Utah State University [DigitalCommons@USU](https://digitalcommons.usu.edu/)

[Reports](https://digitalcommons.usu.edu/water_rep) **Exercise Exercise Exercise Exercise Contract Contra**

January 1969

Optimum Operation of Desalting Plants as a Supplemental Source of Safe Yield

Calvin G. Clyde

Wesley H. Blood

Follow this and additional works at: [https://digitalcommons.usu.edu/water_rep](https://digitalcommons.usu.edu/water_rep?utm_source=digitalcommons.usu.edu%2Fwater_rep%2F541&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Civil and Environmental Engineering Commons](https://network.bepress.com/hgg/discipline/251?utm_source=digitalcommons.usu.edu%2Fwater_rep%2F541&utm_medium=PDF&utm_campaign=PDFCoverPages), and the [Water Resource Management](https://network.bepress.com/hgg/discipline/1057?utm_source=digitalcommons.usu.edu%2Fwater_rep%2F541&utm_medium=PDF&utm_campaign=PDFCoverPages) **[Commons](https://network.bepress.com/hgg/discipline/1057?utm_source=digitalcommons.usu.edu%2Fwater_rep%2F541&utm_medium=PDF&utm_campaign=PDFCoverPages)**

Recommended Citation

Clyde, Calvin G. and Blood, Wesley H., "Optimum Operation of Desalting Plants as a Supplemental Source of Safe Yield" (1969). Reports. Paper 541. [https://digitalcommons.usu.edu/water_rep/541](https://digitalcommons.usu.edu/water_rep/541?utm_source=digitalcommons.usu.edu%2Fwater_rep%2F541&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

OPTIMUM OPERATION OF DESALTING PLANTS AS A

₩

 $\psi_{\rm eff}$

SUPPLEMENTAL SOURCE OF SAFE YIELD

by

Calvin G. Clyde and Wesley H. Blood

Final Report

to

The Office of Saline Water United States Department of the Interior

Under Contract No. 14-01-0001-1711

Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah 84321

July 1969 PRWG61-2

 $\frac{1}{\sqrt{2}}$

s.

 \bullet

 $\hat{\mathcal{P}}$

a,

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\label{eq:2} \mathcal{L} = \mathcal{L} \left(\mathcal{L} \right) \mathcal{L} \left(\mathcal{L} \right)$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 ϕ

ACKNOWLEDGMENTS

The following professional staff members and agencies worked directly on this project, contributed information or data, or cooperated in parts of the study:

Calvin G. Clyde, Assistant Director, Utah Water Laboratory and Project Leader for Utah State University

Wesley H. Blood, Research Associate and Programmer, USU

Dean F. Peterson, Jr., Dean, College of Engineering, USU

Roland W. Jeppson, Associate Professor, USU

James H. Milligan, Research Engineer, USU

Edmond D. H. Cheng, Research Assistant, USU

Sam Shiozawa, Project Engineer, Desalting Feasibility and Economic Studies Staff,' OSW

I. Spiewak, Oak Ridge National Laboratory

H. R. Payne, Oak Ridge National Laboratory

Vincent G. Terenzio, Deputy Chief Engineer, Board of Water Supply, City of New York

Leo R. Beard, Chief, Hydrologic Engineering Center, Corps of Engineers, Sacramento, California

and Region 2, U.S. Bureau of Reclamation.

Dean F. Peterson, Jr., first suggested that this study be made. His interest in the conjunctive operation of desalting plants with existing water systems grew out of his participation in a study of the recent drought in the northeastern states. Without his initiative, ideas, leadership, and lucid criticism the project would neither have been initiated nor have reached its goals.

3

 δ_x .

TABLE OF CONTENTS

 \downarrow

 $\bar{\mathcal{S}}$

 $\hat{\phi}$

6

 $\hat{\mathcal{D}}$

 \mathfrak{D}

 $\mathcal{Q}^{\mathcal{Q}}$

 $\sim 10^{-1}$

LIST OF FIGURES

 $\hat{\mathcal{L}}$

 \circledast

ò

 $\psi\gamma$

 $\hat{\boldsymbol{\epsilon}}$

 \bar{t}

LIST OF TABLES

INTRODUCTION AND OBJECTIVES

In recent years, population and economic growth have impinged with mounting pressure on natural water supplies. Water shortages occur in the humid east as well as in the arid west because natural supplies are already in use or are too expensive to develop. These shortages are aggrevated and dramatized by periodic droughts, such as the one occurring in the northeastern United States during the mid-1960's which resulted in drastic curtailment of supplies in some of the large northeastern cities. The problem is not only drought but basic firm supply.

Development of natural surface water supplies becomes increasingly expensive. Indeed, the difficulty of mounting cost is not the only problem. Reservoir sites are more difficult to obtain; more and more frequently they contain resources of increasing historic, scientific, or aesthetic value. As a result, there is a growing uneasiness, if not outright opposition, about aesthetic and ecological consequences of large-scale water development. Nevertheless, critical needs for fresh water continue to climb rapidly. Desalting water from the seas or from brackish supplies, using expected new sources of inexpensive energy, holds the promise for helping to meet these needs. Desalting technology is developing at a rapid pace. Both distillation and membrane desalting plants of greater capacities are being built to meet a wide variety of water requirements. The technology to build large capacity plants of 50 MGD and over is now in hand. But if the promise is to be realized, a basis must be found for comparing, in common terms, the effectiveness of desalting plants with alternatives of constructing reservoirs, making large-scale transfers, or pumping from groundwater.

Two considerations have prompted this study. First, existing water systems are usually based on natural supplies which are highly variable over a period of time. If a desalting plant is utilized to supplement the supply of an existing water system, it is quite clear that it should not be operated during the periods when natural water yields with an incremental cost of essentially zero are adequate to meet demands. For this type of operation the desalting plant will perform a peaking function; i.e., it will fill in the shortages of nature rather than run continuously.

The second consideration relates to the purpose of the municipal water system or the water district in making an additional investment in a supplemental supply service. Usually the water utility must be able to provide a certain rate of flow on demand. The capacity of the water system from the point of view of the utility owner, is the rate of flow the system can deliver rather than the total

quantity of water. Like an electrical utility, what is purchased by additional investment is the capability to produce more megawatts of electrical flow and not total kilowatt hours.¹ What the water utility buys then, is an assured new (firm) yield rate. In comparing desalting with other alternatives, the relevant parameter to compare is the unit annual cost of additional firm yield.

The concept of firm yield has many interesting ramifications. If there is no storage on a stream, the only yield that can be assured at all times is the minimum flow of the stream. But even this yield can be described on a probabilistic basis. For example, in one year out of ten on a particular stream, flow may drop below 100 MGD; below 75 MGD one year in 50, and below 70 MGD one year in 100. To define the firm yield, then, there is an associated probability level which must be specified, because the greater the reliability required, the less the firm yield.

A logical first step in firming-up the yield of a natural supply is to store waters in reservoirs during periods of high flow and release them during periods of low flow. The increase in firm yield can be calculated by making a reservoir operations study. Such a study involves accounting for the probable inflows and outflows day by day or month by month; i.e., solve the equation of continuity. When a draft on the system is reached such that the reservoirs just avoid running dry, the draft is the new firm yield. The level of reliability depends on the sequence of years examined. In other words the firm yield depends on the particular sequence of hydrological events used in the reservoir analysis. Ordinarily, historical hydrographic records are quite short. Records exceeding 50 years are more the exception than the rule. Furthermore, future events will almost certainly be different and in a different sequence than those of the past. However, by using computers and modern operational hydrology,² hypothetical sequences of hydrological events of any length desired, which have the same probabilities of occurrence as those of the past, can be generated. Using such series the analyst may extend records and perform

 $¹$ The view of the utility management may be different from</sup> that of individual customers who pay for gallons or kilowatt hours. Even so, larger electrical consumers usually pay a *demand* charge; i.e., a charge which permits the kilowatt hours to be drawn at a certain rate. For the utility, though, the time dimension implied in a rate of flow cannot be ignored.

 2 Operational hydrology refers to the theory of synthetic generation of sequences of hydrologic events.

the reservoir operations analysis for any specified period. This procedure permits estimation of firm yield reliability to any significance level desired; i.e., to the degree to which the record of the past is a fair sample of the future.

Adding a desalting plant to a surface supply system, including reservoirs, adds a further complication to the problem of firm yield analysis. Such a plant usually does not add a firm yield equal to plant capacity because future events determine the optimum time to turn the plant on and off. Since these times cannot be known in advance, there is always some spillage of water. The operator must make a judgment about turning the plant on soon enough that the reservoir does not run dry in the future and turning it off early enough that the water is not wasted over the spillway. If the costs of firm yield added by desalting plants are to be compared with those from other sources, then means must be found to predict the *amount* a desalting plant will add to the firm yield of a water system and at *what cost.* The research reported herein deals with these topics and describes a computer program (hereafter called the Operating Rule Program) which can be used to plan optimal combinations of desalting plant sizes with conventional water supply systems.

Past studies of the use of desalting plants as a means for supplementing natural supplies usually have assumed base load plant operation for the desalting plant. Two notable exceptions to the base load assumption are as follows.

A preliminary study of conjunctive operation of a 200 MGD plant fot New York City was made as part of a study by the Northwest Desalting team in 1965 and reported by the Office of Saline Water (1966). The study showed that the desalting plant would be operated only 70 percent of the time while supplying the required firm yield during a drought period. This load factor falls within the range of load factors reported in the case studies of this report.

Mawer and Burley (1968) reported that "a desalination plant can be operated in conjunction with a conventional reservoir to give increased yields at costs as low as 50 percent of the equivalent base-load desalination cost." Their claim is supported by the present study.

In this study a digital computer program is developed for applying modern operational hydrology to determine the firm yield that will be added by a desalting plant and the associated cost of the firm yield. The principal problem concerns the plant operating rule; i.e., when to tum the plant on and off. Improper decisions either waste desalted water or fail to utilize the plant to prevent shortages. Since all possible decisions cannot be studied efficiently, the computer program screens the possible operating rules and eliminates those that cannot produce the required water or those that inefficiently produce too much. The remaining rules are then utilized in a cost subroutine that determines the cost of producing the added firm yield. The near optimum rule can then be selected.

The program is visualized as a planning tool. Its purpose is to provide information on the probable value of a desalting plant as a possible alternative for adding yield to a water system. This alternative may then be compared with other alternatives in common terms. While the program will certainly provide guidance for actual operation once a plant is installed, this is not its primary purpose. A skilled operator should do even better because he will have more information at any given time. The writers believe, however, that the program closely predicts the best that can be expected under real-life conditions.

Demonstration of the computer program using real planning situations is important and this has been done for three case studies.

The specific objectives of the research are stated briefly as follows:

1. To develop a digital computer program that can conveniently determine the optimum operating rule for conjunctive operation of a desalting plant in order to help assess alternatives and to aid in decision making concerning plant design.

2. To apply the Operating Rule Program to three real-life situations where a desalting plant can be operated in conjunction with a reservoir and water system.

3. To assess the impact of conjunctive operation on the performance characteristics and the design of a desalting plant used in intermittent service and to identify the unique features of such plants.

Using generated hydrologic sequences as an input, the central problem which the computer program must solve is the determination of the correct operating rule considering other inputs of demand and cost. Once the correct operating rule is determined, the unit cost of new firm yield is known. Furthermore, a repeated series of computations, each with a different plant size, leads to a choice of a near optimum plant capacity. Similarly, the best reservoir size can be investigated.

The Operating Rule Program receives central focus in this report. It is written in Fortran IV computer language and consists of about 1,700 statements. One of the unique features of the program is its general format and easy applicability to a wide variety of conditions.

In general the Operating Rule Program goes through the following steps to find the optimum rule: The historical hydrologic data for the reservoir and the water system are first analyzed. Long hypothetical streamflow sequences are then generated having the same statistical characteristics as the known hydrologic record. Using the generated hydrographs along with the given reservoir characteristics and an assumed desalting plant capacity, the operation of the desalting plant is simulated by the computer program to test the ability of the various proposed operating rules to meet the needed water demand. Decisions as to when to turn the plant on and when to turn it off are determined by the operating rule. Parameters affecting the operating rule are the reservoir storage contents and the season of the year. All rules that can produce the needed additional firm water yield are feasible operating rules. Each feasible rule is evaluated by simulating operation of the system over an arbitrary period of time equal to some multiple of the economic life of the desalting plant and by determining the unit cost of the added firm yield. Several such simulation computations are conducted with different hydrologic sequences to determine the mean cost for each rule. The operating rule that produces the water at least mean annual cost is the relevant one, and the associated added firm yield and its unit cost are the desired outputs.

To demonstrate the usefulness of the Operating Rule Program, three real water systems were studied after adapting the data to the format required by the computer. These systems are the Cachuma Project near Santa Barbara, California; the Deer Creek Project near Salt Lake

City, Utah; and the New York City water supply system. Each system used in the applications has features different from the others. The Cachuma project involves a single stream and reservoir in an arid environment. The Salt Lake City system illustrates a way of analyzing part of a system consisting of several streams and reservoirs in a semi-arid area in which the water supply originates in nearby high mountains. The New York City system example analyzes a large complex system by lumping all storage and watershed inflows into one composite reservoir and one inflow. This system is located in an area of relatively high rainfall (approximately 40 inches per year).

Sensitivity of the optimum operating rule and the associated costs to changes in various input parameters are described and the influence of intermittent conjunctive operation on the plant design and plant operating features is discussed. Finally, additional useful research opportunities are pointed out.

The analyses of each of the systems were based on minimum input data but were sufficient to demonstrate the operability and applicability of the computer program. The results shown should be considered only illustrative of the range of values to be expected under the assumptions made. Principal results of the application of the program are summarized in Table 1 for the three systems analyzed.

The computer program developed under this contract is potentially a practical tool useful to water resources planners in helping to assess the role of desalting plants operating in conjunction with existing water supply systems. The program, as applied to specific cases, will provide data not only on the optimum operating rule for the desalting plant, but also will provide useful engineering information relative to design requirements of a desalting plant operated in a conjunctive mode to increase firm yield of a system.

Table 1. **Summary of results of the application studies.**

 \mathcal{L}

Assumptions. for the computations:

Five simulation periods of 30 years each Five firm yield periods of 75 years each MSF, single purpose desalting plant 30 years plant life Interest rate 4 5/8% (Fixed charge rate = 7.23%) Fuel cost = 35c/MBTU

 $\bar{1}$

aA verage levelized annual cost for the five simulation periods.

 $\ddot{}$

DEVELOPMENT OF THE OPERATING RULE PROGRAM

General Approach

The methodology described herein combines simulation and operational hydrology through the use of a digital computer to find the least-cost alternative for meeting an increased water demand with a desalting plant operated with an existing water system. According to Hufschmidt and Fiering (1966), simulation, with the advance in computer technology, has become a valid planning tool in the water resources area. Operational hydrology services the simulation by providing sequences of "equally likely" streamflows.

Before a natural phenomenon can be simulated it is necessary to describe the various components of the system by mathematical models which have the response of the natural components. Upon adequate modeling of the system, the response to a number of inputs and constraints can be determined in rapid succession by having a computer carry out the computation required by the 'mathematical models. By examining the various responses, the one which best meets the objective can be selected. The problem does not lend itself easily to an elegant analytical formulation, and to minimize study time in developing a practical means of determining the optimum operating rule, a computerized simulation approach was utilized.

General Description of the Simulation Model

Given a reservoir, a desalting plant, a postulated demand, and a sequence of likely future streamflows, the basic equation to be solved by the model is the equation of continuity; i.e., $H + (C) (J) - D - M = \Delta S$ in which H is the streamflow into the reservoir, C is the capacity of the desalting plant, J is either 1.0 or zero depending on whether or not the desalting plant is operating, $\triangle S$ is the change in reservoir storage, D is the demand, and M is other mandatory releases. This equation is solved month by month for a prestated demand over a time sequence. A separate solution of the continuity equation is made for each month; these solutions are tied together in time by the carryover storage S, which is carried forward from month to month. The 100 percent firm yield is defined as the demand D which can be met at all times without running short of water but also just emptying the reservoir. If the reservoir is emptied; i.e., S equals zero, in 5 percent of the years for a particular demand D, then the firm yield with 95 percent reliability equals that demand D. The period of examination can be made as long as necessary to obtain the level of reliability desired for any specified demand.

The computer must search through time to find that demand which is associated with the prescribed level of certainty; trial levels of demand are proposed and the computer calculates their probabilities. Based on these probabilities the search rapidly closes on the desired value of demand.

Intermittent operation of the desalting plant greatly expands the problem. If the plant is off at the beginning of any month, the decision has to be made whether or not to tum it on; if the plant is on, then the program must decide whether or not to tum it off. Assuming that on the average just one turn-on and one subsequent tum-off decision has to be made each year, the total number of monthly decision combinations in a 150-year period of operational hydrology would be about 4×10^{15} . Clearly some means for screening out most of these combinations is necessary.

An operator would not likely start the plant if the reservoir were full or nearly so, nor would he tum the plant off if the reservoir were nearly empty. Thus, reservoir storage is a good index for making an initial screening of tum-off and turn-on decisions. With the desalting plant off, the operator can decide that J remains zero if the reservoir contains more than A; and, with the desalting plant on, J remains 1.0 if the reservoir contains less than B. For a prechosen value of desalting plant capacity, C, several values of B are selected and the computer program finds the corresponding values of A which are just able to produce the required yield. Infeasible operating rules (rules that cannot produce the desired demand) and inefficient rules (rules that produce too much water) quickly can be screened out. Fig. 1 illustrates the process in graphical terms. The family of constant cost lines (if they were known) would show operating points (A,B) which could produce the required yield (or more) at the annual cost represented by the line. The set of points (A,B) , with B preselected and A determined by the program to produce exactly the required yield, defines a feasible operating rule curve. Points below this curve cannot produce enough water while points above the curve produce more than is necessary and are thus inefficient. Once the less promising or infeasible rules are screened out, the computer program calculates the cost of producing the required yield based on unit cost data for capital and operating costs. The estimate of the minimum value of the cost function can then be refined by interpolating along the feasible operating rule curve. Graphically, the objective is to find the point of intersection of the feasible rule curve with the smallest value of cost at point X in Fig. 1. This triple

l.ne water surface area is given in the input data as a function of the reservoir storage and treated as the average for the month.

Desalting plant

The capacity of the desalting plant is a fixed value for any given computation. However, by performing a series of computations, each with a different plant capacity in the range of feasible sizes, a best size plant can be determined.

The simulation does not depend directly on the kind of desalting process. The program does require that a plant capacity in MGD be specified and that the desalting plant cost data be supplied. The cost data consist of (a) fixed annual costs, (b) operational and maintenance costs, and (c) estimated turn-on and turn-off costs including mothballing. In the development and application of the Operating Rule Program, costs of brine disposal and distribution works are neglected, since they were not available. If this assumption is untenable in an application, then these costs must be determined and included in the cost data. For the subsequent application studies, cost data were furnished by the Oak Ridge National Laboratory, Oak Ridge, Tennessee, under contract with the Office of Saline Water.

In the event that the desalting plant is called upon to operate continuously for more than eleven months, a conditional turn-off is effected. If the twelfth month is not designated as a dry month, the plant is turned off for maintenance. Otherwise, the plant is continued in operation until. a non-dry month is encountered. Other details of the simulated plant operation will be described in the section on the logic of the computer program.

Firm Yield

While firm yield is not a component of the model in the same sense as the parts discussed above, it is defined here because of its significance in developing the Operating Rule Program and in the system simulation.

Definition of firm yield

The firm water yield of a system must satisfy certain requirements and constraints as to water availability. The constraints may derive from economic, social, political, or other considerations. Such factors as frequency, magnitude, and duration of shortages each could serve to constrain or define the yield. A frequency constraint is used in the model presented herein. For example, a firm yield associated with a 95 percent probability implies that the system has water available to completely satisfy demands 95 years out of 100; i.e., 5 percent rate of failure. The level of frequency constraint on the firm yield is selected by the program user according to his willingness or aversion to accept the consequences of shortages.

The general model would probably be improved if the magnitude of shortages were included as a constraint on the firm yield. This feature should be investigated in later studies. The Operating Rule Program includes an option for listing the amounts of all annual shortages so that the user can judge the severity of the shortages and base his decisions on this information if desired when using the present program.

Cost of firm yield

If a desalting plant is to be used as a peaking plant to increase the firm or reliable yield which may be drawn conjunctively from a natural reservoir system, then the relevant product is not the volume of water produced in a given time by the desalting plant; rather it is the increase in capability to maintain sustained flow. This will be greater than or less than the capacity of the desalting plant depending on the definition of firm yield as will be apparent later. The relevant cost is not the cost of a unit volume of water produced by the desalting plant (normally expressed in cents per thousand gallons), but the cost over a given period of time to assure a unit increase in flow. Normally, costs are expressed in terms of annual cost in dollars of capital and operating expenses. With flow in MGD units the unit costs of safe yield would be expressed in dollars per annum per million gallons per day ($\sqrt{$x/(year/MGD)}$). A cost of $\sqrt{$200,000/year/MGD}$ means that \$200,000 per year will pay for all of the fixed costs of capital and operating expenses to assure an increased firm yield of 1 million gallons per day. 1

Logic of Program

In this section the overall methodology embodied in the Operating Rule Program will be discussed along with the role played by each of the component parts of the program. A macro flow chart of the logic employed in the Operating Rule Program is presented in Fig. 2, and will serve as the basis of discussion. Each block has been assigned a number which will reference that block as the logic of the computer program is explained. The program is written in Fortran IV computer language and consists of about 1700 statements.

¹ This unit may be reduced to $\frac{$}{1000}$ gallons of additional firm yield by dividing by the number of days in a year and by 1,000. (In the example, \$200,000/year/MGD becomes \$0.5479/K gal.) The time units have now disappeared and only a cost per unit volume is given. But there is an important difference between a simple volume cost of desalted water in $\frac{8}{K}$ gal. and a cost of firm yield in the same units. Purchased also is the assurance that the flow will be there *on demand;* i.e., present when needed without any constraints. *Firm vield* implies a time flow; the unit is really \$/unit time/lOOO gallons/unit time.

percent required for maintenance), then the cost of supplying the needed water with base load operation is \$226,200/year/MGD of added firm yield. If the optimal 75 MGD plant is run 90 percent of the time, the added firm yield would cost \$259,300/year/MGD. The economic advantage of conjunctive operation is readily seen.

The Salt Lake-Deer Creek Application

Purpose

The purpose of this application study is to find the lowest cost conjunctive operation desalting alternative to increase the firm yield of the Deer Creek Project to 220 MGD with reservoir size held constant. The cost of supplying the increased firm yield, the optimum size plant, and the associated optimum operating rule are to be determined

System description

Five streams presently supply about 70 percent of Salt Lake City's more than 22 billion gallons yearly water requirement-City Creek, Parley's Creek, Big Cottonwood Creek, Little Cottonwood Creek, and Emigration Springs. An additional 12 percent of the water requirement is obtained from 100 flowing wells located in the Murray Artesian Basin area, about 7 miles southeast of the city and from several large pumped wells located along the north and east bench area of the city. Most of these pumps are operated from a remotely controlled telemetering center where flow records are automatically recorded. Some of the larger pumped wells are equipped with automatic variable speed pumps which keep the quantity of water pumped equal to the varying demand.

The remaining 18 percent of the city's annual water requirement is supplied by the Deer Creek Project which was completed by the U.S. Bureau of Reclamation in 1952. Deer Creek Reservoir, located about 40 miles southeast of Salt Lake City in Provo Canyon, adds water to the city distribution system through a 69-inch diameter concrete pipeline.

The percentages mentioned above may vary considerably from year to year depending upon the amount of water available in the streams. For example, the amount of water supplied from the five streams has been as little as 55 percent or as high as 90 percent, with corresponding adjustments in the amounts supplied from wells and from the Deer Creek system. The amounts supplied from the Deer Creek system have varied from about 5 percent to 28 percent. This percentage may be expected to increase continually as the city grows since the capacity of the Deer Creek system has not been reached yet. Treatment facilities for this water are located near Salt Lake City in the mouth of Little Cottonwood Canyon. The Deer Creek Project also meets some agricultural water requirements in Utah Valley.

The Salt Lake-Deer Creek application model simulates the operation of the Deer Creek system in conjunction with a desalting plant. The model includes both demands for municipal and industrial water and for agricultural water. The municipal and industrial water flows through the Deer Creek-Salt Lake Aqueduct to the Salt Lake City metropolitan area. The agricultural demands are represented by all other releases from the reservoir, some of which are releases during non -irrigation and flood seasons, to downstream storage.

While Salt Lake City is in a semi-arid area with an average annual precipitation of about 16 inches, the high mountains nearby, from which the streams flows, receive up to 60 inches of annual precipitation at high elevation.

Input data and results

Basic data available for the model were taken from .many sources and consist of records of storage levels on Deer Creek Reservoir, records of flows in the Salt Lake Aqueduct, records of streamflow, and records of releases from storage for agricultural demands. No direct reservoir inflow data are available as much of the reservoir inflows consists of flows from several small ungaged streams. A partial record of evaporation at the reservoir is also available. A U.S. Bureau of Reclamation area-capacity curve is available for the reservoir and appears as Table 8.

Evaporation data for the reservoir were estimated by correlating basic climatological data with the partial record of evaporation which is available. The evaporation potential is given in Table 9.

Water requirements in the model for municipal and industrial use and for agricultural use were based upon the records of past deliveries for these uses.

The reservoir inflow record in Table 10 was estimated by adjusting total outflow records for storage changes and evaporation losses.

The Deer Creek project with its 49.78 BG storage represents most of the storage available in the Salt Lake City water system. Except for small regulating and equalizing reservoirs, the only other storage is the small Mountain Dell Reservoir. In general, Salt Lake City uses all the water possible from other sources, as limited by physical and legal requirements, and then supplies the balance of its needs with Deer Creek project water.

The Salt Lake-Deer Creek application model assumes that a desalting plant could be built northwest of the city to reclaim the brackish water, sewage effluent, and Jordon River return flow before these waters enter the Great Salt Lake. The desalted water would be pumped into existing regulating and equalizing reservoirs for mixing before use. Desalted water production would thus hold the water upstream in the Deer Creek Reservoir.

Line 7 shows the summary of computations for a two season characterization (NSN=2) with a resulting cost of \$197,900/year/MGD of added firm yield. Thus, the two season option performs almost as well as the three season option and is somewhat simpler.

Line 8 shows the results of a one season characterization (all months the same, NSN=l) with a resulting cost of \$200,100/year/MGD. This option yields higher costs than the three season characterization of lines 2 or 6.

Operating costs

The cost data for the desalting plant must be supplied by the user of the Operating Rule Program. As noted before, for these application studies, cost data were furnished by the Oak Ridge National Laboratory under its contract with OSW, and were based on a MSF plant with 4 5/8 percent interest rate, 30 year plant life, fixed charge rate of 7.23 percent ¹ and fuel at 35ℓ per million BTU.

The results of the application studies depend a great deal on the cost input data used in the program. To illustrate, as shown in line 13, the costs increase to \$221,700/year/MGD if the fixed charge rate remains at 7.23 percent, but the operating costs are increased 25 percent.

Reservoir size

Line 9 shows how reservoir size can change the cost. With the reservoir increased by 10 BG to 76.79 BG, the natural system can produce additional water by itself so the desalting plant production is decreased. This means a different rule $(ON at .31, OFF at .30)$ is optimum and the unit cost of producing enough water to meet the same demand as before using the 75 MGD plant is slightly increased to \$197,800/year/MGD. Since the required amount of desalted water production is smaller, however, the total cost of supplying the demand decreases from \$10.88 million to \$10.50 million per year when the reservoir is enlarged. Of course, the larger reservoir would cost more and this should be taken into account in comparing the alternatives. In this case it must be determined if \$380,000 per year would pay for the enlargement of the reservoir.

Replacement life

In all applications up to this point, the replacement life of the desalting plant has been assumed to be 30 years. If the useful life were longer, then the capital investment would be spread over a longer period of time and even if annual operating costs remained the same, the cost of water would decrease. This effect is shown in line 12 and the cost decreases to \$ 183,700/year/MGD with a replacement life of 50 years.

Demand coefficients

Some important input data are the demand coeffIcients which show the pattern of annual demand; i.e., what portion of the annual demand is needed each month of the year. Lines 10 and 11 show what happens if demand is assumed to be constant each month instead of distributed more in hot dry months as in all the other computations. The constant demand is more easily met by the system than a demand pattern with large needs occurring during low natural flows. The operating rule for a 75 MGD plant changes to ON at .26 and OFF at .25 with the cost being \$192,300/year/MGD. The 65 MGD plant can now meet the smaller demand (the natural system produces more water) with a rule of ON at .61 and OFF at .70 with the cost being \$201,000/year/MGD. Note that the smaller plant, however, produces the water at a higher cost and runs at a higher load factor.

Definition of firm yield

In all the cases described to this point the firm yield was defined at 95 percent probability. That is, the demand was to be met 95 years out of 100. Lines 4 and 5 illustrate the effects of changing the probability associated with firm yield. If firm yield is defined at 90 percent as in line 5, then the natural system can, of course, meet a larger part of the demand. Thus, the optimum operating rule changes to ON at .30 and OFF at .30 while the additional firm yield that is needed decreases to 51.83 BG. This smaller production from the same plant yields a higher annual unit cost of $$207,400/year/MGD$ of additional firm yield. A smaller plant would be able to meet the smaller desalting demand more economically and this option should be investigated.

The data in line 4 are for a 99 percent firm yield specification. Now the natural system is less capable of meeting the water requirements and the desalting plant must produce more. The larger production costs of the desalted water are now spread over an even bigger increase in firm yield thus giving a smaller unit cost of \$ 195,100/year/MGD. To properly understand the cost variation as the definition of firm yield is changed, one should look at average annual costs of meeting the demand rather than at the unitized costs per MGD. The average annual costs for 90, 95, and 99 percent firm yields are \$10,760,000, \$11 ,029,000 and \$11 ,517,000 respectively. Thus, the more relaxed the definition of firm yield, the lower the total cost, while the highest unitized cost occurs with the 90 percent definition.

Lines 14 and 15 illustrate the wasteful nature of base load operation of the desalting plant. Assuming the smallest possible (65 MGD) plant is designed for base load operation and is operated 90 percent of the time (10

¹ The fixed charge includes depreciation and other costs of capital as well as interest.

produce more water than is needed, since the extra water is spilled and lost. Such rules can meet the demand but only at a higher cost. Thus the few rules left for final consideration are those that are the best among the many rules in the original set. Each of these few rules can efficiently produce the needed firm yield and often, as in this case, the differences among these better rules is slight.

The costs given above are the average of five separate simulation runs of 30 years each using different equally likely synthetic hydrographs of streamflow. The minimum cost for the best rule was the average of the following costs from simulation runs: \$202,700, \$181,700, \$199,100, \$200,700, and \$203,300/year/MGD of added firm yield. This large range in costs for the optimum rule for the different equally likely streamflow sequences gives an indication of the variability of the hydrologic record.

A larger number of time periods would need to be used in the computation if a better estimate of the mean cost were needed, however for illustrating the operation of the program, the five periods of 30 years each were thought to be sufficient. In a real life application, the additional computer expense would probably be justified to secure a more precise value of the desalting costs, depending on the variability of streamflows involved.

For the 85 MGD plant, the optimum rule was ON at \pm .22 and OFF at .20. The cost of water was \$201 ,400/year- /MGD of added firm yield. For the 65 MGD plant, the optimum rule Was ON at .80 and OFF at .95 and the cost was \$214,600/year/MGD of added firm yield. Thus, the 75 MGD plant with optimum rule ON at .36 and OFF at .40 and a cost of \$197,500 per year per MGD of added firm yield is the best of these three plants.

The average plant load factor was defined earlier as the average percent of time that the desalting plant runs in the years that it is turned on. Years with no desalted water production are not counted in the computation. This average plant load factor might be called a design load factor because it represents a mean probable service condition for the plant. The plant design is optimized for this operating point and the data used in cost computations are selected accordingly from the appropriate column in Fig. 8. In years that the plant operates only a short time, an economic penalty is paid because the plant is not operating at its optimum (design) load factor. The same is true when the plant runs more time in a year than its design load factor. In the Cachuma application load factors varied from 56 percent through 83 percent with the optimum 75 MGD plant running at 65 percent load factor.

To measure the efficiency of desalted water use in the system, a desalted water use/production ratio has been computed and is shown for each computation reported in Table 7. This measure of efficiency shows that portion of the desalted water production which is actually used in the system. Thus the ratio is the total desalted water production less any desalted water spills divided by total desalted water production. Since any desalted water overproduction is viewed as going over the spillway *first* when the reservoir is full, this definition of efficiency is quite severe with respect to the desalting plant operating rule. However, one should keep in mind that a perfect operating rule would spill no desalted water and the use/production ratio would be 1.0. In the Cachuma application for the optimum rule with the 75 MGD plant, the efficiency was 0.82. Thus most of the desalted water was actually used in the system. In other applications the efficiencies will be much lower.

Sensitivity Analysis for Cachuma Application

To help understand the Operating Rule Program and its use in planning for conjunctive operation of desalting plants, an effort was made to test the sensitivity of the computational results to changes in various input parameters. This series of computer applications was made on the Cachuma project data and comprises a "sensitivity analysis." Table 7 summarizes the results of this work. Each line of the table summarizes a whole series of computations by the Operating Rule Program. Line 2 represents the "basic" program results and all other lines should be compared with it. To minimize chance variations in the analysis, all runs were made with the same streamflow sequences. Sensitivity to the several input parameters is discussed in the following paragraphs.

Seasonal turn-on and tum-off increments

In the Operating Rule Program, there is provision to modify the operating rule each month according to whether the month usually has a low, average, or high streamflow as explained earlier. If a month is low, then no change is made in the rule. If the month is average, the turn-on level is decreased by the smaller increment given in the input and the turn-off level is also decreased by the same amount. If a month is high, then the turn-on and turn-off levels are decreased by the larger factor given in the input.

Line 6 of Table 7 shows the cost associated with changing the seasonal tum-on and turn-off increments as compared to line 2. Note that the increments of line 6 (0.05 and 0.10) are more efficient than in line 2 (0.25 and 0.05) and lead to the lower cost of \$ 196,800/year/MGD. One could make still other changes in the increments to see if an even more efficient rule can be found.

Seasonal characterization

The program has three options for specifying the seasonal characterization of the monthly inflows. These are with three seasons (low average, and high), two seasons (low and high), or one season with all months the same.

 \vec{a}

 Δ

 $\mathcal{Q}^{\ell}_{\mathbf{a}}$

 $\tilde{\mathbf{g}}$

Figure 10. Cachuma Reservoir contents, with and without desalting.

 Δ

 ϕ

N Ul

COST DATA FOR DESALTING PLANT USED IN ANALYSIS

 \mathcal{A}

 \sim

 σ

 \mathbf{q}

ANNUAL FIXED CHG. 51 38 00 0. 53 57 00 0. 55 24 00 0. 56 90 00 0. 58 33 00 0. AT 7.23 PERCENT

ESTIMATED TURN-ON COST= 64 00 0. ESTIMATED TURN-OFF COST= 64000. INTEREST RATE= $.0500$

^a75 MGD, MFS, single purpose plant.

 \mathcal{L}

See Appendix C for additional cost details.

Table 7. Summary of cost computations, Cachurna application.

the projected demand with any operating rule. Therefore, it was dropped from any further study.

The economic data for the cost computations are shown in the page of printout in Fig. 8 for the 75 MGD plant. Table 7 summarizes the cost computations for the Cachuma Project applications. This table also shows the sensitivity of the cost of the added firm yield to changes in the values of certain input parameters. The sensitivity analysis is discussed later.

Basic results

From the many possible operating rules for the 75 MGD plant, with firm yield defined at 95 percent probability, the program found four feasible rules for detailed simulation and cost comparison. These rules were ON at .32 and OFF at .60, ON at .32 and OFF at .50, ON at .36 and OFF at .40, and ON at .50 and OFF at .30. Uniform annual water costs determined for these rules are respectively \$199,600, \$199,300, \$197,500 and

\$199,600/year/MGD of added firm yield. Thus the third rule has a slight advantage over the others for this plant, but each of these four rules perform almost as well as the others. Details of the optimum rule computation are shown in line 2 of Table 7.

To assist in visualizing how the system operates, Figs. 9 and 10 show a typical inflow hydrograph and the reservoir contents with and without the desalting plant operating. Shown on Fig. 10 are the plant turn-on and turn-off contents and the dead storage. Whenever the reservoir contents drop below the ON level, the desalting plant is operating and whenever contents are above the OFF level, the plant is shut down. The demand that can be satisfied in each case is given in Fig. 10. The conditions of the computation are the same as for line 2, Table 7.

Prior to the final simulation and cost computation, the program first eliminates from further consideration all rules that cannot produce enough water to satisfy the demand. Then the program eliminates those rules which CACHUMA APPLICATION WITH A 75 M.G.D. DESALTING PLANT

NO.OF PERIODS IN SIMULATION= 5 NO. OF YEARS IN FACH PERIOD= 30 NO.OF YEARS IN EACH PERIOD= 75 NO.OF PERIODS IN FIRM YIELD= 5 $NPRC = 40$ $CMAX = 66.789B.6.$ CMIN= 10.600 B.G. DSCAP= 75.00 M.G.D. $\texttt{FORCE} = 1$ $KIO=1$ $KPC = 2$ $KIP = 2$ KREAD= 1 IFLOW= 3 ISTOR= 1 IYEAR= 1 $KIK = 1$ THERE ARE 1 DEMAND LEVELS IN THIS RUN AS FOLLOWS $80 - 0$ DEMB= 77.300 M.G.D. $RBAR =$ $000 M.6.0.$ THIS IS A 3 SEASON RUN AVE. SEASON ON INC= . 025 AVE. SEASON OFF INC= . 025 **WET SEASON ON INC. = . 050** WET SEASON OFF INC. = . 050 OCT. **NOV** DE C **APR** JAN FE B MAR JUNE JULY SEPT MAY **AUG** MONTHLY SEASON ASSIGNMENT \mathbb{R} \overline{c} $\mathbf{3}$ $\overline{3}$ \mathcal{Z} $\mathbf{2}$ $\overline{\mathcal{L}}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ \mathbf{R} DEMAND COEFFICIENTS 1.23 $^{\circ}76$ -40 -36 28 -59 .76 1.07 1.32 1.86 1.89 1.50 RELEASE COEFFICIENTS 00_o **0D** \bullet D D -00 00ء • 0 0 -00 -00 00_o -00 -00 -00 TURN-ON FRACTIONS $$50$ $$40$ $$30$ $-60 - 50 - 40 - 30$ TURN-OFF FRACTIONS $START = .60$ STEP= . 05 **PCF= .95**

 σ .

The reservoir capacity data appear in Table 5. Monthly evaporation potential for Cachuma Reservoir is given in Table 6. Other typical input data are shown in the page of printout in Fig. 7, including the demand rate, monthly season assignments and increments, demand coefficients, release coefficients, and the length and number of periods of flows used in the computations.

Table 5. Elevation-capacity data.

CACHUMA RESERVOIR

Table 6. Monthly evaporation potential, Cachuma Reservoir.

Month	Evaporation (Inches)				
Oct.	5.39				
Nov.	3.79				
Dec.	2.92				
Jan.	2.69				
Feb.	2.91				
Mar.	4.38				
April	5.67				
May	6.97				
June	8.54				
July	9.66				
Aug.	8.70				
Sept.	7.04				

The first information needed from the Operating Rule Program is the amount of firm yield that the system can supply without the help of the desalting plant. This yield is given in Table 7 along with other results from the Cachuma application. Knowing both the demand that must be *met* and the firm yield without desalting, the firm yield to be added by the desalting plant can be determined by subtraction. The sizes of desalting plants to be studied can then be chosen.

Of the many sizes of plants that could have been selected, 60, 65, 75, and 85 MGD plants were analyzed. One would expect that several plant sizes could meet the demand for water. Too small a plant would, however, run almost continuously and would spill water frequently due to its high tum-off fraction and thus would be less efficient than a larger plant. On the other hand, too large a plant would sit idle much of the time with a consequent drop in efficiency.

In selecting the plant sizes to be studied, the judgment and experience of the operator are important. The first computation should be made with a plant that is expected to be in the middle of the range of plant sizes. Based on experience with cases studied using the program, the best size is usually a plant with a capacity about 1.30 times as large as the required increase in firm yield. From the information supplied by the first computation, the decision is made as to the next plant size (somewhat smaller or larger) whose operation is to be simulated. Thus the process continues with the operator deciding at each stage the next plant size to be analyzed, until the optimal plant size is determined as that plant which supplies the needed increase in firm yield at the lowest cost when operating with the optimum operating rule.

The firm yield analysis, made by the computer program showed that the 60 MGD plant could not meet

Table 4. Inflow to Cachuma in ac-ft.

l,

APPLICATION OF THE OPERATING RULE PROGRAM TO SELECTED SYSTEMS

As specified in the contract, the Operating Rule Program has been applied to three "natural water-reservoir systems" to determine the minimum cost of additional firm yield for selected desalting plants of various sizes and the operating rule associated with minimum cost. The program also furnishes the information needed to choose the optimum size of plant for each system.

The three systems selected (in consultation with the Office of Saline Water) were the Cachuma project in California, the New York City Water System, and the Deer Creek Reservoir of the Salt Lake City water system.

These applications are designed to demonstrate the methodology and effectiveness of the Operating Rule Program by using real environments. In applying the Operating Rule Program to the three selected cases for study purposes, the single purpose, multi-stage flash distillation (MSF) process plant was used. Basic engineering and cost data for plants used in the study are given in detail in Appendix C. These data were developed by the Oak Ridge National Laboratory under its contract with OSW. Plant capacities ranging from 25 to 100 MGD, plant load factors from 10 percent to 90 percent, a fuel cost of 35¢/MBTU, interest rate of 4-5/8 percent and a 30-year plant life were considered. For plant sizes larger than 100 MGD, ORNL furnished the set of arithmetic multipliers given in Appendix C. The 100 MGD plant was considered as the base and the multipliers were used to compute the cost tables for the larger plant sizes up to 300 MGD.

Water costs derived herein are for the incremental supply of safe yield produced by the desalting plants during their period of conjunctive operation. The costs shown are discounted over the 30-year selected study period (plant lifetime) and levelized to show a uniform annual safe yield cost for the period. Only the costs that occur within the plant boundary were considered.

While the MSF process was utilized in the study, other processes such as the membrane processes could have been considered equally as well. As in the MSF process case, relevant input data would have to be derived and fed into the program.

The cost, inputs and results shown in these applications are only illustrative of the application of the Operating Rule Program and proof of its operability. Much more detailed study would be required to determine the cost input factors to be used in actual feasibility studies involving conjunctive operation. Results obtained for the cases selected, therefore, are not necessarily

comparable to those which might be obtained from a more detailed feasibility study for the same site. Contract time and funds did not permit detailed investigation of input parameters. The main effort in the application has been to demonstrate the method and the computer program in a realistic way. Less emphasis and effort has gone into determining and verifying the input data.

Cachuma Project Application

Purpose

The purpose of this application study is to find the lowest cost conjunctive operation desalting alternative to increase the firm yield of the Cachuma Project to 80 MGD with reservoir size held constant. The cost of supplying the increased firm yield, the optimum size plant, and the associated optimum operating rule are to be determined.

System description

The Cachuma dam and reservoir are located northeast of Santa Barbara, California. The 66.8 billion gallon reservoir has a dead storage of 10.6 BG, thus leaving a usable storage content of 56.2 BG. The Santa Ynez River is the only major inflow to the reservoir. This highly variable stream has a mean yearly inflow of 77.3 MGD based on 59 years of record. Other features of the project include the Tecolote tunnel, the South Coast conduit with its four regulating reservoirs and distribution systems to serve the south coast area including the city of Santa Barbara.

Because of the highly irregular flows of the Santa Ynez River, this site was selected for investigation of the use of desalting as a supplemental source to augment the natural flow of the river as regulated by the reservoir. In such a system the desalting plant would be located on the coast and its production would be fed into the system near Santa Barbara-probably into one or more of the regulating reservoirs. During times when desalted water is needed it would be blended with natural waters. The flow through Tecolote tunnel would be reduced by the amount of desalted water production and the desalted water would thus be "stored" by exchange in the Cachuma Reservoir.

Input data

The flow of the Santa Ynez River tributary to the Cachuma Dam constitutes the hydrologic input data for this application and is given in Table 4. The data were taken from a report of the Bureau of Reclamation (1968).

A total uniform yearly cost for a period of simulation is given by

$$
T_{u} = U_0 + U_f \dots \dots \dots \dots (19)
$$

in which T_u is the uniform annual cost in dollars and U_f is the annual fixed charge. The cost of additional firm yield, C_u , is then computed as:

$$
C_{u} = \frac{T_{u}}{\Delta \overline{Y}}
$$

in $\frac{s}{yr}$ per MGD of additional firm yield \ldots (20a)

or
$$
C_{\text{u}} = \frac{T_{\text{u}} \times 10^{-5}}{3,65 \text{ (AY)}}
$$

$$
\text{in } \frac{6}{3}, 65 \text{ (a1)}
$$
\n
$$
\text{in } \frac{8}{1000} \text{ gal. of additional firm yield } \dots \dots \tag{20b}
$$

in which $({\Delta} \overline{Y})$ is the increase in firm yield (MGD) and the constants convert the cost to the desired units.

Block II-Determination of least cost rule

From the values of C_u obtained in block 10, an average cost of each rule is computed as

$$
\overline{C}_{\mathbf{i}} = \frac{1}{N} \sum_{j=1}^{N} (C_{\mathbf{u}})_{\mathbf{i}, \mathbf{j}}
$$

for $\mathbf{i} = 1, 2, ..., N_f \cdot \cdot \cdot \cdot (21)$

in which

- is the average unit cost of the i^{th} feasible C_i rule, the contract of the cont
- $Cu_{i,j}$ is the unit cost of the ith rule for period j,
- N is the number of periods (NPER), and
- N_f is the number of feasible rules.

The preferred rule from the feasible set of operating rules is readily identified as the one with the minimum cost; i.e., C_{min} . The optimum operating rule and the associated cost are printed out and the computation is terminated.

Optimum plant size and reservoir size

Since the plant size and reservoir size are each fixed for a given computation, the program does not automatically determine the optimum plant size and optimum reservoir size. These can be determined manually by running the program for several combinations. The program could be modified to include a gradient procedure on the cost function with the plant size and reservoir size as decision variables. Such a change in the program was considered but deferred because of the large increase in the computer time that would be required for most applications. Further work on this program modification is suggested as part of future investigations. A skilled operator can probably save money (compared with automatic operation) by judicious selection of successive runs for determining optimum plant size. The reservoir size is usually constrained by the existing physical conditions to a single value. .

¹ Some other criteria might have been used; such as, the rule which would provide the greatest new safe yield at marginal value of water or marginal cost of water from an alternative source.

A sequence of streamflow is routed through the system and for each year the following parameters are recorded and printed out as in Figs. 16, 17, 18 and 19 (the names printed in capitals identify column names in the figures):

- (a) The number of times the desalting plant is turned on, TIMES ON.
- (b) The number of times the desalting plant is turned off, TIMES OFF.
- (c) The number of months the desalting plant operates, MONTHS ON.
- (d) The amount of desalted water produced, DSPRO.
- (e) The total amount of desalted water that is spilled, DSSP, regardless of whether it was produced in the year in question or in earlier years. The first water over the spillway is assumed to be desalted water if extra water has been produced since the last spill.
- (f) The total amount of water that is spilled, including both desalted water and natural wa ter, SPILL.
- (g) The total amount of shortages, SHORT.

rule. Simulation is performed NPER periods for each

Block 10-Cost analysis

Based on the performance of the system, as recorded in block 9, the cost of producing the additional firm yield is determined for each feasible operating rule.

$$
\Delta \overline{Y} = D_{t} - \overline{Y}_{0} \dots \dots \dots \dots \dots (16)
$$

where, in units of MGD,

- ΔY is the additional firm yield
- $\frac{D_t}{Y_o}$ is the projected target demand rate, and $\overline{Y_o}$ is the firm yield rate without desalting
- is the firm yield rate without desalting (determined in block 6).

The performance parameters from block 9 as well as a cost table like that shown in Fig. 8 are required in the cost analysis. The items of the cost tables are:

- (a) Discount interest rates (fraction),
- (b) Estimated tum -on and turn -off costs (dollars),
- (c) Ann ual fixed charges (dollars/ year), and
- (d) Operation and maintenance costs (dollars/ year).

Each column of the table represents the costs for a desalting plant, of specified capacity, that is optimized at

the indicated design load factor. The rows are the yearly operating and maintenance costs for the indicated operational load factors. In analyzing the cost of an operating rule, the column of cost data is used whose load factor most nearly corresponds to the load factor associated with the rule, L_f . For example, all three rules shown in Table 2 would be analyzed using the data in column five (load factor = .70) in Fig. 8 .

In order to assign a cost to ΔY it is necessary to obtain an equivalent uniform annual cost for the plant performance of the simulated operation. The fixed charges, U_f , enter the computation as uniform annual payments and include:

- (a) Interest on initial capital,
- (b) Amortization of initial capital,
- (c) Interim replacements, and
- (d) Taxes and insurance.

Operation and maintenance costs vary from year to year and, therefore, must be converted to a uniform annual series. The present value of all operation and maintenance costs is determined and then converted to a uniform annual payment by using a capital recovery factor. The present value is obtained as follows:

$$
V_p = \sum_{j=1}^{N} \frac{1}{(1+1)_j} \cdot [(C_1)_j + (C_2)_j] \cdot (17)
$$

in which

- V_p is the present value of the operation and maintenance costs,
- (C_1) _i is the operation and maintenance cost in year, j,
- j_i is the turn-on and turn-off cost in year, j,
- is the discount interest rate, and
- N is the number of years in the economic period.

 C_1 is obtained by interpolating in the appropriate column of the cost data table. The number of months the plant operates each year is converted to a load factor and a linear interpolation is performed to obtain the associated cost. C_2 is a summation of the number of times the plant is turned on and turned off each year multiplied by the cost of each event.

The uniform equivalent annual cost for operation and maintenance, U_0 , is determined by

$$
U_{o} = V_{p} \frac{I(1+I)^{N}}{[(1+I)^{N} - 1.0]} \dots (18)
$$

in which V_p , I, and N are the same as in Eq. (17).

Figure 5. Feasible rule determination.

A linear interpolation was selected because it was not subject to erratic results as frequently as interpolations based on higher degree polynomials.

Fig. 6 shows a set of feasible operating rule curves for three different target demand rates. Since all points plotted are feasible rules, the curves can help suggest other feasible rules that might be investigated in further stages of the analysis to more closely define the optimum rule .

Block 8-Generation of streamflow for simulation

Subprogram GNFLO is called to generate streamflow for the second phase of simulation. The number of periods is specified by the parameter NPER and the number of years per period by NYP. The number of years per period is taken as some multiple of the useful life of the desalting plant. In the applications that follow 5 periods of 30 years each were used .

Block 9-Simulation with feasible rules

Simulation of the system is performed for each rule in the set of feasible operating rules. The purpose of this phase of simulation is to record those parameters of system performance required in the economic or cost analysis.

Firm yield specification equal to 100 percent. There are many demand rates that can be satisfied 100 percent of the time as can be seen in Fig. 4. The procedure used in this case is to alter the demand rate by adjusting f in Eq. (5) until the largest demand rate is reached that will still satisfy

$$
99.0 \leq F_t \leq 100.0 \ldots \ldots \ldots (12)
$$

The iteration is terminated when the change (Δf) in f to get from $F_t \nightharpoonup 100.0$ in the kth iteration to F_t < 100.0 in the kth + 1 iteration is less than 1.0 percent. Because of the nature of this iteration, much more computational effort is required to locate the desired firm yield value than in the preceding case.

A firm yield for operation without desalting and for each operating rule in the set of rules is determined as outlined above. If the number of periods specified (NPFY) is greater than one, the whole procedure is repeated, until simulation has been performed for NPFY periods. The results from the different periods are averaged and a set of firm yield values for each operating rule is obtained as follows:

$$
\overline{Y}_{n} = \frac{1}{N} \sum_{p=1}^{Np} (Y_{n})_{i}
$$

for n = 0, 1, 2, ..., N_r ... (13)

in which

\Tn is the average firm yield for rule, n,

- (Y_n) ; is the firm yield for rule n and period, i,
- N_p is the number of periods,
- N_r is the number of operating rules, and Y_0 is the firm yield of the system
- is the firm yield of the system without desalted supplement.

Average operating load factors are obtained for each operating rule as \mathbf{N}

$$
\overline{L}_{r} = \frac{1}{N_{p}} \sum_{i=1}^{N_{p}} (L_{r})_{i}
$$

for $r = 1, 2, ..., N_{r}$ (14)

in which

 \overline{L} is the average load factor for rule, r, (L_r) ; is the load factor for rule r period, i.

The number of periods and the number of years per period selected for the simulation are specified by the user. Confidence in the results varies directly with the number of periods used; however, there is a practical upper limit set by the amount of computational effort involved compared to the amount of new information generated. The version of the computer program documented herein allows a maximum of 20 periods and a maximum of 100 years per period. The length of period chosen is influenced by the useful life of the system and should be at least as long as the years of simulation in the cost analysis of block 10. In the subsequent application studies, five periods of 75 years per period are used.

Block 7 -Determination of feasible operating rules

The decision space is defined as the set of operating rules that are formulated in block 3. The set may not contain the overall optimum rule unless care is exercised in specifying the turn-on and turn-off fractions. By an examination of the computer output, it can be determined whether the overall optimum rule was located or not. One limitation on the feasible rules is the specified target demand rate. Obviously, the rules having firm yields less than the target demand need not be considered. Those rules producing more yield than required can be removed from consideration because of their lower efficiency. Thus many of the operating rules of the decision space are removed from further consideration and only those rules furnishing yields very close to the target demand are retained for further examination.

A set of feasible operating rules is obtained by performing an interpolation of the firm yield array. The array involves three variables because each entry has a value for the firm yield, a turn-on level, and a turn-off level. The interpolation is performed by entering with the target demand rate as the argument and interpolating to obtain a turn-on fraction for each turn-off specified in the input. The interpolation procedure is illustrated graphically in Fig. 5. Three turn-off fractions are used with a target demand rate of 280 MGD. A linear interpolation is used to obtain the feasible set of rules shown in Table 3.

Table 3. Feasible operating rules.

An average plant load factor for each feasible rule is determined by averaging the load factors associated with the two rules involved in the interpolation. Thus, if the rth and the $rth + 1$ rule enter into the linear interpolation,

$$
\overline{L}_f = \frac{\overline{L}_r + \overline{L}_{r+1}}{2} \cdot \cdot \cdot \cdot \cdot (15)
$$

in which

-
- L_f is the load factor for the feasible rule, '
 L_r is the load factor associated with the rth Γ_r is the load factor associated with the rth rule,
- \overline{L}_{r+1} is the load factor associated with the rth + 1 rule.

in which

400

- L_r is the average plant load factor for rule $r, r =$ $1, 2, \ldots, N_r,$
- O_j is the number of months the plant operated in year, j, $0 \leq O_i \leq 12$, as counted by the program,
- N is the number of years in the period (NYFy), and
- is the number of years that the plant operated N_{op} in the simulation as counted by the program and
- N_r is the number of operating rules in the set.

Thus, the plant load factor defined above reflects the fraction of time that the plant runs in those years that the plant is turned on. Years in which the plant does not operate are not included. The plant load factor influences the design of the desalting plant since it reflects the yearly wear and tear on the operating plant. A gross load factor should also be defined which would include all years (N) in the denominator of Eq. (9) rather than just those years when the plant runs (N_{op}) .

The frequency of satisfying the demand is determined as follows:

$$
F_t = (1.0 - \frac{1}{N} \sum_{j=1}^{N} K_j)
$$
 (100) ...(10)

in which

- F_t = frequency of satisfying the demand (on a yearly basis),
- K_i = 1 if one or more shortages occurred in year, j, and
- K_i = 0 if no shortage occurred.

The nature of the firm yield criteria necessitates two different iterative procedures for (a) firm yield specffications less than 100 percent and (b) firm yield specifications equal to 100 percent.

Firm yield specifications less than 100 percent. The value of F_t calculated by Eq. (10) is compared with the specified reliability of firm yield, F_v , in Eq. (11).

$$
(F_y - \Delta) \le F_t \le (F_y + \Delta) \dots (11)
$$

The value of Δ was chosen as 1.0 percent. If Eq. (11) is satisfied, then the average demand rate as computed from Eq. (5) is the firm yield for the given period. If Eq. (11) is not satisfied, f is adjusted in Eq. (5) and the simulation repeated with the different demand rate. The process is repeated until two nearby values of F_t are obtained (designated by and I^{*}) such that F_t ¹ (F_v - 1.0) and $(F_v + 1.0) \le F_t$ ¹¹ 100. Once this condition is achieved, a linear interpolation is performed to obtain the value of firm yield for the given period. The method is demonstrated graphically in Fig. 4.

 \triangle - Turn-On =.90; Turn-Off =.60 0- Turn -On =.70; Turn-Off =.60 [] - Without Desalting

350 င္ပ 326.0 ~ Rate 300 Demand Range of demands that can be met 100% 250 of the ti me. $- - \frac{224.0}{ } - - - =$ 200 L-__ ~ __ -L ________ L-______ -L ________ ~ ______ ~ ________ ~~~~~ __ L-30 40 50 60 70 eo 90 95 ¹⁰⁰ Frequency (% of Years)

Table 8. Elevation-capacity data.

DEER CREEK RESERVOIR

Water surface elev. in feet	Capacity of res. in ac-ft
5290.	$\overline{0}$.
5295.	1000.
5300.	2000.
5305.	3000.
5310.	4542.
5315.	6532.
5320.	8999.
5325.	11983.
5330.	15429.
5335.	19266.
5340.	23495.
5345.	28128.
5350.	33244.
5355.	38911.
5360.	45172.
5365.	51949.
5370.	59102.
5375.	66663.
5380.	74653.
5385.	83177.
5390.	92272.
5395.	101902.
5400.	112148.
5405.	123087.
5410.	134761.
5415.	147396.
5417.	152750.

Desalted water production not immediately used would be stored indirectly in Deer Creek Reservoir by reducing the need for deliveries from that project. If necessary, desalted water could be pumped back upstream for storage at added cost.

Thus, in this Salt Lake-Deer Creek application of the Operating Rule Program, only the operation of part of the Salt Lake City water system has been studied while assuming that the city will continue to draw all it can from its other sources with future water deficits to be supplied by a desalting plant.

The demand used in the study is the total projected demand on the Deer Creek project for all uses including

present irrigation rights and present plus future municipal and industrial needs.

The approach used in this application illustrates one way of analyzing a complex system; that is, by separating out the major storage reservoir for operation with the desalting plant.

Fig. 11 shows a typical page of general input used in the computer computations for Deer Creek. Fig. 12 shows the cost data used in the computations for the 65 MGD plant. Table 11 summarizes results of the series of computations.

Three sizes of plants, 50, 65, and 75 MGD, were studied for the Deer Creek application of the program. The 65 MGD plant was the most economical of the three and produced the necessary added firm yield at a uniform annual cost of \$183,400/year/MGD while operating with a rule of ON at .46 and OFF at .80. The average plant load factor was 59 percent and the desalted water use/production ratio was 0.75. Thus the Deer Creek plant operated at a slightly smaller load factor and efficiency than the Cachuma plant.

Line 1 of Table 11 is of particular interest because it shows a rule of ON at .98 and OFF at .98. This rule gives approximately the smallest possible conjunctively operated While the plant of line 1 shows a distinct advantage over the base load operations of lines 4 and 5, it still is a more costly rule and plant size than the optimal plant of line 2. This is because the plant of line 1 wastes more desalted water over the spillway as shown by its lower efficiency of 0.55.

No further sensitivity analysis runs were made for the Deer Creek study since the plant size and other results were similar in range to the Cachuma study.

Table 10. Computed inflows to Deer Creek Reservoir in ac-ft.

 $\overline{}$

 $\hat{\mathcal{L}}$

 \sim

Figure 11. Input data, Salt Lake-Deer Creek application.

 \mathcal{D}

 \sim

```
OEER CREEK APPLICATION WITH A 65 M.G.D. DESALTING PLANT 
NO.OF PERIODS IN SIMULATION= 5
                                       NO. OF YEARS IN EACH PERIOD= 30
NO.OF PERIODS IN FIRM YIELD= 5
                                       NOeOr YEARS IN EACH PERIOO= 15 
NPRC= 27 
CMAX= 49.780 B.G.
CMIN= .q18 B.G. 
OSCAP= 65.00 M.G.Oe 
FORCE = 1
1<10= 1 
KPC= 2 
KIP= 2 
KREAD= 1
IFLOW= 3 
ISTOR= 1 
IYEAR= 1 
KIK = 1THERE ARE 1 DEMAND LEVELS IN THIS RUN AS FOLLOWS
       220.0 
OEMB= 217.000 M.G.O. 
RBAR= .000 M.G.D. 
THIS IS A 3 SEASON RUN
AVE. SEASON ON INC= . 025
                                 AVE. SEASON OFF INC= .025
WET SEASON ON INC.= . 050
                                 WET SEASON OFF INC.= .050
                                 NOV OEC JAN FEB MAR 
                           OCT 
                                                              APR MAY 
                                                                          JUNE JULY AUG SEPT
MONTHLY SEASON ASSIGNMENT 
                            1 
                                   2 2 2 2 2 
                                                                3 3 
                                                                            3 2 2 1 
                                 -58 -62 -76 1.09 1.39 1.83 1.66 1.23 .89 .66 .65
DEMAND COEFFICIENTS 
                           .()4 
                                 .00 .00 .00 .00 .00 
RELEASE COEFFICIENTS 
                           .00 
                                                              .00 .00 
                                                                          .00 .00 .00 .00 TURN-ON FRACTIONS
                       -50 - 40TURN-OFF FRACTIONS .80
START= .75
STEP= .05
                                                                     \mathbb{R}^2PCF= .99
```
÷.

 $\mathbb{Q}_\mathbb{C}$.

 \bullet

Figure 12. Cost data, Salt Lake-Deer Creek application.^a

COST DATA FOR DESALTING PLANT USED IN ANALYSIS

 \mathbf{c}

 λ

 Δ

 $E_{\rm b}$

 \mathfrak{g}^-

 \mathcal{A}

FSTIMATED TURN-OFF COST= 5 50 00. INTEREST RATE= $.0500$

 \mathbf{r}

 α

^a65 MGD, MFS, single purpose plant.

See Appendix C for additional cost details.

Table 11. Summary of cost computations, Salt Lake-Deer Creek application.

						Optimum				Average
Line No.	Probability level defining firm vield %	Demand MGD	Firm yield without desalting MGD	Required increase in firm vield MGD	Plant size MGD	rule (reservoir) fraction full) ON OFF	Average plant load factor %	Desalted water use/production ratio (efficiency)	Number of feasible rules tried	levelized cost in $\frac{f}{f}$ per MGD of added firm yield
	99	220	176.8	43.2	50	0.98 0.98	68	0.55		197,400
$\mathbf{2}$	99	220	176.8	43.2	65	.46 -80	59	0.75	4	183,400
3	99	220	176.8	43.2	75	.48 .60	48	0.77	5	193.300
4	99	220	176.8	43.2	65	Base Load	90	\mathbf{r}	٠	294.900
5	99	220	176.8	43.2	50	Base Load	90			230,600

For other conditions of the computations see Figs. 11 and 12.

Useful plant life = 30 years

New York City Application

Purpose

The purpose of this application study is to find the lowest cost conjunctive operation desalting alternative to increase the firm yield of the New York system to 1970 MGD with reservoir size held constant. The cost of supplying the increased firm yield, the optimum plant size, and the associated optimum operating rule are to be determined.

New York City was selected for study as an example of how the program might be used for analysis of a very large metropolitan system in a humid area. The hydrologic data was crudely adapted from studies made for other purposes. The cost data were extrapolated from studies made for smaller plants. The study is intended only as an example, and without further refinement the numbers generated do not necessarily have relevance to the application of desalting to meet the future needs of the city.

System description

In the New York City application, a different approach was used from that applied in the Salt Lake-Deer Creek study. Here the entire system was lumped together and operated as a whole. This means that all the storage of the system was added together and considered as one storage reservoir with average characteristics similar to the east branch of the Ashokan Reservoir. All of the watershed runoffs tributary to the system were also added together to give one composite record of natural inflow to the system. The desalting plant or plants could be located in the most economical location for production, distribution, and availability of a salt water supply. The assumption is made that the system has sufficient controls so all

reservoirs can be made to fluctuate up and down together and that desalted water production is backed up proportionately into all reservoirs.

The following description of the New York City system is taken from OSW Research and Development Progress Report No. 207 (1966) pages 3-9 through 3-11. The major facilities constituting the supply system are shown in Fig. 13 which was furnished by the Board of Water Supply of the City of New York.

New York City draws practically its entire water supply from three surface water sources, which are the Croton, Catskill and Delaware Systems. In addition to New York City, these sources supply, wholly or partially, areas of Elmsford, Mount Vernon, New Castle, New Rochelle, North Tarrytown, Ossining, Peekskill, Pleasantville, Scarsdale, Tarrytown, White Plains and Yonkers. The total system serves a population of approximately 8.5 million people. Current normal use, with an ample supply, would probably approach 1.3 **BGD....**

System descriptions and percentages of supply are as follows:

Catskill-Forty-three percent of the 1961 supply was from this source. Schoharie Creek is impounded in Schoharie Reservoir, and the water is carried by Shandaken Tunnel to Esopus Creek, which is impounded in Ashokan Reservoir. The mixed water is conveyed to Kensico Reservoir by the Catskill" Aqueduct. A small amount of water is supplied to consumers directly from the aqueduct before it reaches Kensico Reservoir.

*Delaware-*This source furnished thirty-six percent of the 1961 supply. East Branch Delaware River is impounded in Pepacton Reservoir, and the Neversink River is impounded in Neversink Reservoir. The water

 \mathcal{L}

 1.145

of these two reservoirs is carried to Rondout Creek which is impounded in Rondout Reservoir. Water from Rondout Reservoir is transported by the Delaware Aqueduct to the West Branch (Croton) Reservoir and then into Kensico Reservoir.

Croton-Eighteen percent of the 1961 supply came from this source. Waters from Rondout Reservoir, Boyd Corners Reservoirs, and other related tributary sources mix in West Branch (Croton) Reservoir. Part of the mixed water is carried to the Rye Lake area of Kensico Reservoir. Some water from Middle Branch and Cross River Reservoirs is carried to Kensico Reservoir. The New Croton Reservoir is formed by waters of the Croton River Basin and the Delaware Aqueduct. Water from the New Croton Reservoir serves areas in Manhattan and the Bronx as well as other communities. Kensico Reservoir receives water from the Bronx River Basin, which mingles with water from the Catskill, Delaware, and Croton Rivers. From Kensico, these mixed waters flow through the Catskill and Delaware Aqueducts to Hillview Reservoir, supplying several

communities enroute. Water from Hillview is delivered to the five New York boroughs and some adjacent communities.

The Cannonsville Reservoir was added to the above system in 1966. The total storage in all the impounding and storage reservoirs and not counting distribution reservoirs and standpipes comes to a little over 603 billion gallons.

Input data

Watershed runoff records for the entire lumped system are given on page 11-5 of OSW Report 207 (1966) and are shown as Table 12. Note that 1965 is the last year given. The mid-1960 drought continued into 1968. If the three additional dry years had been available, the streamflow simulator would have reflected this condition by generating more severe droughts in the synthetic hydrographs. This, in turn, would have required more desalted water production.

Table 12. Inflow to New York system in billion gallons.

The New York City system is required to make certain mandatory releases on some streams for pollution control and to fulfill certain court decrees. These releases fluctuate wjdely from year to year making estimation of the mean releases difficult. Examination of certain published data indicate that the required mean releases lie between 150 and 300 MGD depending on climatic conditions. For most of the computations described below, 150 MGD mandatory releases were assumed. The assumed composite reservoir capacity data are shown in Table 13. Evaporation potential for the New York application is given in Table 14. Other typical input conditions for the series of computations are summarized in Fig. 14 while Fig. 15 shows the cost data for the 250 MGD plant.

Results

The results of the New York City system studies are summarized in Table 15. Two groups of computations were made, one with firm yield defined at 99 percent probability and the other at 95 percent. The results are discussed in the same order.

Table 13. Elevation-capacity data.

NEW YORK CITY WATER SYSTEM

Firm yield at 99 percent

Preliminary information from the firm yield part of the program indicated the firm yield without desalting is 1759.6 MGD. This means that with a demand of 1970.0 MGD, the required increase in firm yield is 210.4 MGD. Past experience with the program has shown desalting plant capacity 1.30 times the firm yield increase is advisable for initial computer analysis. Thus the first size studied was 275 MGD. Then other plant capacities were assumed and a series of computations made until plant sizes of 210, 225, 250, 275, and 300 had been studied. The optimum plant size based on the selected inputs was found to be 250 MGD operating with a rule of ON at .77 and OFF at .70, and with a cost of \$ 145,200/year/MGD of added firm yield as shown in line 3 of Table 15.

The optimal 250 MGD plant operates at a load factor of 51 percent. The efficiency (.24) is surprisingly low. This value means that only 24 percent of the desalted water production actually is used. The rest escapes over the spillway and is lost. The reader will recall that the desalted water use/production ratio (efficiency) for Cachuma and Deer Creek applications were .82 and .75 respectively. Why should the New York City system apparently waste so much desalted water production?

In the first place one should keep in mind that in spite of the apparent wastefulness of the operating rule, the necessary increase in firm yield has been added to the system by the desalting plant. The water supply has been available when needed to prevent shortages. The critical low flow periods have been filled in with desalted. water. The so called efficiency is low because in the New York system, the desalting plant only furnishes about 10.7 percent of the demand. The natural inflow of the system is so large compared to the desalted water production that

Figure 14. Input data, New York City application.

 ω

 ~ 10

 \mathbf{b}_i

 \sim

```
NEW YORK APPLICATION ------ 250 M.G.D. MSF DESALTING PLANT
NO.OF PERIODS IN SIMULATION: 5
                                                NO. OF YEARS IN EACH PERIOD= 30
NO.OF PERTODS IN FIRM YIELD= 5
                                                NO. OF YEARS IN EACH PERIOD= 75
NPRC= 24
CMAX=623.574 B.6.
CMIN= 20.000 B.6.
DSCAP=250.00 M.G.D.
FORCE = 1\simKIO = 1KPC = 2KIP = 2KREAD= 1
             \sim 100IFLOW= 4
ISTOR= 2
IYEAR= 2
KTK = 1THERE ARE 1 DEMAND LEVELS IN THIS RUN AS FOLLOWS
       1970.0
DEMB=2350.000 M.G.D.
RBAR= 150.000 M.G.D.
THIS IS A 3 SEASON RUN
AVE. SEASON ON INC= .050
                                        AVE. SEASON OFF INC= .050
WET SEASON ON INC. = . 100
                                        WET SEASON OFF INC. = . 100
    \sim 10^{-11}JAN
                                        FEB
                                               MAR
                                                      APR
                                                              MAY
                                                                    JUNE JULY
                                                                                   AUG
                                                                                          SEPT OCT
                                                                                                        NOV<sub></sub>
                                                                                                               DE C
MONTHLY SEASON ASSIGNMENT
                                                        \overline{3}\overline{z}\overline{c}\overline{\mathbf{3}}\overline{z}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\overline{c}\overline{c}.95 1.00 1.06 1.08 1.10 1.10 1.05 1.00
DEMAND COEFFICIENTS
                                 -92-90.92.92RELEASE COEFFICIENTS
                                  .30.30-30-50 -60 1.00 1.50 2.50 2.50 1.80-40.30TURN-ON FRACTIONS
                             -80 -70\Delta \simTURN-OFF FRACTIONS
                             .70SIMRT = .75STEP = .05PCF=1.00
                                                                               \ddot{\phantom{a}}\sim
```
À

 $q\lambda$

COST DATA FOR DESALTING PLANT USED IN ANALYSIS

 \sim \sim

ESTIMATED TURN-ON COST= 200000. ESTIMATED TURN-OFF COST= 200000. INTEREST RATE: . 0500

^a 250 MGD, MFS, single purpose plant.

 ~ 100

See Appendix C for additional cost details.

 \sim

 \mathcal{L}

Line No.	Probability level defining firm yield $\%$	Demand MGD	Firm yield without desalting MGD	Required increase in firm yield MGD	size	Optimum rule Plant (reservoir fraction MGD full) ON OFF		Average plant load factor $\%$	Desalted water use/production ratio (efficiency)	Number of feasible rules tried	Average levelized cost in $\frac{f}{f}$ per MGD of added firm yield
1	99	1970.0	1759.6	210.4	210	99	99	78	0.18	$\mathbf{1}$	161,600
2	99	1970.0	1759.6	210.4	225	90	90	68	0.19	$\mathbf{2}$	160,700
3	99	1970.0	1759.6	210.4	250	77	70	51	0.24	5	145,200
4	99	1970.0	1759.6	210.4	275	74	70	48	0.24	5	156,100
5	99	1970.0	1759.6	210.4	300	72	70	46	0.24	4	163,400
6	99	1970.0	1759.6	210.4	250	Base Load		90		-	207,800
7	99	1970.0	1759.6	210.4	210	Base Load		90		-	175,500
8	95	1970.0	1856.2	113.8	110	98	98	81	0.20	1	165,600
9	95	1970.0	1856.2	113.8	125	82	85	68	0.22	3	169,600
10	95	1970.0	1856.2	113.8	150	60	80	57	0.30	4	164,200
11 ^a	95	1970.0	1856.2	113.8	150	80	80	65	0.23	1	191,400
12	95	1970.0	1856.2	113.8	175	58	60	48	0.32	6	166,500
13	95	1970.0	1856.2	113.8	200	50	50	44	0.34	4	169,400
14	95	1970.0	1856.2	113.8	150	Base Load		90			242,400
15	95	1970.0	1856.2	113.8	110	Base Load		90			174,700
16	100	1970.0	1720.0	250.0	Mandatory releases $= 150$ MGD						
17	100	1970.0	1558.0	412.0	Mandatory releases = 296.5 MGD						

Table 15. Summary of cost computations, New York City application.

For other conditions of the computation, see Figs. 14 and 15 and below.

Useful plant life = 30 years

Reservoir capacity = 603.57 BG

^aComputation done off optimum to show the effect of using a bad operating rule.

the rise and fall of the reservoir contents depend mostly on the natural inflow and not much on the desalting plant. When wet weather comes with high flows, the reservoirs fill quickly and desalted water production from preceding months may be wasted along with natural spills.

On the other hand, in a system such as Cachuma, where desalted water furnishes 69.8 percent of the demand, the reservoir contents depend more on the desalting plant than on the natural flows except in cases of unusual floods. Thus the operating rule controls the reservoir storage to a greater extent and the operating rule is able to minimize waste of desalted water production by shutting the plant off ahead of spillage.

Line 1 of Table 15 shows the smallest plant size (210 MGD) that can meet the demand. The operating rule is ON at .99 and OFF at .99 and the associated cost is \$161,600/year/MGD. Lines 6 and 7 show base load operation costs to be \$207,800/year/MGD for the 250 MGD plant and \$175,500/year/MGD for the 210 MGD plant.

Firm yield at 95 percent

Lines 8 through 14 show results of computations with firm yield defined at 95 percent. Plant sizes from

110 to 200 MGD were studied. Since more shortages are tolerated under this definition, the natural system can supply more of the demand and the desalting plant only has to produce an increase of 113.8 MGD. Note that a 110 MGD plant is able to supply the 113.8 MGD increase in firm yield. This apparent paradox is possible because some shortages are allowed. The optimal size plant is 150 MGD operating with a rule of ON at .60 and OFF at .80 with a cost of \$ 164,200/year/MGD of added firm yield as shown in line 10.

The optimal size plant operates at a design load factor of 57 percent. The efficiency is .30 which is somewhat better than the 99 percent firm yield case discussed earlier.

Line 11 shows the consequence of operating with a poor rule. The computer program was constrained to run with the non-optimal rule of ON at .80 and OFF at .80. The associated cost increased to \$191,400/year/MGD. Line 14 shows the base load operation of a 150 MGD plant to cost \$242,400/year/MGD, while a 110 MGD base load plant shown in line 15 would produce the added firm yield for \$ 174,700/year/MGD.

If the firm yield is defined at 100 percent probability as line 16 of Table 15, then the yield without desalting

drops to 1720 MGD. If, in addition, mandatory releases are assumed to be 296.5 MGD as in line 17, then firm yield without desalting decreases to 1558 MGD. If the additional drought years had been used as part of the hydrologic input, the results would indicate a still lower firm yield without desalting. This points up the urgent need for additional supplies in the New York City system for drought insurance in the future as the demand increases beyond the present value.

General Comments on the Applications

Uncertainty in input data

In the previous paragraphs the effect of arbitrarily changing various input parameters has been discussed. One question remains unanswered, however, concerning the input data. How much does error or uncertainty in the input affect the operation and economics of the desalting plant? The question has been partially answered since the sensitivity of the optimum operating rule and the cost of added firm yield to changes in input have been shown. But suppose the historical hydrologic record is either very short or not known with much accuracy. This uncertainty about the hydrology would be reflected by a corresponding uncertainty in the results. If dry spells were not as severe in the record as might eventually occur, then the synthetic streamflow sequences would not contain the resulting severe droughts and the program would not, of course, simulate operation of the plant under those severe conditions. In this respect, the results are subjected to some limitations as any other hydrological design problem under the same circumstances. If no record of inflow to the reservoir exists, a record estimated from the records of nearby streams would serve better than none at all; these might be quite good if the area is hydrologically homogeneous with strong correlation between the flows of different streams.

Another important question concerns the adequacy of the streamflow generator in reconstructing equallylikely hydrographs. This question is discussed in a separate report which is included as Appendix B "Evaluation of the Adequacy of Streamflow Operational Hydrology" by Roland W. Jeppson and Calvin G. Clyde.

Effect of conjunctive operation on the desalting plant design and operation

The optional intermediate printout that is available in the Operating Rule Program is of considerable help in assessing the unique operating features of the desalting plant and in seeing how these features might affect the design of the desalting plant. Figs. 16, 17, 18, and 19 show typical pages of simulation printout from each of the three applications. The reader should examine the column entitled "Months ON" for each application. All the plants operate intermittently, but the New York City plant is the most intermittent of the three since it

operates some months in every year (frequently started up twice in a year) but operates 11 or more months only 2 years in 30 or 4 years in 30 depending on the definition of firm yield. The Cachuma plant also is turned on almost every year (only 3 years in 30 show no operation at all on the average) but the plant runs longer (remains on 11 or more months in 9 of 30 years on the average) than the New York plant and often operates several years (as many as 5) without being shut down except for maintenance. The Salt Lake plant operates differently than the other two in that it remains completely idle an average of 12 years in 30. When the plant is finally turned on, it often runs the whole year (5 out of 30). The plant is very rarely started up twice in a year.

The three situations are quite different regarding the design and operation of the plant. At Salt Lake City the plant should probably be mothballed after each operation since there is a good chance it will not be turned on again for several years. Mothballing would cost more per event but would lead to a savings in plant upkeep and the useful life would be extended. The New York City plant, however, should be kept warm and in a semi-ready state since it will be used some every year and will probably be restarted soon after shutdown. The Cachuma plant need not be mothballed after a run since it will likely be started again soon, but the plant does need to be designed to run long periods of time with little maintenance, because the plant is frequently needed continuously for several years at a time. Possibly the pattern of turn-on and turn-off at Cachuma or Salt Lake is even such that at certain times of the year the plant should be mothballed while at other times maintained in a partly ready state. In any case, the optional intermediate printout of the program illustrated by Figs. 16, 17, 18, and 19 gives a great deal of information that assists in the plant design.

Examination of the computer program simulation printouts shows that the pattern of plant operation changes with the operating rule and with the plant size. The larger plants tend toward more intermittent operation. Similarly, rules with higher turn-on and turn-off level cause a more intermittent operation. Analysis of the simulation printout also gives information concerning the yearly energy needs of the desalting plant and the probable timing of the energy demands.

By analyzing the computer printouts it is possible to predict the probable pattern of desalting plant operation over an extended period of time which, in turn, would identify such things as the average plant factor, likely monthly plant operation, the usual shutdown periods and the frequency of occurrence of shutdowns throughout the period of study. Desalting plant production for each period can also be determined. This information, in turn, provides the plant designer information relative to such plant features as the need for use of low cost materials, the necessity of frequent startups and shutdowns, need for extensive mothballing or requirement for base load operation for long periods of time. Trade-off studies of

Figure 16. Simulation printout, Cachuma application, 75 MGD plant.^a

 $\mathcal{O}(\frac{1}{\sqrt{2}})$ and $\mathcal{O}(\frac{1}{\sqrt{2}})$

 $\mathcal{L}^{\mathcal{L}}$

 \mathcal{P}^{\pm}

 \sim

 $\sim 10^7$

 \mathcal{L}^{\pm}

 θ

RULE $NO_2 = 3$ PERIOD NO.= 3

 ω

 μ

^aFor other conditions of the computation see line 2, Table 7.

 \mathbf{q}

 ~ 100

 ~ 1000 km s $^{-1}$

 ~ 100 km s $^{-1}$

Figure 17. Simulation printout, Salt Lake-Deer Creek application, 65 MGD plant.^a

RULE NO.= 1 PERTOD NO.= 4

^aFor other conditions of the computation see line 2, Table 11.

 θ^{\prime}

 \mathcal{L}_{max} and \mathcal{L}_{max} . We see Eq.

 $\bar{\beta}$

 \sim

 $\theta\!{\rm e}$ \mathfrak{g}^+ \bar{z}

 $\frac{1}{\lambda}$

 $\langle \eta_{\rm{max}} \rangle$ and $\langle \eta_{\rm{max}} \rangle$

 $\mathcal{O}(\mathcal{O}^{\mathcal{O}})$. The $\mathcal{O}(\mathcal{O}^{\mathcal{O}})$

 $\langle \mathcal{Q}^{\pm} \rangle$

 α

 \mathcal{L}

 \sim

 $\sim 10^6$

 $\mathcal{L}^{\mathcal{L}}(\mathcal{A})$. The $\mathcal{L}^{\mathcal{L}}(\mathcal{A})$

 $\mathcal{L}^{\text{max}}_{\text{max}}$, where $\mathcal{L}^{\text{max}}_{\text{max}}$

^aFor other conditions of the computation see line 3, Table 15.

 \bullet

 \mathbb{Z}^2

Figure 19. Simulation printout, New York City application, 150 MGD plant.^a

RULE $NO_0 = 2$ PERIOD NO.5 1

^aFor other conditions of the computation see line 10, Table 15.

these features could be made to determine the best plant design to fit the desalting application under consideration.

In addition to probable design features that would be encountered, the computer printouts would also provide an insight into the specific operating features likely to be encountered in conjunctive operation. For example, frequent startup and shutdown would indicate the desirability of operating the plant in conjunction with a steam power plant which would have an operating crew that could be used to operate the desalting plant when required. The computer program would be useful also in analyzing the problem of coordinating the power and water demand cycles of conjunctively operated power and desalting plants.

It should be noted that on the next to the last lines of Figs. 16, 17, 18, and 19 the "efficiency" of the desalting plant is listed. Efficiency was defined earlier as the ratio of the desalted water production that is utilized or consumed by the system to the total desalted water production. The water that is not consumed either goes over the spillway or is evaporated. Desalted water may be retained for years as holdover storage in the reservoir only to be lost the next time the reservoir fills and spills. In computing the efficiency, the program thus takes the total desalted water production, less desalted water spills, divided by the desalted water production. Efficiency so defined is one way of measuring the effectiveness of an operating rule. A perfect rule would so operate the plant

as to waste no water at all. Surprisingly, even rather "inefficient" rules can produce substantial safe yield when operating a plant conjunctively in a real system, since only the low flows must be augmented. Thus, careful examination of the efficiency, along with other parameters tabulated by the program, can give much insight into the operation of the system.

Use of the program with different types of desalting plants

The Operating Rule Program as presently constituted can easily be used to analyze the operations of desalting plants of other than the MSF distillation type. Since all the economic data is supplied by the user of the program in the form of tables such as shown in Figs. 8, 12, and 15, once the cost data for any type plant is expressed in such tabular form, the program can find the least cost operating rule and the associated cost. Actually, the program can even be used to compute the costs associated with producing water from other kinds of conventional sources provided the economic data can be expressed in the form required. For example, the rule and cost for meeting the increased firm yield with water pumped from wells could be determined by the program if the operating costs and fixed charges for well production could be input into the computer. This procedure would constitute a "fair" way of assessing alternatives involving conventional supplies.

 \vec{a}

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) \leq \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) \leq \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}))$

 \mathbf{v}^{\dagger}

The Operating Rule Program has been developed and tested and is ready for use as a tool in planning for the conjunctive operation of desalting plants. So full use may be made of the program, some suggestions of areas for further study and improvement and application of the program are made below.

Operating Rule Program Applications

The Operating Rule Program should be applied as needed (by the Office of Saline Water) as an aid in assessing desalting alternatives. Each application study would have to include acquisition and preparation of basic input data, determination of the optimum plant size and operating rule for the system, costs of producing water, and parametric and sensitivity studies of the system to describe the operating characteristics and configuration of the best desalting system.

Modification of the Program to Apply to . "No Storage" Systems

The current version of the Operating Rule Program was prepared to apply only to systems that include reservoir storage capacity. Minor alterations are needed to use the program for systems with no storage. In such a case the operating rule is already known because whenever the natural supply is less than demand the desalting plant must be turned on. For this case the computer simulation method furnishes a "fair" or "standard" way of comparing the costs of meeting the demand. The cost subroutine already built into the Operating Rule Program is the basis for this "standard" comparison. The program, when modified to handle the above case, would simulate operation of such a no-storage system under the specified demand and would compute the cost of producing the added firm yield.

Stage Construction

One promising phase of future study is the investigation of the economic advantage associated with incremental construction of desalting plants. A plant designed and installed with the capacity to meet future demands will be economically inefficient in the early years of operation. A plant built in stages, in accordance with projected growth in demand, would defer some capital investment until it is needed. Under many conditions the staging of construction would be a more efficient scheme than an initial full size plant. The advantages of staging the construction when operating in a stationary (no recession, no inflation) economy should be investigated first. The case of a

changing economy (inflation and/or growth) should also be considered.

Cost of Drought Insurance

In the present use of the Operating Rule Program a firm yield is defined with an associated probability of meeting a given demand level. Changing the frequency of meeting a given demand can be thought of as changing the degree of protection against shortage or drought. Since a change in the frequency of meeting a given demand can change the firm yield, the operating rule and even the plant size, it will also change the costs. Deriving the costs of drought insurance then would involve running the Operating Rule Program at various frequencies of meeting the given demand level to find the associated costs. Then incremental costs of firm yield due to changes in the frequency of meeting a given demand could be determined. These incremental costs could then be viewed as the costs of drought insurance.

The incremental costs, as determined above, would need to be derived for several demand rates in order to indicate the cost of drought insurance as a function of the demand rate. The final results could be presented functionally or in tabular form.

Multiple Reservoir Systems

A continuing, more detailed study could be made of the multiple reservoir problem. The necessary modifications could be made to the present program to adapt it to handle this task. Very likely with multiple reservoirs, safe yield, in addition to that for a single reservoir, might be gained with a desalting plant by allowing some shifting of storage among the reservoirs in the system.

Power Generation Facilities

A study could be made of a desalting plant operating in conjunction with a reservoir that had with it some power generation facilities. The addition of the power generation option to the Operating Rule Program would be the main task.

Generalization of Results Obtained from a Number of Applications of the Operating Rule Program

After analyzing the results of several applications of the Operating Rule Program, a logical further step is to

formulate general guidelines in the form of multi-coaxial graphs, nomograms, etc., which give preliminary estimates of the feasibility and economics of conjunctive operation of desalting plants. These guidelines could be used to ascertain whether a detailed analysis using the Operating Rule Program is needed in an application.

These guidelines could be developed by relating the costs per unit of added firm water yield to such factors as: (1) fuel costs, (2) start-up and shut-down costs, (3) labor costs, (4) reservoir capacity, (5) demand patterns, and (6) the parameters which characterize the natural hydrology; i.e., the variability and reliability of natural streamflow. The latter parameters would consist of means and variances within and between months, magnitudes, and variability of base flows resulting from groundwater, climatic factors, such as means and variances of monthly and annual precipitation, means and variance of temperatures, humidity, and the nature of the general precipitation producing storm of the region. These factors, as well as others which might improve the relationship, would be fitted by multivariate methods. Those factors which contribute nothing or little to the significance of the correlation could be deleted. Several methods for incorporating the data for each variable into the multivariate analysis should be examined, and that which gives the highest correlation should be used. As a final step, the results should be presented in an easily used graphical format.

Training Programs

To assure the most widespread use of the Operating Rule Program by water resources planners, hydrologists and systems engineers, a training seminar should be given to selected personnel (from OSW and other federal agencies and private firms) in the use and makeup of the program.

Application of Mathematical Programming to Conjunctive Operation of Desalting Plants

The use of computer simulation is one way to find the optimum operating rule. Another approach using mathematical programming might be preferable since a

mathematically correct optimum would be determined. In applying either linear or dynamic programming to this optimization problem, the stream-reservoir-desalting system would be described mathematically with equations. The model would then be formally optimized on the computer to find the best rule for desalting plant operation. Sensitivity of the optimum solution to changes in various inputs could also be investigated. While linear and dynamic programming do furnish a means to systematically search for the optimum solution, the application would be new and might be difficult.

Improving the Operating Rule with Forecast Information

In areas where streamflow forecast information is available based on snow surveys there is an opportunity to increase the efficiency of the operating rule. The computer program would be modified so as to accept the forecast data, and then equally likely sequences of forecast information would be generated that would have the proper correlation with the generated streamflows. During the simulation of desalting plant operation, the program would then modify the operating rule so as to anticipate and compensate for low or high streamflow events. In this way the wasting of desalted water over the spillway would be reduced and the efficiency of the operating rule increased

Improvement in the Firm Yield Definition

In defining the firm yield of a system the magnitude and duration of shortages should affect the firm yield as well as the frequency of shortage. Program modifications should be developed and studies undertaken to establish the best and most realistic definition of firm yield.

Gradient Methods for Plant and Reservoir Size

Further work should be done in making the Operating Rule Program more completely automatic in its application. It may be possible to introduce plant size and reservoir size as variables and then use a gradient (steepest ascent) method to find the optimum conditions with respect to several variables simultaneously.

LIST OF REFERENCES

- Fiering, M. B. 1967. Streamflow Synthesis. Harvard University Press, Cambridge, Massachusetts.
- Hufschrnidt, M. M., and M. B. Fiering. 1966. Simulation Techniques for Design of Water Resource Systems. Harvard University Press, Cambridge, Massachusetts.
- Hydrologic Engineering Center. 1967. Generalized Computer Program-Monthly Streamflow Simulation. U.S. Army Corps of Engineers, 650 Capitol Mall, Sacramento, California. July.
- Mawer, P. A., and M. J. Burley. 1968. Desalination 4. pp. 141-157. '
- Office of Saline Water. 1966. Engineering Study of the Potentialities and Possibilities of Desalting for Northern New Jersey and New York City. Research and Development Progress Report No. 207, U.S. Department of the Interior, Washington, D.C., September.
- U.S. Bureau of Reclamation. 1968. Lompoc Project, California, Hydrology Appendix, Addendum A. Region 2, U.S. Department of the Interior. April.

APPENDIX A

 \sim

 $\overline{}$

DETAILED DESCRIPTION OF THE OPERATING RULE PROGRAM AND ITS APPLICATION

TABLE OF CONTENTS

 Δ

DETAILED DESCRIPTION OF THE OPERATING RULE PROGRAM AND ITS APPLICATION

KIP 63

Input Data Required by the Program

The following categories serve to identify the input requirements of the program. Every variable name that appears in the input list is defined and, if applicable, the options are explained'. The field position and width is given for each variable. For those variable names that are arrays, the format specification used for reading the input is also given. All integer variables must be right hand justified in their respective fields. This information can serve as a guide for the preparation of input data.

A. Run identification card. The first card identifies the particular job and contains the holerith information desired by the program user, punched in columns 1 to 80.

B. *Specification card.* This card contains the parameters that control the operation of the program. KREAD 65

1 = the intermediate firm yield results are printed out $2 =$ suppress the printout

 KPC 61 option for plotting reservoir contents in program OPRUL $1 =$ the monthly reservoir contents are plotted for each period $2 = no$ plot

> printout option in GNFLO 1 = printout statistics of historic data and the generated streamflows for each periods $2 = no$ printout

firm yield determination option 1 = input firm yield values from punched card 2 = enter subprogram YIELD to determine values of firm yield

input option for the historic streamflow data $1 =$ monthly values input in cubic feet per second (cfs) 2 = monthly values input in million gallons per day (MGD) $3 =$ monthly values input in acrefeet (A.F.) $4 =$ monthly values input in billions of gallons (BG)

input option for the elevationcapacity curve $1 =$ storage contents in hundreds of acre-feet $(A.F. x 10^{-2})$. 2 = storage contents in billions of gallons (BG)

option for specifying the year 1 = water year (October to September) $2 =$ calendar year (January to December)

intermediate printout option in OP-RUL 1 = printout results of simulation for each period and each rule 2 = no intermediate printout

OFI2 the increment subtracted from the turn-off fractions for the average flow months (columns 9-16)

table,

 $9-16$

ONI3 the increment subtracted from the turn-on fractions for the high flow months (columns 17-24)

ed in the iterative procedure to obtain the firm

frequency required for meeting the target demand rate; i.e., the definition of the firm yield expressed as a fraction (columns 21-30)

yield values (columns 11-20)

PCF

OFI3 the increment subtracted from the turn-off fractions for the high flow months (columns 2S-32)

> $M(a)$ is required if NSN is specified as 2. $M(b)$ is required if NSN is specified as 3. If NSN is specified as 1, then category M is omitted from the input.

N. *Optimized load factors.*

- NOLF number of load factors in OFACT (I2, right justified)
- OFACT array of load factors at which the plant is optimized (SFS.O, starting in column 6)

O. *Operational load factors.*

- NOFF number of load factors in FACT (12, right justified)
- FACT array of load factors which have associated operational cost entries in the cost table $(8F5.0, starting in column 6)$

P. *A nnual fIX ed charge.*

CAPC array of annual fixed charges, one entry for each optimized load factor, expressed in dollars per year (SFI0.0)

Q. *Operation and maintenance costs.*

OPCST two-dimensional array of operation and maintenance costs for the plant optimized at the load factors in OFACT and operating at the factors in FACT. There are NOLF cards required with NOFF entries per card (SFI0.0)

R. *Cost data.*

- ETONC estimated plant turn-on cost in dollars (columns 1-8)
- ETOFC estimated plant turn-off cost in dollars (columns $9-16$
- INT discount interest rate expressed as a fraction (columns 17-24)
- RATE fixed charge rate expressed as a percent (columns 2S-32) (FS.O)

S. *Average values of firm yield.*

AVFY array of average firm yields values, contains NR values eight per card (SFIO.O)

> S is omitted from the data deck if the firm yield values are to be determined by entering $YIELD$; i.e., $KREAD = 2$.

T. *Average values of load factors.*

XLF array of average load factors associated with the rule that produces the firm yield as entered in AVFY. It contains NR values with XLF(1) = 0.0; i.e., operation without desalting and eight entries per card (SFIO.O)

> T is omitted from the data deck when S is omitted.

U. *Input data to the streamflow generator GNFLO.*

1. Identification card. Contains holerith information to identify the data being used. Must have an A in column 1. 2. Control parameters.

- lYRA earliest year of record at any station
- IMNTH calendar month number of first month of year
- IMSNG indicator, positive value for estimating missing correlation coefficients
- ITEST indicator, positive value calls for consistency test of correlation matrices
- IRCON indicator, positive value calls for reconstitution of missing data
- NSTA number of stations at which flows are to be generated
- IPCHQ indicator, positive value calls for writing generated flows on tape

3. Streamflow data.

- ISTAN station number (columns 1-6, right justified)
- IYR year (columns 11-14)
- QM array of monthly streamflows (12F5.0, starting in column IS)

4. Blank card. Repeat 3 for each year of streamflow record to be entered then follow the last (3) card with a blank card which terminates the input.

Other Important Variables Used in OPRUL and Subprogram YIELD

- ALOSS accumulated losses from dead storage when in a drought (BG)
- AVDUR average duration of droughts (months)
- AVUC average unit cost array of the feasible rules $(S/K$ gal.)
- CMD array of monthly demands on the system (BG)
- DBAR the mean inflow to the system as obtained from historical data (MGD)
- DD variable demand rate used in iterating on firm yield values (MGD)
- DELP change in the reservoir contents for month prior to the current month (BG)
- DELS change in storage for the current month (BG)
- DFLAG drought flag: $1 = no$ drought; $2 =$ currently in a drought
- DSEFF ratio of desalted production actually used in satisfying the demand to the total desalted production
- DSPRO total desalted water production for the period (BG)
- DSSP desalted water produced in excess of requirements that eventually is spilled (BG)
- DSV array of monthly production from desalting plant (BG)
- FYINC the increase in the firm yield to be provided by the desalting plant (MGD)
- KADD desalting plant operation flag $1 =$ desalting plant is off, reservoir contents greater than the turn-on contents $2 =$ desalting plant is on, reservoir contents less than the turn-on contents
- $KCON$ a continuous operation counter $KCON = 11$ signals time to shut down for maintenance
- KSTRT flags the computation for obtaining the initial reservoir starting contents $1 = not$ in the computation $2 =$ store year end reservoir contents
- KSTO array of monthly reservoir contents rounded to nearest integer (BG) used if the plot option is selected
- NMON an array of the number of months the desalting plant operated each year
- NOR the number of operating rules in the decision set
- NR NOR + 1
- NSIG signal normal or abnormal return from TERP
- NTOF array containing the number of times the plant was turned off in each year
- NTON array containing the number of times the plant was turned on in each year
- OFCON turn-off fractions converted to storage contents (BG)
- ONCON turn-on fractions converted to storage contents (BG)
- PI a performance index, percentage of target demand satisfied on a volume basis
- PPCF the firm yield definition expressed as a percent, PCF x 100
- Q array of monthly strearnflows obtained from GNFLO(BG)
- RCON array of year end (start of year) reservoir contents (BG)
- RLEV reservoir elevation (ft)
- RS array of initial reservoir contents for each period (BG)
- RSTOR the current value of reservoir contents (BG)
- RSP the value of RSTOR for the month prior to the current month (BG)
- SDSP a running summation of desalted water production that may end up as spill (BG)
- SSHT array of yearly shortages (BG)
- SSPL array of yearly spills (BG)
- UCAP available storage (BG)

List and Purpose of the Subprograms[|] Called for in OPRUL

The main program OPRUL utilizes 12 external subprograms during the course of the simulation. A brief description of the function of each program is given below.

- RAN a function subprogram which generates random numbers with a uniform distribution between 0.0 and 1.0. The subprogram is valid for computers that use 32 bits to represent integer numbers. If OPRUL is to be used on a computer with a different bit configuration, RAN must be modified or a different subprogram used to provide the uniform random numbers.
- FIND locates and identifies the minimum cost rule from among the set of feasible operating rules
- **QCON** converts each monthly value of a generated streamflow sequence from a rate to a volume in billion gallons. If flows are generated in the units of billions of gallons, then QCON is not entered.
- TERP entered to perform a linear interpolation in the elevation-capacity-surface area tables. The tables must be arranged with the elevation and corresponding capacity and water surface are in ascending order. The increments should be small enough to adequately describe the curves.
- CON for a given month and a given flow rate CON computes a volume in billions of gallons. It is used to convert the demand rates and desalting plant rate to volumes on a monthly basis.
- GNFLO generates the streamflow sequences used throughout the simulation in OPRUL and YIELD. The program, as mentioned previously, was obtained from the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Sacramento, California. In the event that a better streamflow generation model is developed, it can readily be substituted for GNFLO.
- CROUT used in GNFLO to solve equations simultaneously for the regression coefficients. This subprogram was obtained with GNFLO from the HEC, U.S. Army Corps of Engineers.
- PLOT produces a plot, on the printer, of monthly reservoir contents when the plot option (KPC = 1) is specified. The ordinate is reservoir contents expressed as a percent of the total capacity and the abscissa is month and year. Ten years are plotted on a page. The plot option is not available in subroutine yield. A very general logic flow is depicted on page 56.
- RULE formulates the set of operating rules to be used in the firm yield analysis. The general logic involved is shown by means of the flow diagram on page 57.
- COST determines the total annual cost for a given feasible rule and period of simulation. The subprogram is not limited to anyone type of desalting process or even to anyone source of supplemental water. The only requirement is that the costs can be presented in the format as described in the input requirements. A general flow diagram for COST is shown on page 58.
- TERP3 interpolates in the three-dimensional array of average firm yield values to determine the set of feasible operating rules. The argument is the projected target demand rate (TRDEM). Each turn-off fraction, in turn, is held constant and the interpolation performed to obtain a turnon fraction. The number of interpolations attempted is always the same as the number of turn-off fractions specified by NOF. The general logic flow diagram of TERP3 is shown on page 59.
- YIELD simulates system operation, using a given streamflow sequence, to find the yield of the system that satisfies the firm yield definition. A calculated guess is made for the demand rate that the system can satisfy the required number of years. Simulation is repeated by adjusting the demand rate until the firm yield definition is met exactly or is bracketed. If the firm yield value is bracketed, a linear interpolation is performed to obtain the desired firm yield value. A firm yield of the system without desalting is determined along with the firm yield of each operating rule in the decision space. A very general flow diagram is shown on page 60.

SUBPROGRAM PLOT FLOW DIAGRAM

SUBPROGRAM RULE FLOW DIAGRAM

SUBPROGRAM COST FLOW DIAGRAM

SUBPROGRAM YIELD FLOW DIAGRAM

 $T = 0.00$ 54.12 57.16 66.18 62.98 56.12 SAMPLE OUTPUT RUN WITH A 175 M.G.D. DESALTING PLANT A \mathbf{u} 1^A NEW YORK STREAM FLOW DATA В \mathbf{R} 30 5 75 28 523.578 20.0 1.75.0 112214221 1929 z_{F40026} \mathbf{r} \mathbf{r} \mathbf{r} -0 O 1929 57. 46. 229. 248. 130. 33. 9. 14. 7. 48. 59. 80.
1930 94. 64. 142. 84. 38. 68. 10. 6. 12. 1. 11. 17. 480826 C_{2350} 1931 17. 31. 4. 201. 138. 68. 88. 19. 17. .92 .90 .92 .95 .1.00 1.06 1.08 1.10 1.10 1.05 1.00 .92 480826 2. 11. 46. 480826 1932 121. 96. 64. 186. 67. 47. 14. 12. 0. 115. 165. 46. 1933 59. 43. 135. 213. 58. 19. 6. 13. 104. 40. 42. 57. 480826 D_{1} 2050. 1934 90. 26. 124. 142. 102. 21. 19. 17. 72. 56. 78. 112. 480826 1935 106. 44. 148. 106. 80. 27. 99. 14. 12. 19. 14. 59. 1936 70. 29. 409. 152. 36. 23. 6. 12. 14. 21. 60. 110. 480826 480826 [440. 1937 174. 97. 71. 162. 130. 64. 36. 48. 65. 107. 94. 86. 1938 100. 80. 82. 80. 67. 63. 120. 86. 162. 33. 63. 150. 0.0 \$60. $3.000 - 80.$ 12.000 500. 20.000 505. 21.503 480826 $E\left\{510, 535\right\}$ 26.306 515. 35.596 520. 49.221 525. 65.513 530. 85.258 **ARDR26** 108.739 540. 162.530 550. 480826 134.648 545. 192.587 555. 225.165 1939 62. 121. 141. 154. 36. 22. 7. 7. 0. 31. 51. 41. 336.924 575. 480826 560. 260.218 565. 297.571 570. 379.050 580. 424.147 1940 36. 35. 110. 335. 137. 60. 26. 11. 23. 12. 55. 95. [585. 471.357 590. 520.326 595. 571.158 600. 623.578 480826 1941 68. 57. 59. 138. 38. 22. 22. 17. 1. 1. 25. 65. **ABOA26** 1942 57. 48. 180. 105. 91. 44. 19. 29. 54. 83. 99. 128. **ARDAZE** 1943 80. 98. 170. 128. 182. 76. 11. 13. 0. 36. 102. 27. F 4.7 $-5 - .9 - .3$ 480626 1944 25. 35. 125. 148. 68. 25. 9. 12. 27. 19. 38. 86. 1945 78. 64. 278. 98. 157. 85. 117. 46. 59. 76. 100. 90. 480826 $\overline{3}$ 1946 110. 58. 40. 38. 126. 97. 25. 20. 17. 24. 28. 30. 480826 1947 98. 50. 32. 180. 170. 72. 45. 21. 14. 13. 90. 40. $3.95 .85 .7$ 480826 1948 23. 69. 283. 152. 118. 74. 27. 13. 1. 11. 48. 120. 480826 1949 156. 105. 95. 85. 92. 14. 7. 12. 12. 9. 28. 86. 480826 480826 1950 106. 62. 132. 180. 80. 60. 35. 33. 22. 13. 120. 167. H - 90 $.05$ $.90$ 1951 117. 143. 151. 182. 56. N. 52. 18. 14. 46. 48. 134. **SADA26** 580826 1952 130. 90. 140. 205. 105. 78. 53. 27. 25. 12. 55. 146. $.6$ 1.0 1.5 2.5 2.5 1.8 .4 .3 **BANAZE** 1953 129. 103. 202. 140. 118. 19. 7. 6. 14. 8. 38. 115. $7 - 150.0$ \mathbf{r} $\ddot{}$ $.3$ \cdot 5 980826 1954 55. 112. 110. 95. 133. 28. 7. 6. 25. 22. 137. 113. 980826 1955 54. 64. 164. 110. 40. 34. 7. 157. 19. 293. 160. 38. J $\overline{2}$ $\overline{2}$ $\overline{\mathbf{3}}$ \bullet \sim 5 \sim $4 \quad 3 \quad 2$ \sim 1 \sim 1 480826 1956 45. 57. 132. 292. 96. 40. 25. 7. 23. 27. 54. 109. \mathbf{r} **980826** 1957 69. 51. 80. 141. 81. 15. 7. 5. 1. 7. 32. 175. 980826 1958 80. 46. 178. 251. 223. 37. 20. 8. 16. 46. 97. 54. $\sqrt{0.00}$ 150. 600. 1011. 2849. 5048. 8365. 10407. 11723. 14601. 480826 1959 84. 60. 92. 168. 40. 18. 6. \mathbf{g} 6. 102. 142. 148. $k < 16304$. 17544. 18708. 20241. 21773. 23306. 24570. 25751. 28009. 29384. 480826 1960 94. 108. 87. 203. 84. 56. 34. 23. 123. 34. 43. 45. 1961 23. 128. 153. 189. 115. 58. 16. 21. 9. 6. 20. 29. 31660. 32619. 33731. 480826 480826 1962 89. 30. 122. 193. 51. 18. 6. 6. 1. 20. 61. 72. 480826 1963 26. 24. 174. 108. 40. 36. 18. 17. -64 **6. 58. 55.** 1964 119. 61. 191. 143. 47. 27. 1. 480826 $\overline{\mathbf{3}}$ \overline{z} \overline{z} 3 3 2 1 1 1 1 1 2 2 **D.** 0. 2. 10. 31. BLANK CARD M $.05$ $.05$ $.10$ $.10$ N ϵ 10. 20. 30. 50. 70. 90. 10. 20. 30. 50. 70. 90. 109. \bullet $0.$ 9400000. 10100000. 10610000. 11580000. 12300000. 12940000. 1000000. 12660000. 15750000. 18650000. 24600000. 30870000. 36600000. 39400000. 1000000. 13000000. 15550000. 18200000. 23600000. 29960000. 33900000. 36300000. 13200000.15609000.18209000.23150000.28000000.32800000.34600900. $11000000.$ \1000000. 14100000.16300000.18550030.22843000.27400000.31653000.33700000. 14600000. 16750000. 18800000. 23900000. 27300000. 31400000. 33409000. l i nannan. 15200000.17210000.19200000.23200000.27409000.30350000.32500000. 1000000. **1.0000.** 140000. 0.05 7.23 1935.22 2083.63 2082.02 2077.29 2058.33 2056.87 2048.15 2045.57 2046.54 2038.73 2017.03 2016.01 2009.90

 $\tilde{\bullet}$

70.65

55.92

 61.10

58.48

65.01

59.00

57.59

SAMPLE OUTPUT RUN WITH A 17, N.G.D. DESALTING PLANT

NO.OF PERIODS IN SINULATION: 5 NO. OF PEARS IN EACH PERIOD= 30 NO.OF PERIODS IN FIRM YIELD= 5 NO.OF PEARS IN EACH PERIOD= 75 NPRC= 24 CHAX=623.574 B.6. CMIN= 20.000 B.G. $DSCAP = 175.00 M.S.D.$ $FORCE = 1$ $KIO = 1$ $KPC = 2$ $KIP = 2$ $KREAD = 1$ IFLOW= 4 ISTOR= 2 IVEAR= 2 $KIK = 1$ THERE ARE I DEMAND LEVELS IN THIS RUN AS FOLLOWS 2050.0 DEMB=2350.000 M.G.D. RBAR= 150.000 M.G.D. THIS IS A 3 SEASON RUN AVE. SEASON ON INC= . 050 AVE. SEASON OFF INC= .050 WET SEASON OFF INC. = . 100 WET SEASON ON INC. = . 100 **APR MAY** JUNE JULY AUG SEPT OCT **NOV DEC JAN** FEB MAR $\overline{2}$ $\overline{\mathbf{3}}$ $\overline{\mathbf{3}}$ $\overline{2}$ MONTHLY SEASON ASSIGNMENT $\overline{2}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ \overline{z} \overline{z} DEMAND COEFFICIENTS $.92$ -90 $.92$ -95 1.00 1.06 1.08 1.10 1.10 1.05 1.00 -92 RELEASE COEFFICIENTS -30 -30 -30 -50 -50 1.00 1.50 2.50 2.50 1.80 $.40$ -30 TURN-ON FRACTIONS $-70 - 50 - 40$ -30 TURN-OFF FRACTIONS $-95 - 85 - 70$ START= .90 $SIEP = .05$ $PCF = .90$

 \mathbf{u}_in

 $\overline{\mathbf{y}}$

COST DATA FOR DESALTING PLANT USED IN ANALYSIS

Contractor

 $\label{eq:3.1} \begin{array}{cccccccccc} \mathbf{G} & \mathbf{G} & \mathbf{G} & \mathbf{G} & \mathbf{G} & \mathbf{G} & \mathbf{G} \end{array}$

 \otimes

 \sim

 $\mathcal{A}_{\mathbf{r}}$

 \sim

 \sim μ $_{\odot}$

OPERe L. F. ANNUAL COST IN SIYR. FOR THE PLANT THAT IS OPTIMIZED AT THE GIVEN LOAD FACTOR UN PERCENT) (IN PERCENT»

ESTIMATED TURN-ON COST: 140000. 0. ESTIMATED TURN-OFF COST= 140000.
INTEREST RATE= .0500

 $\label{eq:3.1} g_{\theta} = \frac{g_{\theta}}{g_{\theta}} = \frac{g_{\theta}}{g$

AVERAGE FIRM YIELD 1935.22 2083.63 2082.02 2077.29 2058.33 2056.87 2048.15 2045.57 2046.54 2038.73 2017.03 2016.01 2009.'0 AVERAGE LOAD FACTORS .00 7D.65 66.92 61.10 68.lIa 65.01 59.00 67.59 6 ".12 57.16 66.18 62.98 56.12 INTERPOLATED TURN-ON FRACTIONS

 $.435$ $.433$ $.513$ INTERPOLATED AVERAGE LOAD FACTORS 67.90 6Q."2 Sq.l3

OPERATION WITHOUT THE DESALTING PLANT

 $\langle \mathbb{Q}^{\pm} \rangle$, $\langle \mathbb{Q}^{\pm} \rangle$, $\langle \mathbb{Q}^{\pm} \rangle$, $\langle \mathbb{Q}^{\pm} \rangle$

 $\mathcal{L}(\mathcal{$

 \mathbf{z}_k

 \bullet

 \otimes

GAL.

 \sim

 \bullet

 \mathcal{F}

RULE NO.= 3 PERIOD NO.= 5

MINIMUM COST OF FYINC= .7627 S/K GAL.

 $.7684$

AVERAGE COSTS FOR FEASIBLE OPERATING RULES

 -7627 -7670

INCREASE IN FIRM VEILD= 114.78 M.G.D.

TURN ON = .43 TURN OFF= .85

DATA CARDS ISNORED - FIRST IS LISTED BELOW

 \sim


```
USU APRIL 1958 TO JULY 1959
    PROGRAM OPRUL
    THIS PROGRAM SIMULATES OPERATION TO AID IN EVALUATING THE OPERATING
    RULE
      COMMON / BLOCKA/0 (1201+5)
      COMMON / BLOCKB/ONCON (100) . OF CON(100) .UCAP
      COMMON /BLOCKC/CAP (100)+RL (100)+DM (12)+RS(50)+SA(100)+RLOSS(12)+
     IREL(12).MSN(12).DSV(12).SSHT(100).CMD(12).FY(20.50).AVLF(20.50).
    2CMAX .NPRC .DSCAP . FORCE . START . STEP .PCF .NSN . DEHB . CMIN . K IP .RBAR .
     SKREAD.ISTOR.IFLOW.IYEAR.NPER
     COMMON / BLOCKD/NTON(50)+NTOF(50)+NMON(50)+FACT(10)+CAPC(10)+OPCST(
     I 10.10: OF ACT (10) .NOL F. NOFF.ETONC. ETOFC. INT.RATE
      COMMON /BLOCKE/ AVFY(50) .XLF(50) .ON(10) .AL(10)
      COMMON / BLOCKF/ONIZ.OFIZ.ONI3.OFI3
      DIMENSION ONLEVEIOI+OFLEVEIOI+DSPROES01+0SSPE501+SSPLE501+
    IKSTO(601)+DSEFF(25)+ UCFV(25+20)+HNTH(12)+AVUC(5D)+TRDEM(10)+
    20N0@ 7(10) + 0F0@ 7(10) + 0FAC(10) +FYINC(10) + NNTHA(12)
      INTEGER FORCE .OFLAG
      DATA MNTH/9HOCT .91900V .9HDEC .9HJAN .9HFEB .8HMAR .9HAPR .9HMAY .
     INHJURE. ANJULY. ANAUG . ANSEPT/
      DATA MNTHA/4HJAN .4HFEB .4MMAR .4HAPR .4MMAT .4HJUNE.4HJULY.4HAUG
    1.4HSEPT.4HOCT .4HNOV .4HDEC /
      WRITE(6.5000)
SODO FORMATIINO.40X. ' ... .. OPERATING RULE PROGRAM . .... "/
     IIHO. &SX. "OFFICE OF SALINE WATER"/
     21HO.38X. 'UNITED STATES DEPARTMENT OF INTERIOR'///
    SINO. 381. PROJECT NAME .'/
     93M . 93X. "OPTIMUM OPERATION OF DESALTING PLANTS AS"/
     SIN . 43X. "A SUPPLEMENTAL SOURCE OF SAFE VIELD."/
    61HO.38X. "CONTRACT NUMBER . 19-01-0001-1711"/
    TIMO.43X.ºA COMPUTER PROGRAM DEVELOPED BY'/
     BIH . 4 3X. "UTAH WATER RESEARCH LABORATORY"/
     91H . 47X. "UTAH STATE UNIVERSITY"/
     SIN +53X+"JULY 1969"/
     SIND. 38X. "PROJECT STAFF."/
                                     OSW REPRESENTATIVE*/
     SIM . RIX. "SAM SHIOZAWA
    SIN . AIX. 'CALVIN 6. CLYDE
                                     PROJECT LEADER */
     SIN .41X.'DEAN F. PETERSON.JR. ADVISOR'/
                                     ASSOCIATE PROFESSOR'S
    SIN . AIX. PROLAND M. JEPPSON
                                     RESEARCH ENGINEER'/
    SIM . 41M. "JAMES H. MILLIGAN
                                     RESEARCH ENGINEER'/
    SIN . AIX. "WESLEY H. BLOOD
     SIM .62X. "AND PROGRAMMER"/IMI)
      READIS.1000)
 1000 FORMATISON
     \mathbf{1}MRITE(6.1000)
      INPUT CONTROL PARAMETERS . . . . . . . . . . . . . . .
\mathbf{c}READ(5+1002) NPER+NYP+NPFY+NYFY+NPRC+CMAX+CMIN+DSCAP+FORCE+KIO+KPC
     I.KIP.KREAD.IFLOW.ISTOR.IVEAR.KIK
 1002 FORMATISTS. 3F10.0.912)
      WRITE(6+2006)NPER.NYP.NPFY.NYFY.NPRC.CHAX.CHIN.DSCAP.FORCE.KIO.KPC
     1.KIP.KREAD.IFLOW.ISTOR.IVEAR.KIK
 2006 FORMATILHO, 'NO.OF PERTODS IN SIMULATION="I3+10X+"NO. OF YEARS IN E
     IACH PERIOD: 'I3+/IH +'NO.OF PERIODS IN FIRM VIELD='I3+IOX+'NO.OF Y
     2EARS IN EACH PERIODS *I3+/IHD+*NPRC=*I3+/IH +*CMAX=*F7.3+* B.G.*/
     31H . * CHIN=*F7.3. * B.G. */1H . *DSCAP=*F6.2. * H.G.D. */1H . *FORCE=*I2.
     N/1H +*KIO=*I2+/1H +*KPC=*I2+/1H +*KIP=*I2+/1H +*KREAD=*I2+/1H +*IF
     SLOW: "I2+/IH +"ISTOR: "I2+/IH +"IYFAR: "I2+/IH +"KIK: "I2)
       INPUT THE DEMAND DATA . . . . . . . . . . . . . . .
\mathbf{c}
```
READ (5+1001) DEMB+(DM(I)+I=1+12) 1001 FORMAT (F10.0.13F5.0) READ (5+1010) NDP+(TRDEM(J)+J=1+NDP) 1010 FORMAT(I2.8X.6F10.0) WRITE(6+1011) NDP+(TROEN(J)+J=1-NOP) 1011 FORMATIINO. "THERE ARE'I3." DEMAND LEVELS IN THIS RUN AS FOLLOWS'/ 11H - AF12.11 INPUT RESERVOIR DEPTH-CAPACITY DATA se e e e e e e e e READ ALL RESEVOIR DATA IN FROM THE LOWEST TO THE HIGHEST VALUES. READ(5+1003) (RL(J)+CAP(J)+J=1+NPRC) 1003 FORMAT(10F8.0) IF(ISTOR.EG.2) GO TO 508 DO 507 J=1.NPRC 507 CAP(J)=CAP(J)+.000326 INPUT OPERATING RULE CRITERA 508 READ(5+100%) NON+(ONLEV(J)+J=1+NON) READ(5+100%) NOF+ (OFLEV(J)+J=1+NOF) 1004 FORMATIIS.10F5.0) READ(5+1005) START+STEP+PCF 1005 FORMATISF 10.01 READ(5+1001) RBAR+(REL(I)+I=1+12) READ(5+1006) (RLOSS(J)+J=1+12) READ(5+1003) (SA(J)+J=1+NPRC) URITE(6.1110) DEMB.RBAR IIID FORMATIINO. "DEMB="F8.3." M.G.D. "/IH . "RBAR="F8.3." M.G.D."/I ORDER SEASONS FROM THE DRIEST TO THE WETTEST READ(5+1007) NSN+(MSN(I)+I=1+12) 1006 FORMAT(13F5.0) 1007 FORMAT(1315) GO TO(4,3,2),#SN 2 READ(5.1005) ONI2.0FI2.0NI3.0FI3 **60 TO 5** 3 READ (5.1005) ONI2.0FI2 **4 URITE(6.1012) NSN** IDIZ FORMAT(IHO, "THIS IS A'IZ," SEASON RUN") IF (NSN.EO.2) WRITE (6.1013) ONIZ.OFI2 1013 FORMATIIN .ºWET SEASON ON INC.=ºF5.2.10XºWET SEASON OFF INC.=ºF5.2 \mathbf{P} IF (NSN.E0.3) WRITE (6,1014) ONI2.OFI2.ONI3.OFI3 1014 FORMAT(1H .ºAVE. SEASON ON INC='F5.3,13X'AVE. SEASON OFF INC='F5.3 1./1H .*WET SEASON ON INC.="F5.3.10X"WET SEASON OFF INC.="F5.3) 60 TO(1111+1112) +IVEAR IIII URITE(6+1015) (MNTH(I)+I=1+12)+(MSN(I)+I=1+12) 1015 FORMAT(1HO.28X.12A6/IH .* MONTHLY SEASON ASSIGNMENT*12I6) 60 TO 1113 1112 URITE(6+1015) (MNTHA(I)+I=1+12)+(MSN(I)+I=1+12) **1113 CONTINUE** URITE(6+1016) (DM(I)+I=1+12)+(REL(J)+J=1+12) 1016 FORMAT(1HO, 'DEMAND COEFFICIENTS '5X,12F6.2/1HO, 'RELEASE COEFFICIEN 115 *****12F6.21 WRITE(6+1017) (ONLEV(J)+J=1+NON) 1017 FORMATCIHO, "TURN-ON FRACTIONS"5 Xw 10F5.2) WRITE(6+1018) (OFLEV(J)+J=1+NOF) 1018 FORMATCIH . "TURN-OFF FRACTIONS" 4X .1 OF 5.2) WRITE(6+1019) START+STEP+PCF 1019 FORMATEING *START=*F4=2+/1H +*STEP=*F4=2+/1H +*PCF=*F4=2) READ (5+1020) NOLF+ (OFACT (J)+J=1+NOLF) READ (5+1020) NOFF+(FACT(J)+J=1+NOFF)

1022 FORMAT(1H1+3DX+*COST DATA FOR DESALTING PLANT USED IN ANALYSIS*)

1020 FORMAT(12+31+AFS-0)

WRITE(6.1022)

1021 FORMAT(8F10.0)

READ (5+1021) (CAPC (J)+J=1+NOLF)

MOTTEILL10241 1023 FORMAT(1HD+"OPER. L. F. "SX+"ANNUAL COST IN S/YR. FOR THE PLANT TH 14T IS OPTIMIZED AT THE GIVEN LOAD FACTOR (IN PERCENTY') 1074 FORMATCIH . "CIN PERCENTI") WRITE(6+1025) (OFACT(J)+J=1+NOLF) 1775 FORMAT(1HO+15X+10F10+0) 00 60 J=1.NOLF READ(5+1021) (OPCSI(I+J)+I=1+NOFF) 60 CONTINUE DO 61 1=1.NOFF 51 WRITE(6+1026) FACT(I)+(OPCST(I+J)+J=1+NOLF) 1026 FORMATILHO. 2X.FS.0.13X.10F10.01 READ (5+1021) ETONC+ETOFC+INT+RATE WRITE(6+1027) (CAPC(J)+J=1+NOLF) **WRITE(6+1028) RATE** IN27 FORMAT(140+*ANNUAL FIXED CHG=*3X+19F10+0) 1028 FORMATELH . 'AT '1X+F5.2.2X, 'PERCENT') WRITE(6+1029) ETONC+ETOFC+INT 1029 FORMAT41H0, "ESTIMATED TURN-ON COST: "F8.3./1H . "ESTIMATED TURN-OFF I COST: *F8.0./1H =*INTEREST RATE= *F8.4) INITIALIZE PARAMETERS GO TO1305+3061+KREAD 305 NR =NON *NOF * 1 READ(5+10.05) (AVFYIL)+L=1+R) PEADIS+1005J (XLFtL)+L=1+NR) 306 UCAP=CHAX-CHIN IARG = 798531 C:. C0004356+7.48/12. 00 309 1=1.12 CALL CONTOSCAP+DS+I+IYEAR) **DSVITIEDS 309 CONTINUE** IFIKREAD.EQ.1) GO TO 312 DO 5 JE1.NON S ONCONTUITONLEVIUI+UCAP+CHIN 00 6 JE1.NOF 6 OF CONTUI = OF LEVILI + UCAP + CMIN CALL RULEINON-NOF-NOR-NSN-KION CALL VIELDINPFYTNYFY+NOR+KIO) $NR = NOR + 1$ DO 8 JE1.NR $X1$ F (J) = 0. **B AVEY (J)=D.** 00 10 J=1.NR DO 9 1:1. NPFY XLF(U)=XLF(U)+AVLF(I+J) AVEY CUICAVE Y CUI+FY CI+UI 9 CONTINUE XEF (U) =XLF (U) /NPFY **AVEY CJ3 CAVE Y CJ3/-NPEY** 17 CONTINUE GO TO 310 312 NXCNPFY IF INPEP.61.NX) NXINPER 00 313 JE1+NX 313 PS(J)-RAN(TAPG) DO 314 J: 1. NPFY NYG-NYEY 314 CALL GNFLOINYG+KIP+IFLOw+IYEAR) 310 00 311 JE1+NR 311 AVUC (J) $2D_n$

 ϕ

WRITE(5+1-023)

HRTTE (6.2004)

2004 FORMAT(1HD, "AVERAGE FIRM YIELD") WRITE(6+2005) (AVEY(J)+J=1+NR) 2005 FORMATCH +12F10.2) **WRITE(6+2007)** 2007 FORMATILHO. * AVERAGE LOAD FACTORS*) WRITE(6+2005) (XLF(J)+J=1+NR) 00 500 K=1.NDP **DD=TROEM(K)** FYINC(K)=TROEM(K)-AVFY(1) CALL TERP3(NON+NOF+DD+ONLEV) KP=NSN+NOF $L = 0$ DO 11 J=1.KP.NSN $L = L + T$ ONCONTJI=ONTLI+UCAP+CMIN OFCON(J)=OFLEV(L)+UCAP+CMIN IF (NSN.EQ.1) GO TO 11 ONCONTJ+11=ONCONTJ)-UCAP+ONI2 OFCON(J+1)=OFCON(J)-UCAP+OFI2 IF(NSN.EQ.2) GO TO H ONCON (J+2)=ONCON (J)-UCAP+ONI3 OFCON(J+2)=OFCON(J)-UCAP+OFI3 11 CONTINUE NS16=0 KMAX=CMAX+0.5 KMIN=CMIN+D.5 391 00 380 LL=1.12 DEM=DD+DM(LL)+REL(LL)+RBAR CALL CONTREN+CD+LL+IVEAR) 380 CHD(LL)=CO DO 400 NP=1.NPER NY THYP CALL GNFLOINY.KIP.IFLOW.IYEARI IF (IFLOW.EQ.4) GO TO 382 CALL GCONINYP.IYEAR) 382 00 300 N=1.NOF JJ=NSN+(N-1)+HSN(I) $M = 3$ IF(ON(N).GT.0.0) GO TO 12 UCFY (NP.N)=9999. GO TO 303 12 KON=0 LEV=1 $KADD=1$ KCONED RSTORERS (NP) 00 13 J=1.NYP NTON(J)=9 NTOF (J)=0 13 CONTINUE CALL TERPICAP.RL.NPPC.RSTOR.RLEV.NSIGI IF (NSIG.EQ.1) GO TO 130 IF (RSTOR=LT=ONCON(JJ)1) GO TO 374 GO TO 375 374 KADD=2 $+0N=1$ NTON(I)=I IF (RSTOR.LT. OF CONCUUT) LEVEZ 375 WF =FORCE 50 SP $=$ 0 . DELS=5.0 MM 11 $10:0$

 \cdot

 \mathbf{v}

 $LD = 1$ **DFLAGIL** AL055=0.0 DO 15 LL=1+NYP SSHT (LL)=0. $DSSP$ _(LL)=0. DSPPOILLIED. NHON (LL) = 0 **SSPECIFIED** 15 CONTINUE DO 90 JE1.NYP DO 80 I=1.12 JJINSN+(N-1)+MSN(I) **PSPERSTOP DELPTDELS** $M/M+1$ HMIMM+1 CALL TERPIRL+SA+NPRC+PLEV+SSA+NSIG) IF (NSIG.50.1) 60 TO 131 EVAP=SSA+RLOSS(I)+C DELS=0(M+1)-CHD(I)-FVAP 60 TO 117.161.KADD 16 IF (KCON.LT.11) GO TO 118 IF (NSN.GT.1) GO TO 116 115 KADDT1 NTOF (J) =NTOF (J)+1 **KF IF ORCE** $KCON = 0$ GO TO 17 116 IF (MSN(I)+5T+1) GO TO 115 118 DELS=DELS+DSV(I) $KEND=1$ $KF = KF - 1$ KCON=KCON+1 DSPROLJI=DSPROLJI+DSVLII SDSP=SDSP+DSV(I) NPON (J) = NHON (J) + 1 KONTI 17 RSTOR=RSTOR+PELS IF (RSTOR.LT.CMAX) GO TO 26 IF (K40D.E0.2.AND.DELP.LT.0.0) GO TO 218 60 10 19 219 KGD=2 GO TO 33 19 DELS=9STOR-CMAX RSTORICHAX $I.FV = I$ SSPEEDED SSPEEDED PRESS IF (KON.EG.D) GO TO 73 GO TOE18+72)+FEND 18 IF (DELS.LT.SPSP) GO TO 20 DSSP (U) EDSSP (U)+SDSP $505P:7.$ $KFND=2$ GO TO 22 20 DSSP (U) EDSSP (U) + DELS $505P:505P-0EL5$ 22 60 TO(70+23)+KADC 23 IF (KF) 24+ 24+7C ENTER HERE TO TURN OFF THE DESALTING PLANT. 24 KADD 1 NTOF EULENTOF EULEE KE FORCE

 \mathcal{Q}_k

 $\hat{\mathbf{r}}$

KCON=D GO TO 70 26 KGO=1 IFIRSTOR.GT.CHINI GO TO 30 IFICMIN.LT..0005) 60 TO 201 60 T01201+2001+ DFLAG 201 DFLAG=2 DELS=CMIN-RSTOR **RSTOR:CNTN** GO TO 202 200 LD=LD+1 IF(CHO(I).LT.0(M+1)) GO TO 1202 ALOSS=ALOSS+EVAP DELS=CHOIT)-0(M.1) RSTOR=CMIN-ALOSS IFIRSTOR.GT.D.) GO TO 202 RSTOR=D. GO TO 202 1202 DELS=CMIN-RSTOR 202 CALL TERPICAP.RL.NPRC.RSTOR.RLEV.NSIG) IF (NSIG.EQ.1) GO TO 132 $LEV = 2$ SSHT(J)=SSHT(J)+DELS IF(I.EQ.12.AND.J.EQ.NYP) GO TO 330 28 GO TO(38+70)+KADD 30 GO TO (331+330), DFLAG 330 10=10+1 IF (I.EQ.12.AND.J.EQ.NYP) GO TO 80 $10:1$ **DFLAG=1 ALOSS=D.0** 331 CALL TERPICAP+RL+NPRC+RSTOR+RLEV+NSIG) IF (NSIG.EQ.1) GO TO 132 IF (KADD.EQ.1) GO TO 35 31 IF (DELS) 35+35+32 32 IF (DELP) 33+33+34 33 IF (RSP.GT. (SDSP-DSV(I))) GO TO 134 $SDSP = RSP + DSVII$ 134 60 TO(34+19)+KGO 34 IF(RSTOR.GT.SDSP) GO TO 35 SDSP=RSTOR 35 IF (OFCONCUJ) .LT. ONCONCUJ)) GO TO 45 GO TO(37+41)+KADD 37 IF (RSTOR.GT.ONCON(JJ) 1GO TO 70 \mathbf{c} ENTER HERE TO TURN ON THE DESALTING PLANT 38 KADD=2 **AD NTON(J)=NTON(J)+1 SO TO 70** 41 IF(RSTOR.GT.OFCON(JJ))60 TO 23 GO TO 70 45 IF (RSTOR.LT.ONCON(JJ 1)GO TO 53 **60 TO 22** 50 IF4RSTOR.GT.CFCONCJJ 11GO TO 53 **GO TO 55** 53 IF (DELS.LT.0.0) GO TO 55 GO TO(70+23)+KADD 55 GO TO (38+70)+KADD 70 IF (KPC.NE.1) GO TO 87 71 KST01MM-11=RST0R+N.5 **80 CONTINUE** \mathbf{C} AT THIS POINT HAVE COMPLETED ONE YEAR OF THE PERIOD 90 CONTINUE

C AT THIS POINT HAVE JUST COMPLETED A PERTOD OF NYP YEARS

 \mathbf{c}

 $\mathcal{L}_{\mathrm{in}}$

 $\omega_{\rm t}$
91 CALL PLOTIKSTO+NYP+KMAX+KMINI 92 TEMAIN. TEMB=0. 00 95 J=1-NYP TEMACTEMA+DSPROLJI JEMB=TEMB+DSSP(J) 95 CONTINUE **OSEFFINPICITEMA-TEMBIZTEMA** 50 T0196.981-XIK 96 URITE(6.3000) N.NP 3000 FORMATILINI. PULE NO. = "12.10X"PERIOD NO. = "12) **WRITE (6+3 99.1)** TOOL FORMATILERO." YEAR TIMES ON TIMES OFF MONTHS ON 10SPRO **DSSP** SPILL SHORT.') DO 3002 JES .NYP 3902 URITE(6+3003) J+NTON(J)+NTOF(J)+NMON(J)+DSPR0(J)+DSSPLJ)+SSPL(J)+ **ISSHT(J)** 3003 FORMAT14112+4F12.2) WRITE(6+30)4) DD+DSEFF(NP) 3004 FORMATILHO. "OFMAND="FR. 2.10X"EFFICIENCY="F5.2) 98 AVELFIAL (N) CALL COSTINYP.NP.AVELF.ANCST) UCFY (NP+N)=ANCST/(FYTNC(K)+365000+) GO TO(120.300).KIK 120 WRITE(6+2000) FYINC(K)+ANCST+UCFY(NP+N) 2000 FORMATEIND. "INCREASE IN VIELD="F8.2." M.G.D. "SX"ANNUAL COST="F10.1 I.' S/YEAR*SX*UNIT COST OF FYINC="F6.4-+" S/K GAL.") TO CONTINUE 400 CONTINUE C AVERAGE THE UNIT COST OF THE INCREASE IN FIRM VIELD 00 410 J=1.NOF 403 00 405 I=1.NPER AVUCTUI=AVUCTUI+UCFYTI+UI **495 CONTINUE** AVUC (J)=AVUC (J)/NPER 410 CONTINUE W RITE (6.2019) 2009 FORMATEIND. "AVERAGE COSTS FOR FEASIBLE OPERATING RULES") WRITE(5+2010) (AVUCLJ)+J=1+NOF) 2010 FORMATILH +10F12.41 \mathbf{r} FIND THE LOWEST AVERAGE UNIT COST OF FYING CALL FIND(AVUC.NOF.IX) WRITE(6+3.095) AVUC(IX) 3005 FORMATIONS: "MINIMUM_COST OF FYINC="F7.4." S/K GAL.") **WRITEIS+3006) FYINCIS)** 3006 FORMATILING, "INCREASE IN FIRM YEILD: "F7.2," N.G.D.") WRITE(5+3007) ONLIXI+OFLEVIIXJ 3007 FORMATE1HO, TEURN ON: "F6.2.10X*TUPN OFF="F6.2) OF ACTRESSMETERS. ONOPTIKJENNITX) OF OPTIMATOFLEVIERE 500 CONTINUE 510P 130 MRITE(6+4.00.0) PSTOR 4000 FORMATEINO *STARTS* £10.21 900 510P 131 WRITE(6+4.00.2) RLFV 4002 FORMATE1HO. 'RLEV-' F10-21 **STOP** 132 WRITE(6+4001) RSTOR 4001 FORMATITHS. RSTOR: * F10.2) STOP

50 T0191-921-KPC

SUBPOUTINE VIELDINOP.NYP.NOR.KIO) COMMON /BLOCKA/011201+51 COMMON /BLOCKB/ONCON1130)+OFCON1100)+UCAP COMMON /BLOCKC/CAP(190)+RL(180)+DM(12)+RS(50)+SAt100)+RL0SS412)+ 1REL(12)+MSN(12)+DSV(12)+SSHT(190)+CMD(12)+FY(23+50)+AVLF(29+50)+ 2CHAX.NPRC.DSCAP.FORCE.START.STEP.PCF.NSN.DEMB.CMIN.KIP.RBAR. **JKREAD.ISTOR.IFLOW.IYEAR.NPER** DIMENSION KON(20)+IDD(20)+DLEV(20)+NMON({00)+STOT(20)+KFREQ(20)+ IALOAD(20)+TS(20)+PI(20)+AVDUR(20)+KOUR(250)+RCON(100) INTEGER FORCE. DFLAG **NYPSV=NYP** PPCF=PCF+100. IARG=798531 $C = 00004356*7*48/12*$ RS(1)=CHIN+D.5+UCAP KSTRTEL 00 300 NP=1.NOP \mathbf{c} GENERATE NYP YEARS OF STREAMFLOW AND CONVERT RATES TO VOLUMES . . . **NYGINYP** IF (NP.EQ.1.AND.NYP.LT.75) NYG=75 CALL GNFLOINVG.KIP.IFLOW.IVEAR) IF (IFLOW.EQ.4) GO TO 11 IF (NP.EQ.1.AND.NYP.LT.75) NYP=75 CALL GCON(NYP+IYEAR) **NYPENYPSV** 11 JJ=MSN(1) DBAR = DEMB $NR = NOR + 1$ 00 200 N=1.NR $II:0$ KNT=1 KCON=0 $MG = 0$ $ML = 0$ $MCK = 0$ IF (N.NE.1) GO TO 17 SSTART=START-D-20 **60 TO 18** 17 SSTART=START \mathbf{c} MODIFY THE STARTING DEVELOPMENT LEVEL DEPENDING ON THE RULE ** ** ** JJ=NSN*(N=2++1 TESTA=D.5+UCAP+CMIN IF (ONCON(JJJ) -BT. TESTA) SSTART=START+B.35 IF (ONCONTJJ) .L.T. TESTA) SSTART=START-9.35 IF (ONCONCUU) .LT. TESTA.AND. OFCONCUUH.LT. TESTA) SSTART=START-0.10 IF (ONCON(JJ) .LT. 0.3+UCAP+CHIN) SSTART=START-0.15 18 $1K=0$ **SINCESTEP** IKNT=0 IF (II.EQ. 0) GO TO 21 20 SSTART=SSTART-SINC 21 IF(KNT.GT.11) GO TO 903 $M = 1$ $11 - 11 + 1$ KNT=KNT+1 DI EVITTI-SSTADT 321 DD=DBAR+DLEV4TI) CONVERT THE DEMAND PATES TO VOLUMES \mathbf{C}

 \sim \sim

 $\Delta \tau$

 α

END

322 00 22 1:1.12

DEM=DD+DM(I)+PEL(I)+RBAR CALL CONTDEM.CD.I.IVEAR) **CHO(T)=CD** 22 CONTINUE LEV=1 KADD=1 **C=(II)NON RSTORCRSINPI** CALL TERPICAP.RL.NPRC.RSTOR.RLEV.NSIGI IF (NSIG.EQ.1) GO TO 901 IF (N.EQ.1) GO TO 30 IF (RSTOR.GT.ONCON(JJ)) GO TO 23 $XADD = 2$ KCONTI KONCTEXED. 23 IF (RSTOP-LT. OF CONCJJ)) LEV=2 30 KF=FORCE $10 - 0$ $LO = 1$ DFLAG=1 AL055=0.0 100(11)=0 KOURLISED **DO 31 JE1-NYP** $SSHTL11-0.$ NMON (J) = 0 **31 CONTINUE** 00 90 J=1.NYP 00 80 1:1.12 IF (N.EQ.1) GO TO 32 JJ=NSN+(N-2)+MSN(1) IF(I.EQ.12) GO TO 32 JJ=NSN+(N-2)+HSN(I+1) 32 MIN+1 CALL TERPIRL+SA+NPRC+RLEV+SSA+NSIG) IF (NSIG.EQ.1) GO TO 902 EVAP=SSA+RLOSS(I)+C DELS=0(M+1)-CMD(I)-EVAP GO TO136.351.KADD 35 IF (KCON+LT+11) GO TO 338 IF (NSN.GT.1) GO TO 336 335 KADD =1 $KCON = 0$ GO TO 36 336 IF (MSN(I).51.1) 60 TO 335 338 DELS=DELS+DSV(I) KF $SKF - 1$ KCON=KCON+1 NMON (J) =NMON(J)+1 36 PSTORERSTOR+DFLS IF (RSTOR.LT.CMAX) 60 TO 50 40 DELS=RSTOR-CMAX RSTOP=CWAX LEVIL 42 60 T0180+441+KA00 44 IF (KF) 46.46.80 46 KADD=1 **KFIFORCE** $NCON:9$ GC TO 80 SO IFIRSTOR.GT.CMINI GO TO 56 IF (CMIN.LT..0005) GO TO 54

 \sim

 -40

 τ^{-1}

 \sim

GO TO(54+53)+DFLAG

54 DFLAG=2 DELS=CMIN-RSTOR **RSTOR=CHIN** GO TO 55 53 LD=LD+1 IFICHDII).LT.0(M.1)) GO TO 155 ALOSS=ALOSS+EVAP DELS=CHO(I)-0(M+1) RSTOR=CMIN-ALOSS IF(RSTOR.GT.D.) GO TO 55 RSTOR=D. GO TO 55 155 DELS=CHIN-RSTOR 55 CALL TERPICAP.RL.NPRC.RSTOR.RLEV.NSIGI IF INSIG.EO.11 GO TO 901 $LEV = 2$ SSHT(J)=SSHT(J)+DELS IF(I.EO.12.AND.J.EO.NYP) GO TO 57 IF (N.EQ.1) GO TO 80 60 T0(65+80) +KA00 56 60 TO(59+57)+DFLAG $57 10 = 10 + 1$ $100(11)=10$ KDUR (ID)=LD IF (I.EQ.12.AND.J.EQ.NYP) GO TO 90 $1.0 - 1$ $DFLAG=1$ **ALOSS=0.0** \mathbf{c} 62 IF (N.EQ.1) GO TO 80 IF (OFCON(JJ) .LT. ONCON(JJ)) GO TO 70 GO TO164,681,KADD 64 IF (RSTOR.GT.ONCON(JJ)) GO TO 83 65 KADD=2 KONCII)=KONCII)+1 GO TO 80 68 IF (RSTOR.6T.OFCON(JJ)) GO TO 44 GO TO 80 70 IFIRSTOR-LT.ONCONCJJII GO TO 72 60 TO 42 72 IF (RSTOR.GT.OFCON(JJ)) GO TO 73 60 TO 75 73 IF (DELS.LT.D.D) GO TO 75 GO TO(80+44)+KADD 75 60 TO(65+80)+KADD 80 CONTINUE IF (KSTRT.NE.2) GO TO 90 **RCON(J)=RSTOR** AT THIS POINT HAVE JUST COMPLETED ONE YEAR OF THE PERIOD \mathbf{c} 90 CONTINUE AT THIS POINT HAVE JUST COMPLETED A PERIOD OF NYP YEARS \mathbf{c} IF (KSTRT.NE.2) GO TO 96 NN=NPFY IF INPER.GT.NPFYI NN=NPER 00 92 L=1.NN XNUM=RAN(IARG)+50.0+0.5 **NUMEXNUM** NUMENUM+25 **RSILIZRCONINUMI** 92 CONTINUE **KSTRT=1**

 Δ

 \mathcal{A}

NYD-NYDCV GO TO 197 96 5101(11):0.0 KFPEQ(II)=0 TLOAD=3. YRK=D. 00 100 J=1.NYP IF INMONIULED.DI GO TO 97 VRK=VRK+1.3 **AACNHONE.IT** TLOAD=TLOAD+AA/12. 97 IF (SSHT(J).GT.0.0) GO TO 98 60 TO 100 98 KEPEG(II)=KEREG(II)+1 STOT(II)=STOT(II)+SSHT(J) 170 CONTINUE ALOADIII)=TLOAD/YRK+100. YDEM=DBAR+DLEV(II)+.365 **XNYP = NYP XF = KFREQ(II)** TS(II)=(1.0-XF/XNYP)+100. 104 PICID=CL.O-STOTCID/CXNYP+YDEMDD+100. **KSUM:N** 00 120 IX=1.10 KSUMIKSUM+KDUP (IX) 120 CONTINUE SUMERSUM $x \in \mathbb{R}$ **AVOURIIII:SUM/XID** IF (PPCF.GT.99.9) GO TO 500 IF(TS(II).ST.64.0) GO TO 121 SSTART=SSTART-2.0+SINC 60 TO 21 121 IF(TS(II).GT.PPCF) GO TO 125 IF (TS(II).LT.PPCF-1.3) GO TO 122 **FYINP.NICOD** AVEF (NP+N) = ALOAD (II) GO TO 139 122 IKNT:TKNT+1 IF (IK.GT.D.AND.IKNT.GT.1) SINC=0.8+SINC GO TO 2D 125 IF (TS(II).LT.100.0.AND.II.6T.1) GO TO 131 IF (II.EQ.1) GO TO 133 IF (IK.EQ.3) GO TO 131 $I \ltimes I \ltimes I$ $IMNT = 0$ SINCESINC/2.3 133 SSTART=SSTAPT+SINC $II = II - 1$ GO TO 21 131 NPTSSTT-1 DO 132 I=1+NPTS 1.7 IF (TS(I) JLF .PPCF .AND.TS(I+1) .GE .PPCF) GO TO 135 132 CONTINUE WRITE (6+4.00.0) 4000 FORMATCIHIL'PCF TEST NOT IN PANGE *1 60 TO 999 135 FYINP+N)=ICBAR+IDLEVIL1-NEEVIL+1111+ITSIL+11-PPCF1/ITSIL+11-TSIL11 $1 - 0$ RAR -0 I E VII -1) AVEFIND (N) = CALOADIE) +ALOADIE+1) 1/2. GO TO 139 500 IF (SINC.LT.D.0D5.09.MCK.E0.2) 60 TO 512

WRITE(6+6030) TS(II)+SSTART+SINC+KFPE0(II)+00 6000 FORMAT(1H + 3F15.2.110.F15.2) IF(TS(II).5T.85.N.OR.MG.NE.0) GO TO 501 $M = 1$ SSTART=SSTART-2.0+SINC 60 TO 21 501 IF(TS(II).LT.99.9) 60 TO 535 C ENTER HERE IF TS(II) EQUAL 130 PERCENT $MG = 1$ IF (ML.EQ.0) GO TO 502 $MCK = MCK + 1$ IISAV=II **DDSAV=DD** SINC=SINC/2.0 502 SSTART=SSTART+SINC GO TO 21 ENTER HERE IF TS(II) IS LESS THAN 100 PERCENT \mathbf{c} 505 ML=1 IF(MG.GT.O) SINC=SINC/2.D GO TO 20 512 IF(TS(II).6T.99.9) GO TO 515 DD=DDSAV **II=IISAV** 515 FY (NP.N) =00 AVEFINP .NI=ALOADIII) 139 GO TO (140, 189).KIO 140 IF (N.GT.1) GO TO 142 WRITE(6+3000) 3000 FORMAT(1H1+*OPERATION WITHOUT THE DESALTING PLANT*) GO TO 147 142 KP=NSN+(N-2)+1 WRITE(6+3001) ONCON(KP)+OFCON(KP) 3001 FORMATIIHO. 'OPERATING RULE'/IH .'SEASON 1. ON='F6.2.' B.G.'10X'OFF $1 = 156.2 + 8.6.11$ IF(NSN.EQ.1) GO TO 147 KP=KP+1 145 WRITE(6+3002) ONCON(KP)+OFCON(KP) 3002 FORMAT(IH .* SFASON 2. ON=*F6.2.* B.G.*10X*OFF=*F6.2.* B.G.*) IF (NSN.E9.2) 60 TO 147 KP=KP+1 WRITE (6+31.03) ONCON(KP)+OFCON(KP) 3103 FORMAT(1H .* SEASON 3, ON="F6.2," B.G."10X"OFF="F6.2." B.G.") 147 WRITE(6+3003) 3003 FORMAT(1HO. * PERCENT DEMAND NO. OF SHORTAGES FREQ IUENCY PERFORMANCE SHORTAGE PLANT?) 3904 FORMATIIH .* **DEMAND** M.G.D. SHOPTAGES OF T **B.G.** IARGET INDEX **DURATION** TURN ON ALOAD '/) **WRITE(6+3004)** 150 00 160 I=1.II RD=DRAR*DLEVIII WRITE(6+3005) DLEV(I)+RD+KFREQ(I)+STOT(I)+TS(I)+PI(I)+AVDUR(I)+ IKON(I) .ALOAD(I) 3005 FORMAT (2F12.2+112+F12.2+3F12.2+112+F12.2) 160 CONTINUE 189 IF (KSTRT.NE.1.0P.N.GT.1.0R.NP.GT.1) GO TO 199 KSTRT=2 NYP=75 $M = 1$ $DD = F + 1 - 1$ GO TO 322 190 IF (N.EQ.1) DBAREDBAR+DSCAP

AT THIS POINT HAVE COMPLETED ONE PERIOD FOR ALL RULES

 \sim

200 CONTINUE

 \mathbf{c}

 \sim

NUOL FORMATCINI-PRLEV NOT IN RANGE OF TABLE*) GO TO 999 902 WRITE(6+400.2) 4002 FORMATILH1. SSA NOT IN RANGE OF TABLE*) GO TO 999 903 WRITE(6+4033) 4993 FORMATCIHI+*SSTART LES THAN ZERO OR IT GREATER THAN 10*) 999 STOP END SUBROUTINE COSTENTP.NP.AVEL.ANCSTI COMMON /BLOCKD/NTON(50)+NTOF(50)+NMON(50)+FACT(10)+CAPC(10)+OPCST(110+10)+OFACT(10)+NOLF+NOFF+ETONC+ETOFC+INT+RATE REAL INT IF (AVEL.GT.OFACT(1)) GO TO 12 $J = 1$ 60 TO 20 12 IF (AVEL-LT-OFACT INOLF) } GO TO 14 **JINOLF** GO TO 20 14 DO 18 I=1.NOLF IF (OFACT(I+1).LT.AVEL) GO TO 18 C ENTER HERE IF AVEL FALLS BETWEEN OFACT(I) AND OFACT(I+1) IF (AVEL-OFACT(I) JLT.OFACT(I+1)-AVEL) GO TO 17 $J = I + I$ GO TO 20 17 J 60 10 20 18 CONTINUE 20 PWTHTO. ANNUALIZE THE OPERATING EXPENSES \mathbf{r} **DO 40 LEI-NYP** TEM=ETONC+NTON(L)+ETOFC+NTOF(L) AACNHON(1) XLF=AA/12.0+100.0 C DO TABLE LOOK-UP WITH INTERPOLATION(LINFAR TO OBTAIN COST(S/YEAR) IF(XIF.GT.D.) GO TO 22 CST=OPCST(1+J) 60 TO 30 22 IF (XLF.LT.95.0) GO TO 25 CSTIONCST(NOFF+J) GO TO 30 25 00 27 I=1.NOFF IF (XLF.GT.FACT(I+1)) GO TO 27 ENTER HERE IF XLF FALLS BETWEEN FACT(I) AND FACT(T+1)
FRAC=(XLF-FACT(I))/(FACT(I+1)-FACT(I)) \mathbf{r} CST=DPCST(I+J)+FRAC+(OPCST(I+1+J)-OPCST(T+J)) 60 10 30 27 CONTINUE C DISCOUNT THE COSTS FOR THE LITH YEAR TO THE PRESENT 30 FACTELLO-INTIA-L PUTH=PUTH+ECST+TEM3/EAC

AT THIS POINT HAVE COMPLETED NOP PERTODS OF NYP YEARS

 \sim

 \mathbf{A}

40 CONTTNUE C APPLY CAPITAL RECOVERY FACTOR TO OBTAIN UNIFORM SERIES USER=PWTH*INT*FAC/(FAC-1.0) ANCST=USER+CAPC(J) **RETURN END** SUBROUTINE TERP3INON+NOF+TRDEM+ONLEV) COMMON /BLOCKE/ AVEY(50)+XLF(50)+ON(10)+AL(10) DIMENSION ONLEVIID) DO 5 J=1.NOF $0.81.1120$. 5 CONTINUE 1 00 60 L=1.NOF DO 50 J=1.NON $I = NOT * (J - 1) * L * 1$ IF(AVEY(I).LT. IRDEM) GO TO 48 IF(J.NE.NON) GO TO 50 45 DIFF=AVEY(I)-TRDEM IF(DIFF.61.0.02+TRDEM) GO TO 53 ON IL JEONLEVIJI ALL II-VIELTY GO TO 60 48 IF(J.EO.1) GO TO 52 60 TO 57 52 DIFF=TRDEM-AVEVIII IF(DIFF.6T.0.02+TRDEM) GO TO 55 ON IL I=ONLEVIJI ALILIZALEITI **GO TO 60** 57 ON(L)=ONLEV(J)+(TRDEM-AVFY(I))/(AVFY(I-NOF)-AVFY(I))+(ONLEV(J-1)-**IONLEV(J))** AL (L)=XLF(I)+(ON(L)-ONLEV(J))/(ONLEV(J-1)-ONLEV(J))+(XLF(I-NOF)- 1 XL $F(1)$) **GO TO 60** 50 CONTINUE **WRITE(6+2000) L** 2000 FORMAT(IHO, "MINIMUM VALUE OF CURVE"12. SREATER THAN TRDEM") 50 TO 50 55 WRITE(6+2001) L 2001 FORMATEING *MAXIMUM VALUE OF CURVE*I2.* LESS THAN TRDEN*) **60 CONTINUE** WRITE(6+2012) 2012 FORMATI1H1+ "INTERPOLATED TURN-ON FRACTIONS") WRITE(6+2002) (ON(I)+I=1+NOF) WRITE (6,2013) 2013 FORMATILHO. 'INTERPOLATED AVERAGE LOAD FACTORS') WRITE(6+2003) (AL(I)+T=1+NOF) 2002 FORMAT(1H +1DF12.3) 2003 FORMATE1H +13F10-2) **RETURN** END FUNCTION PAN (IARG) DATA IX/O/ IF (IARG.EO.IX) GO TO 3 IX=IARG $I \times I \times I$ 3 IV=IV+262147 IF (IY.LT.0) IY=IY+34359738367+1

RANIJY

RANCRAN+ - 29 10 38 3E-10

-
- ್ಷ
-
-

300 CONTINUE

310 CONTINUE **TSD RETURN** 901 WRITE(6+4001)

301 00 310 J=1-NP

60 T0(301+350)+KI0

NOT METTE(6.3010) J. (FY(L.J).L=1.NOP)
3010 FORMAT(IHO, RULE NUMBER'I3/1H + (12F10.4))

 \mathbf{c}

SUBROUTINE FIND(AA.N.IX) DIMENSION AALSOL C THIS SUBROUTINE FINDS THE MINIMUM COST OF THE INCREASE IN FIRM YIELD* 1 AMIN=99999. DO 20 JE1.N IF (AA(J).GT.AMIN) GO TO 20 **AMINTAA(J)** $IX = J$ 20 CONTINUE **RETURN** END SUBROUTINE OCONENY+IYEAR) COMMON /BLOCK4/0(1201+5) $M \subseteq 1$ DO 8 JI1.NY DO 8 I=1 + 12 MIN+1 SUP=0(M.1) CALL CONISUP.CS.I.IVEARI $Q(M+1) = CS$ 8 CONTINUE **RETURN** END SUBROUTINE CON (VAL . CVAL . K. IYEAR) 60 TO(10+11) +IYEAR 10 60 1011-3-1-1-2-1-3-1-3-1-1-31-K 11 60 1011-2-1-3-1-3-1-1-3-1-3-1-3-11-K I CVAL :. 031 . VAL GO 10 5 2 CVAL $= -0.28$ * VAL 60 TO 5 3 CVAL = +333+VAL **S RETURN** END SUBROUTINE PLOTENSTOR.NY.NEULL.NEMPT) DIMENSION NARP(120)+MA(120)+0UT(120)+MSTOR(350) DATA RK/IH /+T/IH+/ NKNTCNY+12 **DO 2 ISLANKNT** MSTORED = (MSTORED) +1701/NFULL TEMENSTOREI) TEMOTEM/2.0 NTEMOTEN ATEMINTEM IF (TEM-ATEM.NE.D.D) MSTOR(I):MSTOR(I)+1 2 CONTINUE **FLINCNY** TEMOFLIN/10.+0.5 **NNCTER**

 \cdot

 \sim

 σ

 \sim

DO 30 II=1.NN $KK = 120$ $LL = (11 - 1) \cdot 10$ IF((NY-LL).LT.10) KK=LL+12 JAE (TT-11+1.20) **DO 5 JJ=1.KK** NARR (JJ) = MSTOP (JJ+JA) MAILUDICUU 5 CONTINUE \mathbf{r} RANK VALUES IN DESCENDING ORDER $N = KK$ **HEN** 9 M=M/2 IF (M) $10.20.10$ $10 K=N-M$ $J = 1$ 11 $I=J$ 12 $L = I + M$ IF (NARR(L)-NARR(I)) 16, 16, 15 15 NB=NARR(L) NATHALLI NARRILI=NARRII) MAILITHAIL MAILIZNA $I = I - M$
IF (I-1) 16 + 1 2 + 12 16 $J = J + 1$ $IF (J-K) 11.1 1.9$ 20 WRITE(6+1000) NFULL.NEMPT.II 1900 FORMATILH1. "CAPACITY WHEN FULL="I6." B.G. '. 4X. ' CAPACITY AT MIN. US IABLE LEVEL="I4+" B.G. '/IH + 'ORDINATE(RESERVOIR CONTENT) IS IN PERC 2ENT * . 20X * * PAGE= * I 2/) KORD=130 $K \equiv 1$ $IX = 1$ 00 28 1=1.51 IF(I.NE.IX) GO TO 22 $NORD = (51 - IX) * ?$ $IX = IX + 5$ WRITE(6+1032) NORD 1002 FORMATCH +13+1H-) GO TO 122 22 URITE(6+1.003) 1003 FORMAT(1H + 3X + 1H-) 122 00 23 J=1-120 $23.001(j) = 8k$ 24 IF (K.GT.KK) GO TO 26 IF (NARR(K).NE.KORD) GO TO 25 LIMA(K) **OUTILIZX** $K = K + 1$.GO TO 24 **75 KORD = KORD-2** 26 WRITE(6+1001) (OUT(J)+J=1+120) 1001 FORMAT(1H++6X+120A1) 28 CONTINUE 30 CONTINUE **35 RETURN FND**

 \sim

₩

 \sim

 74

RETURN

END

B

 \ll

```
THIS SUBROUTINE ASSUMES THAT THE B ARRAY IS NONDECREASING AS THE
      A ARRAY INCREASES.
\mathbf{r}DIMENSION ALIODI .BLIJDI
      IF(ARG.LT.A(1).OR.ARG.GT.A(NPTS)) GO TO 30
      IFIAPG.NE.AINPTS)) GO TO 10
      VALCARS
   60 TO 50<br>10 DO 20 I=1.NPTS
      IF(ARG.GE.A(I)) GO TO 20
      VAL=B(I-1)+(B(I)-B(I-1))+(ARG-A(I-1))/(A(I)-A(I-1)))
      GO TO 50
   20 CONTINUE
      60 TO 50
   30 MRITE(6+4.0)
   40 FORMATILING. THE ARGUMENT IS OUT OF THE RANGE OF THE RESERVOIR DATA
    111NSIG=1
   50 RETURN
      END
      SUBROUTINE RULE(NON+NOF+NOR+NSN+KIO)
      COMMON /BLOCKB/ONCONTIDO)+OFCONTIOD)+UCAP
      COMMON /BLOCKF/ONI2.OFIZ.ONI3.OFI3
      DIMENSION RUL(25+2)
\mathbf c\mathbf{c}THIS ROUTINE FORMULATES THE RULES THAT CONSTITUTE THE DECISION SPACE ** ** *
      KMID
      DO 5 I=1.NON
      00 5 J=1.NOF
      KNIKN+1
      RUL (KM.1)=ONCON(I)
      RUL (KM.2)=OFCONCJ)
    5 CONTINUE
      KPINSNOKM
      IF (NSN.EQ.1) GO TO 15
      DON2=ONI2+UCAP
      DOF2=OF12+UCAP
      IF (NSN.E0.2) GO TO 15
      DON3=ONI3+UCAP
      DOF3=OF13+UCAP
      IF (NSN.NE.3) GO TO 930
   15 NORIKM
      L = 0DO 20 I=1+KP+NSN
      i = i + iONCONCERENCIE +1)
      OF CONTENTRUL (L+2)
      IF (NSN.EQ.1) GO TO 20
      ONCON(I+1)=ONCON(I)-00N2
      OFCON(I+1)=OFCON(I)- DOF2
      IF (NSN.E0.2) GO TO 23
      ONCON(I+2)=ONCON(I)-00N3
      OFCON(I+2)=OFCON(I)-DOF3
   20 CONTINUE
     GO TO (21+221+KIO)
  21 WRITE(6+1005) (ONCONEJ)+OFCONEJ)+J=1+KP)
1005 FORMATCIHI+*OPERATING RULES*//CIN +10F10.21)
  22 RETURN
 900 WRITE (6.2000)
2000 FORMATILINI .* NUMBER OF SEASONS SPECIFIED IS IN ERROR **
```
SUBROUTINE TERPLA.B.NPTS.ARG.VAL.NSTG)

```
SUBROUTINE GNFLOINTRG.KIP.IFLOW.ITEAR)
\mathbf{c}FIVE STATION VERSION DIMENSIONED FOR 130 YEARS
      COMMON /BLOCKA/0(1201-5)
      DIMENSION ALCFT(12+5)+AV(12+5)+BETA(12+5+5)+DO(12+5)+IQ(15)+
     115TA (5) +MO(12) +NCAB(12+5) +NLOG(12+5) +
                                                      281121-0PREVILLEL-
     2R(10+11)+RA(12+5+10)+SD(12+5)+SKEW(13+5)+SOA(12+10)+S@B(12+10)+
     SSUMA(12+19)+SUMB(12+19)+X(10)+XPAE(12+10)+ NL6(12+5)+A(4+5)+SDV(12+5)+AA(12+5)+10)+B6(12+5)+B0(201+5)
                                                           NL6(12.5).AV6(12
     23-C+-L267 MONTHLY STREAMFLOW SIMULATION HEC. C OF E. USA 8-18-67
\mathbf{r}C INDEXES I=CALENDAR MONTH J=YEAR K=STA L=RELATED STA N=SUCCESSIVE MONTH
\mathbf{r}DOUBLE PRECISION R.B
      DATA LTRA/INA/+BLANK/IH /+E/INE/+KENT/I/
      NYMIS=NYRG
      IFIKENT.EQ.21 GO TO 1091
      KENT=2
  101 IARG=798531
      KSTA=1
      KYR=100
      KN=KYR+12+1
      IFMDF:0
      IDSSTED
    1 FORMATILX.17.918)
    2 FORMAT (1X.A3.9A4.1DA4)
    3 FORMAT(1HO)
    # FORMATIIS.4X.I4.12F5.0)
    6 FORMAT(1X+13+I4+12I6)
    7 FORMAT(1X.13.14.12F6.3)
\mathbf{c}WASTE CARDS UNTIL AN A IN COLUMN 1. FIRST TITLE CARD
   10 READ15+12) IA+(0(M+1)+M=1+20)
      IF (IA.ME.LTRA) 60 TO 10
      IF (IENDF-67-3) 60 TO 12 71
      IENDF=IENDF+1
   11 FORMATCIN +IN+16+1218+1101
   12 FORMAT (A1+A3+9A4+10A4)
      WRITE(6+3)
      IF (KIP.EO.2) 60 TO 13
      URITE(6+2) (0(M+1)+M=1+20)
   13 READ(5+1) IVRA+IMNTH+INSNG+ITEST+IRCON+NSTA+IPCHO
      ITMP=IRCON+NYPG
      IF(ITHP.6T.0)GO TO 30
      GO TO 10
   20 URITE (6+25)
     STOP
   25 FORMATIZENH DEMENSION EXCEEDEDE
   30 IF (KIP.E0.2) GO TO 42
      MRTTF (S.A.T)
   40 FORMATEIHO-'IYRA IMNTH IMSNG ITEST IRCON NYPG NSTA IPCHO NYMXG'
     \mathbf{1}WRITE(6+41) IVRA+IMNTH+IMSNG+ITEST+IRCON+NVRG+NSTA+IPCHQ+NVMXG
   41 FORMAT (2016)
               SET CONSTANTS
\mathbf{c}42 1=99999999.
      TM = T - 1.0IVRA=IVRA-1
      IMNTH=IMNTH-1
      00 50 1:1.12
```

```
STAP
```
TTMP=KSTA+2

00 46 KTI .KSTA

 $\mathbf c$

AAII.K.LI=0. 45 ABII.K.LIZO. **46 CONTINUE** MOLETERNTH+I IF (MO(I).LT.13)GO TO 50 $MOTI = MO(II) - IZ$ 50 CONTINUE SR NYRSEN DO ZD KEL-KSTA $TSTAKK121000 - K$ \mathbf{c} INITIATE -1. NO RECORD FOR ALL FLOWS **DO 60 M=1.KM** 60 OCH.KI=-1. DO 65 I=1.12 NLOGIT.KI=0 DQ (I.K)= 0 . **65 CONTINUE** 70 CONTINUE C READ AND PROCESS 1 STATION-YEAR OF DATA **NSTA=0** 75 READ (5+4)ISTAN+IYR+(OM(I)+I=1+12) \mathbf{r} BLANK CARD INDICATES END OF FLOW DATA 78 IF (ISTAN.LT.1)60 TO 130 IF (NSTA.LT.1)GO TO 97 $\mathbf c$ ASSIGN SUBSCRIPT TO STATION DO 80 K=1.NSTA IF (ISTAN-EQ. ISTA (K)) 60 TO 100 **90 CONTINUE** 90 NSTA=NSTA+1 KINSTA **ISTA(K)=ISTAN** ASSIGN SUBSCRIPT TO YEAR **C** 100 J=IYR-IYRA IF INVRS.LT.JINVRS:J IF (J.GT.0) GO TO 110 **WRITE (6,105)IYR** INS FORMAT (/18H UNACCEPTABLE YEAR IS) **STOP** \mathbf{c} STOPE FLOWS IN STATION AND MONTH ARRAY 110 McJ+12-11 00 170 1:1.12 MON+1 IZ=0M(I) IF (12.EQ.-1) GO TO 120 NLOGIT.KI=NLOGIT.KI+1 GO T01506+507+501+507)+IFLOW 501 GO T01511+5121+IYEAR 511 60 10(502+503+502+502+504+502+503+502+503+502+502+503)+1 512 60 101502 - 504 - 502 - 503 - 502 - 503 - 502 - 502 - 503 - 503 - 503 - 502 - - I 502 OM(I)=0M(I)+0.3226 GO TO 505 503 OMITICOMITIED.3333 GO TO 505 504 DM(I)=0M(I)+0.3571 505 OM(I)=OM(I)+0.50505 \mathbf{c} CONVERT C.F.S. TO M.G.D. 506 9MI11=0MI11+0.64627 507 0011+K1=D011+K1+0M111 $Q(M+K) = QM(T)$

IF (NYRS.GT.KYR) GO TO 20 NSTAX=NSTA+NSTA C * * * * * * COMPUTE FREQUENCY STATISTICS * * * * * * * * * * * * * * * * * * GO TO(131+316)+KIP 131 WRITE(6,314) 314 FORMAT (/21H FREQUENCY STATISTICS) WRITE(6+315)(MO(I)+I=1+12) 315 FORMAT(/14H STA TTEM 17+1118)
MISSING FLOW PRECEDING FIRST RECORD MONTH c 316 DO 317 K=1.NSTA $Q(1, K)$ = T 317 CONTINUE DO 421 K=1.NSTA 318 00 320 I=1, 12 AVII.KI=0. $SO(I,K)=0.$ SKEW(I.K)=0. TEMP=NLOG(I.K) DO(I.K)=DO(I.K)*.012/TEMP IF (DO(I+K) .LT. . 01) DO(I+K)=.01 320 CONTINUE $M \subset Y$ DO 350 J=1.NYRS DO 340 I=1.12 $M = M + 1$ $IZ = 0 (M, K)$ IF(17.E0.-1) GO TO 330 $\mathbf c$ REPLACE FLOW ARRAY WITH LOG ARRAY TEMP=ALOGIO(M.K) .DO(I.K) 1/2.3026 **QEM.KI=TEMP** SUM. SQUARES. AND CUBES c AVII.KI=AVII.KI+TEMP SD(I+K)=SD(I+K)+TEMP+TEMP SKEWIT.K)=SKEWIT.K)+TEMP+TEMP+TEMP GO TO 340 \mathbf{c} MISSING FLOWS EQUATED TO T 330 Q(M.K)=T 340 CONTINUE 350 CONTINUE DO 360 I=1.12 TEMP=NLOG(I.K) THP=AV(I.K) AVII.K)=TMP/TEMP IF(SD(I+K)+LE+0+1G0 T0 355 THPA=SD(I+K) SD(I+K)=(SD(I+K)-AV(I+K)+TMP)/(TEMP-1+) SD (I+K)=SD(I+K)+++5
SKEW(I+K)=(TEMP+TEMP+SKEW(I+K)-3,+TEMP+TMP+TMPA+2,+TMP+TMP+TMP) 1/(TEMP+(TEMP-1.)+(TEMP-2.)+SD(I+K)++3.) IF (SKEW(I+K)+GT+5+) SKEW(I+K)=5+ \sim IF (SKEW(I+K)+LT+(-5+)) SKEW(I+K)=(-5+) GO TO 360 355 SD(I.K)=0. SKEW(I.K)=3. **360 CONTINUE** C OUTPUT FREQUENCY STATISTICS **THP=SKEW(12+K)** SKEWE13.KI=SKEWE1.KI

GO TO(361+421)+KIP

 \sim

362 FORMAT(/I6+8H = MEAN 12F8.3)
= WRITE(6+364)(SD(I+K)+I=1+12)

364 FORMAT(7X+7HSTD DEV 12F8.3)

361 URITE16+362)ISTA(K)+(AV(I+K)+I=1+12)

 $\overline{5}$

DO 45 LIB-ITMP

120 CONTINUE GO TO 75

130 NSTAACNSTA+1

 \sim

. AT STAT TEMP=NCAB(I+L)
AA(I+K+L)=SUMA(I+L)/TEMP
AA(I+K+L)=SUMA(I+L)/TEMP
TRPI+SQA(I=D-SUMA(I+L)+SUMA(I+L)/TEMP)+(SQB(I+L)-SUMB(I+L)+SUMB
I(I+L)/TEMP) S30 CONTINUE
S40 CONTINUE
" • • • • • COMPUTE CORRELATION COEFFICIENTS • • • • • • • •
" • • • • • • COMPUTE CORRELATION COEFFICIENTS
" PE S50 ST-LL1D GO 10 S75
" BETTELE.FSESIMOLI-ISTANY"
SEO HOMILY3M RAM CORRELATION CO ---
| azo Formati//40H CONSIKSINI CORRELATION MATRIX FOR PONTH I3)
| azo Formati//40H CONSIKSINI-X-1-NSTA)
| azo Formati/3X, 3NSTA 18T7) IFITMS - ELIMINATE PAIRS WITH ZERO VARIANCE PRODUCT
IFITMS - ELIMINATE PAIRS WITH ZERO VARIANCE PRODUCT WRTEC6.STOILISTALLI-L=1-NSTAI
STO FORMATOM WITH STA ILI-LIILIOI
STS DO 580 L=KA-NSTAAE PAIRS WITH LESS THAN 3 VRS DATA
IF(NCAB(ILL)-LE-2)60 TO 580
IF(NCAB(ILL)-LE-2)60 TO 580 WRITE(6+590) NCABIT-L)+RACI*K+L)+L=I+NSTA)
S90 FORNATI2H THIS MONTH I2(IN+F6-3))
WRITE(6+595) NCCBET-L)+L3+CI+K+L+L=NSTAA-NSTAX)
S95 FORNATI2H THINATE NEGATIVE CORRELATIONS
S95 FORNATI2H LELTNATE NEGATIVE CORRELATIONS (RA(I.K.L) -LI.O. .AND.IZ.NE.-4) RA(I.K.L)=0. DO 840 K=1+N5TA
840 WRITE(6+950) ISTA(K)+(RA(I+K+L)+L=1+NSTA)
950 FORMAT(I6+18F7+3) THPA=TPABIT+L) -SUMA(T+L) +SUMB(T+L)/TEHP
|Frimpa_Letain Algebraic Sign
|Frimpa_Thpa+Thpa THPA=1--11-TPPA)* (TEMP-1.)/(TEMP-2.)
BF(T-MPA-1-T-MD)TMPA=0.
DF(T-MC-1-T-MD)TMPA=0.
TF(L-GT-MSTA) GO TO 500
ALII-L-K)=AB(T-K-L) **MRITE(6.83))**
RTE(6.83) SOB(I+L)=SOB(I+L)+TMP+TMP
XPAB(I+L)=XPAB(I+L)+TEMP+TMP S9C CONTINUE
IF(IDGST.LE.J) 60 TO 596
IF(IDGST.LE.J) 60 TO 596 (19651-15-31-15961) AB(I+L+K)=AA(I+K+L) S96 00 597 LEI.NSTAX HRIIE (6.860) ISSUED VIOLET 597 CONTINUE
598 CONTINUE
503 CONTINUE
612 TEMP=0. $\ddot{}$ U Ō, U 460 Off-Kizol
And Continue
470 Continue
490 Continue
00 Continue
100 Sou Kizoleria
100 Sou Library
100 Sou Library
100 Sou Library
200 Sou Library 1 SUBSCRIPTS EXCEEDING NSTA RELATE TO PRECEDING MONTH 450 0(M.K):6-+(IMP+TEMP++(11-/3.1-11-)/SKEN(1-K)+SKEN(1-K)/6-
GO TO 470 WRITE(6,366)(SKEW(I,K),I:I,12)
366 FORMAT(1DX,4HSKEW(I,F8,3)
368 FORMAT (ARGHINGRMI F7,2,11F8,2)
421 CONTINUE
440 DO 490 K:I,MSTA
440 DO 490 K:I,MSTA IF (LX.LT.LI) IMPSONAL)
IF (LX.LT.LN) IMPSONALIALX)
IF (IMP-ET.LN) TO 10 530
MCHB(TLL) IMPSALIALY! ONLY PECOPPED PAIRS
MCHB(TLL) IMPSALIALY! IF (IZ-EO-D) 60 TO 460
Q(M+K)=CQ(M+K)-AV(I+K))/SD(I+K)
IZ=ASS(SKEW(I+K))+D-9999
IZ=ASS(SKEW(I+K))+D-9999 IF (IZ-EO-O) 60 TO 473
TEMP=45+SKEW(I+K)+0(M+K)+1. SUMBIT.LI=SUMBIT.LI-TYP
Sumbit.Li=Suait.Li-Tre-FEMP IF(0(M,K).6T.TM) 60 TO 470
IZ=SO(I.K)+0.999 TEMP=01M+K)
If (TEMP₊GT₊TM) Go TO 540 SUMAITLY UNUSERIATION IF (TEMP-GE-0.160 TO 450 DO 480 J=1.NYRS
DO 470 I=1.12
M=M+1 DO 530 LIKX.NSTAX DO 550 JII.NYOS
DO 540 III.IZ 500 MCARITI-1:3
510 CONTINUE
510 CONTINUE
00 570 III-1:12
515 MCARITI-1:1
570 RAIT-K.K.F.I. SUMBILI+LI=0. **SOAIT-LIED.
SOBIT-LIED.
SOBIT-LIED.** TEMP =- TEMP LY=L-NSTA $I = -1$. I HP=1. \ddot{H} $\frac{1}{k}$ F $\ddot{}$ Ū U

77

BED FORMATIZOX38H WITH PRECEDING MONTH AT ABOVE STATION) ITPINSTA+1 DO 870 KC1.NSTA 870 WRITE(6+850)ISTA(K)+(RA(I+K+L)+L=ITP+NSTAX) **880 CONTINUE 885 IF (IRCON.LE.D) GO TO 1015 WRITE(6+3)** $M = 1$ NVAR=NSTA+1 USE AVERAGE FOR MONTH PRECFOING RECORD \mathbf{r} DO 931 K=1.NSTA $931.011.8120.$ DO 990 J=1.NYRS DO 980 I=1.12 $M = M + 1$ **DO 970 K=1.NSTA OR (M.K)=BLANK** IF (Q(M+K), LT.TH) GO TO 970 NINDP=0 FORM CORRELATION MATRIX FOR EACH MISSING FLOW \mathbf{r} DO 950 L=1, NSTA LX=L+NSTA IF (L-K) 934+932+933 932 NINDP=NINDP+1 XININOPIEDIM-I.L. AC ININDPICABIL+K+LXI-AAII+K+LXI REL-NVARIERAIL-K-LXI GO TO 935 933 TEIGIN.LI.GT.THI GO TO 950 934 NINDP=NINDP+1 XININDPI=0IM.LI AC INTHOPICABIT .K.L. I-AAIT.K.L.I RININDP.NVARIERAII.K.LI 935 ITP=NINDP RITTP.ITPICI. DO 940 LATL.NSTA TE (LALEQ.L) GO TO 943 **JX 21 A+NSTA** IF (L.EQ.K) GO TO 936 IF(O(M.LA).GT. TM.AND.LA.NE.K) GO TO 943 $IPZIP+1$ IF (LA.EO.K)R (NINDP+ITP)=RA(I+L+JX) IF (LA.NE.K)R (NINDP+ITP)=RA(I+L+LA) 60 TO 939 936 TF (G(M+LA) .GT. TH) GO TO 940 $IPETIP+1$ RININDP.ITPI=RAII.LA.LXI ADD SYNNETRICAL ELEMENTS ϵ 939 REITP.NINDPI=RININDP.ITPI 940 CONTINUE 950 CONTINUE ITMP:NINDP+1 DO 952, LT1+NINDP 952 RIL.ITHPICRIL.NVARI ========== \mathbf{c} CALL CROUTER+DIRMC+NINDP+B) \mathbf{c} $\pm\pm\pm\pm\pm\pm\pm\pm\pm$ AND RANDOM COMPONENT TO PRESERVE VARIANCE \mathbf{r} TEMP = RAN (IARS) **THP:RAN(TARG)** TEMP=(-2.+ALDG(TEMP))++.5+SIN(6.2.832+THPJ CONPUTE FLOW \mathbf{C} IF (DIRMC.LE.1..AND.DIRMC.GE.D.) GO TO 955

WRITE (6+7) I.K.DTRMC IF (DIRMC.GT.1.) DIRMC=1. IF (DIRMC.LT.D.) DIRMC=0. 955 AL=11.-DTRMC1++.5 TEMP=TEMP+AL **DO 960 L=1.NINDP** 960 TEMP=TEMP+B(L)+(X(L)-AC(L)) $Q(M*K) = TEMP$ QQ I N , K Y ^{- F} 970 CONTINUE 980 CONTINUE 990 CONTINUE IF (KIP.EQ.2) GO TO 1994 **WRITE (6,993)** 993 FORMATI33H RECORDED AND RECONSTITUTED FLOWSE 1994 ANYRS=NYRS DO 1011 K=1.NSTA IF (KIP.EQ.2) GO TO 1995 WRITE(6+995)(MO(I)+I=1+12) 995 FORMAT(/11H STA YEAR 12I8+6X+5HT0TAL) $1995 M=1$ DO 998 J=1.NYPS $IPP = 0$ DO 997 I=1.12 $M= M+1$ TEMP=0 (M+K) \mathbf{r} CONVERT STANDARD DEVIATES TO FLOWS TMP=SKEW(T.K) IF (THP) 2000+2001+2000 2000 TEMP=((TMP+(TEMP-TMP/6.1/6.+1.1++3-1.1+2./TMP 2701 IF(OR(M.K).NE.E) GO TO 992 IF (TEMP+6T+2++AND+SD(I+K)+6T++3)-TEMP=2++(TEMP-2+)++3/SD(I+K) TMP=(-2.)/SKEW(I.K) IF(SKEW(I+K)) 991+992+994 991 IF (TEMP.GT.TMP) TEMP=TMP 60 TO 992 994 IF (TEMP.LT.TMP) TEMP=TMP 992 THP=TEMP+SD(I+K)+AV(I+K) $0(H*K) = 10 - * * THP - D0 (I*K)$ IF(O(M+K)+LT+D+) O(M+K)=D+ GM (T)=GR (M.K) 996 TO(I)=0(M.K) +.5 997 ITP=ITP+IQ(I) TYP-TYPAA I IF (KIP.EG.2) GO TO 1700 IF (IPCHO.LE.J) GO TO 998 WRITE (7.6) ISTA(K).IVR.(IO(I).I=1.12) 998 WRITE(6+999)ISTA(K)+TYP+(IO(I)+OM(I)+I=1+12) +ITP 999 FORMAT (1X+I4+I6+I8+A1+11(I7+A1)+I19) C RECOMPUTE MEAN AND STANDARD DEVIATION 1000 00 1001 1:1.12 $AV(I-K)=0$. 1071 SD(I.K)=0. $M = 1$ DO 1003 J=1.NYRS DO 1302 I=1.12 $M = M + 1$ TEMP=ALOG(Q(M+K)+DQ(I+K)) AVII-KJ=AVII-KJ+TEMP 1992 SD (I+K)=SD(I+K)+TEMP+TEMP

 Φ

1003 CONTINUE

 \bullet

 \boldsymbol{r}

00 1004 1:1.12

TEMPIAV(I.K)

1004 AVII.KI=TEMP/ANYRS .. 4 34 2945 **1311 CONTINUE** PRINT ADJUSTED FREQUENCY STATISTICS \mathfrak{c} IF (KIP.EO.2) GO TO 1315 **WRITE(6.3)** NRTTE(6.1012) 1012 FORMATI/30H ADJUSTED FREQUENCY STATISTICS) **DO 1013 KC1-NSTA** WRITE (6.315) (MO(I).I=1.12) WRITE (6.362) ISTA(K).(AV(I.K).I=1.12) **WRITE (6+364) (SD(1+K)+I=1+12)** WRITE (6+366) (SKEW(I+K)+I=1+12) URITE (6.368) (DOCI.K).I=1.12) **1013 CONTINUE** C FLOW GENERATION EQUATIONS 1015 NINDP=NSTA NVAR=NSTA+1 00 1090 1:1.12 $TP = T - T$ IF $(19.11.1)$ 19.12 DO 1050 K=1+NSTA DO 1060 LIL-NSTA **CORRELATIONS IN CURRENT MONTH** \mathbf{c} IF (L.GE.K) GO TO 1055 RIL-NVARIERAII-K.LI DO 1052 LA=L.NSTA LX=LA+NSTA IF (LALLT.K) RIL-LA)=RAII-L-LA) IF (LA.GE.K) RIL.LA)=RAIT.L.LX) 1052 RILA.LIZRIL.LAI GO TO 1060 **CORRELATIONS WITH PRECEDING MONTH** Ċ **INSS LX=L+NSTA** RIL.NVARI=RAIL.K.LXI DO 1957 LATL.NSTA REL.LA)=RACIP.L.LA) 1957 RELA.LI=REL.LAI 1060 CONTINUE \mathbf{c} 1065 CALL CROUTIR.DTRMC.NTNDP.8) =========== \mathbf{c} DO 1070 L=1.NSTA 1070 BETAIL-K-LI=RILI IF (DTRMC.LE.1.) GO TO 1078 WRITE (6+1072) I.K.DTRMC 1972 FORMAT (34H INCONSISTENT CORREL MATRIX FOR I= 13.4H K=12. 1 SH DTRMC= F6.31 DIRMC=1. 1078 IF (DTRMC.GE.D.) GO TO 1079 **WRITE(6+7)I+K+DTRMC** DTRMC=0. 1979 ALCFT(I.K)=(1.-DTPMC) *** 5 1080 CONTINUE 1090 CONTINUE 1091 JAIL $N = 0$ $MA = 0$ 1995 00 1100 KTI.NSTA 1100 GPREVIKIZO. GENERATE 2 VEARS FOR DISCARDING ϵ

 ω .

 $NJ = 2$ $JX = -2$ 60 TO 5106 N = SEQUENCE NO.. M = MONTH NO.. JX = YEAR NO. 1105 VRTTE(6.3) $N = N + 1$ IF (KIP.EO.2) GO TO 5106 WRITE (6,1106) N 1106 FORMAT (27H GENERATED FLOWS FOR PERIOD I3) SIDE JXTMP=JX 00 3107 K=1.NSTA DO 3106 1=1.12 $NLS(T*K)=0$ AVG(I.K)=0. $SOW(T*K) = 0.$ 3106 CONTINUE 3107 CONTINUE 1108 00 3125 JEJA.NJ $M = 12 * (J - 1) * 1$ $JX = JX + I$ 00 1125 1=1.12 $M = M + 1$ DO 1120 K=1+NSTA RANDOM COMPONENT \mathbf{r} 1111 TEMP=RAN(IARG) **THP=RAN(IARG)** TEMP=t-2.+ALOG(TEMP) }++.5+SIN(6.2832+TMPI) TEMP=TEMP+ALCFT(I+K) \mathbf{c} **GENERATE CORRELATED STANDARD DEVIATE** DO 1110 L=1.NSTA **THP=OPREV(L)** IF (L.LT.K)THP=Q(M.L) 1110 TEMP=TEMP+BETA(I.K.L)+TMP NLG(I.K)=NLG(I.K)+1 AVG(T.K)=AVG(T.K)+TEMP SDV(I.K)=SDV(I.K)+TEMP+TEMP **QUANTERP OPREVIKI=TEMP** 1120 CONTINUE 1125 CONTINUE 3125 CONTINUE DO 1130 K=1.NSTA 1122 IF (NJ+JXTMP.6T.D.AND.KIP.EO.1) WRITE(6+995) (MO(I)+I=1+12) 00 3126 1=1.12 TEMP=NLG(I.K) AVG(I.K)=AVG(I.K)/TEMP SDV(I+K)=({SDV(I+K)-AV6(I+K)++2+TEMP)/TEMP)++.5 IF (NLG(I+K).GT.19.AND.KIP.EQ.1) WRITE(6+5126) ISTA(K).MO(I)+AV6(I+ IKI-SOVEI-KI 3126 CONTINUE 5126 FORMAT (AM STAIA+8H MONTHI3+7H MEANF6+3+10H STD DEVF5+3) $1X = 1X$ THP DO 3129 JEJA.NJ $JX = JX + I$ $M = 12 + J - 11$ IF (JX.LE.D) GO TO 3129 $IP20$ DO 1129 I=1-12 HIN+1 TRANSFORM TO LOG PEARSON TYPE ITI VARIATE (FLOW) \mathbf{c} TMP=SKEWII+K) IZ=ABSISKEW(I+K))+0.9999 IF (IZ.EQ.0) 60 TO 1126

à.

 \mathbf{r}

 \sim . . .

THP={SD{I+K}-TEMP+TEMP/ANYRS}/{ANYRS-1.}

SD (I.K)=TMP++.5+.4342945

IF (NLG(I.K).67.19) OCM.K)=(OCM.K)-AVG(I.K))/SDV(I.K) THP=((THP+(Q(M+K)-THP/6+)/6++1+)++3 -1+)+2+/THP TEMP=(-2.)/SKEWLT.KI IF (SKEW(I+K)) 1123+1126+1124 1123 IF (THP.GT.TEMP)THP=TEMP GO TO 1127 1124 IF (THP-LT.TEMP) THP=TEHP GO TO 1127 1126 THP=0(M.K) 1127 IF(THP.GT.2..AND.SD(I.K).GT..3) THP=2.+(THP-2.)+.3/SD(I.K) THP=THP+SD(I+K)+AV(I+K) $Q(H+K) = 10 + \cdot \cdot \text{THP} - DQ(I+K)$ 3128 IF(G(M+K).LT.D.) G(M+K)=D. 1128 10411=0(M.K) +.5 ITP=ITP+IQ(I) 1129 CONTINUE IQ(13)=ITP IF(KIP.EQ.2) GO TO 3129 WRITE (6+11) ISTA(K)+JX+(IQ(I)+I=1+13) IF (IPCHO.LE.0160 TO 3129 WRITE (7+6) ISTA(K)+JX+(IO(I)+1=1+12) 3129 CONTINUE 1130 CONTINUE $1250 NJ = NYMXG$ **GO TO NEW JOB** \mathbf{c} 1270 IF INVR6.LE.01 GO TO 1271 IF INJ.61.NYRSINJ=NYRS NYRG=NVR6-NJ GO TO 1105 1271 RETURN END SUBROUTINE CROUT (RX+DTRMC+NINOP+B) DIMENSION B(20)+R(10+11)+RX(10+11) DOUBLE PRECISION R.B.RX NVARININDP+1 DO 5 J=1.NINDP DO & K=1.NVAR **A REJ-KI=RXEJ-KI 5 CONTINUE** IF ININDP.GT.11GO TO 10 $B(1) = R(1, 2)/R(1, 1)$ DTRMC=8(1)+8(1) **RETURN** 10 00 20 K=2.NVAR 20 RCL+KI=RCL+KI/RCL+1) **DO 60 K=2.NINDP** $IIPIK-1$ DO NO JEK.NINOP DO 30 I=1.ITP $1.7K-T$ 30 REJ+KI=REJ+KI=REJ+LI+REL+KI IF (U.EQ.K) GO TO ND REK+J)=REJ+K)/REK+K) **NO CONTINUE** 00 50 1:1.ITP $L = K - T$ 50 REK+NVARI=REK+NVARI=REL+NVARI+REK+LI 60 REK-NVARIZREK-NVARI/REK-KI

 α

 \boldsymbol{r}

 $\ddot{\circ}$

BININDPICRINTNDP, NVARI DO 80 I=2.NINDP $J = NVAR - I$ $IX = I - 1$ $B(J) = R(J + NYAR)$ DO 70 L=1.1X $K = J + L$ 70 $B(J) = B(J) - B(K) * R(J*K)$ **80 CONTINUE** DIRMC=D. DO 90 J=1, NINDP 90 DTRMC=DTRMC+B(J) +RX(J+NVAR) **RETURN** END

۰

Suggestions for More Efficient Use of the Operating Rule Program

The user may be somewhat bewildered as to the proper formulation of certain input parameters to achieve the desired objectives. Therefore a few suggestions are made for getting started on a computation.

The projected water demand is satisfied by two components: (1) the natural yield of the system, and (2) the supplement from the desalting plant. The natural yield of the system is determined by the program and is not known beforehand. This makes selection of the trial plant size somewhat difficult. If the plant size selected is too small, then even the high yield producing rules fall short of the required demand. On the other hand, if the plant selected is too large, the lower yield producing rules exceed the target demand. In either case, the set of feasible rules cannot be determined and the computer time involved is wasted. Experience with the program has shown that a plant size 1.30 times the required increase in firm vield is usually near optimal.

To decrease the wasted computer time, a pilot run should be made utilizing the best information available about the physical system under study and with the trial plant size suggested above. Select one or two operating rules and make a run using two or three periods. If one high and one low yield producing rule are used, the results will indicate an upper and lower limit on the firm yield for the given plant size. Actually, the information gained is twofold. First, the ability of the selected plant to produce the required yield can be judged, and second, if the plant is adequate, information is gained' for formu- . lating the operating rules. If the required demand is in the range of the high yield producing rules, then the lower yield producing rules need not be considered, and vice versa. By judicious selection of the operating rules, the computational effort can be greatly reduced.

APPENDIX B

EVALUATION OF THE ADEQUACY OF STREAMFLOW OPERATIONAL HYDROLOGY IN DUPLICATING EXTENDED PERIODS OF HIGH \blacksquare AND LOW FLOWS $\ddot{}$

by Roland W. Jeppson and Calyin G, Clyde

TABLE OF CONTENTS

Introduction

In recent years the generation of synthetic hydrologic records, particularly streamflow data, has been common in hydrologic studies which use a simulation approach. *Operational hydrology* is the term used to denote the generation of synthetic data. One of the most active groups promoting simulation techniques and operational hydrology was founded by Professor Harold A. Thomas, Jr. at Harvard, and from this group a number of publications originated (see Hufschmidt and Fiering, 1966; and Fiering, 1967). The operational hydrology computer program by the U.S. Corps of Engineers (Beard, 1965, and Hydrologic Engineering Center, 1967) has been used in research at USU supported by the Office of Saline Water, U.S. Dept. of the Interior.

'Much thought and many analyses have contributed to present techniques of operational hydrology. It has long been recognized that monthly and seasonal flows demonstrate a high order of persistence, reflected by large correlation coefficients between flows in successive time periods. Although this is true to a lesser extent for annual values, examination of many flow records using spectral density methods, correlograms and other techniques discloses cycles that range over periods of several years. The fact that a long period of low or high flow can sometimes be extremely long has been called by Mandelbrot and Wallis (1968) the "Joseph Effect." Some have questioned the significance of these results, but analysis of precipitation records has demonstrated that it is possible to create such cyclic effects by a purely random variable as shown by Crippen (1965). Just the same persistently high flow and drought sequences are present in some historic streamflow data. Furthermore, the watershed can accentuate precipitation cycles so that the streamflow cycles become even more extreme. There might well be some as yet unknown meteorologic cause for such extended cycles. Several hypotheses have been suggested including the influence of solar spots, cosmic dust, and radiation belts. Whatever the cause, natural streamflow in certain regions exhibits a persistence even on an annual event basis that is difficult to attribute to a random variable, and evidently is also difficult to duplicate with operational hydrology.

While considerable disappointment with specific hydrologic models has been expressed by hydrologists (see Yevdjevich, 1968), verbal communication with Warren Hall at the University of California at Riverside, and Leo R. Beard and Harold Kubic of the Hydrologic Engineering Center at Sacramento, indicated that operational hydrology programs adequately retain critically low and high

sequences for streams in more humid regions, but fail to adequately duplicate the "Joseph Effect" for streams in arid regions. These comments lead to careful examination of the generated streamflow obtained from the operational hydrology computer program. It is clear that such an evaluation is needed because the approach used in the OSW sponsored study for evaluating the incremental increases in safe yield obtainable from standby desalted water sources depends directly upon the simulated streamflow data for its results. The study of the adequacy of the generated streamflow data has not been exhaustive. Rather, a computer program applicable to any stream has been developed to aid in evaluating the adequacy of the generated streamflow. (The input data called for by this program is described in a latter section along with a listing of the FORTRAN source statements.) Other methods than those used in the program might well have been selected for this evaluation. The urgency of examining the generated streamflow before proceeding further into the major work of the OSW contract necessitated that the evaluation be made without delay. Because the computer program thusly developed might be of aid to others in evaluating operational hydrologies, it seemed desirable to document the approach used and to list and explain the computer program in a separate report specifically directed to the evaluation of generated streamflow data.

Method of Approach

A preliminary analysis comparing the monthly means, monthly standard deviations, annual means and annual standard deviations of generated data and historic data from several streams indicated that these statistical parameters of the generated data were close to the same historic parameters. In essence this comparison simply verified the proper operation of the operational hydrology program, since these parameters are maintained in the generation process.

The deficiency in generated streamflow data, as others have pointed out, is that in consecutive annual events the historic data tend to be either consistently higher or lower than the generated data for some streams. To examine this characteristic of the generated streamflow data all possible running averages (averages of consecutive monthly flows) within the streamflow record are computed for several different lengths of periods. The computer program, developed to accomplish this computation, has been designed to permit the analyses of the running average data for several specified periods of consecutive months during the same execution of the

program. For the analyses already performed at USU, periods starting with 24 consecutive months and going through 192 consecutive months in increments of 24 months have been used. The computed running averages represent an additional data set covering flows of extended periods of time. The number of individual running averages computed in this manner are given by,

$$
N_{r} = 12 N_{y} - K + 1 \qquad \qquad \dots (1)
$$

in which N_v is the number of years of streamflow data, and K is the length of the period of consecutive months. While these individual averages are not independent, a frequency distribution of the resulting data indicates persistency trends of the data. To obtain this frequency distribution running averages are ranked in order of magnitude by the program from high to low. In addition, the mean, variance, standard deviation and skewness coefficient of the running averages of each period are computed, so that one might obtain the frequency distribution under the assumption that the data fit a normal distribution. The ranked running averages are then plotted as the ordinate against the probability computed by

$$
p = \frac{n}{N_r + 1} \qquad \ldots \qquad (2)
$$

as the abscissa. In Eq. 2 n refers to the rank number.

By comparing the distribution of running averages obtained from the historic data with those resulting from the data obtained from the operational hydrology program it is possible to determine whether extended periods of droughts and high flows are duplicated. If the running averages associated with small probabilities (i.e. the high flows) obtained from the generated streamflow data are smaller than the corresponding averages from the historic data, then the generated data does not maintain the needed dependence between annual events. Likewise if the running averages associated with large probabilities (i.e. the low flows) from the generated data are not as small as those from the-historic data, persistence of droughts are not duplicated. In fact since the generated data cover a much longer time period than the historic data, its record should actually contain both larger and smaller running averages than the historic data.

An index to how well the generated data maintains critical periods is the difference between generated and historic standard deviations of the running averages. Since the standard deviation is a measure of the spread about the mean, the standard deviations of the running averages from the generated data should not be consistently smaller than those resulting from the historic data. The computer program contains instructions which compare the two standard deviations for each specified period of consecutive months by printing the difference between the two values. In addition the mean and standard deviation of these differences among the specified periods of consecutive months is computed and a value of t

computed by

$$
t = \frac{X_d N_p}{\sigma_p} \dots \dots \dots \dots \dots \tag{3}
$$

in which X_d is the average difference between the two standard deviations, N_p is the number of separate periods used in the analyses and σ_p is the standard deviation of this same difference. While the value of t compute4 by Eq. 3 does not represent a true distribution of difference in mean values, an idea of the likelihood that the generated data is from the same population as the historic data can be acquired by comparing its value with the tabulated t-distribution.

Results from Analyses of Three Streams

The streamflow at each gaging station is influenced by unique and complex interrelated phenomena. These phenomena are the result of the meteorology, geology and hydrology of that particular area, Completely meaningful generalizations cannot be made about watershed types, areal location, or climate and their effects on streamflow. Often adjacent watersheds with similar topographical characteristics may have streamflows differing considerably both in total magnitude and seasonal distribution, It is necessary, therefore, to analyze streamflow data for each watershed separately to ascertain the adequacy of a particular operational hydrology for that stream gaging site. Three separate stream gaging sites have been selected for analysis of their streamflow in this report.

These three sites are all in different parts of the United States and their geologic histories are quite different. The first site, Cottonwood Creek near Orangeville, Utah, is in the Colorado River Basin in Central Utah, a relatively arid part of the United States. A significant portion of the streamflow results from groundwater storage, because flow continues through periods of neither snowmelt nor rainfall. The second selection is at the Cachuma project site in California. The streamflow at this site varies drastically when contrasted with Cottonwood Creek, and within a period of a month a difference of several thousand cubic feet per second of flow are commonly observed. Even though this area is not as arid as the Cottonwood Creek region, zero flow has occurred for many separate periods several months in length. The third selection is on the East Coast of the United States, Schoharie Creek at Prattsville, New York, a stream in a region of higher annual precipitation and exhibiting less erratic flow fluctuations than the Cachuma data.

The selection of these three stream gaging sites was not based on an attempt to find streams with peculiar behavior. Rather their selection resulted because they represent differing conditions and the latter two are to be used as bench marks on which the operating rule program resulting from the OSW contract is to be tested. The

selection of Cottonwood Creek resulted because of the availability of good streamflow records and because it lies in a region similar to those in which other investigators have noted that operational hydrology programs do not adequately reproduce the "Joseph Effect" in historic data.

Partial results from the analyses provided by the computer program are given below for each of the three selected sites. These results are presented not only to document the findings regarding the adequacy or inadequacy of the operational hydrology program for each stream but also to illustrate how judgment might be used in interpreting the results from similar analyses of other streams. For each of these streams 500 years of data were obtained from the operational hydrology program using the available historic data as input. For each stream the generated data were obtained as 10 groups of 50 years each.

Cottonwood Creek near Orangeville, Utah

Historic streamflow data are available for Cottonwood Creek near Orangeville, Utah, from 1910 through 1965. The watershed area contributing to the flow at the gaging station is 205 square miles. For the entire 56 year period of record the streamflow data represents the natural flow of the stream with the exception of small diversions for irrigation above the gaging station, which are not measured. Diversions from the headwaters of Cottonwood Creek through Ephraim and Spring City tunnels, constructed by the Bureau of Reclamation in 1936 and 1938 respectively to the San-Pitch River Basin within the Great Basin, have been added to the measured flow at the station site near Orangeville, in order for the historic data to represent natural conditions.

For both the historic and the generated streamflow data, the cumulative frequency distributions of periods starting with all possible averages from 24 consecutive months through 192 consecutive months in increments of 24 months were obtained. On Fig. 1 are graphs on which the results of the frequency analyses are displayed. In comparing the curves on the graphs resulting from the generated data with those from the historic data a smoothing effect can be detected. A certain amount of this effect would be expected because the sample of data from the generated streamflow is larger. One might also note that the flows which are exceeded for small probabilities of occurrence (high flows), particularly for the longer periods of consecutive months as given by the analysis of the historic data, are larger than the corresponding flows as given by the analysis of the generated data. Furthermore, for larger probabilities of occurrence the average flow rates resulting from the analyses of the generated data are larger. Table 1 has been prepared to illustrate these differences.

If the generated data maintained the "Joseph Effect" which the historic data exhibits, this difference should not have occurred. In fact because of the larger number of generated data, one might expect the opposite tendency.

A further indication of the inadequacy of the generated data in duplicating extended critical periods is given in Table 2 in which the standard deviations of the running averages from both the historic and generated data are given. The fact that, for all periods of consecutive months, the standard deviations from the historic data are larger than those from the generated data indicates that the generated data do not contain as many persistently high-flow or drought sequences as do the historic data.

The conclusion, therefore, is that the operational hydrology program does not adequately reproduce the "Joseph Effect" for Cottonwood Creek near Orangeville.

Period	Probability of occurrence								
(Consecutive Months)	2%		10%		90%		98%		
	Historic	Generated	Historic	Generated	Historic	Generated	Historic	Generated	
24	9786	10,010	9210	8400	4068	4170	2797	3480	
48	8769	8,960	8119	7670	4533	4660	3663	4110	
72	8220	8,550	7930	7450	4838	4900	3557	4370	
96	8095	7,930	7680	7320	5058	5180	4760	4510	
120	8115	7,810	7564	7200	5060	5280	4719	4710	
144	8164	7,550	7467	7080	5226	5370	4768	4890	
168	7878	7,370	7122	6960	5365	5430	5165	5090	
192.	7437	7,200	7097	6900	5416	5490	5182	5170	

Table 1. Average flowrate (ac-ft/month) over the given period of consecutive, months that will be exceeded for several probabilities of occurrence. The flowrates are for both the historic and generated streamflow of Cottonwood Creek near Orangeville, Utah.

No. of	Standard deviations								
Consecutive Months	Historic	Generated	Difference	Percent Difference					
24	1810	1680	$+ 130$	7.25					
48	1350	1180	$+170$	12.71					
72	1090	970	$+120$	11.15					
96	934	835	+ 99	11.47					
120	895	728	$+ 167$	18.70					
144	822	641	$+181$	23.30					
168	695	570	$+ 125$	17,96					
192	590	517	$+ 73$	12.25					

Table 2. Comparison of standard deviations of running average data of streamflow at Cottonwood Creek near Orangeville, Utah. (Units are in ac-ft/month.)

Figure 1. Relationships between average quantities of runoff over extended periods of time and probability of occurrence for Cottonwood Creek near Orangeville, Utah.

l.

Figure 1. Continued.

Figure 1. Continued.

Figure 1. Continued.

Figure 1. Concluded.

Streamflow at **the Cachwna Project, California**

Historic streamflow data for the period 1905 through 1962 were obtained from the California Division of Water Resources. After inputing these historic data to the operational hydrology program and generating 500 years of streamflow data in 10 groups of 50 years, both the historic and generated data were used as input to the program described in this report. Each of the curves on Fig. 2 displays the results of the frequency analyses of the running averages over the specified period of consecutive months. Table 3 summarizes the runoff quantities associa-

ted with four probabilities of occurrence. The results from the frequency analyses show that the generated streamflow for extended periods of droughts are slightly higher than the corresponding historic averages. This effect is less pronounced than for Cottonwood Creek near Orangeville. Just the same the results seem to indicate that the generated data are not adequately reproducing droughts. On the other hand the averages from the generated data are greater than the historic data for high flows or low probabilities. Extended periods of high flow are therefore retained in the operational hydrology program for the flows at Cachuma.

Table 3. Average flowrate (ac-ft/month) over the given period of consecutive months that will be exceeded for four probabilities of occurrence. The flowrates are for both the historic and generated streamflow at the Cachuma Project, California.

Period	Probability of occurrence							
(Consecutive)	2%		10%		90%		98%	
Months)	Historic	Generated	Historic	Generated	Historic	Generated	Historic	Generated ^l
24	2600	3500	1935	1810	16	81	6.7	26
48	2290	2750	1550	1600	130	182	14.5	84
72	2100	2290	1320	1330	195	258	110	140
96	1880	1900	1245	1297	188	300	149	184
120	1710	1770	1080	1243	213	337	196	240
144	1585	1590	1060	1175	222	369	197	270
168	1465	1450	1055	1117	241	413	198	285
192	1300	1365	960	1130	295	445	220	290

Table 4 shows a comparison of the standard deviations. The differences in the standard deviations have both negative and positive values. Because the magnitudes of these differences are relatively large, it cannot be concluded that the operational hydrology program adequately reproduces extended trends of the historic record. Conversely, it cannot be concluded that the operational hydrology program is not reproducing the "Joseph Effect."

No. of	Standard deviations							
Consecutive Months	Historic	Generated	Difference	Percent Difference				
24	7220	9280	-2040	-28.3				
48	5920	6250	-320	-5.4				
72	5180	4850	$+330$	$+ 6.37$				
96	4600	4080	$+ 520$	$+12.70$				
144	3650	3190	$+460$	$+12,60$				
168	3140	2900	$+240$	$+7.64$				

Table 4. Comparison of standard deviations of running average data of streamflow at Cachuma, California. (Units are in ac-ft/month)

Figure 2. Relationships between average quantities of runoff over extended periods of time and probability of occurrence for streamflow at the Cachuma Project, California.

Figure 2. Continued.

Figure 2. Continued.

Figure 2. Continued.

Schoharie Creek at Prattsville, New York

Monthly streamflow data for Schoharie Creek at Prattsville, New York were obtained for the period 1904 through 1967. These data are in terms of discharge in cubic feet per second, while the data for the other two streams are in terms of ac-ft per month. Fig. 3 contains the plotted results from the frequency analyses of the running averages over extended periods. Table 5 contains

values of average discharge for the specified periods which might be expected to be exceeded for the four specified probabilities of occurrence. In contrast to the results of Cottonwood Creek, for the two low probabilities (i.e. the high flows), the averages obtained from the historic data are smaller than those obtained from the generated data, whereas, for the two larger percentages (i.e. the low flows), the historic averages are larger than the generated averages for the longer sequences.

Table 5. Average flowrate (cfs) for the given period of consecutive months that will be exceeded for four probabilities of occurrence. The flowrates are for both the historic and generated streamflow at Schoharie Creek at Prattsville, New York.

Period	Probability of occurrence							
(Consecutive Months)	2%		10%		90%		98%	
	Historic	Generated	Historic	Generated	Historic	Generated	Historic	Generated
24	611	662	543	566	347	340	276	301
48	532	598	516	529	382	367	297	332
72	527	574	496	515	400	383	317	351
96	504	554	489	509	407	392	352	365
120	498	550	485	501	412	399	366	379
144	489	545	480	495	422	407	398	385
168	481	532	474	490	431	411	406	390
192	478	521	470	487	436	413	420	397

TABLE 8

 \sim

 ~ 100 km $^{-1}$

 \sim

J.

 \bar{z}

 $\sigma_{\rm NL}$

 $\mathcal{L}_{\mathcal{A}}$

Unit Cost of Water as a Function of the Operating Plant
Load Factor and Optimum Load Factor

Plant Size 75 Mgd

 \mathcal{L}

TABLE 9

Unit Cost of Water as a Function of the Operating Plant
Load Factor and Optimum Load Factor

Plant Size 100 Mgd

 122

 \mathbf{f}

1.

d

 \Rightarrow

123

 $\left\{ \right.$

OAK RIDGE NATIONAL LABORATORY

OPERATED BY UNION CARBIDE CORPORATION NUCLEAR DIVISION

POST OFFICE BOX Y OAK RIDGE, TENNESSEE 37830

April 29, 1969

Mr. Wesley H. Blood Utah State University College of Engineering Logan, Utah 84321

Dear Mr. Blood:

 ℓ

SUBJECT: Reply to Your Letter of April 22, 1969

Time does not permit us to develop cost tables for 150, 200, 250 and 300 Mgd plants as requested. I would suggest that the 100 Mgd costs be used as a base with the following arithmetic multipliers for unit capital, annual or water costs:

The total annual cost $(\frac{4}{yr})$ at 0% plant factor would be the sum of the annual fixed charge tabulated in my letter to Mr. Clyde, March 14 , 1969, plus the following operating cost:

It is likely that a thorough analysis of the questions would give more refined answers in both cases. I have reviewed our approach briefly with Shiozawa and I believe he is in agreement with the approach taken,

Sincerely, $\int_{\frac{1}{\cdot}}^{\frac{1}{\cdot}} \frac{1}{\sqrt{2\pi}}$

IS:jb cc: Dr. C. G. Clyde Mr. Sam Shiozawa $\,$ $\sum_{\mathbf{k}}$ 1999

i,

 $\hat{\boldsymbol{\epsilon}}$