantage of an arbitrage position must be quick, this is true in

any branch of finance. To find an under or overpriced option requires rapid computation of

sometimes complex stochastic algorithms in quick succession. In essence, one must first find

information, process it, calculate a position to take, and excecute that position in rather

quick succession. Obviously not an easy task.

As has been widely noted [3], both traders who appear informed and uninformed about

future prices experience a cost induced from latency. Speed is an integral part in pricing

and trading for any financial market [4].

The premise of this work is that utilization of compuational tools coupled with the

correct programming can vastly cut down convergence times as well as increase accuracy of

the pricing. These methods are also designed to reduce the time to implementation for the

programmers as well. Depending on the elegance of the implementation, we can shrink the

convergence times to 1/3000th of the original convergence time.

1.2 Background

In ye olde days, (that is, right around 2004) serial processes made the bulk of algo-

rithms. Serial processes are tasks that are done on one processor sitting on one CPU. These

algorithms run on one resource and have been refined from the begining of computing and

have become very quick in excecution time. CPU’s have also become much quicker over

time allowing these serial processes to attain speeds that I am sure the ENIAC would have

never dreamed of. However, as time has gone on. The speeds that an individual processor

2

could achieve has not increased as quickly as in times past irrespective of Moores’ Law.

This is easily seen from the quantum thermodynamics involved in the transistor.

1.3 Transistor Dynamics and Quantum Effects

The transistor is an amazing piece of quantum engineering. This is ubiquitous to all

electronics because it is the fundamental building block of electronic logic. Transistors can

be used as a switch to either be on or off. By placing them into a simple logic circuit, one

can create gates such that current can only flow if transistor A and B are on called ’And’

gates. Many gates exist, primarily ’And’, ’Or’ and ’Nor’ gates. This can be put together

to form small current holdings called a ’bit’ which can be put together to form the memory

storage that everyone knows. To see the issues related to a CPU, we must first understand

the transistor and its limitations. This can be seen in the following example.

We can use the specs of the machine that was primarily used for the work on this

thesis. This machine has an intel core i7-3770K processor, this processor was created using

atom-by-atom layering construction such that the fabrication size per transistor is 22nm.

In laymans terms, there are only about 66 atoms (Silicon atoms are .31 and the doping

agent atoms are anywhere from .27 to .43 nm in length) per transister in this processor.

Multiply this by 1.4 billion (the total number of transistors on this chip) and we have the

approximate number of silicon atoms. This is all packed into a box that is 113mm2 by

45mm. It is readily observed that when these transistors are placed under a high stress

computation, there is going to be some thermal energy generated (not to mention quantum

effects within the transistors).

In running some basic stress tests, the CPU temperatures reach 54 degrees in Celsius.

Coupled with a comfortable 21 degrees for room temperature, the CPU ran at 75 degrees.

Temperature being simply viewed as the aggregate kinetic energy from electron collisions,

we can see that at this temperature, silicon atoms are likely to be somewhere is the third

or fourth energy states. This of course raises real issues, silicon atoms are called semi-

conductors because they do not conduct electricity until a threshold energy at which time

they become conductors. Although electrical energy is more efficient at electron excitation,

3

thermal energy does the same thing. There exists a critical temperature threshold at which

the electrons will spontaeneously conduct and the processor experiences catastrophic failure.

Heat will also deteriorate the oxide layer between transistors causing leaks into swaths of

transistor cells, heat is a natural result of electron movement but has become a more critical

issue as the size of transistor decreases.

The implication is obvious that as more computation is done, or put in physics terms,

as electron states of the atomic clusters are rapidly fluctuated, higher ordered physical

constraints have significant performance impact. The more work the transistors do, the

hotter they get. The hotter they get, the less efficient they are as electrical signal gets lost

in thermal noise (Remember that both electricity and heat are the same electrons). In fact

we can express this as a transcritical bifurcation of the cannonical form: dx
dt = rx(1−x)−αx

where we can easily see that the new equilibrium must fall into a free conductor.

The fundamental lesson that we learn from the transistor is that there exists a limit to

how fast one can be without sacrificing accuracy and the safety of the component.

1.4 Multiprocessing

To increase the speed of tasks and prevent the heat-death of any processor while not

sacrificing the performance, computers from 2004 have nearly all had more than one core

or processor. A processor handles a process, obviously. A processor usually shares sytem

I/O and the systems memory. A system with multiple processors can utilize them to his

advantage by handing tasks off to each one to do independently and consolidating the results

in the end. Thus, all one has to do is to split tasks into independent processes to realize

the benefit of this kind of system.

Imagine if you will, a shipping firm that must deliver parcels accross a reasonably sized

population. What might take one truck an entire days work may take two trucks a little

more than a half days work. However, the more trucks that one accumulates, the more

infrastructure is needed to direct and apportion the truck. There is also a need to guage

how much load each truck can take, where the boundaries of each truck should be, effective

ranges of the trucks and their difficulties of point access. Thus lies the difficulty of parallel

4

programming with multiple processes.

The difficulty is incured in largely two places. Firstly, parallel code has a new set of

unique problems that can occur (as compared with serial code) and second, speed increases

will tend to follow Amdahls Law. Amdahls law simply states that the more you can put

your code in parallel, the greater the speedup that comes from the number of processors that

you can utilize. In an ideal world, two processors is twice as fast as 1. Unfortunately, this

relationship is (as everything appears to be) increasing at a decreasing rate. We generally

see that the relation tapers off once you reach about a thousand processors even for highly

parallel code. Speedup is not perfectly linear.

Amdahls Law is illustrated in Fig. 1.1

Fig. 1.1: Amdahl’s Law, used via Wikimedia Commons. Used under the CC-By-SA 3.0
license.

Furthermore, while some code is easy to write as independent of other processes, one

must eventually consolidate it. Imagine again that those trucks from the aforementioned

shipping firm also had to pick up parcels from their destinations. This adds another layer

5

of complexity, the central truck command must now be there not just to hand instructions

to the drivers but needs to be able to accept packages. Similarly, there must be some part

of the computer that is dedicated to assigning tasks and consolidating results. It must also

be on a process that is in charge of instantiating parameters and populating the computer

memory, and must return some kind of indication to the user that everything is done. Worst

of all, unless one is going to be in the very base operating kernel of the computer, this same

process must also bear the burden of running the operating system and the overhead of the

programming language that one is using. Essentially, the one who is doing the assigning of

tasks is also the one who is running the entire world on which everything is based. So we

can see that before we have really begun to give special instructions, one of our processors

must be using some 12 to 20 percent of its real available resource (unless you are running

the E series or the x99 series processors and or linux).

I again refer to the example above, to point out that trucks need homes to return to

when they are finished with their tasks. Likewise, CPU’s have a limited number of cores

that they can physically house. The computer that I am using (for the bulk of this project)

has four physical cores that are Hyper-Threaded and can be treated as 8 logical cores. I will

not talk at length about threading here (Please see part 2), but we can treat this for now as

a simple quad core machine. If I want to do more work with more cores, the simple solution

is to simply pick up another machine and have it talk on a network to share information

and resources. By definition this is a server. Thus we can have many machines that can

communicate with one central process that handles all of the requests and consolidates all

of the returned information. But the overhead in a system like this is somewhat large, and

it is really annoying to set up and program (See part 2). It is like running Wal-Mart, we

need trucks everywhere accross the world so we can service big distribution centers that in

turn can dispatch their own trucks. This adds a rapidly growing heirchy of command as we

now need a process to be in charge of the cluster of processes in charge of further processes.

Thus we went with one of the beautiful solutions.

6

1.5 The beautiful solution: GPU programming

Hooray for supercomputers, that is, hooray for computer clusters!

That is what I would like to say, but supercomputing time is hard to get and so we

decided on a more practical approach that was easier to implement. We decided to do the

bulk of our programming accross a GPU.

Imagin if you will that instead of picking up all and doing all sorts of things, we just

needed to drop off and pick up postcards. Well, we don’t need to have a large fleet of trucks,

this is a waste of resources and they are cumbersome. Instead, we hire a massive fleet of

people on scooters to pick up just a few things from their designated areas and bring it

back right away. These are much lighter vehicles than a large semi and can be used for very

simple tasks. This is the GPU.

The GPU is usually responsible for the video output of a computer. It treats a monitor

screen as a massive matrix where it assigns values corresponding for every pixel on the

screen. As an example, for the screen currently being used by myself as I write this thesis,

the matrix corresponds to a 3840 x 2160 matrix. The GPU refreshes this matrix 75 times

a second, in other words, it must change 8.3 billion values 75 times a second. It is able to

accomplish this because it is highly parallel. It can treat each pixel independent of each the

other making it an ideal tool for linear algebra.

The GPU also has a lot of processors in it. This particular machine has 1664 GPU

core processors that shares 4 GB of GDDR5 ram. Each of these cores (CUDA cores) are

less powerful than a CPU core but they are fine tuned to be able to handle linear algebra

very well. For simple massive parallization, they are sufficent to the task.

This GPU also has a special feature that NVIDIA corporation has called the Maxwell

microarchitecture. They have added 8 scheduler APU’s to manage the information dissem-

ination and collection amongst the CUDA cores, these APU’s can issue two instructions

that are independent simultaeneously. Because they are only nanometers apart from the

CUDA cores, all the CPU has to do is communicate instruction to the GPU main processor

which can relay the instruction to its APU schedulers. Thus the cumbersome task of que-

7

ing and assigning resources to the processes is all done outside of the CPU and is mostly

independent of the operating kernel. From the CPU’s perspective, all it has to do is send a

block of vauge instructions that the GPU can understand and then interpret the reply that

the GPU returns.

The use of the GPU has many challenges in coding and implementation, but this offers

a very satisfactory boost in speed and reduces the overhead of many of the high level

languages.

8

Chapter 2

Language Barriers

2.1 Initial Considerations and Benchmarks

It is probably readily apparent to the casual observer that the closer one can get to

the hardware, the faster it is to send tasks and information. Thus it is with programming

languages that the more basic and streamlined for the processor a language is, there is a

speed difference. However, it is really difficult to talk in binary, or assembly which the

transistor and the CPU are natively handeling. The lower the language, the less overhead

we have but the harder it is to implement, debug and get into production/distribution. We

can go with a good all-round lower level language like C++ which is fairly quick or with a

higher level language like Python which is slow. There are also languages like VBA, Matlab

and JAVA that we can also look at.

We first test the basic languages against each other using the standard Black-Schoals

formula and see what speeds we see. We choose to program in the cumulative density

function (although that is an available library in python) for testing purposes.

2.2 Black Scholes as a Test model

This is a very beautiful solution (closed form and analytical) to the heat diffusion

equation. My understanding and simple derivation can be found in the appendix. We will

be using this formula as a benchmark for most of the initial tests as well as using it for

control variate variance reduction. Note that we will also be using MCMC for most of what

we are testing. From my perspective, a random walk is probably not the best choice to

exemplify the stochasticity of this particular field that we are applying these tools to, but

a Levy flight is harder to easily implement.

9

2.3 Testing Serial Processes

To set our simple benchmarks, we choose to write code in three languages: C++,

Python and Matlab. These languages were chosen because of two reasons, 1) I am very

familiar with these three and 2) in relativistic mechanics, one can assume (until further

information is acquired) that what we know and observe is the status quo for everythin,

thus, I can assume that everyone is familiar-ish with perhaps one of these three.

We are going to implement a very simple script in serial. These will run on one process

and will return 40000000 iterations of a black scholes pricing model. The excecution time of

interest will be based on just the BlackScholes function loops, this timer will start when the

function is called and end when it exits. Three timers will be used in total: Single instance

(just one iteration), Stress instance (40 ∗ 106 iterations) and the full program runtime from

initialization to completion.

The hardware that we are going to be using to run our code is the following:

Component Name Speed/Size Other

CPU Intel i7-3770K 3.7 GHz
RAM Crucial 32 GB DDR3 1600
PSU EVGA Silver 850 W Modular
Motherboard ASUS Sabertooth z77
GPU EVGA GTX 970 Super-SuperClocked 1.317 GHz 1664 CUDA Cores

Table 2.1: Test Machine Specifications

The software that was chosen is as follows:

Language Compiler / IDE Additional Dependencies

C++ Visual Studio Professional 2013 AMP Included with Professional
Python Pycharm Anaconda (Python 2.7), Numba, Iopro
Matlab Matlab 2014b Finance, Parallel, Optimization (Toolkits)
OS Microsoft Windows 7 Enterprise

Table 2.2: Software and IDE

2.3.1 Simple Serial C++

C++ code excecution generally involves three steps. There is a preprocessor, a compiler

10

and a linker that handles the full compilation of the code. The preprocessor is designed

to handle to preprocessor directives like include, define. It is outside of the syntaxical

governance of c++ and so it can cause serious problems if misused, but this is a rare

occurance unless one is really wading deeply in super-optimization of code. The preprocessor

takes in tokens, declarations and produces a stream of tokens that are specially marked for

the compilation engine to handle. Compilation is begun when the output stream of the

preprocessor is recieved. This part of the code is all in c++, or at least should be. The

compiler takes code and makes an object file, a file in binary format (machine language).

The compiler does not care if symbols are not defined, it will happily (I am not actually

sure if it is happy about any of this) take in and convert your code. However, syntax errors

or overload errors will cause failures here.

Finally the linking mechanism takes the compiled output. It will link the symboles

with addresses in your physical memory or to files in other libraries (include). If there are

duplicate/missing definitions, the linker will complain. Thus in C++ (and C), there are

three major types of issues that cause errors. Generally the errors will be in the compilation

stage.

This is the C++ code, a little messy and we have to define everything. As you can see

from the variable calls inside the BlackScholes function, we choose to send in a flag for puts

or calls. Everything else we assume is best attributed by the double. the CND function

merely takes in the d1 and d2 states of the BlackScholes function.

double BlackScholes(char flag, double S, double X, double T, double r, double v)

{

double d1, d2;

d1=(log(S/X)+(r+v*v/2)*T)/(v*sqrt(T));

d2=d1-v*sqrt(T);

// Price both the call and put

if(flag == ’c’)

return S *CND(d1)-X * exp(-r*T)*CND(d2);

11

else if(flag == ’p’)

return X * exp(-r * T) * CND(-d2) - S * CND(-d1);

}

// The cumulative normal distribution function

double CND(double X)

{

double L, K, w ;

double const a1 = 0.31938153, a2 = -0.356563782, a3 = 1.781477937;

double const a4 = -1.821255978, a5 = 1.330274429;

L = fabs(X);

K = 1.0 / (1.0 + 0.2316419 * L);

w = 1.0 - 1.0 / sqrt(2 * Pi) * exp(-L *L / 2) * (a1 * K + a2 * K *K + a3 *

pow(K,3) + a4 * pow(K,4) + a5 * pow(K,5));

if (X < 0){

w= 1.0 - w;

}

return w;

}

2.3.2 Simple Serial Python

Python is a very happy language (to test this, in any python terminal type in: import

antigravity). It is an interpreted language that defers nearly everything until runtime. Any

variable or function are tagged when run with a type (int, str) and are pointed to. The

values that are tagged are used to resolve what should be done, because of this ’Dynamic’

style, the excecution is much slower as the computer must look at what the variable actually

is before making a decision to proceed to the next line.

Python can be put to use in a wide sphere of applications and is platform independent

making it a favorite of multi-system users like Google, Amazon and Server based processes.

12

This is a very pythonic code, the CND function is not shown. We pass in arguments

and assign them to a variable. Python handles the memory allocation for us, by using the

lists, this is slightly faster.

def BlackScholes(calllist, putlist, stockPrice, Strike, T,

Riskfree, Volatility):

S, X, T, R, V = (stockPrice, Strike, T, Riskfree, Volatility)

d1 = (np.log(S / X) + (R + 0.5 * V * V) * T) / (V * np.sqrt(T))

d2 = d1 - V * np.sqrt(T)

d1CND = CND(d1)

d2CND = CND(d2)

expRT = np.exp(- R * T)

calllist[:] = (S * d1CND - X * expRT * d2CND)

putlist[:] = (X * expRT * (1.0 - d2CND) - S * (1.0 - d1CND))

2.3.3 Simple Serial Matlab

We choose to simply use the built in toolkit for financial analysis. This is quick and

simple but simultaensouly annoying. I don’t like black boxes.

[Call, Put] = blsprice(Price, Strike, Rate, Time, Volatility, Yield)

2.3.4 Simple Serial Java

The Java code should look similar to that of C++, syntaxically these languages are

very similar.

public double BlackScholes(char CallPutFlag, double S, double X, double T, double

r, double v)

{

13

Fig. 2.1: Python: From XKCD http://xkcd.com/353/

14

double d1, d2;

d1=(Math.log(S/X)+(r+v*v/2)*T)/(v*Math.sqrt(T));

d2=d1-v*Math.sqrt(T);

if (CallPutFlag==’c’)

{

return S*CND(d1)-X*Math.exp(-r*T)*CND(d2);

}

else

{

return X*Math.exp(-r*T)*CND(-d2)-S*CND(-d1);

}

}

// The cumulative normal distribution function

public double CND(double X)

{

double L, K, w ;

double a1 = 0.31938153, a2 = -0.356563782, a3 = 1.781477937, a4 = -1.821255978,

a5 = 1.330274429;

L = Math.abs(X);

K = 1.0 / (1.0 + 0.2316419 * L);

w = 1.0 - 1.0 / Math.sqrt(2.0 * Math.PI) * Math.exp(-L *L / 2) * (a1 * K + a2 * K

*K + a3

* Math.pow(K,3) + a4 * Math.pow(K,4) + a5 * Math.pow(K,5));

if (X < 0.0)

{

w= 1.0 - w;

}

15

return w;

}

We note that Java is a good all around language and uses a precompiler called the

Java Virtual Machine to process its code which makes it independent of operating system

platform (which is nice). However this sacrifices some speed, making the same speed as

C/C++ virtually impossible to replicate.

2.3.5 Serial Task Conclusions

Below, we list the results of our initial benchmarks. The Matlab that we used is simply

a built in function and is unkown how optimized it is. However, the matlab finance toolkit

makes development much faster. Python is also very easy to develop in and was actually

fairly optimized in just the simple script above (section 2.2.2).

Language Time (single) Time (multiple) Time (total) Development Time

C++ 1 ms 2019 ms 2178 ms 20 minutes*
Python 0 ms 8314 ms 8529 ms 10 minutes*
Matlab 27 ms 1518 ms 1534 ms
Java 2 ms 2831 ms 3026 ms 20 minutes*

Table 2.3: Serial Process Results

*These times are approximate

However we can see that in terms of sheer speed, the C++ is the clear winner for these

serial tasks.

2.4 Multiprocessed Code

We will now jump into simple excecutions of highly parallel code. For this, we are going

to show the extent of parralelization as well as the speed differences that we can achieve.

The hardware and the software are the same, however we are going to be using C++ AMP,

Iopro, and Parallel libraries for c++, python, and Matlab respectively. These libraries will

allow us to communicate to the GPU and push the loops, and numerical processing to the

GPU. This being the easily parrallelized components, we could probably optimize more of

16

the initial code as well as creating a threaded Queing algorithm, but that will be left as an

excersize to the users.

We are going to be using Numba (Multiprocessing library for numpy) and Iopro (CUDA

integration for Numba) which are both proprietary libraries from Continuum Analytics.

Matlab and its toolkits (parallel) are proprietary libraries from Mathworks.

2.4.1 CPU only with Numba

In the initial test, we will use the above code from python and port it into using all of

our existing cores (8 logical). We thank Continuum for their example with the CNDNumba

function. We have to tell the processor server to listen for these functions, that is the real

only difference between this code and the native python code [6]. We also have to separate

the iterations a little into lists for multiprocessing, thus the loop in BlackScholes.

@autojit

def CNDNumba(d):

A1, A2, A3, A4, A5 = (0.31938153, -0.356563782, 1.781477937, -1.821255978,

1.330274429)

RSQRT2PI = 0.39894228040143267793994605993438

K = 1.0 / (1.0 + 0.2316419 * math.fabs(d))

ret_val = (RSQRT2PI * math.exp(-0.5 * d * d) *

(K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))))))

if d > 0:

ret_val = 1.0 - ret_val

return ret_val

@autojit

def BlackScholes(calllist, putlist, stockPrice, Strike, T,

Riskfree, Volatility):

S, X, T, R, V = (stockPrice, Strike, T, Riskfree, Volatility)

17

for n in range(1, len(S)):

d1 = (np.log(S[n] / X[n]) + (R + 0.5 * V * V) * T[n]) / (V * np.sqrt(T[n]))

d2 = d1 - V * np.sqrt(T[n])

d1CND = CNDNumba(d1)

d2CND = CNDNumba(d2)

expRT = np.exp(- R * T)

calllist[n] = (S[n] * d1CND - X[n] * expRT * d2CND)

putlist[n] = (X[n] * expRT * (1.0 - d2CND) - S[n] * (1.0 - d1CND))

2.4.2 CUDA with Python

We must first initialize the types of variables that this function will be taking. Cuda

likes the C style, so we have a cythonic pre function part that does just that. Everything

else should look very similar to the Numba code, however we are going to be calling the

cuda library to pull the threads, blocks and the dim in the blocks. We do this to initialize

the GPU and make sure that there is not a strange first term being qued in for processing.

Note that this is using the iopro library (import numbapro, iopro, cuda). [2]

@cuda.jit(argtypes=(double[:], double[:], double[:], double[:], double[:],

double, double))

def black_scholes_cuda(callResult, putResult, S, X,

T, R, V):

i = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x

if i >= S.shape[0]:

return

d1 = (math.log(S[i] / X[i]) + (R + 0.5 * V * V) * T[i]) / (V *

math.sqrt(T[i]))

d2 = d1 - V * math.sqrt(T[i])

d1CND = CNDCuda(d1)

d2CND = CNDCuda(d2)

18

expRT = math.exp((-1. * R) * T[i])

callResult[i] = (S[i] * d1CND - X[i] * expRT * d2CND)

putResult[i] = (X[i] * expRT * (1.0 - d2CND) - S[i] * (1.0 - d1CND))

2.4.3 CUDA with C++

We preface this by saying that C++ AMP has a really steep learning curve. This could

be due to the fact that I am really bad at programming, but it took some time to get set up.

(Please see my documentation and hints on my github repository: https://github/marioharper182/

)

Here we have a BlackScholes already built that we are simple going to move the returned

information from. We pass in the ampmathwhichistheparallelGPUmathlibrary.Wethenhavetoinitializethenamespaceofblackscholes, whichweessentiallyhavetooverwritewithournewvariablesoptimizedfortheGPU.

#include "BlackScholes.h"

#include <math.h>

#include <amp_math.h>

#include <iostream>

#include <assert.h>

blackscholes::blackscholes(float _volatility, float _riskfreerate, int _size)

{

data_size = _size;

riskfreerate = _riskfreerate;

volatility = _volatility;

stock_price.resize(data_size);

option_strike.resize(data_size);

option_years.resize(data_size);

call_result_amp.resize(data_size);

put_result_amp.resize(data_size);

19

srand(2014);

for (int i = 0; i < data_size; i++)

{

stock_price[i] = 100.0f * (((float)rand()) / RAND_MAX);

}

}

2.4.4 Limitations of Matlab

The GPU that I have is not optimized and prepared for Matlab parallel, while there

are workarounds, I will have to wait to test until I have a workstation/supercomputing

GPU that is already integrated with Matlab. I have a GTX series GPU which is better for

all-around computing, it is too new for Matlab to be able to easily use.

We will put off tests until someone wants to buy us a TITAN or TITAN Black card.

2.4.5 Preliminary Multiprocessing Results

We can see that there is significant speed increases when we jump from 1 processor

to 1664 processors. The first run overhead is higher as there is much more involved in

getting the GPU initialized. However the results are satisfactory. The issue arises in the

development time.

I believe that I can do this much faster now, but in terms of development and distri-

bution, unless sheer speed is needed I would be loathe to recommend using the C++ Amp

library. It is also somewhat dependent on the VisualStudio framework and works best with

Windows and DirectX. The setup of the development environment is somewhat difficult as

well.

2.5 Inherent Difficulties

In order to use the AMP library one must use VisualStudio, this means of course the

20

Language Time (single) Time (multiple) Time (total) Development Time

C++ Amp 47 ms 109 ms 149 ms 5 hours
Python CUDA 51 ms 127 ms 204 ms 2 hours
Python Numba 30 ms 427 ms 570 ms 1 minutes

Table 2.4: Multiprocessing Results

use of Windows OS. While Windows is a great operating system, Linux is much better. In

terms of speed, linux is a faster alternative, but it requires near superhuman effort to load

the GPU drivers (especially new GPU’s) and coax the machine OS into making friends with

new hardware. Because AMP is married so closely to the Windows environment we have

to accept this OS overhead. We also acknowledge that DirectX is hard to work with. To

get it to work we borrowed ideas from the UnrealEngine set up and it’s DE environment.

Python has a lot more overhead as it is a higher level language. There does appear to

be some abarrent memory bottlenecks with our bus because of it. Also, python is gluing

together a lot of C code under the hood for us. While this is great, the extra layer of

complexity means that we cannot match the speed of C based C++. Although we are using

some proprietary CUDA libraries, they are open liscenced to education and dev use. They

are also not as expensive as a Matlab toolkit even if purchase is required.

As can be seen below from the numpy array creation source code. We must first import

python as a C library. The libary then pulls from other dependencies (ndim, idim, ect...)

to asses the type of item it is and assign it a dimension. However, by doing this, we can see

that the memory allocation issues from python are drastically cut.

#include <Python.h>

/* See array_assign.h for parameter documentation */

NPY_NO_EXPORT int

broadcast_strides(int ndim, npy_intp *shape,

int strides_ndim, npy_intp *strides_shape, npy_intp *strides,

char *strides_name,

npy_intp *out_strides)

21

{

int idim, idim_start = ndim - strides_ndim;

/* Can’t broadcast to fewer dimensions */

if (idim_start < 0) {

goto broadcast_error;

}

/*

* Process from the end to the start, so that ’strides’ and ’out_strides’

* can point to the same memory.

*/

for (idim = ndim - 1; idim >= idim_start; --idim) {

npy_intp strides_shape_value = strides_shape[idim - idim_start];

/* If it doesn’t have dimension one, it must match */

if (strides_shape_value == 1) {

out_strides[idim] = 0;

}

else if (strides_shape_value != shape[idim]) {

goto broadcast_error;

}

else {

out_strides[idim] = strides[idim - idim_start];

}

}

/* New dimensions get a zero stride */

for (idim = 0; idim < idim_start; ++idim) {

out_strides[idim] = 0;

}

{

npy_uintp start1 = 0, start2 = 0, end1 = 0, end2 = 0;

get_array_memory_extents(arr1, &start1, &end1);

get_array_memory_extents(arr2, &start2, &end2);

22

return (start1 < end2) && (start2 < end1);

}

return 0;

Matlab is proprietary, wich means that it is going to cost some money to merely have

a liscence of the IDE, not to mention the toolkits. The code is nicely packaged for us but

the execution is a little slow. Not as many devices are supported and it does not play nice

with the other kids. But it is platform independent, making it run natively on Unix, Linux

and Windows.

23

Chapter 3

Lookback Call Option Under Stochastic Volatility

3.1 A Quick Introduction

This is a better example of testing the efficacy of programming languages as it is more

involved of a process. In the fundamental sense, this is still a simple diffusion equation

with a well defined boundary condition. Thus the equation governing the motion of each

simulation follows the black scholes algorithm. We add the condition that the greatest value

attained in a list of fixed points along a simulated path will be the value returned at the

end of the iteration. We can express this as follows:

max(0,max(Sterminali : i = 1, ..., N)−K)

Where K is the value which represents a predetermined boundary value.

We also choose to make the assumption that the variance of the parameter V, (V = σ2)

is governed by the following differential equations:

dS = rSdt+ σSdz1

dV = α(V̄ − V)dt+ ζ
√
V dz2

We are also going to incorporate a known simple solution to a similar problem in order

to compute the ”greek” parameters. The simple solution has a continous fixed boundary

value as well as a constant volatility. We show the analytical equation below [1]:

SimpleLookback = G+ Se−δTN(x+ σ
√
T)−Ke−rTN(x)

−S
B

(e−rT (
E

S
)
B

N(x+ (1−B)σ
√
T)

24

−e−δTN(x+ σ
√
T))

Where

B =
2(r − δ)
σ2

x =
ln S

E + ((r − δ)− 1
2σ

2)T

σ
√
T

3.2 The First approach

We first do a very simple approach to this problem via naive monte carlo. First we

create a Weiner process and simulate a brownian path of length N, duplicate this M times

(where M is the number of iterations we wish to run). We can see that this will create

a M x N matrix where the rows of the matrix shows each individual simulation and the

columns give the time horizon. We can then find the maximum value reached for every row

M, compute the mean and discount it to get the price of the European Lookback call option

under this first glance approach. The code is below:

def matrixengine(self, spot, rate, sigma, expiry, N, M, strike, sigma2):

Calculate the trivial lookback option

newdt = float(expiry)/float(N) # Get the dt for the Weiner process

dW = np.sqrt(newdt)*np.random.normal(0,1,(M,N-1)) # Create the brownian

motion

W = np.cumsum(dW, axis=1) # Set up the Weiner Process as a Matrix

time = np.linspace(0, expiry, N) # Set the discrete time space

tempA = np.zeros((M,1)) # Create an initial zero vector for the first

column

Wnew = np.c_[tempA,W] # Append the Weiner matrix to the zeros

tt = np.tile(np.array(time),(M,1)) # Create a matrix of time x M so we

have time for every iteration

Calculate the lookback option

25

assetpath = spot*np.exp((rate-.5*sigma2)*tt+sigma*Wnew) #European option

stuff

max_vals = [max(assetpath[i]) for i in range(0 , len(assetpath))]

#Calculate the maximum values reached

option_val = [max(i-strike,0) for i in np.array(max_vals)] #Apply the

Payoff Function

call_val = np.mean(option_val) #Take the mean

present_val = np.exp(-rate*expiry)*call_val #Discount to present

print(present_val) #Show people what we get

As can perhaps be readily grasped, the matrix oriented language Matlab is better suited

for this level of computation. We can also see that there is a speed advantage to Matlab as

this is what it was designed to do. The code is also significantly shorter:

dW=sqrt(dt)*randn(M,n); % Generate array of brownian movement

W=cumsum(dW,2); % Obtain Wiener process

t=0:dt:T;

W=[zeros(M,1),W];

tt=repmat(t,M,1); % Create matrix with respect to time

asset_path=S*exp((r-0.5*sigma^2)*tt+sigma*W); %Calculate European stuff

max_vals=max(asset_path,[],2); %Get max values

option_values=max(max_vals-K,0); %Apply Payoff

present_vals=exp(-r*T)*option_values; %Discount

call_value=mean(present_vals);

display(call_value) %Show people what we get

3.2.1 The Control Variates

We choose to use the continuously fixed floating strike lookback call option formula

to compute the delta, gamma and vega parameters. These will serve as the hedge control

variates. This formula is valid for the case of constant volatility, and it will continuously

26

fix using the maximum value reached up to the point in time where the formula is at, ie:

time(t) = expiry − t

We create an greek parameters library file of functions that can be easily used to find

the greeks:

def EuroDelta(d1):

Delta is the price sensitivity

Delta = norm.cdf(d1)

return Delta

def EuroGamma(d1, spot, sigma, tau):

Gamma is a second order time-price sensitivity

Gamma = norm.ppf(norm.cdf(d1)) / (spot*sigma*np.sqrt(tau))

return Gamma

def EuroTheta(d1, d2, rate, strike, tau, sigma, spot):

Theta is the time sensitivity

Theta = -rate*strike*np.exp(-rate*tau) * norm.cdf(d2) - \

(sigma*spot*norm.ppf(norm.cdf(d1))/(2*tau))

return Theta

def EuroRho(d2, tau, strike, rate):

Rho is the interest rate sensitivity

Rho = tau*strike*np.exp(-rate*tau) * norm.cdf(d2)

return Rho

def EuroVega(d1, tau, spot):

Vega is a volatility sensitivity

Vega = np.sqrt(tau)*spot*norm.cdf(d1)

return Vega

27

def EuroD1(spot, strike, rate, dividend, sigma, tau):

d1 = (np.log(spot/strike) + (rate - dividend + 1/2 *

sigma**2)*tau) / (np.sqrt(tau))

return d1

def EuroD2(d1, sigma, tau):

d2 = d1 - sigma * np.sqrt(tau)

return d2

The way that the control variates were implemented are a little messy. We break it into

three basic sections: 1) Shorthand for all of the components that we will want to use with

frequency later. 2) Initialization and processing of the control variates. 3) Implementing

the Control Variate.

Part 1) We lay down the short-hand components with very unhelpful names, don’t

worry, we don’t really want to know what they are doing under the hood of the engine

anyways.

Calculate the parameter shorthand that we need for the control variates

sig2 = self.sigma**2

alphadt = self.alpha*self.dt

xisdt = self.xi*np.sqrt(self.dt)

erddt = np.exp((self.rate-self.dividend)*self.dt)

egam1 = np.exp(2*(self.rate-self.dividend)*self.dt)

egam2 = -2*erddt + 1

eveg1 = np.exp(-self.alpha*self.dt)

eveg2 = self.Vbar - self.Vbar*eveg1

Part 2) Call in all of the component parts that make up the hedging variates. We are

going to be pulling in from the library we created earlier as well as liberally using numpy

and scipy to get the distribution draws that we want.

for j in range(1, self.M):

28

St1 = self.spot

St2 = self.spot

Vt = sig2

MaxSt1 = self.spot

MaxSt2 = self.spot

cv1, cv2, cv3 = 0,0,0

for i in range(1, self.N):

Initialize the d1, d2 variables for use in the control variates

d1_St1 = EuroD1(St1, self.strike, self.rate, self.dividend,

self.sigma, self.tau)

d1_St2 = EuroD1(St2, self.strike, self.rate, self.dividend,

self.sigma, self.tau)

d2_St1 = EuroD2(d1_St1, self.sigma, self.tau)

d2_St2 = EuroD2(d1_St2, self.sigma, self.tau)

These are the hedge sensitivites

t = (i-1)*self.dt

delta1 = (d1_St1)

delta2 = (d1_St2)

gamma1 = EuroGamma(d1_St1, MaxSt1, self.sigma, self.tau)

gamma2 = EuroGamma(d1_St2, MaxSt2, self.sigma, self.tau)

vega1 = EuroVega(d1_St1, self.tau, MaxSt1)

vega2 = EuroVega(d1_St2, self.tau, MaxSt2)

Evolution of Variance

e = np.random.normal(0,1)

Vtn = Vt + alphadt*(self.Vbar - Vt) + xisdt*np.sqrt(Vt)*e

Evolution of Asset Price

29

Stn1 = St1 * np.exp((self.rate-self.dividend-.5*Vt)*self.dt +

np.sqrt(Vt)*xisdt*e)

Stn2 = St1 * np.exp((self.rate-self.dividend-.5*Vt)*self.dt +

np.sqrt(Vt)*xisdt*-e)

Process the Control Variates

cv1 = cv1 + delta1*(Stn1 - St1*erddt) + delta2*(Stn2 - St2*erddt)

cv2 = cv2 + gamma1*((Stn1-St1)**2 - St1**2 *

(egam1*np.exp(Vt*self.dt)+egam2)) + \

gamma2*((Stn2-St2)**2 -

St2**2*(egam1*np.exp(Vt*self.dt)+egam2))

cv3 = cv3 + vega1*((Vtn-Vt)-(Vt*eveg1+eveg2-Vt)) + \

vega2*((Vtn-Vt)-(Vt*eveg1+eveg2-Vt))

Vt = Vtn

St1 = Stn1

St2 = Stn2

if St1 >= MaxSt1: MaxSt1=St1

if St2 >= MaxSt2: MaxSt2=St2

CT = .5*(max(0,MaxSt1 - self.strike) + max(0, MaxSt2 - self.strike) +

self.beta1*cv1 + self.beta2*cv2 + self.beta3*cv3)

sum_CT = sum_CT + CT

sum_CT2 = sum_CT2 + CT*CT

print(’Finished M loop’)

call_value = sum_CT/self.M *np.exp(-self.rate*self.expiry)

SD = np.sqrt((sum_CT2 -

sum_CT*sum_CT/self.M)*np.exp(-2*self.rate*self.expiry)/(self.M-1))

SE = SD/np.sqrt(self.M)

30

Part 3) As we implement the actual method, it is simply a matter of making sure that

the pieces that were instantiated in the previous lines are placed in the right order.

Evolution of Asset Price

Stn1 = St1 * np.exp((self.rate-self.dividend-.5*Vt)*self.dt +

np.sqrt(Vt)*xisdt*e)

Stn2 = St1 * np.exp((self.rate-self.dividend-.5*Vt)*self.dt +

np.sqrt(Vt)*xisdt*-e)

Process the Control Variates

cv1 = cv1 + delta1*(Stn1 - St1*erddt) + delta2*(Stn2 - St2*erddt)

cv2 = cv2 + gamma1*((Stn1-St1)^2 - St1^2 * (egam1*np.exp(Vt*self.dt)+egam2))

+ \

gamma2*((Stn2-St2)^2 - St2^2*(egam1*np.exp(Vt*self.dt)+egam2))

cv3 = cv3 + vega1*((Vtn-Vt)-(Vt*eveg1+eveg2-Vt)) + \

vega2*((Vtn-Vt)-(Vt*eveg1+eveg2-Vt))

3.2.2 Stochastic Volatility

We evolve the volatility over the life of the asset through the following mechanism:

newdt = float(expiry)/float(N) # Get the dt for the Weiner process

dW = np.sqrt(newdt)*np.random.normal(0,1,(M,N-1)) # Create the brownian

motion

W = np.cumsum(dW, axis=1) # Set up the Weiner Process as a Matrix

time = np.linspace(0, expiry, N) # Set the discrete time space

tempA = np.zeros((M,1)) # Create an initial zero vector for the first

column

#This is the Random aspects and the stochastic volatility

Wnew = np.c_[tempA,W] # Append the Weiner matrix to the zeros vector

Vt = self.sigma2

31

Vtn = np.abs(Vt + self.alphadt*(self.Vbar - Vt) +

self.xisdt*np.sqrt(Vt)*Wnew)

tt = np.tile(np.array(time),(M,1)) # Create a matrix of time x M so we

have time for every iteration

Calculate the lookback option

assetpath1 = np.array(spot*np.exp((rate-.5*Vtn)*tt+np.sqrt(Vtn)*Wnew))

#European standard

assetpath2 = np.array(spot*np.exp((rate-.5*Vtn)*tt+np.sqrt(Vtn)*-Wnew))

#European standard

Vt = np.delete(np.c_[Vt+tempA, Vtn],-1,1)

3.3 The initial results:

We initially run a small set of 200,000 iterations and 10000 time steps of continous

hedging, that is 20 Billion computations within the loops. The results can be seen in the

table below:

Naive Control Variate

Time (ms) 412.100794134584 138241.19513435524
Standard Deviation 173.470605561235460 147.6637462506410
Standard Error 3.98741201421011351 3.406584621684048

Table 3.1: Simple Comparison of Control Variates

This table is quite a bit misleading as there is also a layer of complexity hidden by the

stochastic volatility. In this case, initial volatility is set only to .09 and the stochastic factor

is quite high for the case of the control variate. Thus it is actually very impressive that the

control variate is able to have a lower standard error than a naive monte carlo.

3.4 Streamlining the Code

The biggest component slowing down the code is the inner loop where the control

variates were being built. Because the control variates require the spot at every point in

32

time and the option is constantly hedging at every time interval, the code is required to

query a series of external functions 20 Billion times in its run. It also must calculate each

spot price and run a series of 18 calculations in sequence 20 Billion times, this is very slow.

Instead of having 200,000 simulations of a 10000 time step lookback option in a nested

loop of i=200,000 and j = 10,000, we can treat this as a 200,000 x 10,000 matrix. In doing

this, we can create a single object that we can perform operations on. While this may not

sound like it saves much time, the results are listed on the table below:

Naive Control Variate

Time (ms) 262.000084 2064.999819
Standard Deviation 167.50330525143718 156.09686440621482
Standard Error 3.7454877699811102 3.4904319988686368

Table 3.2: Simple Comparison of Vectorized Control Variates

The code is also significantly shortened (some other smaller optimization was also

performed for memory management but the table listed above is a result of only the vec-

torization). [5]

As can perhaps be seen, there are only MxN matrix operations being performed here.

The math is altered slightly to incorporate this change to linear algebra.

Initialize the matrices

newdt = float(expiry)/float(N) # Get the dt for the Weiner process

dW = np.sqrt(newdt)*np.random.normal(0,1,(M,N-1)) # Create the brownian motion

W = np.cumsum(dW, axis=1) # Set up the Weiner Process as a Matrix

time = np.linspace(0, expiry, N) # Set the discrete time space

tempA = np.zeros((M,1)) # Create an initial zero vector for the first column

#This is the Random aspects and the stochastic volatility

Wnew = np.c_[tempA,W] # Append the Weiner matrix to the zeros vector

Vt = self.sigma2

Vtn = np.abs(Vt + self.alphadt*(self.Vbar - Vt) + self.xisdt*np.sqrt(Vt)*Wnew)

tt = np.tile(np.array(time),(M,1)) # Create a matrix of time x M so we have

time for every iteration

33

Calculate the lookback option

assetpath1 = np.array(spot*np.exp((rate-.5*Vtn)*tt+np.sqrt(Vtn)*Wnew))

#European standard

assetpath2 = np.array(spot*np.exp((rate-.5*Vtn)*tt+np.sqrt(Vtn)*-Wnew))

#European standard

d1_St1 = EuroD1(assetpath1, strike, rate, self.dividend, sigma, self.tau)

d1_St2 = EuroD1(assetpath2, strike, rate, self.dividend, sigma, self.tau)

delta1 = (d1_St1)

delta2 = (d1_St2)

gamma1 = EuroGamma(d1_St1, assetpath1, sigma, self.tau)

gamma2 = EuroGamma(d1_St2, assetpath2, sigma, self.tau)

vega1 = EuroVega(d1_St1, self.tau, assetpath1)

vega2 = EuroVega(d1_St2, self.tau, assetpath2)

St1n = assetpath1

St1n = np.c_[assetpath1, assetpath1[:,-1]]

St2n = assetpath2

St2n = np.c_[assetpath2, assetpath2[:,-1]]

St1 = np.delete(np.c_[tempA, assetpath1],-1,1)

St2 = np.delete(np.c_[tempA, assetpath2],-1,1)

Vt = np.delete(np.c_[Vt+tempA, Vtn],-1,1)

Vtn = np.c_[Vtn, Vtn[:, -1]]

cv1, cv2, cv3 = 0,0,0

for i in range(len(St1n[0])):

cv1 = cv1 + delta1*(St1n - St1*self.erddt) + delta2*(St2n - St2*self.erddt)

cv2 = cv2 + gamma1*((St1n-St1)**2 - St1**2 *

(self.egam1*np.exp(Vt*self.dt)+self.egam2)) + \

34

gamma2*((St2n-St2)**2 -

St2**2*(self.egam1*np.exp(Vt*self.dt)+self.egam2))

cv3 = cv3 + vega1*((Vtn-Vt)-(Vt*self.eveg1+self.eveg2-Vt)) + \

vega2*((Vtn-Vt)-(Vt*self.eveg1+self.eveg2-Vt))

max_vals1 = np.array([max(assetpath1[i]) for i in range(0 , len(assetpath1))])

max_vals2 = np.array([max(assetpath1[i]) for i in range(0 , len(assetpath1))])

CT = .5*((max_vals1 - self.strike) + (max_vals2 - self.strike) +

self.beta1*cv1[:,-1] + self.beta2*cv2[:,-1] + self.beta3*cv3[:,-1])

3.5 Multiprocessing with CUDA

The following code (as well as a couple of small structural changes) is added in order

to have the gpu take the brunt of the calculations. We tell it to do a JIT (Just in Time)

compiling, the target of the compuations is the maxwell gpu. The python code is going to

be taking on very C like properties:

@cuda.jit(argtypes=(double[:], double, double, double, double, double[:],

double[:], double, double, double,

double, double, double))

def VectorizedMonteCarlo(spot, rate, sigma, expiry, N, M, strike, Vbar, dt, xi,

alpha, dividend, tau):

i = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x

The resulting speedups in the same calculations are significant, as we now achieve

381.01795 ms in the Control Variate, stochasitc volatility case.

3.6 Conclusions

We have seen the following from our work on the European Fixed Strike Lookback

Option in the table below. It is encouraging to see the speed differences from just the serial

optimization.

35

Naive Control Variate

Simple 412.100794134584 138241.19513435524
Streamlined, Optimized 262.000084 2064.999819
CUDA *Not Tested 381.01795

Table 3.3: Time Trial Results of European Lookback Option

From this we can see that there are real speed gains from the multiprocessing. However,

in order to see more gains, we will have to write the code to be more paralilizable. Right now

there is probably only 80 percent of the code that is able to be ported into a multiprocess.

There are ways to increase this to 90 -99 percent but there is a real development time to

realized gains tradeoff that we were unwilling to make.

36

Chapter 4

Other Examples

4.1 On Parasites

I choose to pull on some research that I have done to illustrate the point of GPU

speeds in complex computations. In this example, we look at a parasite that is a helminthic

infector. These are worms that have a complex life cycle and is a major public and health

concern in parts of the world. Parasite lifecycle begins as eggs are transmitted to snails via

mammal feces, the eggs hatch on the snail host and remain until the snail enters water.

Once the snail is in water and the newly hatched parasites are well enough incubated, they

turn into worms and leave the snail swimming up to the top of the water. These worms

wait until a mammal comes by to get a drink, or for large mammals such as humans, to

enter into the mammal through the pores of the skin. The parasite must then find its way

to the liver of the mammal and there it stays until it can mate and pass on more eggs. The

lifespan once situated can last several decades.

This is a slightly morbid example, but this illustrates the difficulty of modelling and

constructing a computational approach. This is a highly nonlinear problem further exasper-

ated by having drift terms within the water, the multitude of transmission vectors and the

sheer amount of moving components. However, this is not an paper about parasite diffusion

and control (please read my paper on that if you so wish) but on efficient computational

methods. The simple code is as follows:

#Discretization of initial distribution

x = []

for i in range(0,self.np-1):

newrange = -self.x1 + i*self.dx

x.append(newrange)

37

x = array(x)

xlist.append(x)

I0 = array([0] * 255)

H0 = []

H0_element = array([abs(i) for i in x])

for i in H0_element:

if i <=.25:

H0_i = 20 * 1

H0.append(H0_i)

else:

H0.append(0)

H0 = array(H0)

K = []

for i in x:

equation =

math.exp(-1*(i-self.v)**2/(4*self.D))/math.sqrt(4*math.pi*self.D)

K.append(equation)

K_new = [i/(self.dx*sum(K)) for i in K]

fK = array(fft(K_new).T*self.dx)

for j in range(0, self.nsteps):

fI0 = array(fft(I0))

I0 = array(fftshift(ifft(fK*fI0)).real)

38

H = (1-self.mu)*H0+c*I0

I = (1-delta)*I0+self.b*((self.s-I0)*H0**2)/(1+H0)

for i in range(128, len(x)):

if H[i] >= Hcrit:

self.critvalue.append((i,j))

self.critvalueH.append(j)

self.critvalueX.append(i)

As can be readily seen, we must account for large matrices that have temporal and

spatial components as well as a parasite density component. We take multiple fourier

transforms of these matrices in order to approximate the equations of motion that governs

the various aspects of time, space and density. (Incidently, this is not so different from the

cannonical heat diffusion equation.)

4.2 On Asian Options

An asian option is another example of a path dependent option. It takes the average

price accross its life as the final value. We can use control variates to pin down the price of

the derivative with greater accuracy, of course this is a little expensive in terms of computing

power. The GPU can speed up this process significantly.

def BlackScholesCall(S0, X, r, sigma, T, N, delta):

d1 = (log(S0/X)+(r - deltas + .5*sigmas*sigmas)*T) / (sqrt(T)*sigmas)

d2 = d1-sigmas*sqrt(T)

Gtrue = (S0*exp(- deltas * T)* norm.cdf(d1)) - (X*exp(-r*T)*norm.cdf(d2))

return Gtrue

Gtrue = BlackScholesCall(S0, X, r, sigma, T, N, delta)

def CallPayOff(S, X):

return np.maximum(S - X, 0.0)

39

def PutPayOff(S, X):

return np.maximum(X - S, 0.0)

def MCAsianCall(S0, X, r, sigma, T, N, runs):

Ct = np.zeros(runs)

Ctg = np.zeros(runs)

Cta = np.zeros(runs)

St = np.zeros(N+1)

nudt = (r - 0.5 * sigma * sigma) * dt

sidt = sigma * sqrt(dt)

for i in range(runs):

z = norm.rvs(size=N)

St[0] = S0

for j in range(1, N+1):

St[j] = St[j-1] * exp(nudt + sidt*z[j-1])

#Do A + (Gtrue - Gsim)

Ct[i] = CallPayOff(St[N], St.mean())

Ctg[i] = CallPayOff(St[N], gmean(St))

Cta[i] = Ct[i] + Gtrue - Ctg[i]

#Add standard error, find the calculation in chapter 4

linreg = reg(Ct[i],[Ctg[i]])

SD = sqrt((Ctg[i] - Ct[i]*Ct[i] / runs) * exp(-2*r*T) / (runs-1))

SE = SD / sqrt(runs)

callPrc = Cta.mean() * exp(-r * T)

print linreg, SE

return callPrc

40

4.3 Results of GPU computing

We see that even in complex cases where not as much of the code is able to easily be

ported into a parallel interface, we can realize the significant speed-ups.

Serial CUDA

Parasite Dispersal 6578.9810852096 1.008998716854
Asian Option 3.01984951654 .6401605467452

Table 4.1: Other examples of CUDA speedup

41

Chapter 5

Conclusions

There are some interesting findings in the work that was conducted. We first note

that the speed we realize is largely dependent on how well we optimized the code before

sending it into a GPU. We also find that Once written, multiprocessing accross a GPU

with 1500 cores at its disposal largely nullifies the speed advantages between programming

languages. There is inconsequential difference (depending on who you talk to) between the

C++ AMP and NumbaPro Cuda libraries, but the development time overhead and bug fix

is significantly higher in the C++ world. However, if one does not have access to a GPU

of this spec, the results may vary. As a test, we have found that in just multiprocessing /

multithreading tests using the CPU, C++ is vastly superior in performance.

With the seemingly simple implementation of GPU programming coupled with the

vast speed increases that it provides, we cannot recommend the python-cuda approach

more heavily. We suspect that Cython-Cuda may provide an even greater speed increase

and will leave this as a future work.

42

References

[1] Les Clewlow and Chris Strickland. Implementing Derivatives Models. John Wiley Sons,
West Sussex PO19 8SQ, England, 1998.

[2] Continuum Analytics. Introduction to python gpu programming with numba and num-
bapro, 2014.

[3] Ryan Garvey. Latency cost and information: Does speed matter for all market partici-
pants?residual vector quantizers with jointly optimized code books. Journal of Trading,
7:62–73, 2012.

[4] Robert L. McDonald. Derivatives Markets. Addison Wesley, 75 Arlington Streeet, Suite
300 Boston, MA, 1998.

[5] Stack Overflow - Christian Sarofeen. Cuda python gpu numbapro 3d loop poor perfor-
mance, 2015.

[6] Stack Overflow - Joe. Python gpu programming, 2012.

	Efficient Parallel Approaches to Financial Derivatives and Rapid Stochastic Convergence
	Recommended Citation

	Abstract
	Public Abstract
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Significance
	Background
	Transistor Dynamics and Quantum Effects
	Multiprocessing
	The beautiful solution: GPU programming

	Language Barriers
	Initial Considerations and Benchmarks
	Black Scholes as a Test model
	Testing Serial Processes
	Simple Serial C++
	Simple Serial Python
	Simple Serial Matlab
	Simple Serial Java
	Serial Task Conclusions

	Multiprocessed Code
	CPU only with Numba
	CUDA with Python
	CUDA with C++
	Limitations of Matlab
	Preliminary Multiprocessing Results

	Inherent Difficulties

	Lookback Call Option Under Stochastic Volatility
	A Quick Introduction
	The First approach
	The Control Variates
	Stochastic Volatility

	The initial results:
	Streamlining the Code
	Multiprocessing with CUDA
	Conclusions

	Other Examples
	On Parasites
	On Asian Options
	Results of GPU computing

	Conclusions
	References

