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ABSTRACT

An Integrated Approach to Exploit Linkage Disequilibrium

For Ultra High Dimensional Genome-Wide Data

by

Michelle Carlsen, Master of Science

Utah State University, 2015

Major Professor: Dr. Guifang Fu
Department: Mathematics and Statistics

Genome-wide data with millions of single nucleotide polymorphisms (SNPs) can

be highly correlated due to linkage disequilibrium (LD). The ultra high dimensionality

of big data brings unprecedented challenges to statistical modeling such as noise ac-

cumulation, curse of dimensionality, computational burden, spurious correlation, and a

processing and storing bottleneck. The traditional statistical approaches lose their power

due to p >> n and the complex correlation structure among SNPs. In this article, we

propose an integrated DCRR approach to accommodate the ultra high dimensional-

ity, joint polygenic effects of multiple loci, and the complex LD structures. Initially, a

distance correlation (DC) screening approach is used to extensively remove noise, after

which LD structure is addressed using ridge penalized multiple logistic regression (LRR)

model. The false discovery rate, true positive discovery rate, and computational cost

were simultaneously assessed through a large number of simulations. The binary trait

of Arabidopsis thaliana, hypersensitive response to the bacterial elicitor AvrRpm1,was

analyzed on 84 inbred lines (28 controls and 56 cases) and 216,130 SNPs were analyzed

and significant SNPs were detected. Compared to previous SNP discovery methods im-

plemented on the same dataset, the dCRR approach successfully detected the causative

SNP while dramatically reducing spurious assocoiations and computational time.
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PUBLIC ABSTRACT

An Integrated Approach to Exploit Linkage Disequilibrium

For Ultra High Dimensional Genome-Wide Data

by

Michelle Carlsen, Master of Science

Utah State University, 2015

Major Professor: Dr. Guifang Fu
Department: Mathematics and Statistics

This paper presents improved methods for analysis of genome-wide association

studies in contemporary genetic research. Thanks to current sequencing methods, half

to one million single-nucleotide polymorphisms (SNPs) can be feasibly generated within

any given population, and there are often correlations among SNPs that cause truly

causative loci to be confounded by correlated neighboring loci. Additionally, complex

traits are often jointly affected by multiple genetic variants with each having small or

moderate individual effects. To address these issues in genome-wide association studies,

we propose a novel statistical approach, DCRR, to detect significant associations between

large numbers of SNPs and phenotypes. We applied DCRR on simulations of that

varied in marker allele frequencies, linkage disequilibrium, and the numbers of SNPs

considered; and we analyzed a previously published Arabidopsis thaliana dataset of an

AvrRpm1 binary trait. Our distance correlation was effective in ranking SNPs while the

logistic ridge regression detected causative SNPs without including spurious correlated

neighbors. Our results indicate that DCRR is an effective and reliable method that can

improve the accuracy and efficiency of large association datasets.

(38 pages)
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

With recent developments in high-throughput genotyping techniques and dense

maps of polymorphic loci within genomes, an ultrahigh dimension of SNPs (typically

more than half a million) is increasingly common in contemporary genetics, computa-

tional biology, and other fields of research [1, 6, 10, 74, 91]. Despite the fact large-scale

genome-wide association studies (GWAS) provide great power to unravel the genetic eti-

ology of complex traits by taking advantage of extremely dense sets of genetic markers

[8, 9, 79, 85], they bring concomitant challenges in computational cost, estimation accu-

racy, statistical inference, and algorithm stability [24, 27]: Firstly, the number of SNPs

p, in units of hundreds of thousands or millions, far exceeds the number of observations

n, in units of hundreds or thousands. Statistically, when the number of predictors is

much larger than the number of samples, commonly referred to as “small n big p“, the

power of many traditional statistical models is disabled [18, 25]. The unique problems

that belong only to ultrahigh dimensional big data, such as storage bottleneck, noise

accumulation, spurious correlation, incidental endogeneity, and so on, are pointed out

by Fan et al. 2014 [24]. Computationally, the combinatorial explosive search space

grows exponentially with the number of predictors, called the “Curse of Dimension-

ality”. Secondly, most complex traits are mediated through multiple genetic variants

each conferring a small or moderate marginal effect with low penetrance on the traits,

which obscures the individual significance of each variant [65, 75, 87, 88]; Thirdly, mul-

ticollinearity grows with dimensionality. As a result, the number and extent of spurious

associations between genetic loci and phenotype increases rapidly with increasing p due

to non-causal SNPs highly correlated with causative ones [23, 24, 26]

Linkage Disequibrium (LD), the genetic term of nonrandom association of alleles at

nearby loci, may be caused by frequent recombination, physically linked genetic variants,

population admixture, or genetic drift [5, 15, 16, 30, 31, 34, 61, 66, 72, 82]. LD is one of
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the most important, extensive, and widespread features in genomes, with approximately

70−80% of genomes having regions of high LD [15, 30, 61, 80, 82]. Additionally the LD

patterns among the whole genome vary, with the average length of 60-200 kb in general

populations [50, 61, 82]. Excessive LD may hinder our ability to detect any causative

genetic variants truly influencing the phenotype. Strong LD existing among the loci of

extremely dense panels means that the correlated SNPs in the vicinity share substantial

amounts of information and introduce heterogeneity that can partially mask the effects

of other SNPs. Strong LD leads to inflated variance, incorrect statistical inferences,

inaccurate tests of significance for the SNP, unstable parameter estimates, diminished

significance for the truly influential SNP, and false scientific identifications [7, 11, 14, 69].

Many statistical models have been used to assess the association between genetic

variant and phenotype in GWAS. The prevailing strategies of GWAS focus on single-

locus models (for example logistic regression with a single SNP as the predictor, Cochran-

Armitage test for trend [2], or Fisher’s exact test) which assess the potential association

of each SNP in isolation from the others [4, 17, 44, 47–49, 60, 63, 73, 86]. Although widely

used for its simplicity, the single-locus model is inefficient with limited power because it

neglects the combined multiple joint effects of SNPs, inappropriately separates SNPs in

LD, fails to differentiate potentially causative from non-causative variants, struggles with

multiple correction due to the extremely large number of simultaneous tests involved,

and yields both high false-positive and false-negative results [6, 13, 58, 59]. The standard

multiple regression approaches, albeit accommodating the joint effects of multiple SNPs

and allowing for control of small LD, breaks down when moderate-to-strong LD exists

among the SNPs and are infeasible when the number of SNPs is larger than the number

of observations [19, 20, 37, 38, 75]. In addition, multiple regression models involve a large

number of degrees of freedom and lack parsimony. The conditional logistic regression

was proposed to accommodate the LD effects but, it does not allow for the simultaneous

quantification of each SNP individually along with the combined effects of other SNPs

[89]. Principal component analysis (PCA) or other clustering methods group SNPs

according to their LD patterns. However, these approaches may miss the truly causative

variant, undervalue the complexity of LD, and not allow for the interpretation of the

individual significance of each SNP. The Partial Least Squares (PLS) method has also

been used to address the correlation among predictors, but the theoretical properties of

PLS (such as mean squared error) have not been established as thoroughly as in other
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approaches [28, 43].

Ridge regression (RR) [46], fitting a penalized likelihood with the penalty defined

as the sum of the square of each parameter estimate, was used extensively to deal with

the situation that the predictors are highly correlated and also handle the situation when

the number of predictor exceeds the number of subjects [13, 29, 36, 42, 46, 57, 58, 75,

84, 84, 94]. The RR has been shown to be preferable to the Ordinary Least Square

(OLS), PCA, or other approaches in many contexts and achieves the smallest prediction

error among a number of regression approaches after head-to-head comparisons [28].

Through several simulations with varied LD strength, allele frequency, and effect size,

Malo et al. compared the performance of RR, standard multiple regression, and single-

locus regression for the continuous phenotype. They reported that RR performs best in

every combination and the advantages of RR are more obvious when the LD strength is

strong. They also reported that the single-locus regression was the worst among three

approaches because it failed to differentiate causative SNPs from those spurious SNPs

that are merely in LD with the causative SNPs. Sun et al. identified a new genetic locus

associated with a continuous trait, anti-CCP, by RR that was not detected by single-

locus model [75]. Cule et al. extended the test proposed by Halawa and EI Bassiouni

[39] and proposed an asymptotic test of significance forRR, and demonstrated that the

test is comparable to permutation test but with much reduced computational cost for

both continuous and binary phenotype [13].

Though RR is powerful for addressing correlation and multiple joint effects, it is

extremely time consuming and is only designed for a moderate number of predictors (i.e.

p > n but not p >> n). Many approaches that are powerful for moderate dimension

are either computationally infeasible or perform no better than random guessing for

ultrahigh dimensional data due to noise accumulation;and RR is no exception [21, 24, 41].

The signal-to-noise ratio in GWAS is often very low, with only a small portion of SNPs

contributing to the phenotype and the number of non-causative and causative SNPs

showing great disparity. In light of these sparsity assumptions, feature screening has

proven to be highly effective and pivotal for its speed and accuracy to handle ultrahigh

dimensional data [22, 26, 40, 55, 56, 92]. Feature screening forcefully filters a large

amount of noise and decreases the original large-scale to moderate-scale, overcomes

noise accumulation difficulties, greatly improves estimation accuracy, and dramatically

reduces the computational burden. The distance correlation screening approach (DC)
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has an additional agreeable theoretical sure screening property: all truly important

predictors can be selected with the probability tending to 1 as the sample size diverges

to∞ [56]. Although the feature screening approach is powerful in handling the ultrahigh

dimension data, it cannot provide any closer analysis such as parameter estimation and

significance tests for each predictor.

In this article, we propose an integrated DCRR approach designed for the case-

control cohort whole genome data, with a binary phenotype and a half to one million

of SNPs. The DCRR first extensively filters noise with a loose threshold using DC, and

then intensively examines the significance of the remaining informative SNPs by ridge

penalized multiple logistic regression (LRR). DCRR integrates the benefits of both DC

and RR, while avoiding the drawbacks of both approaches [60]. It is computationally

efficient, reliable, and flexible, with a goal of accommodating LD between variants at

different loci and hence differentiating the causative variants from the spurious variants

that are in LD with the causative ones. It quantifies the significance of each SNP

individually as well as accounts for the joint effects of all other SNPs in a multivariate

sense, and stabilize the parameter estimates in the presence of strong LD and ultrahigh

dimension of SNPs in GWAS. The traditional RR involving a O(np2+p3) calculation [43],

which needs an intractable amount of time when p approaches one million. The DCRR

approach that we proposed dramatically decreases the calculation burden to O(p+ n3),

with a substantial saving for ultra high dimension p >> n and the computational speed

mainly depends on the number of observations rather than the number of SNPs.

We demonstrate that our approach is uniformly and consistently powerful under a

wide spectrum of different simulations of minor allele frequency (MAF), LD strenght,

and the number of SNPs, while controlling the false discovery rate (FDR) at less than

0.05, via simulation. We compare our approach with the popular single-locus Cochran-

Armitage model and the traditional LRR model, and demonstrate that the stronger the

LD or the larger the dimension, the better performance of the DCRR approach; which

power remains high even for low MAF. To further validate our approach, we analyze a

real binary whole genome Arabidopsis thaliana data.
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CHAPTER 2

Materials and Methods

2.1 Measurement of LD

Consider two biallelic loci in the same chromosome, with A/a representing the

alleles of the first loci and B/b representing the alleles of the second loci. These two

biallelic loci form four possible haplotype, AB,Ab, aB, and ab. Let f(A), f(a), f(B), and

f(b) denote the corresponding allele frequencies, and f(AB), f(Ab), f(aB), and f(ab)

denote the corresponding haplotype frequencies. LD, the non-independence structure

of the alleles for a pair of polymorphic loci at a population level, is generally measured

as D = f(AB)− f(A)f(B) = f(AB)f(ab)− f(Ab)f(aB) [54]. A D value close to zero

corresponds to no LD. Although D quantifies how much haplotype frequencies deviate

from the equilibrium state, it is highly dependent on allele frequencies and hence difficult

to compare for different regions. Therefore, the normalized measure, D′ = D/Dmax is

more widely used by removing the sensitivity to allele frequencies [33, 51, 54, 64], where

Dmax =


max{−f(A)f(B),−f(a)f(b)} if D < 0

min{f(A)f(b), f(a)f(B)} if D ≥ 0

The range of D′ is between -1 and 1, with |D′| = 1 corresponding to complete LD and

D′ = 0 corresponding to no LD. Another widely used measure of LD is the statistical

coefficient of determination, r2 [5, 33, 51, 64, 67, 82], defined as

r2 =
D2

f(A)f(a)f(B)f(b)
.

Mueller reviewed the different properties and applications of these two measures of LD

[64]. The statistical significance test on D is performed by the Pearson’s independence

test for the 2×2 contingency table generated by the possible combinations of the alleles
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of a pair loci, which is also equal to

X2 =
nD2

f(A)f(a)f(B)f(b)
= nr2, (2.1)

following a χ2 distribution with 1 degree of freedom [51, 83, 90]

2.2 Distance correlation sure independence screening

The main framework of the DCRR approach is to first extensively remove the

noise via a distance correlation based feature screening approach, and then intensively

address the correlation structure using the ridge penalized multiple logistic regression

model. Finally the significance test of each individual SNP is performed.

Let y be the binary phenotype with 1 representing case and 0 representing control.

Let X = (X1, X2, . . . , Xp)
T be the genotype vector of all SNPs, where p is the number

of SNPs. For each biallelic locus, the three possible genotypes can be coded as 0 (for

aa), 1 (for Aa), and 2 (for AA).

The dependence strength between two random vectors can be measured by the

distance correlation (Dcorr) [76]. Szekely et al. showed that the Dcorr of two random

vectors equals zero if and only if these two random vectors are independent. The distance

covariance is defined as

dcov2(y,X) =

∫
R1+p

||φy,X(t, s)− φy(t)φX(s)||2 w(t, s)dtds, (2.2)

where φy(t) and φX(s) are the respective characteristic functions of y and X, φy,X(t, s)

is the joint characteristic function of (y,X), and

w(t, s) = {c1 cp ||t||2 ||s||1+pp }−1,

with c1 = π, cp = π(1+p)/2/Γ{(1 + p)/2} and || · || stands for the Euclidean norm. Then

the Dcorr is defined as

dcorr(y,X) =
dcov(y,X)√

dcov(y,y) dcov(X,X)
. (2.3)

From Equation (2.2) and (2.3), we notice that the DC approach does not assume any

parametric model structure and works well for both linear and nonlinear association. In
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addition, it works well for both categorical and continuous data.

Szekely et al. gave a numerically easier estimator of ˆdcov
2
(y,X) as

ˆdcov
2
(y,X) = Ŝ1 + Ŝ2 − 2Ŝ3. (2.4)

Let yi and Xi denote a random sample of the populations y and X, respectively. Then

Ŝ1 =
1

n2

n∑
i=1

n∑
j=1

||yi − yj || ||Xi −Xj ||p

Ŝ2 =
1

n2

n∑
i=1

n∑
j=1

||yi − yj ||
1

n2

n∑
i=1

n∑
j=1

||Xi −Xj ||p,

Ŝ3 =
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

||yi − yk|| ||Xj −Xk||p

(2.5)

Finally, the point estimator ˆdcorr(y,X) can be estimated by Equation (2.3), (2.4), and

(2.5).

Let XC = {Xj |Xj , j = 1, . . . , d, is a causative SNP, i.e. truly associated with the

phenotype} and let XN = {Xk|Xk, k = 1, . . . , p−d, is a noise SNP that is not relevant to

the phenotype}. The idea of feature screening is to filter XN and keep all true causative

SNPs in the subset XC . By decreasing the values of ˆdcorr(y,Xi), i = 1, . . . , p, we are able

to rank the importance of SNPs from the highest to lowest [56], with XC located in front

of XN . Li et al. theoretically proved that the DC feature screening has an additional

helpful theoretical sure screening property, all truly important predictors can be selected

with probability tending to one as the sample size diverges to∞, if the tuning parameter

d is sufficiently large. The watershed between importance and unimportance, i.e. value

of d, like other tuning parameters, is not trivial to determine. Li et al. suggested either

set d = [n/logn] ([·] is the integer part) or choose the top d SNPs such that ˆdcorr(y,Xd)

is greater than a prespecified constant.

Although the DC approach is very powerful at filtering noise and recognizing the

truly important SNPs from millions of candidates, it may neglect some important SNPs

which are individually uncorrelated yet jointly correlated with the phenotype, or it may

highly rank some unimportant SNPs that are spuriously correlated with the phenotype

due to their strong LD with other causative SNPs. To overcome these shortcomings,

we use iterative distance correlation (IDC) to address possible complex situations that
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can exist. The main difference between DC and IDC is that DC finalizes the first d

members of XC in a single step but IDC builds up XC gradually over several steps, i.e.

XC = XC1
⋃
XC2

⋃
. . .

⋃
XCk, with d = d1 + d2 + . . . + dk, where XCi stands for the

members selected at ith step and di is the size of each set XCi, for i = 1, . . . , k. The

main idea of IDC is to iteratively adjust residuals obtained from regressing all remaining

SNPs onto the selected members contained in XC . Regressing unselected on selected and

adjusting residuals effectively breaks down the original complex correlation structure

among SNPs. To be more specific, the iterative steps of IDC can be summarized as [93]

Step 1: Choose the first d1 members of XC (i.e. XC = XC1) using DC to rank all

candidates of X for y, where d1 < d.

Step 2: Define Xr = {In−XC(X
T
CXC)

−1XT
C }XC

C , where XC
C is the complement set

of XC . Then choose the second d2 members into XC (i.e. XC = XC1
⋃
XC2) using DC

to rank all candidates of Xr for y, where d1 + d2 ≤ d.

Step 3: repeat step 2 until the size of XC reaches the pre-specified number d.

Whether or not these di at each step are equal ehibits a negligble effect on the

results, but their magnitudes will appreciably affect results. Theoretically, smaller di will

yield better results, but also cause a dramatically lower computational speed. Therefore,

we need a combination of DC and IDC to accommodate the computational cost and

model performance simultaneously.

2.3 Ridge penalized logistic regression

For LRR, y is still the binary phenotype and XC being the selected important SNPs

with moderate dimension (d = [n]). For simplicity of notation, we still use X to denote

XC . To address the correlation among SNPs, stabilize the model estimates, and test

for significance of each individual SNP while accommodating the joint effects of others,

we impose a ridge penalized logistic multiple regression model [53, 78]. In traditional

logistic regression, the probability of case is related to predictors by the inverse logit

function

p(yi = 1|X) =
eXiβ

1 + eXiβ
.

The parameter vector βλ of ridge logistic regression can be estimated by maximizing the

log likelihood subject to a size constraint on L2 norm of the coefficients via the Newton
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- Raphson algorithm

l(X, βλ) =

n∑
i=1

yi log[p(yi = 1|X)] +

n∑
i=1

(1− yi) log[1− p(yi = 1|X)]− λ||β||2.

The first derivative of the penalized likelihood yields

β̂λ = (XTWX + 2λI)−1XTWZ,

where W = diag[p̂(yi = 1|X)(1− p̂(yi = 1|X))], and Z is an n× 1 vector with elements

zi = logit[p̂(yi = 1|X)] +
yi − p̂(yi = 1|X)

p̂(yi = 1|X)(1− p̂(yi = 1|X))
.

The tuning parameter λ controls the strength of shrinkage of the norm of β.A few

methods have been proposed to choose the tuning parameter λ [32, 45, 52]. One common

approach is the ridge trace [46]. The ridge trace is a plot of the parameter estimates

over increasing λ values. The ideal λ is where all parameter estimates have stabilized.

A suitable choice of λ > 0 introduces a little bias but decreases the variance and hence

minimizes the mean squared error [53, 78]

MSE(β̂) = Tr[V ar(β̂)] + [bias(β̂)]T [bias(β̂)].

The asymptotic variance of β̂λ can be derived as

V ar(β̂λ) = {XTWX + 2λI}−1{XTWX}{XTWX + 2λI}−1.

2.4 Hypothesis Testing

The significance of each individual SNP, while accounting for the joint and corre-

lated effects of other SNPs, is assessed via the hypothesis test

H0j : βλj = 0 vs H1j : βλj 6= 0, for j = 1, . . . , d. (2.6)

The corresponding ‘non-exact’ test statistic is

T λ =
β̂λj

se(β̂λj )
.
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Halawa and Bassiouni investigated this ‘non-exact’ t-type test under two different λs via

simulation of 84 different models and concluded that it has considerably larger power

in many cases, or slightly less power in a few cases, compared to the test of traditional

regression estimates via maximum likelihood [39]. Cule et al. extended this test from a

continuous response to the binary response and claimed that the asymptotic standard

normal distribution of the test statistic T λ under the null performs as well as that of

permutation test [13]. Therefore, we also assume T λ ∼ N(0, 1) under the null and use

the standard normal distribution to perform the significance test of each SNP.

Since multiple SNPs are usually tested simultaneously, and the dimension of tests

is small or moderate after the feature screening procedure (d << p), we use the simplest

Bonferroni correction to control the family wise error rate. Whereas the traditional

single-locus model use p for multiple correction but we use d instead because the actual

number of tests involved is d. We set the SNPs who are filtered out by DC to have

p-value of 1 because they are not informative and are not considered for significance

testing.
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CHAPTER 3

Numerical Simulations

To assess the performance of our approach, we conducted a large number of sim-

ulations to obtain the power and type I error rates under varied combinations of the

number of SNPs (p), correlation strength (ρ), and minor allele frequency (MAF). We

also compare our DCRR approach with the most popular single-locus model, Cochran -

Armitage trend test (CA), and the traditional LRR approach.

The correlated haplotype vector was simulated from a multivariate normal distribu-

tion with the mean vector randomly generated from Unif(0, 5) and covariance structure

designed as AR(1). The variance was fixed to be 1 and the correlation parameter ρ

was used to control the strength of LD among SNPs. Next, the individual allele of

each haplotype was generated by dichotomizing the continuous haplotype values based

on the MAF, and the corresponding percentile obtained from the cumulative density

function of the marginal normal distribution of each SNP. For each SNP, we generated

two independent haplotypes and the sum of each pair of haplotypes was used to create

the genotype, which yields the n× p dimensional matrix X [81]. To clearly describe all

possible effects and roles of each SNP, we introduce four definitions [62]

• rSNP (risk SNP): a truly causative SNP that functionally affects the phenotype.

• LD.rSNP: a non-causative SNP that has no effect on the phenotype but is in LD

with rSNP.

• nSNP: a noise SNP that is neither important for the phenotype nor in LD with

any rSNP.

• LD.nSNP: a nSNP that has no effect on the phenotype but is in LD with other

nSNPs
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From the index set of the SNPs, S = {1, . . . , p}, we randomly chose 5 rSNPs. Due to

the property of AR(1), the SNPs in the closest neighborhood of these rSNPs were the

LD.rSNP with strongest correlations with the rSNPs and hence substantially increased

the difficulty in detecting the true rSNPs, which affect both type I error and power.

Among the S\rSNP set containing all p− 5 nSNPs, those far away from these 5 rSNPs

had negligible LD with the rSNP and acted as noise. The other nSNPs located in

close proximity to each nSNP were LD.nSNP and this correlation among noise had the

potential to act as confounders of the rSNPs.

The binary phenotype was generated based on the genotype matrix X and the effect

size. Setting the β values of all 5 rSNP at 1, and all other SNPs as 0, the probability of

case was computed as

logit[p(yi = 1|X)] = Xβ + ε,

where ε ∼ N(0, 1).

The four criteria used to evaluate the performance of the models are defined as

• Strict Power: the percentage of replications where all 5 rSNPs were simultane-

ously rejected,

• Power: the proportion of rSNPs rejected among all simulation replicates of rSNPs,

• Type I Error: the proportion of p−5 LD.SNPs, nSNPs, and LD.nSNPs rejected

among all simulation replicates of these non-causative SNPs,

• Time: total time for all simulation replicates to be completely finished for each

different setting and each different approach.

3.1 Simulation design 1

We set p = 10 (signal/noise=2), 100 (signal/noise=20), 1, 000 (signal/noise=200), and

10, 000 (signal/noise=2,000) to consider small, medium, high, and ultra high dimen-

sion of SNPs. We also controlled the strength of LD from small to large as ρ =

0.2, 0.4, 0.6, or, 0.8. A total of 48 combination of MAF (MAF = 0.1, 0.3, or, 0.5),

ρ, and p provided a comprehensive assessment on how our model performed under dif-

ferent conditions. We performed 100 replications for 40 of the simulations, but only 10

replicates for the last 8 settings when p = 10, 000 and MAF=0.3, or 0.5, due to the
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extremely lengthy computational time of LRR. Different λ values were chosen according

to different data requirements based on the ridge trace plots. After λs were determined,

we used exactly the same λ values to compare both DCRR and LRR for the same data

to ensure the comparisons were accurate. During the DC selection procedure, we chose

d = 8 for p = 8, d = 20 for p = 100, and d = n/ln(n) ' 80 for p = 1, 000 and 10, 000.

To minimize other possible factors, equal numbers of case and control were generated

and sample size n fixed to be 500.

Simulation results of the 48 settings are summarized in Table 3.1 (MAF=0.1),

Table 3.2 (MAF=0.3), and Table 3.3 (MAF=0.5). When MAF=0.3 or 0.5, all three

approaches achieve satisfactorily high power and strict power for any dimension of SNPs

and any LD strength(Figure 3.1). However, the high power of CA came at the cost of

extremely inflated type I error, which indicates that the single-SNP model neglected the

correlations and joint effects among SNPs. Comparing the three tables simultaneously,

we noticed that the type I error of CA kept increasing as ρ increases from 0.2 to 0.8

consistently for any MAF and p. In particular, when p = 10 and ρ = 0.8, the false

discovery rate of CA was as large as 100% for all three different MAF values. Compared

to CA, the type I errors of LRR and DCRR did not show an increasing trend as ρ

increased, and almost all were below α = 0.05.

When MAF=0.1, the possible range of D spanned from 0.01 to 0.81 and hence

greatly increased the difficulty level of SNP being detected. As a result, when comparing

the power and strict power of MAF=0.1 with the other two MAF values, we noticed

that both power and strict power exhibited the smallest value in MAF=0.1 for all three

approaches (Figure 3.1). In particular, when the signal/noise ratio or dimension of SNPs

increased dramatically, the strict power of MAF=0.1 severely dropped for both CA and

LRR for any given ρ (Figure 3.2). Indeed, the strict power of LRR and CA approximated

as 40% for p = 10, 000 and 70% for p = 1, 000. However, the strict power of DCRR

more than doubled compared to that of CA and LRR for any ρ when MAF=0.1 and

p = 10, 000 (Figure 3.1 and Figure 3.2). Figure 3.3 displays the comparisons of strict

power (in orange), power (in purple), and type I error (in light blue) simultaneously for

all three approaches and four dimensions when ρ = 0.8. The strict power and power of

CA and LRR decreased dramatically as p increased, but those of DCRR are relatively

stable at a value above 90%. Additionally, the type I error of CA was as high as 100%

for p = 10 while all other approaches had type I error rates less than 5%. The type I
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error decreased as p increased for each approach because the ratio of n.SNP to LD.rSNP

was increasing.

Of the 48 combinations of varied MAF, LD strength, and dimension, the DCRR

method performed consistently and uniformly more powerful than the other approaches,

and the superiority of DCRR was striking under harsh conditions such as ultra high

dimensions or complex correlations. Among the 48 simulated comparisons there were

only two exceptions; when p = 10, ρ = 0.8, and MAF=0.3 or 0.5, the power and strict

power of DCRR was inferior to the other two approaches. This accidental drop was

caused by one causative r.SNP that was not successfully selected from the top 8, but

rather ranked 9th or 10th. By choosing the tuning parameter d large enough, we were able

to avoid this type of error. Since the DC feature screening approach is chiefly designed

for ultra high dimensional cases, a dimension as low as 10 did not leave sufficient space

for DC to select freely. We believe that the power of DCRR will be manifested for large

dimension problems, as occurred in the other 46 simulation comparisons.

We recorded the total computational time of each approach, completing 100 sim-

ulation replicates for each fixed simulation setting. From Figure 3.4, we noticed that

the computational cost of DCRR dramatically decreased compared to LRR as dimen-

sion increased. The computational benefits of DCRR were manifested at p = 1, 000

and became more remarkable for p = 10, 000. The computational time of DCRR was

similar to that of CA, which indicates that DCRR does not increase the computation

cost despite considering multiple joint effects and correlation effects that were neglected

by the single-SNP models.
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Table 3.1: Simulation results for MAF = .1

p = 10 p = 100
CA LRR DCRR CA LRR DCRR

ρ = .2

Strict Power 1 1 1 0.91 0.91 0.97
Power 1 1 1 0.982 0.982 0.994
Type1 0.016 0.014 0.016 0.00032 0.00032 0.0026
Time 16.34s 11.79s 78.89s 2.4m .50m 6.52m

ρ = .4

Strict Power 1 1 1 0.93 0.93 0.98
Power 1 1 1 0.984 0.984 0.996
Type1 0.05 0.036 0.04 0.0022 0.0022 0.0068
Time 16.82s 24.20s 158.46s 2.44m .54m 6.54m

ρ = .6

Strict Power 1 0.98 0.99 0.94 0.94 0.99
Power 1 0.996 0.998 0.988 0.988 0.998
Type1 0.39 0.01 0.02 0.0088 0.0085 0.0195
Time 15.96s 13.48s 80.45s 2.59m .50m 7.81m

ρ = .8

Strict Power 1 0.94 0.98 0.94 0.96 0.99
Power 1 0.988 0.996 0.988 0.992 0.998
Type1 0.99 0.018 0.044 0.0546 0.0287 0.0522
Time 16.17s 14.58s 79.49s 2.6m .59m 7.12m

p = 1000 p = 10,000
CA LRR DCRR CA LRR DCRR

ρ = .2

Strict Power 0.74 0.72 0.92 0.37 0.57 0.99
Power 0.944 0.94 0.984 0.832 .896 0.998
Type1 0.00004 0.00005 0.0005 0.000007 0.000004 0.00049
Time 48.48m 35.96m 73.91m 95.71h 422.41h 107.08h

ρ = .4

Strict Power 0.68 0.67 0.91 0.40 0.48 0.91
Power 0.93 0.93 0.982 0.836 0.846 0.982
Type1 0.00003 0.0003 0.0005 0.000004 0.000006 0.0005
Time 47.34m 33.68m 69.86m 97.87h 443.53h 111.42h

ρ = .6

Strict Power 0.77 0.78 0.96 0.39 0.42 0.93
Power 0.95 0.952 0.992 0.834 0.874 0.986
Type1 0.00016 0.0002 0.001 0.000009 0.00001 0.00051
Time 48.71m 32.50m 72.18m 97.57h 420h 105h

ρ = .8

Strict Power 0.68 0.69 0.89 0.40 0.43 0.93
Power 0.932 0.942 0.978 0.856 0.854 0.986
Type1 0.0012 0.0011 0.0037 0.00003 0.000036 0.00073
Time 53.02m 33.55m 69.52m 94.93h 379.62h 64.88h
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Table 3.2: Simulation results for MAF = .3

p = 10 p = 100
CA LRR DCRR CA LRR DCRR

ρ = .2

Strict Power 1 1 1 1 1 1
Power 1 1 1 1 1 1
Type1 0.046 0.028 0.034 0.00052 0.0053 0.0034
Time 18.04s 12.41s 78.30s 2.43m .58m 7.56m

ρ = .4

Strict Power 1 1 1 0.99 0.99 0.99
Power 1 1 1 0.998 0.998 0.998
Type1 0.228 0 0.014 0.0086 0.0083 0.018
Time 17.93s 13.14s 80.23s 2.40m .59m 7.55m

ρ = .6

Strict Power 1 1 1 1 1 1
Power 1 1 1 1 1 1
Type1 0.856 0.004 0.012 0.0354 0.0341 0.0508
Time 18.43s 12.81s 77.97s 2.41m .58m 8.13m

ρ = .8

Strict Power 1 1 0.87 1 1 1
Power 1 1 0.974 1 1 1
Type1 1 0.006 0.028 0.1358 0.0107 0.0188
Time 17.73s 13.23s 78.09s 2.44m .657m 7.16m

p = 1000 p = 10,000
CA LRR DCRR CA LRR DCRR

ρ = .2

Strict Power 0.96 0.96 0.97 0.9 0.9 1
Power 0.992 0.992 0.994 0.98 0.98 1
Type1 0.00008 0.00008 0.0006 0 0 0.0005
Time 57.32m 36.59m 49.36m 9.33h 42.36h 11.21h

ρ = .4

Strict Power 0.98 0.98 0.99 1 1 1
Power 0.996 0.996 0.998 1 1 1
Type1 0.00014 0.0001 0.0009 0.00001 0.00001 0.0005
Time 50.78m 34.13m 73.3m 10.35h 46.21h 10.22h

ρ = .6

Strict Power 0.98 0.98 1 1 1 1
Power 0.996 0.998 1 1 1 1
Type1 0.00086 0.0008 0.0027 0.00005 0.00006 0.0006
Time 49.02m 35.33m 71.10m 10.94h 41.42h 10.99h

ρ = .8

Strict Power 0.97 0.97 1 1 1 1
Power 0.994 0.994 1 1 1 1
Type1 0.0055 0.0051 0.0104 0.0004 0.0004 0.0016
Time 50.55m 32.55m 69.95m 10.65h 38.35h 10.20h
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Table 3.3: Simulation results for MAF = .5

p = 10 p = 100
CA LRR DCRR CA LRR DCRR

ρ = .2

Strict Power 1 1 1 1 1 1
Power 1 1 1 1 1 1
Type1 0.036 0.018 0.024 0.0015 0.0014 0.0043
Time 18.82s 11.95s 78.62s 2.42m .57m 7.72m

ρ = .4

Strict Power 1 1 1 1 1 1
Power 1 1 1 1 1 1
Type1 0.296 0.0006 0.048 0.0105 0.0102 0.0189
Time 17.55s 12.47s 79.92s 2.49m .57m 7.69m

ρ = .6

Strict Power 1 1 1 1 1 1
Power 1 1 1 1 1 1
Type1 0.908 0.008 0.036 0.0379 0.0259 0.0391
Time 18.36s 13.64s 78.46s 2.42m .60m 7.51m

ρ = .8

Strict Power 1 1 0.81 1 1 1
Power 1 1 0.962 1 1 1
Type1 1 0.012 0.054 0.1581 0.0124 0.0215
Time 17.91s 13.85s 78.31s 2.44m .67m 10.89m

p = 1000 p = 10,000
CA LRR DCRR CA LRR DCRR

ρ = .2

Strict Power 1 1 1 0.9 0.9 1
Power 1 1 1 .98 .98 1
Type1 0.00005 0.00005 0.0006 0.00001 0.00001 0.0004
Time 54.31m 35.62m 73.38m 10.65h 43.16h 10.68h

ρ = .4

Strict Power 1 1 1 0.9 0.9 1
Power 1 1 1 0.98 0.98 1
Type1 0.00017 0.0002 0.0009 0.00001 0.00001 0.0006
Time 48.07m 33.62m 71.57m 11.12h 43.24h 11.47h

ρ = .6

Strict Power 0.99 1 1 1 1 1
Power 0.998 1 1 1 1 1
Type1 0.0011 0.001 0.0036 0.00006 0.00007 0.00077
Time 46.66m 32.48m 71.13m 11.09h 39.40h 11.47h

ρ = .8

Strict Power 1 1 1 1 1 1
Power 1 1 1 1 1 1
Type1 0.0011 0.001 0.0036 0.00047 0.00046 0.0020
Time 47.85m 34.67m 72.65m 10.87h 38.91h 10.48h

3.2 Simulation Design 2

Although our above simulation design achieved agreeable results, we further tested

the power of our DCRR approach by increasing the difficulty of the simulations. The

previous simulation focused on an equal number of cases and controls, identical MAF

values, identical LD structures for all SNPs, and limited noise to signal ratios under

each fixed simulation design. In this simulation, we approximated a real life scenario

with several complications that simultatiously occured in one data set.
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Figure 3.1: The changing pattern of strict power of three approaches as in-
creasing ρ under combinations of varied MAF and dimension
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Figure 3.2: The changing pattern of strict power of three approaches as in-
creasing p when MAF = 0.1 for each LD strength.

We generated 216,100 SNPs on 84 individuals (56 cases and 28 controls). We

made three causative r.SNPs in Chromosome (Chr) 1, 3, and 5. The mean of r1.SNP is

assigned to be 5 (Chr 3), r2.SNP be 3 (Chr 1), and r3.SNP be 2 (Chr 5). For each r.SNP,

we simulated a block with 20 LD.rSNPs with 10 flanking each side. We continued to use

the AR(1) covariance structure. The mean of these 60 LD.rSNPs are randomly selected
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Figure 3.4: The changing pattern of computational time (in minutes) of three
approaches as increasing p.

from Unif(0, 1.5). The ρ of r1.SNP and r3.SNP blocks were randomly selected from

Unif(0.6, 0.9), and the ρ of r2.SNP block was fixed to be 0.8. By setting β = 3 for the

three r.SNPs and 0 for all other 60 LD.rSNPs, we connected the phenotype with these

three causative SNPs using the same approach as that of the Simulation 1 design. Then,

we randomly generated all remaining 216,037 n.SNPs through a binomial distribution,

with a randomly chosen allele frequency q from Unif(.05, .095) and three genotypes from

corresponding probabilities (1−q)2, 2q(1−q), and q2. Finally, we randomly selected the

position number of the three causative SNPs and arranged the r.SNPs, LD.rSNPs, and

n.SNPs into the whole genome.

After applying the DCRR approach with d = 2n and λ = 2 (see Figure 3.5), we

successfully detected the three polygenically causative SNPs without being confounded

by the other 60 purposely designed strong LD.rSNPs and a large number of n.SNPs
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Figure (3.6). The r3.SNP in Chr 5 is only slightly above the threshold because we

designed it to have a weak effect.
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Figure 3.5: Ridge trace plot of the 168 important SNPs using LRR for the
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Figure 3.6: The Manhattan plot of the simulated big data along the whole
genome, based on − log10 of genome-wide simultaneous P values of 216,100
SNPs against its physical chromosomal position. Chromosomes are shown in
alternate colors. Three causative SNPs located in Chr 1 (moderate effect), 2
(strong effect), and 5 (slight effect), affecting the phenotype jointly with complex

LD structure.
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CHAPTER 4

Real Data Analysis

Our DCRR approach was applied to search for significant causative SNPs for a

binary trait of the Arabidopsis thaliana hypersensitive response to the bacterial elici-

tor AvrRpm1, with 84 inbred lines (28 susceptibilities and 56 resistances) and 216,130

SNPs. This data is publicly available from the link (http://arabidopsis.usc.edu). A.

thaliana has a genome of approximately 120 megabases and SNP density of one SNP

per 500 base pairs [3]. Five statistical models have been tested on this same data, and

reported that this AvrRpm1 trait was monogenically regulated by the gene RPM1. i.e.

the bacterial avirulence gene AvrRpm1 directly identified the corresponding resistance

gene RISISTANCE TO P.SYRINGAW PV MACULICOLA 1 (PRM1) [35] . Atwell

et al. compared two single-SNP approaches: Fisher’s exact test without correcting for

background confounding SNPs and a mixed model implemented in EMMA to correct

for confounding SNPs (Supplementary Figure 36 in page 52 of [3]). Shen et al. proposed

a Heteroscedastic effects model (HEM), determined 5% genome-wide significance thre-

holds via permuation test, and claimed that the HEM approach successfully eliminated

many spurious associations and improved the traditional ridge regression (SNP-BLUP)

approach (Figure w of [70]). Our DCRR model effectively identified the RPM1 gene in

exactly the same position (Chr 3, 2227823 bp), with a significance level 10−12 on the

highest peak. Figure 4.1 demonstrates the manhattan plot of the AVRRpm1 trait along

the whole genome, based on −log10 of genome-wide simultaneous p-values of 216,130

SNPs against its physical chromosomal position. The blue horizontal line correspond

to a 5% genome-wide simultaneous significance threshold with Bonferroni correction

for 250,000 tests. The red horizontal line represents the proposed multiple correction

threshold for 5% genome-wide simultaneous threshold with Bonferroni correction for

only d = 189 tests.
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Table 4.1: Significant SNPs detected by DCRR

Rank Chromosome Base Pair Position (bp) Gene Dcorr P-value

1 3 2227823 RPM1 0.5846 1.01× 10−11

2 3 2225899 ... 0.5075 2.75× 10−9

3 3 2225040 ... 0.5075 7.94× 10−9

22 3 2231452 ... 0.3450 5.35× 10−8

Figure 4.1: The Manhattan plot of the AvrRpm1 along the whole genome,
based on − log10 of genome-wide simultaneous P values of 216,130 SNPs against
its physical chromosomal position. Chromosomes are shown in alternate colors.

The four significant causative polymorphism that passed the DCRR threshold (in

red) also passed the thresholds of other approaches (in blue), are summarized in Ta-

ble 4.1. Using the Arabidopsis Genome Initiative (AGI) genetic map and the Arabidopsis

information resource (TAIR.org, verified on 5/7/2015) GBrowse database, we matched

our significant findings with three genes. The rank 1 SNP lied within the single large

exon of RPM1 (2229024-2225952). The rank 2 SNP lied approximately 50bp past the 3’

end of the RPM1 region. The rank 3 SNP lied within an intron in the neighboring alba

DNA/RNA binding protein (2225254-2223001), and the rank 22 SNP lied within exon4

of the neighboring NSN1 gene (nucleostemin-like 1, 2232361-2229590). Additionally,

the DCRR eliminated many nominally significant associations. Indeed, the shrinkage

effect of DCRR was much stronger than that of any of the other four approaches. We

noticed a reduction in the number of moderate associations in the whole genome, and

those with significance levels from 10−3 to 10−6 in EMMA and Fisher disappear from

DCRR. Additionally, one slightly significant SNP in Chr 5 in EMMA and some highly

significant SNPs closely neighboring RPM1 in EMMA and Fisher were all eliminated in

DCRR.
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Figure 4.2: Magnification of the genome region surrounding RPM1. The cur-
rent findings for the same region using three different approaches are compared.

We noticed a second peak (0.1 Mb away from RPM1 ) that was detected as highly

significant by both Fisher and HEM models judging from Figure 4.2 [3, 70]. However,

DCRR results indicated it is a spurious signal confounded by strong background LD. If

the process was limited to ranking by DC, that SNP indeed ranked high with a similar

pattern as Fisher and HEM. However, the iterative DC that adjusts residuals to break

down the original correlation structures reduced that SNP to an extremely low rank,

156997th among all candidates with a dCorr value of just 0.0444. Therefore, it was highly

unlikely that this SNP (Chr 3, 2337844 bp) was associated with the phenotype. To

further verify this conclusion we examined the LD of this SNP with several surrounding

SNPs. After a χ2 test using Equation (2.1), we found this SNP was in strong LD with

over 50 other polymorphisms (Table 4.2). As observed from Table 4.2, it was highly

correlated with all four significant SNPS (denoted with an asterisk) reported in Table 4.1,

especially having P value of 10−11 with RPM1. It was also highly correlated with many

other non-causative SNPs, for example it showed a P value 10−16 with position 2334985

and P value 10−15 with position 2335305.

We further visually examined the genetic patterns for the region surrounding gene
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Table 4.2: The pairwise LD strength of the point located in Chr 3 with position
number 2337844bp with several surrounding SNPs. The Pvalue is obtained from

χ2 test with 1 degree of freedom

Chromosome Base Pair Position (bp) χ2 P-value

3 2227823∗ 41.9792 9.22× 10−11

3 2225899∗ 29.9614 4.41× 10−8

3 2231452∗ 24.9712 5.81× 10−7

3 2225040∗ 18.9063 1.37× 10−5

3 2334985 64.3782 9.99× 10−16

3 2335305 60.2751 8.21× 10−15

3 2332822 46.5432 8.96× 10−12

3 2333137 49.6274 1.85× 10−12

3 2332597 49.6274 1.85× 10−12

3 2334723 38.4016 5.75× 10−10

3 2336637 28.7376 8.28× 10−08

3 2336926 31.2202 2.30× 10−08

3 2336966 28.7376 8.28× 10−08

3 2334909 31.7913 1.71× 10−08

3 2291826 28.7225 8.35× 10−08

3 2295084 28.7225 8.35× 10−08

3 2320691 28.7225 8.35× 10−08

3 2294447 26.2953 2.92× 10−07

3 2331847 27.2956 1.74× 10−07

3 2336077 27.2956 1.74× 10−07

3 2302458 26.2953 2.92× 10−07

3 2302750 26.2953 2.92× 10−07

3 2304433 23.9354 9.96× 10−07

3 2304563 26.2953 2.92× 10−07

3 2305255 26.2953 2.92× 10−07

3 2306492 26.2953 2.92× 10−07

3 2308001 26.2953 2.92× 10−07

3 2310061 26.2953 2.92× 10−07

3 2325609 21.7285 3.14× 10−06

3 2261331 20.7359 5.27× 10−06

3 2318129 18.5587 1.64× 10−05

3 2326014 17.2805 3.22× 10−05

3 2327593 18.6292 1.58× 10−05

RPM1 using a haploview heatmap, with short-range of 7.3 kb and medium-range of

28.1 kb (see Figure 4.3). All pariwise r2 among SNPs in the region were computed, with

nine color schemes representing the varied level of LD strengths (red denotes strong LD,

yellow for medium LD, and white for negligible LD). The LD patterns among the closest

SNPs to the right side of the causative SNP were very strong (> 0.9), while the majority

of SNPs were in medium LD (r2 from 0.4 to 0.7). A close inspection of the 20 closest

surrounding SNPs highlighted that the LD pattern in the neighborhood of RPM1 varied
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Figure 4.3: Haploview heatmap plot of the surrounding SNPs in the RPM1
gene region. Left panel: medium range of 28.1 kb involving 100 neighbored

SNPs; Right panel: short range of 7.3 kb involving 20 neighbored SNPs.

substantially, with 8 SNPs showing strong, and 6 SNPs unlinked (i.e. 70% closest SNPs

having medium to strong LD with it).

The total computation time for this data comprised 6 hours on a windows operating

system with a 2.10 Ghz Intel Xeon processor and 32GB of RAM. The top d = 189

important SNPs were selected by the iterative DC procedure, after which all noise SNPs

whose Dcorr values fell below 0.25 were filtered (Figure 4.4). We choose λ = 2 for our

analysis (Figure 4.5).The results were relatively stable, and negligible differences were

observed when we changed λ to any value from 1 to 3.

Figure 4.4: Dcorr value and location of the top d = 189 important SNPs
selected by the iterative DC procedure AvrRpm1.
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Figure 4.5: Ridge trace plot of the 189 important SNPs using LRR for the
AvrRpm1 data.
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CHAPTER 5

Discussion

High-throughput genotyping techniques and large data repositories of case-control

sample consortium provide opportunites for GWAS to unravel the genetic etiology of

complex traits. With the number of SNPs per DNA array growing from 10,000 to 1

million [1], the ultra-high dimension of datasets is one of the grand challenges in GWAS.

We proposed a novel DCRR approach to address the complex LD, multiple joint

genetic effects, and ultra high dimension problems in the whole genome data. We consid-

ered an A. thaliana whole genome data set that Atwell et al.reported as carrying several

challenges: False positive rates or spurious significant association were present due to

confounding effects of high population structure. The true positive signal was difficult

to identify because the a priori candidates were over-represented by surrounding SNPs

in the vicinity through complex diffuse ‘mountain range’ like peaks covering a broad

and complex region without a clear center. Sometimes the true causal polymorphism

did not have stronger signal than the spurious ones, which could have occurred when

r.SNPs were positively correlated with other r.SNPs or with genomic background SNPs.

The sample size was relatively small (n = 84), which may have limited the power of

statistical significance. The natural selection on each locus may have been strong, such

that the allele frequency distributions of the causative loci were very different from those

of the background noise loci. Those distributions may have further disabled many sta-

tistical approaches that address genome-wide associations. Finally, a single-SNP model

may have caused model misspecification. As was stated by Atwell et al., “At least for

complex traits, the problem is better thought of as model misspecificaiton: when we

carry out GWA analysis using a single SNP at a time (as was done here and in most

other previous GWA studies), we are in effect modeling a multifactorial trait as if it were

due to a single locus. The polygenic background of the trait is ignored, as are other

unobserved variables.”
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Our approach solved the challenges mentioned by Atwell et al. By breaking down

the complex LDs among causative and non-causal SNPs, the causative effects were rein-

forced while the nominally spurious signal shrunk towards zero. The shrinkage effect of

the DCRR approach presented herein was much more robust and accurate than previous

approaches (Figures 4.1 and 4.2), and the false positive rates were decreased dramati-

cally while the true positive rates (power) increased. After filtering out the majority of

noise and reducing the SNPs from millions to hundreds, the problems caused by ultra

high dimension were removed. After generating the MAF of all loci randomly from a

Unif(0.05, 0.95) distribution, which imitated strong natural selection effects and also

considered the effects of rare alleles, The DCRR approach still successfully detected the

causative SNPs. By considering multiple joint effects with complex correlation struc-

tures that were neglected by the single-SNP model, the DCRR approach is superior to

the CA approach in both power and type I error control.

Malo et al. applied ridge regression to handle the LD among genetic associations.

Their work mainly focused on continuous phenotypes and a moderate dimension (p > n

but not p >> n) [58]. Cule et al. proposed the asymptotic significance test approaches

in ridge regression for both binary and continuous phenotype, but their approach is also

mainly focused on moderate dimension [13]. The advantages of DCRR were assessed

extensively in previous Section 3.1, and the DCRR approach can be easily extended to

continuous phenotypes. Since a binary response tends to have fewer statistical prop-

erties, i.e. the prediction errors tend to be much higher for binary than continuous

outcomes, we expect that the performance of DCRR for continuous traits will only

improve.

Methods to increase the signal to noise ratio are critical for successful GWAS and

the challenges of GWAS are not specific to the dataset from Atwell et al. The mono-

genetic control with one causative locus in the AvrRpm1 dataset may not fully highlight

the power of the DCRR approach. As future work, we will apply the DCRR approach

to polygenic traits such as human diseases or traits in organisms with agricultural im-

portance. For organisms under artificial selection for trait improvement, such as agri-

cultural crops, spurious or extraneous SNPs in a marker-assisted selection scheme could

add cost and time in genotyping as well as possibly misdirect selection priorities. There-

fore, DCRR approach has the potential to provide improved efficiency and accuracy to

researchers to design their experiments with applied outcomes wisely.



29

BIBLIOGRAPHY

[1] David Altshuler, Mark J Daly, and Eric S Lander. Genetic mapping in human

disease. science, 322(5903):881–888, 2008.

[2] Peter Armitage. Tests for linear trends in proportions and frequencies. Biometrics,

11(3):375–386, 1955.

[3] Susanna Atwell, Yu S Huang, Bjarni J Vilhjálmsson, Glenda Willems, Matthew
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