Utah State University

DigitalCommons@USU

Reports

Utah Water Research Laboratory

January 1979

Effects of Oil Shale Leachate on Phytoplankton Productivity

Mary Louise Cleave

V. Dean Adams

Donald B. Porcella

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management

Commons

Recommended Citation

Cleave, Mary Louise; Adams, V. Dean; and Porcella, Donald B., "Effects of Oil Shale Leachate on Phytoplankton Productivity" (1979). Reports. Paper 544.

https://digitalcommons.usu.edu/water_rep/544

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Effects of Oil Shale Leachate on Phytoplankton Productivity

Mary Louise Cleave V. Dean Adams Donald B. Porcella

Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah 84322

December 1979

WATER QUALITY SERIES UWRL/Q-79/05

EFFECTS OF OIL SHALE LEACHATE ON PHYTOPLANKTON PRODUCTIVITY

bу

Mary Louise Cleave V. Dean Adams Donald B. Porcella

WATER QUALITY SERIES UWRL/Q79/05

Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah 84322

December 1979

ABSTRACT

The effect of oil shale leachate and salinity additions on the productivity of freshwater algae were studied in the laboratory using batch bioassays. These batch bioassays were used to screen variations of ten salts in single and multiple additions of all possible combinations of the ten salts; water extractions of different processed and unprocessed oil shales; and the concentration effects of both the salts from 0.3 N to 0.05 N as NaCl and the oil shale extractions on the growth of standard test algae and indigenous algae from Lake Powell.

The batch bottle broassays were conducted following the standard algal assay procedure as closely as possible. Variations in the standard algal assay procedure included media variation with the use of indigenous algal species isolated from Lake Powell and the use of three different algal species for test innoculum in the bioassay procedure. The biomass was monitored using optical density, chlorophyll \underline{a} fluorescence, and/or cell counts.

The indigenous algal species were found to be negatively affected but more tolerant to all salinity additions than the standard test alga. The growth of the indigenous algal species (Scenedesmus bijuga) was also stimulated by adding oil shale extract at lower concentrations. Higher concentrations of oil shale leachate inhibited the indigenous algal growth.

ACKNOWLEDGMENTS

This research was sponsored by the State of Utah (WA24), the Utah Water Research Laboratory (UWRL), and Utah State University.

The authors wish to express their appreciation for the assistance provided by Paula Bramble in laboratory analyses. A special thanks is also expressed to other personnel of the UWRL who contributed greatly to the completion of this research. Sincere thanks are also extended to the UWRL for providing laboratory equipment and facilities necessary to complete this study and to the capable editorial and secretarial staff for their assistance in preparation and publication of this report.

TABLE OF CONTENTS

	Page
INTRODUCTION	. 1
Definition of Problem	. 1
LITERATURE REVIEW	. 3
Commercial Extraction Operations	. 3 . 3 . 4 . 4
Solid Waste Disposal	-
Dissolved Solids and Freshwater Phytoplankton	. 6
Total Dissolved Solids	. 6 . 7 . 7
Required Elements for Phytoplankton Growth	. 8
Osmotic Role of Dissolved Solids	. 8
Other Potential Leachate Components and Freshwater Phytoplankton	. 9
Organics	. 9
	. 9
	. 10
MATERIALS AND METHODS	. 11
Regular Bioassay Monitoring Techniques	. 11 . 13 . 13 . 14 . 17
RESULTS	. 19
Effects of Increased Salt Concentrations on the Productivity of Selenastrum	. 19
Effects of Single Salt Additions	. 19
Selenastrum	. 24 . 24
Effects of Increased Salt Concentrations on the Productivity	0.4

TABLE OF CONTENTS (CONTINUED)

	Page
Effects of Single Salt Additions	. 24 . 32 . 32
Effects of Increased Salt Concentrations on the Productivity of Three Algal Species	
Effects of Single Salt Additions	. 32
Evaluation of Elutriates and Leachates of Oil Shale	. 41
Chemical Evaluations	. 41
$\frac{\text{Selenastrum}}{\text{Oil Shale Elutriates on Scenedesmus}}$. 42 . 42
Comparison of the Salt Effects to the Oil Shale Elutriate Effects on the Productivity of <u>Scenedesmus</u>	. 44
DISCUSSION	. 47
Utilization of Batch Bottle Bioassay for Toxicity Testing .	. 47
Test Algae	. 47 . 47
Effects of Salinity on Freshwater Phytoplankton	. 48
Concentration Effects	. 48 . 48
Evaluation of Concentration Measurements Evaluation of the Corps of Engineers Standard Elutriation	. 49
Procedure	. 49
plankton Productivity	. 49
System	. 50
CONCLUSIONS AND RECOMMENDATIONS	. 51
Conclusions	. 51 . 51
REFERENCES	. 53
APPENDICES	. 59
Appendix A: Analytical Results of the Oil Shale Leachate	
and Elutriate Analysis	. 61 . 67

LIST OF FIGURES

Figur	<u>·e</u>	Pa	age
1.	Analysis of a Green River oil shale (Siggia and Uden 1974)		3
2.	Location of federal oil shale tracts in Utah (USDI 1973) .		3
3.	Flow diagram of 50,000-barrel-per-day underground oil shale mine and associated oil shale surface processing units (Conkle et al. 1974)	•	4
4.	Demand and supply for water: $50,000$ barrel per day plant with an underground mine and surface retort at tracts U-a and U-b (cu ft. per sec.) (Conkle et al. 1974)		5
5.	Oil shale elutriation technique number 1		15
6.	Oil shale elutriation technique number 2 (Keeley and Engler 1974)		15
7.	The up-flow column for leaching oil shale (Maase et al. 1975)		16
8.	The sieve analysis of oil shale		16
9.	The regional effects of the cations added to the media (bioassay 2)	•	28
10.	The regional effects of the anions added to the media (bioassay 3)		30
11.	The relative inhibition of the \hat{X} identified by the cation present during growth (bioassay 4)		31
12.	The relative inhibition of the \hat{X} identified by the anion present during growth (bioassay 4)		31
13.	Concentration effects on the growth of $\frac{Scenedesmus}{}$		44
14.	Comparison of the growth of $\underline{Scenedesmus}$ with the addition of BR and BP elutriates		45
15.	Decrease in the electrical conductivity of the culture medium plus AP leachate (20 ml) in the presence of Scenedesmus growth (bioassay 10)		45
16.	Comparison of the growth of <u>Scenedesmus</u> grown in the presence of BP oil shale elutriate and its matching salt control		46
17.	A beta toxicity curve (Luckey and Venugopal 1977)		46

LIST OF TABLES

Table		Pá	ige
1.	Estimated salinity increases at Imperial Dam (Siggia and Uden 1974)		6
2.	Experimental results of the percolation experiment conducted on TOSCO spent oil shale retorting residue (CSU 1971)	đ	7
3.	Identification matrix for algal bioassays		12
4.	The synthetic algal nutrient medium, AAM (USEPA 1971)		13
5.	Salt additions to AAM for Lake Powell synthetic medium (Medine et al. 1977)		13
6.	An index of the chemical analyses performed	,	14
7.	Fluorescence monitored for mixed algal cultures		16
8.	Summary of probable responses for algal assay growth parameters		17
9.	Duncan's multiple range analyses of the biomass data from the initial bioassay with <u>Selenastrum</u>		20
10.	Single salt additions to AAM for bioassay 2 and the effects on $\underline{\text{Selenastrum}}$		21
11.	Split plot factorial analysis of variance of single salt additions to $\underline{Selenastrum}$ (bioassay 2)		22
12.	Summary of completely randomized design analyses of variance for $\underline{Selenastrum}$ single salt additions (bioassay 2)		23
13.	Linear relations between salinity variables and different estimates of biomass for single salt additions to Selenastrum		23
14.	Duncan's multiple range analysis for single salt additions to $\underline{\text{Selenastrum}}$ (bioassay 2)		25
15.	Duncan's multiple range analysis for single salt additions to acclimated <u>Selenastrum</u> (bioassay 2)		26
16.	Duncan's multiple range analysis for two salt additions to Selenastrum (bioassay 2)		27
17.	Linear relation between different estimates of biomass for two salt additions to $\underline{\text{Selenastrum}}$ (bioassay 3)	,	28
18.	Single salt additions to AAM and Synedra (bioassay 4)		29
19.	Summary of analyses of variance for Synedra single salt additions (bioassay 4)	•	30
20.	Linear relations between different estimates of biomass for single salt additions to Synedra (bioassay 4)		32
21.	Duncan's multiple range analysis of single salt additions to Synedra (bioassay 4)		33
22.	Duncan's multiple range analysis for two salt additions to Synedra (bioassay 5)		34

LIST OF TABLES (CONTINUED)

<u>Table</u>		<u>Pa</u>	ge
23.	Duncan's multiple range analysis of 3 and 4 salt additions to Synedra (bioassay 6)		35
24.	Duncan's multiple range analysis of multiple salt additions to Synedra (bioassay 7)		36
25.	Linear relations between different estimates of biomass for multiple salt additions to Synedra (bioassay 6 and 7)		37
26.	Duncan's multiple range test for $\underline{Anabaena}$ (bioassay 9)		38
27.	Duncan's multiple range test for $\underline{\text{Synedra}}$ (bioassay 9)		39
28.	Duncan's multiple range test for <u>Scenedesmus</u> (bioassay 9)		40
29.	Linear relations between different estimates of biomass for single salt additions to three algal genera		41
30.	Summations of cation and anion analyses of the oil shale leachates and elutriates		42
31.	Duncan's multiple range test of complex additions to Scenedesmus (bioassay 10)		43
32.	Linear relations between different estimates of biomass for complex additions to Scenedesmus (bioassay 10)		44

INTRODUCTION

Definition of Problem

The development of the oil shale industry will produce large quantities of spent shale and bring to the ground surface large amounts of formerly buried overburden material and raw oil shale strata in the Intermountain West (Pfeffer and Kerr 1974). The raw and spent oil shale and overburden soils all contain high levels of salinity (Colorado State University 1971). Consequently, any mining disturbances which add to the percolation of water through exposed soils, strata, or wastes add to the salinity loading of the streams and rivers (Ward and Reinecke 1972).

Percolation of water could be caused naturally due to precipitation, or artificially as water is used to stabilize the processed shale disposal sites after compaction (Holtz 1977). Even though these disposal sites will be designed as total containment systems (USDI 1973), leachate due to seepage from the bottom of the containment basins or during periods of heavy precipitation could still enter the groundwater or surface drainage system of the area. In the state of Utah, the drainage area that would be primarily affected would be the white River, a tributary to the Colorado River. Along with the addition of salinity, the leaching process through the raw and spent oil shale could potentially load both organic compounds and heavy metals into the contacted drainage system.

Objectives of This Study

1. Utilization of the batch bottle bioassay for toxicity testing

The Algal Assay Procedure: Bottle Test is currently accepted (APHA 1975) for biostimulatory effects of wastes on phytoplank-

ton. This procedure will be extended to study the toxic effects of wastes on phytoplankton such as those that may be caused by the high salinity of oil shale leachate.

2. Effects of salinity on freshwater phytoplankton productivity Variations in the salinity concentration

Variations in the salinity concentration of an aquatic system could affect the primary productivity by causing osmotic pressure changes within the cells. Variations in the ions comprising the salinity could affect the active transport of nutrients into the algal cells.

- 3. Evaluation of the U.S. Army Corps of Engineers Standard Elutriate Test The Standard Elutriate Test was designed by the U.S. Army Corps of Engineers to characterize the pollution potential of dredged material on water quality and aquatic organisms (Keeley and Engler 1974). The applicability of this test to another waste, spent oil shale, will be investigated.
- 4. Effects of oil shale leachate on freshwater phytoplankton productivity

Many metals are required for the growth of algae, but are toxic in excess of the requirement for growth. Some species of algae can utilize organic compounds directly as an energy source (Stewart 1974) although some organic compounds are toxic to algae. Therefore, a complex waste such as oil shale leachate could either stimulate or depress phytoplankton growth depending on the effective concentration of the waste entering the aquatic system.

 Application of the bioassay results to the Colorado River System

The data gained from the batch bottle bloassays will be interpreted to estimate possible impacts of leachate release on the phytoplankton of Lake Powell.

LITERATURE REVIEW

Oil Shale Development

The energy contained within oil shale is potentially as large as that in all of the known petroleum energy reserves (Petzrick 1975). However, environmental, economic, legislative, and policy constraints have delayed construction of commercial prototypes (Maugh 1977). The major fraction of oil shale within the United States is contained in the Green River formation beneath northwestern Colorado, northeastern Utah, and southwestern Wyoming. These deposits are estimated to contain 1.8 trillion barrels of oil (Donnell and Blair 1970). Both industrial and governmental activity in oil shale development has increased since the leasing of the federal oil shale tracts in 1974 (Pforzheimer 1974).

Figure 1. Analysis of a Green River oil shale (Siggia and Uden 1974).

Commercial Extraction Operations

Oil shale is actually not a shale, but a marlstone. The composition of a typical oil shale is shown in decreasing detail moving from left to right in Figure 1 (Siggia and Uden 1974). The oil is obtained from the organic matter in the shale, largely from a substance called kerogen. A synthetic crude oil called syncrude is produced with the application of heat in retorting and prerefinement of the retort product (Routson et al. 1979). The retorting processes for extracting oil from the shale are of two major types: The in situ process, in which the oil is extracted via pyrolysis within the shale formation; and the above ground retorts. Above ground vertical retorts have been proposed for development of the federal tracts U-a and U-b, within Utah (Figure 2).

Figure 2. Location of federal oil shale tracts in Utah (USDI 1973).

Two different vertical retorting processes are likely to be used; it has been suggested that about 85 percent of the shale be processed via the Paraho direct heat mode and the other 15 percent representing the crushed fines be processed by the TOSCO II process (Crawford et al. 1977). Although most of these extraction processes are proprietary, they have been generally described and compared (National Petroleum Council 1972). A generalized flow diagram of a 50,000 barrel per day oil shale mine and processing unit is shown in Figure 3 (Conkle et al. 1974).

Mining Operations

Three methods of mining the oil shale have been proposed: Open-pit, which is extraction of the shale by a drag-line after removal of the overburden: room-and-pillar, which is extraction of the shale by loader after selective rubblization leaving pillars of shale for support; and rubblization, which

is extraction of the shale by the in situ technique. Since it has been estimated that 1.4×10^5 metric tons per day of oil shale will be required to operate the smallest economical retorting plant, which would produce 10^5 barrels per day, the mine associated with this development would be larger than any mine currently operating in the United States (Sladek 1975a).

Prerefinement Operations

On site prerefining operations are desirable for two reasons. First, shale oils are usually heavier and more viscous than petroleum, which makes transport without additional refinement difficult. Second, the nitrogen and sulfur compounds contained in the shale oil poison heavy metal catalysts utilized in refinement of oil. Therefore, pretreatment to facilitate transportation is desirable, and the on site prerefining facilities may also be used to remove the nitrogen and sulfur compounds via hydrotreatment as water availability permits (Sladek 1975b).

Figure 3. Flow diagram of 50,000-barrel-per-day underground oil shale mine and associated oil shale surface processing units (Conkle et al. 1974).

Pollution Potential of the Oil Shale Industry

Solid Waste Disposal

It has been proposed to dispose of nearly all of the solid and liquid wastes produced from the oil shale industry on the ground surface (Pfeffer and Kerr 1974). The spent oil shale will occupy, even under the greatest compaction, at least 12 percent more space than the in-place raw shale (USDI 1973). This precludes the disposal of all of the spent shale in the location from which it was mined. As a supplemental or alternative disposal site, the spent shale could be disposed of in canyons near retorting operations. For example, waste disposal for tract U-a in Utah is expected to be Southam Canyon. A retention dam would be placed at the northern end of the canyon to prevent contamination of the White River (Crawford et al. 1977). Spent shale from the Paraho process has been evaluated to determine if compaction of this shale can be used to provide an impervious layer for dam and disposal area lining (Holtz 1977). Hand (1969) has estimated that $1.0-1.8 \times 106$ metric tons of spent shale per day would be produced by an above ground retort producing 106 barrels of syncrude per day. This is a ratio of 5-6:1 of spent shale to oil on a volume basis. Overall, it is estimated that the total volume of the projected disposal pile in Southam Canyon would reach $727\ x$ 106 cubic meters which would occupy approximately 366 hectares (900 acres) with an average depth of 61 meters (200 feet).

Water Use

The water requirements for the oil shale industry have been estimated at 3.7 cubic meters of water per cubic meter of upgraded shale oil (Crawford et al. 1977). The uses of the water are categorized in Figure 4 (Conkle et al. 1974). A number of alternative sources are possible. One proposal suggested the diversion of 36,000 acre feet of the Green River annually. This diversion would deplete 24,000 acre feet annually from the river system and return 12,000 acre feet annually of an unspecified quality return flow to the river. Because most oil shale development plans project total containment of wastes in the spent oil shale disposal sites, the estimate of 12,000 acre feet annually of return flow is probably too high. It has been estimated that this depletion would increase the salinity of the Colorado River at Imperial Dam by about 1.5 mg/l (USBR 1974). The estimated salinity increases at Imperial Dam due to oil shale development are summarized in Table 1 (Siggia and Uden 1974). However, others hypothesized that the salinity of the Colorado River may actually decrease due to the removal of highly saline groundwater contributions diverted into oil shale processing (Crawford et al. 1977). The maintenance of lower salinity in the Colorado River is of interest due to the economic importance of the water to downstream users. It is estimated that the annual economic losses are from \$194,000 to \$395,000 (1974 dollars) per mg/l increase in salinity at Imperial Dam (USDI 1974). Additional damages occur in Mexico and create

Figure 4. Demand and supply for water: 50,000 barrel per day plant with an underground mine and surface retort at tracts U-a and U-b (cu ft. per sec.) (Conkle et al. 1974).

Table 1. Estimated salinity increases at Imperial Dam (Siggia and Uden 1974).

I I of Decelorate		Yea	r	
Level of Development	1977	1980	1985	1990
Shale Oil Production (1000 Barrels Per Day)	50	300	1000	1600
Water Use (1000 Acre Feet Per Year)	9	52	155	245
Salt Diverted At 400 mg/l (1000 Tons Per Year)	5	28	84	133
Increased Salinity Concen- trations at Imperial Dam(mg/	1)			
Resulting from Diversion of Water	0 5	3	9	14
Resulting from Domestic Return Flow		0.1	0.4	0.6
Total	0.5	3.1	9.4	14.6

a somewhat delicate international situation. The salinity load in the Colorado River is also of interest for other reasons. The Colorado River Salinity Control Act of 1974, which provides funding for construction of several desalting and control projects, limits effluents from industrial discharges and authorizes research projects on future salinity problems and programs (Science and Public Policy Program of the University of Oklahoma and Radian Corporation 1977). The salinity of the Colorado River, both past and present, has been discussed in a number of publications (Iorns et al. 1965; Holburt and Valentine 1972; Blackman et al. 1973; UWRL 1975).

In order to contain potential salinity loading from the spent oil shale disposal areas. all of the potential runoff must be contained behind catchment dams (BLM 1975), except for runoff released from the spillway during intense runoff events. Also, large volumes of shale are below the water table and must be dewatered before mining. Since much of the deeper groundwater is saline and cannot be used or discharged to surface waters, it must be treated before release or evaporated in the solid waste disposal areas. It is not uncommon for these groundwaters to have a total dissolved solids concentration exceeding 40,000 mg/l (National Academy of Science 1979).

Liquid Waste Disposal

It is proposed to dispose of excess low quality water at the spent shale disposal sites. It has been estimated that a 50,000

barrel/day operation on tract U-a or U-b in Utah would produce a low quality water waste stream to the process shale disposal site of between 0.4-0.7 ft³/sec (Conkle et al. 1974). As an additional source of poor quality water, the shale must be leached with good quality water in order to establish vegetation (Bloch and Kilburn 1973). Studies (Colorado State University 1971; Ward and Reinecke 1972) show that the process will leach salinity ions into the water on a continuing basis (Table 2). These studies do not include the other solid and liquid wastes that would comprise approximately 3 percent of the total wastes such as process wastewaters, oily sludges, spent catalysts, shale coke and other prerefinery waste (Crawford et al. 1977).

Trace elements are present within the waste, but of these only boron has been reported in quantities that are toxic to plant growth (Bloch and Kilburn 1973). Also, the presence of trace organic materials which are known carcinogens has been established (Siggia and Uden 1974). These components are polar and heterocyclic, which means they are potentially toxic. Their polar characteristics may increase their solubility and entrance into water systems where bioaccumulation can occur. At critical tolerance levels of key terrestrial and aquatic biota, research is needed for predictive purposes to understand the possible hazards or successional changes and resulting environmental effects of ground disposal of shale oil wastes (Weaver 1974; Routson et al. 1979).

$\frac{ \texttt{Dissolved Solids and Freshwater} }{ \texttt{Phytoplankton} }$

Total Dissolved Solids

The effects of dissolved solids on phytoplankton has been studied in the lower ranges (0 to 0.5 g/l) of dissolved solids concentrations in order to delineate maintenance media for freshwater phytoplankton. However, little work has been done on the effects of greater salt concentrations on these freshwater organisms. A general literature review of suspended and dissolved solids effects on freshwater biota, conducted by Sorensen et al. (1977), mentioned very few studies of phytoplankton. Specht (1975) reports inhibition of Selenastrum at salinities greater than 9000 parts per million.

It has been shown for lakes in central Alberta that with increase of total dissolved solids (TDS), more nutrients become available. This increases the productive capacity of the water to a certain point. A further increase in the TDS in inland waters tends to inhibit organic production, and so the productivity of the water decreases. In these study lakes, the optimum TDS and alkalinity is about 1400 mg/l and 450

Table 2. Experimental results of the percolation experiment conducted on TOSCO spent oil shale retorting residue (CSU 1971).

Volume of	Total volume	Conductance	C	Concentrat	ion $(mg/1)$	of sample	
leachate sample (cc)	of leachate (cc)	of sample (µmhos/cm @25°C)	Na+	Ca++	Mg++	so ₄	C1-
254	254	78,100	35,200	3,150	4,720	90,000	3,080
340	594	61,600	26,700	2,145	3,725	70,000	1,900
316	910	43,800	14,900	1,560	2,650	42,500	913
150	1,060	25,100	6,900	900	1,450	21,500	370
260	1,320	13,550	2,530	560	500	8,200	205
125	1,445	9,200	1,210	569	579	5,900	138
155	1,600	7,350	735	585	468	4,520	138
250	1,850	6,825	502	609	536	4,450	80
650	2,500	5,700	***			-	_
650	3,150	4,800	-	_	_		_
650	3,800	4,250		_	-		-
760	4,560	3,850	-	_	_	_	
∞*	∞ *	1,800	86	64	118	740	11

 * These are extrapolated values and were not actually observed. These extrapolated values are probably accurate to within + 6 percent.

 $\ensuremath{\,^{\text{mg}}}\xspace/1$ respectively (Kerekes and Nursall 1966).

In the Sea of Galilee, enrichment of water samples with an inorganic salt medium caused radical changes in the algal composition of the enriched samples. The appearance of a Chrysophycean flagellate, Prymnesium parvum, in the enriched samples caused concern because this alga is known to cause toxic blooms (Rahat and Dor 1968). Gupta (1972) discusses the ability of blue-green algae to withstand high levels of salinity, but it is usually assumed that something other than salinity controls algal growth (Van De Kreeke et al. 1976).

Major Cations

The effect of magnesium on freshwater phytoplankton has been studied more extensively than that of the other ions because magnesium is an essential part of chlorophyll a (Sun and Sauer, 1972; Seitz and Seitz 1973; Bennoun 1974). Magnesium has been found not to inhibit the growth of Selenastrum capricornutum at concentrations less than 92 mg/l (International Association of Theoretical and Applied Limnology 1978). The effects of ratios of calcium to magnesium and monovalent ion to divalent ion on the growth of phytoplankton have been discussed by Provasoli (1958). Different genera have optimum ratios where they dominate communities. For example, diatoms prefer waters with a monovalent ion/divalent ion ratio below 1.5 and have a wide flexibility toward different calcium to magnesium ratios. This wide flexibility seems to narrow with unfavorable total solid concentrations and monovalent ion to divalent ion ratios. monovalent to divalent ion ratio (Na + K to Ca + Mg) based on the concentration (mg/1) of

each of the ions was related to the periodicity of species composition of freshwater phytoplanktor by Munawar (1974). Both diatoms and blue-green algae in that study were found to require a monovalent to divalent ion ratio of less than 1.6.

Other Metals

Most of the literature on salinity effects on freshwater phytoplankton deals in terms of specific cations or anions. Cations are often discussed as groups of metals. study of heavy metal toxicity to algae of the Great Lakes showed that recommended levels of a number of metals for the Great Lakes were toxic to algae that were exposed to these levels of several of these metals simultaneously. The diatom tested displayed a greater sensitivity to heavy metal toxicity than the blue-green and the green algae tested (Wong et al. 1978). The synergistic effect of heavy metal toxicity on photosynthetic activity of freshwater phytoplankton is discussed by Stumm and Baccini (1978). Metal toxicity in mammals has been extensively studied (Luckey and Venugopal 1977).

Many metals which would be common in the leachate from oil shale are also known to be required substances for the growth of phytoplankton. Many of these metals are hormetins, toxic agents that are stimulatory in small doses. For these compounds it is customary to find the zero equivalent point which is the concentration at which the hormetic agent has no effect. The suggested safe concentration is then established at this point. The extent to which a metal is toxic can be predicted in mammals by identifying the group, period, and atomic weight of the metal (Luckey and Venugopal 1977). These types of toxicological studies have not

been widely applied to algae; nevertheless, the concept of hormetins is applicable to algae because essential nutrients for algal growth do become toxic to algae at higher concentrations.

Required Elements for Phytoplankton Growth

The positive effects of specific ions on the productivity of freshwater phytoplankton have also been explored. Stewart (1974) reviewed each of the macroelements required for inorganic nutrition in algae. Macro-elements reviewed included: sulfur, potassi-um, alcium, and magnesium. Also he reviewed each of the microelements essential to all algae: iron, manganese, copper, zinc, molybdenum, chlorine; and also the elements required by only some algae: colbalt, boron, silicon, vanadium, and iodine. Stumm and Morgan (1970) state that the ratios of carbon, nitrogen, and phosphorus necessary for algal growth as 106:15:1. They define algae stoich iometrically as $C_{106}H_{263}O_{110}N_{16}P_{1}$ (3550 g/mole) with the minor elements being neglected. The carbon can be derived from the aqueous phase (CO₂, bicarbonate, carbonate-inorganic carbon) as illustrated by Goldman et al. (1972, 1974) and Lehman (1978) or it can be supplied as CO₂ from the atmosphere, or from degradation of organics in the water column and the sediments (Mortimer 1971: Schindler and Fee 1978: Rudd and Hamilton 1978; Sonzogni et al. 1977). Schindler (1971) and colleagues have shown that when other nutrients are supplied in adequate or excess amounts, the co_2 invasion rate from the atmosphere is adequate to provide sufficient carbon for algal

Osmotic Role of Dissolved Solids

Dissolved solids can also affect the productivity of algae osmotically. Ecological differentiation of algae into marine and freshwater forms is based on definite physiological differences (Stewart 1974). For many algae elevated osmotic pressure inhibits photosynthesis. Positive buoyancy in some algae is also under ionic control and is regulated via the osmotic pressure of the cell (Kahn and Swift 1978).

Osmotic pressure (π) may be calculated in a number of different ways depending on the equation used. The classic equation used to calculate osmotic pressure is stated as (Findlay 1919; Harned and Owen 1950; Moore 1963):

OSMOTIC PRESSURE (atm)

$$\pi = i C R T (1)$$

where

 $R = \underset{mol-1}{\text{gas}} \underset{K-1}{\text{constant}} \text{0.820575 } \text{% atm}$

T = temperature K

C = concentration mol g-1, and

i = number of ions from electrolyte dissociation.

Another method for calculating osmotic pressure is based on the equivalent conductance of the solution. The equivalent conductance (A) can be calculated with the following equation (Moore 1963):

EQUIVALENT CONDUCTANCE

$$\Lambda = \frac{\kappa}{c} \qquad \qquad . \qquad . \qquad . \qquad (2)$$

where

specific conductance μmhos/cm², and

c = normal concentration N.

This relationship is extrapolated to a zero concentration using a linear regression to determine the equivalent conductance at infinite dilution.

Using these two variables, the Arrhenius degree of dissociation (α) can be calculated with the following equation:

ARRHENIUS DEGREE OF DISSOCIATION

$$\alpha = \frac{\Lambda}{\Lambda_0} \qquad . \qquad . \qquad . \qquad . \qquad (3)$$

where

 Λ = equivalent conductance ohm⁻¹ cm² equiv.⁻¹, and

 $^{\Lambda_0} \quad = \quad \begin{array}{ll} \text{equivalent conductance at} \\ \text{infinite dilution ohm-l} \\ \text{cm}^2 \ \text{equiv.-l.} \\ \end{array}$

The van't Hoff factor (i) can then be calculated using the following equation:

VAN'T HOFF FACTOR

$$i = 1 - \alpha + \nu\alpha (4)$$

where

v = # of ions that one molecule of solute is capable of dissociating into, and

 α = degree of dissociation.

The van't Hoff factor can then be used to calculate the osmotic pressure of the solution shown in Equation $1. \$

The activity of the solution may also affect productivity. The activity coefficients (Y) can be established via the DeBye-Hückel equation (Barrow 1966):

Log
$$\pm \gamma = \frac{-0.5091/Z^{+}Z^{-}/\sqrt{c}}{1 + A\sqrt{c}}$$
 (5)

where

A = 1

c = concentration moles ℓ^{-1} , and

Z = absolute ion charge.

However Stumm and Morgan (1970) recommend the use of the Davies equation for calculation of activity coefficients in solutions with higher ionic strengths. The Davies equation is shown as follows:

$$Log \pm \gamma = A/Z^{+}Z^{-}/\frac{\sqrt{I}}{1-\sqrt{I}} - 0.3I$$

where (6)

A = 0.509,

Z = absolute ion charge, and

I = ionic strength of the solution.

Osmotic pressure and the activity coefficient are both dependent on the ionic strength of the growth medium for an alga and therefore change as the salinity of the medium changes. Increases in these variables have been shown to cause inhibition of photosynthesis in some freshwater algae (Stewart 1974). Therefore, an increase of these variables can be indicative of a toxic response in freshwater algae. This hypothesis will be tested in this research.

Phytoplankton Effects on Salinity

Not only does the salinity affect the productivity of the phytoplankton, but the phytoplankton directly affects the salinity of the water. As algae photosynthesize, they utilize carbon dioxide. This increases the pH of the water which, in the presence of large quantities of calcium and carbonate ions, could cause the precipitation of calcium carbonate. This precipitation causes a phenomenon in the Great Lakes known as whiting (Strong and Eadie 1978). Also, it has been hypothesized that the electronopaque non-rigid fibrils of approximately 3 to 10 nanometers in diameter that are found abundantly on the surfaces of common lake microbes, free in the water column and free on the surface of the lake bottom, may be the principal component of an organic carrier system for the redistribution of bound but biologically available cations in lakes (Leppard et al. 1977).

Other Potential Leachate Components and Freshwater Phytoplankton

The effects of petroleum products on marine phytoplankton have been studied extensively. Dunstan et al. (1975) projected that the significant environmental effect of oil on marine primary production could be the growth stimulation of particular species by low molecular weight aromatic compounds which would result in an alteration of the natural phytoplankton community structure and its trophic relationships. Other investigators have found oils to have toxic inhibitory effects on algae (Gordon and Prouse 1973; Winters et al. 1976). Kauss and Hutchinson (1975) observed a significant stimulation of algal growth after the toxic compounds of the oil had evaporated. This work was done on a freshwater alga using only the water-soluble components of oil. Actual oil spills in marine environments suggest that phytoplankton are not strongly affected by oil when exposed for short periods (Ignatiated).

Organics

Some algae can utilize organics as a growth substrate, and vitamin requirements have been shown for many algal species (Swift and Taylor 1974). Organic fractions of domestic sewage have been found to stimulate algal growth (Sachdev and Clesceri 1978).

Trace Metals

The trace metals present in oil shale leachate could change the community composition of the phytoplankton. Patrick (1978) discusses the effects of trace metal pollution on diatom communities. In the presence of minor trace metal pollution, a shift in the diatom genera may occur. In the presence of larger amounts of trace metal pollution the diatom community may be replaced by forms of green and blue-green algae which tend to be more tolerant of trace metal contamination than are the diatoms. However, boron, which is abundant in some spent oil shale (Bloch and Kilburn 1973), has been identified as a possible requirement for diatom growth (Thomas and Dodson 1968). Meyer (1978) discusses the changes in algal populations that correlate with trace metals concentrations in a reservoir. This included cyanophytes as well as diatoms. It is difficult to generalize about trace metal toxicity since it has been found to be species dependent and also dependent on the temperature of the environment (Cairns et al. 1978).

Algal Toxicity Tests Using Batch Bottle Bioassays

The algal assay bottle test procedure, which has been extensively applied to biosti-

mulation studies, is presently being applied to toxicity studies. Applying the procedures to toxicity testing has only tentative approval as a Standard Method (APHA 1975). However, the USEPA has included this procedure in its latest protocol of the Selenastrum capricornutum, Printz, algal assay bottle test (Miller et al. 1978). It is assumed that if algal growth remains limited when nutrients are in sufficient supply and the physical conditions for growth exist, a toxicant is present (Payne 1976).

Test Algae

The use of indigenous phytoplankton in these bioassays is not recommended unless there is strong evidence of the presence of persistent sublethal toxicants to which indigenous populations might be tolerant (Greene et al. 1978). However, the use of indigenous species in testing procedures has previously been recommended by others because the testing is presumed to be more rational. Odum (1971) states that to study the microbial activities in low-nutrient, constantflow environments, the right organisms, or those active under natural low-nutrient condition, must be located. These may not be the "laboratory bugs" that have received the most intensive study. Phytoplankton and other organisms which have evolved in and adapted to physically variable environments would, because of their adaptations, be better able to tolerate any toxic compound (and possibly any perturbation) than would morphologically similar organisms adapted to stable environments (Fisher 1977).

Variations in tolerance within the same taxonomic groups of algae have also been discussed by Rana and Kumar (1974). This variation was noted while studying the tolerance of algae to effluents from a zinc mine and smelter. Additional wide variations in tolerance to this waste was also noted between the algae of differing taxonomic groups.

Lee (1973) stresses the importance of chemical aspects of bioassay techniques for proper evaluations of the environment. The chemical aspects of a bottle bioassay would be dependent on the test alga. For example, blue-green algae produce hydroxamate chelators which appear to act as agents to suppress the growth of other algae by inducing

iron deprivation (Murphy et al. 1976). Also the presence of mixed algal cultures could affect the results of the bioassay. The presence of Scenedesmus obliquus and Selena-strum minutum together was found to reduce the algicidal effect of CuSO4 which suggests an involvement of some physiological mechanism in this algal mixture (Dashora and Gupta 1978). Plant polyphenols have also been found to cause inhibition of calcite precipitation in Lake Powell (Reynolds 1978). In this manner the algal assemblage may have a direct effect on the chemistry of carbonate lakes as well as the bioassay flask. However, the detection of algal growth reactions, whether inhibitory or stimulatory, becomes more accurate as detailed background information accumulates on the physiology of a single test species. Also, when using a single algal test species, comparison of algal growth potentials from different water sources is feasible (Miller et al. 1978).

Sources of Variation

Any bloassay whether testing Selenastrum capricornutum, an indigenous alga, or a mixed algal culture can have errors introduced through the biomass analysis. Trees (1978) discussed substantial errors in suspended solids determination in waters with a high dissolved solids content. The error in calculating dissolved solids is magnified when filtering smaller volumes of saline water. The filters should be rinsed with distilled water after filtration to maintain a linear relationship between sample volume and suspended solids content of the water samples.

Problems can also be encountered with biomass estimation via in vivo chlorophyll a measurements. It has been found that the ratio of chlorophyll a concentration to in vivo fluorescence changes in value during the course of bioassays. Tunzi et al. (1974) suggested that a conversion factor to convert in vivo fluorescence to chlorophyll a concentration should be calculated at the beginning and end of each algal bioassay. Kiefer (1973) showed that the chlorophyll a of nitrogen-starved cells fluoresced more strongly than in unstarved cells. Therefore, care must be taken that the differences being measured are of algal biomass and not the cells differential ability to fluoresce.

The potential effects of the salinity and other constituents of oil shale leachate on phytoplankton productivity were evaluated using both standard and modified algal assay procedures. In general, algal assays consist of monitoring the growth of test algae in separate Erlenmeyer flasks. Each flask is innoculated with an equal amount of cells and incubated under identical physical conditions. Control flasks of the test alga and medium were cultured along with the various treatment flasks which included the same test alga and medium, with the addition of whatever was being tested. The effect of the treatment on the growth of the algae was determined by comparing the growth of the algae in the treated flasks to that of the Standard algal assay procedures controls. were conducted to provide data which would be comparable to other investigations (USEPA 1971: Miller et al. 1978). The modifications to the standard algal assay procedure were made using the general guidelines presented in Standard Methods (APHA 1975). An identification matrix of the bioassays conducted, as listed in Table 3, summarizes both the standard and modified procedures applied to $% \left\{ 1\right\} =\left\{ 1$ the bioassays during this study.

Algal Isolation and Culture Maintenance

The standard algal assay organisms utilized, Selenastrum capricornutum, Printz, and Anabaena flosaquae (Lyngb) (De Brebisson), were secured from the National Eutrophication Research Program. These algae were maintained in AAM, a synthetic algal nutrient medium (Table 4).

Indigenous algae utilized, Synedra delicatissma var. angustissima and Scenedesmus bijuga, were isolated from samples collected by Bureau of Reclamation personnel, under the supervision of E. G. Bywater, at the Wahweap station on Lake Powell. These algae are abundant in Lake Powell (Stewart and Blinn 1976). These algae were isolated and maintained in Lake Powell Synthetic Medium (TDS = 780 mg/l), which is AAM modified by the addition of the major cations and anions measured in Lake Powell (Table 5). Unialgal cultures of all four of the test algae (hereafter referred to as Selenastrum, Anabaena, Synedra, and Scenedesmus) were maintained via standard algal assay procedures except for the media modification already described.

Regular Bioassay Monitoring Techniques

The bioassay flasks were monitored daily for the first five days of the bioassay and every other day after that period until the algae ceased to grow. Algal growth was measured by a number of different variables: Optical density (absorbance) was determined at 750 nanometers on a Bausch and Lomb Spectronic 70 in a one centimeter cuvette (APHA, A Turner model 111 Fluorometer equipped with a #110-922 (430 nm) excitation and #110-021 (<650 nm) emission filters, a redsensitive photomultiplier tube, and a high sensitivity door (APHA 1975); 2) A Turner model 430 Spectrofluorometer operated at a band width of 60 nm for both excitation and emission wave lengths of 440 nm and 670 nm respectively. Two auxiliary emission filters were used to block the emission interference, a standard polarizing filter and a Corning #2A glass filter. The procedure for chlorophyll a measurements on the spectrofluorometer is outlined by Turner Associates (1973, 1976).

Cell counts and mean cell volume determinations of unialgal cultures of Selenastrum were conducted on a Coulter Electronic Particle Counter Model B with a Model J Particle Size Distribution Plotter (Coulter Electronics, Inc., no date; Miller et al. 1978). The aperture tube had a 100 micron orifice. Cell counts of the mixed and other algal cultures were conducted via direct microscopic examination in Sedwick-Rafter cells (APHA 1975). Specific conductance was monitored using a Yellow Springs Instrument Company glass conductivity cell Model No. 4303 and wheatstone bridge (APHA 1975).

Limitations were encountered with all of the biomass monitoring techniques utilized. Optical density did not provide good sensitivity, therefore being of questionable value during the first few days of bioassay measurement. Optical density was also prone to interference from precipitates and precipitation is a common problem in samples with high total dissolved solids content especially in batch bioassay systems where it is common to have the pH increase during algal growth. Chlorophyll a fluorescence was more sensitive, therefore being of more value during the first few days of bioassay measurement. It was also less prone to interference from precipitates although this problem was still present. However, chloro-

12

Table 3. Identification matrix for algal broassays.

	Test Algae			Physical Parameters			Biomas	s Parameters		Medium F	erturbations	
Bioassay Number	Selenastrum	Synedra	Anabaena	Scenedesmus	Electrical Conductivity	pĦ	Optical Density	Fluoresence	Cell Count (displacement)	Direct Cell Counts by Genera	Addition Levels	Addition Base (Medium) ^a
I	x					х	х	x	х		g/1 16.000, 14.000, 10.000, 6.585,	NaCl, KCl, MgSO ₄ CaSO ₄ , Na ₂ SO ₄ ,MgCl
											4.937, 3.000, 5.826, 7.768, 3.00, 2.00,	K ₂ SO ₄ , CaCl ₂ , (AAI NaCl, KCl, MgSO ₄ ,
II	v				x	х	х	x	x		1.00, 0.50,	CaSO ₄ , Na ₂ SO ₄ K ₂ SO ₄ , CaCl ₂
III	X X				x	X	X	X	X		all	NaCl, KCl, MgSO4.
111	A				^	*					0.03N	CaSO4, Na2SO4, MgCl ₂ , K2SO4, CaCl ₂ , NaHCO ₃ , KHCO ₃ ,(AAM)
IV		x			Х	X	X	x			0.05N, 0.10N, 0.2N, 0.3N	Same as Above (L.P.S.)
V		х			х	X	х	Х			0.05N	All possible two way combinations of the 10 salts. (L.P.S.)
VI		Х			х	x	х	x			0.05N	All possible 3 and 4 way combinations of the 10 salts (L.P.S.)
VII		х			x	x	x	х			0.05N	All possible 5, 6 7, 8, 9, and 10 way combinations the 10 salts (L.P.S.)
VIII	X (acclimated for 6 months in L.P.S.)	;			x	х		х			0.30N, 0.10N 0.05N, Shaker Extracted Elutriates	10 salts at each level and shale leachate (AAM)
IX		х	Х	х	X	x		χ (4λ)		х	0.05N	10 salts and 4 differentials Total = 28 (L.P.S.)
x				х	х	X	х	x .			5 ml, 10 ml, 15 ml, 20 ml	Oil shale elutri- ates and leachate Matching salt solutions (L.P.S.)

aBase Media: AAM = Algal assay medium (Table 4); L.P.S. = Lake Powell Synthetic (Table 5).

phyll a fluorescence measurements were more variable than optical density measurements over the course of the bioassay. Cell counts conducted on the Coulter Counter are more sensitive and precise than both the optical density and fluorescence measurement techniques; however, they could only be applied

Table 4. The synthetic algal nutrient medium, AAM (USEPA 1971).

Compound	Concen- tration (mg/1)	Element	Concen- tration (mg/1)
Macronutrients			
NaNO3	25.500	N	4.200
K2HPO4	1.044	P	0.186
MgCl2	5.700	Mg	2.904
MgSO4 7H2O	14.700	S	1.911
CaC12 · 2H2O	4.410	C	2.143
NaHCO3	15.000	Ca	1.202
		Na	11.001
		K	0.469
Compound	Concen- tration (µg/1)	Element	Concentration (µg/1)
Micronutrients			<u> </u>
H ₃ BO ₃	185.520	В	32.460
MnC12	264.264	Mn	115.374
ZnC12	32.709	Zn	15.691
CoCl ₂	0.780	Co	0.354
CuC1 ₂	0.009	Cu	0.004
Na ₂ MoU ₄ ·2H ₂ O	7.260	Мо	2.878
FeCl ₃	96.000	Fe	33.051
Na ₂ EDTA · 2H ₂ C	300.000		

Table 5. Salt additions to AAM for Lake Powell synthetic medium (Medine et al. 1977).

Salts

0.01-.24-0

Concentration

(mg/1)

162 0

$\begin{array}{c} \text{CaCl}_2 \cdot 2\text{H}_2\text{O} \\ \text{CaSO}_4 \cdot 2\text{H}_2\text{O} \\ \text{MgSO}_4 \cdot 7\text{H}_2\text{O} \\ \text{Na}_2\text{SO}_4 \\ \text{K}_2\text{SO}_4 \\ \text{NaHCO}_3 \\ \text{Na}_2\text{SiO}_3 \cdot 9\text{H}_2\text{O} \end{array}$	308 108 9 24	2.4 3.0 3.7 9.58 1.1 0.607
Total Ions	mg/l	meq/1
Ca++	80.160	4.0
Mg++	32.225	2,65
Na ⁺	109.355	4.76
K+	4.299	0.1099
Si 'll'	5.001	0.7123
SO4=	291.15	6.062
C1 -	79.04881	2.2297
HCO3-	175.1194	. 2.87

to unialgal cultures of the lunicate alga, <u>Selenastrum</u>. The indigenous algae which have attenuated morphology and clumping tendencies, did not lend themselves to analysis by displacement methods, therefore, direct microscopic counts using a Sedwick-Rafter cell (APHA 1975) were utilized to determine these cell counts.

The cell counts are adjusted for variation in cell sizes by the determination of the mean cell volume. Size variation does occur in algal cultures, with rapidly growing cultures being composed of smaller cells and slow growing populations being composed of larger cells. Size variation in algal cells can also occur with variation in the media. The mean cell volume of the automated cell counts of <u>Selenastrum</u> were determined using a Coulter Cell Size Plotter, Model J. The mean cell volume of the direct microscopic counts were determined with an eyepiece micrometer. This direct microscopic technique is less precise than the automated techniques for cell count and cell volume determinations.

Special Analyses

The chemical analyses performed during the project are summarized in Table 6. The flame photometric and atomic absorption procedures were conducted on a Varian Techtron Atomic Absorption Spectrophotometer, AA6, model 63 (Varian Techtron, 1972; 1975). The automated procedures were conducted on a Technicon Autoanalyzer II system from Technicon Instruments Corporation. The infrared combustion for the total organic carbon analyses was performed on a Oceanography International Corporation 0524B Total Carbon System, with an O.I.C. model 0512 EP electronic printer. The rapid injection technique was utilized as explained by Oceanography International Corporation (no date). The activities of solutions were determined using a Wescor HR-33T Dew Point Microvoltometer equipped with a C-51 sample chamber psychrometer (Wescor, Inc. no date).

The potentiometric method utilized for measuring the total alkalinity of the samples had to be modified due to interference in the test from the high total dissolved solids concentrations of the samples. This modification was the creation of a breakpoint curve based on the samples being analyzed to correct for the precipitation of low solubility compounds present in the samples. This modification is described in Standard Methods (APHA 1975).

Oil Shale Extraction Procedures

Both raw and processed oil shales were extracted via two different elutriation techniques. The first technique is shown in Figure 5. The second technique (Figure 6)

Table 6. An index of the chemical analyses performed.

	Unit	
Analytical Parameters	Sensitivity	Method
Total hardness	1 mg/1; as CaCO3	EDTA Titrimetric; SM p. 202
Total alkalinity	1 mg/1; as CaCO3	Potentiometric; SM p. 278
Carbonate hardness	1 mg/1	Calc. from CaCO3
Bicarbonate hardness	1 mg/1	Calc. from CaCO3
Total dissolved solids	1 mg/1	Gravimetric; SM p. 92
Suspended solids	1 mg/1	Gravimetric; SM p. 94
Calcium, dissolved	mg/1, 2 place	EDTA Titrimetric; SM p. 189
Chloride, dissolved	mg/1, 2 place	Ferricyanide (automated; SM p. 613:
		Mercuric nitrate method; SM p. 302
Magnesium, dissolved	mg/1, 2 place	calc. from Tot. Hard
Potassíum, dissolved	mg/l, 2 place	Flame photometric; SM p. 234
Sodium, dissolved	mg/l, 2 place	Flame photometric; SM p. 250
Sulface, SO4	mg/1, 2 place	Methylthymol blue (automated); SM p. 628: Turbidometric method; SM
		p. 496
Barium, tot. diss.	mg/l, 2 place	Atomic absorption; SM p. 152
Boron, dissolved	mg/1, 2 place	Carmine; SM p. 290
Cadmium, tot. diss.	mg/1, 3 place	Atomic absorption (flameless); EPA p. 78
Chromium, tot. diss.	mg/l, 3 place	Atomic absorption (flameless); EPA p. 78
Copper, tot. diss.	mg/l, 3 place	Atomic absorption; SM p. 148
Iron, tot. diss.	mg/l, 3 place	Atomic absorption; SM p. 148
Lead, tot. diss.	mg/1, 3 place	Atomic absorption (flameless); EPA p. 78
Manganese, tot. díss.	mg/1, 3 place	Atomic absorption; SM p. 148
Nickel, tot. diss.	mg/1, 3 place	Atomic absorption (flameless); EPA p. 78
Silver, tot diss.	mg/1, 3 place	Atomic absorption (flameless); EPA p. 78
Zinc, tot. diss.	mg/1, 3 place	Atomic absorption; SM p. 148
Arsenic, tot. diss.	mg/1, 3 place	Atomic absorption (vapor genera- tion); SM p. 159
Selenium, tot. diss.	mg/1, 2 place	Atomic absorption (vapor genera- tion): SM p. 159

SM = Standard Methods for Examination of Water and Wastewater, 14th Ed., APHA, 1975.

used is the standard technique utilized by the Corps of Engineers for analysis of dredged samples (Keeley and Engler 1974).

Oil shale was also leached in an up-flow column (Figure 7). An up-flow rather than a down-flow column was used to avoid short circuiting of the water through the shale. This is a modification of the technique used by Maase et al. (1975), using gravity flow instead of a pump to force the fluid through the bed of processed oil shale. The shale was air dried to a moisture content of approximately 2 percent and then 2500 grams of the shale was placed in the column without compaction. A sieve analysis of this shale before placement in the column is shown in Figure 8. The sieve analysis showed this shale to have an effective size of 0.098 mm and a uniformity coefficient of 5.63. The flow of distilled water through the column varied slightly at around 1 liter per day. This would yield a velocity in the

column of approximately 3 x 10-4 centimeters per second. This velocity was chosen as being approximately the velocity that the water would percolate by gravity flow through spent shale disposal piles. Leachate and elutriate samples were collected and sterilized by filtration through 0.45 micron Millipore filters (Type HA) and placed in sterile containers in the dark under refrigeration until use.

Bioassays

The batch bioassays were conducted to study the effects on algae of large numbers of variations of salts, concentrations, test algae, and oil shale extraction techniques. The initial bioassays were used to establish the salt effects on algal growth. The standard test alga, Selenastrum, was used as the test alga as suggested by the standard

EPA = Methods for Chemical Analysis of Water and Wastes, USEPA 1974.

Figure 5. Oil shale elutriation technique number 1.

algal assay procedure. This series of bloassays was followed by another series of bloassays using an alga which is indigenous to Lake Powell, Synedra, as the test organism. This procedure is also suggested by the APHA (1975), when testing for algal toxicity. After the salt effects on algal growth had been measured, the oil shale extracts were tested. These extracts are high in salinity and so the previous bloassays studying the salt effects on algal growth could be applied to the interpretation of these results. Because changes in water chemistry often cause a shift in the dominant algal species and even the dominant algal phylum present in a body of water, a batch bloassay was conducted using equal numbers of three different algal phyla as the test organisms. This bloassay attempted to identify if the compounds under study would select for a particular algal phyla.

Four bloassays were conducted using the standard test organism, Selenastrum capricornutum. Printz. In the first bloassay, equivalent concentrations of eight different salts were used at the same normality as NaCl. These salt concentrations, from 3 grams per liter to 16 g/l, were added to the bloassay flasks in addition to AAM. A second bloassay was run with the addition of salt concentrations at the same normality as NaCl as follows: 3 g/l, 2 g/l, 1 g/l, 0.5 g/l, and 0.25 g/l. The eight salts tested were: NaCl, KCl, MgCl₂, CaCl₂, Na₂SO₄, K₂SO₄, MgSO₄, and CaSO₄. All of the additions

Figure 6. Oil shale elutriation technique number 2 (Keeley and Engler 1974).

on the first two bioassays were single salts only. In the third bioassay, the effects of two more salts were measured: NaHCO3 and KHCO3. Mg(HCO3)2 and Ca(HCO3)2 were not tested due to their relative insolubility in water. All possible combinations of these ten salts, taken two at a time, were tested at the 0.03 normal level (~ 2.0 g/l as NaCl).

Another bloassay utilized Selenastrum, which had been acclimated for six months to a higher salinity environment by maintaining the stock culture in Lake Powell Synthetic medium instead of the usual AAM medium. The same ten salts as in Bioassay 3 were tested again as single salt additions at three levels: 0.3 N, 0.1 N, and 0.05 N.

Four additional bioassays were conducted using the diatom indigenous to Lake Powell, Synedra. Single salt additions of the same ten salts were tested at the 0.3 N, 0.2 N, 0.1 N, and 0.05 N concentrations. After this, all possible combinations at the 0.05 N level of the ten salts were tested. The medium used for all of these bioassays with Synedra was Lake Powell Synthetic; otherwise standard algal assay procedures were followed.

Another modified bioassay was conducted using three algae in mixed culture. These algae were: Synedra, Scenedesmus, and Anabaena. The standard test alga, Anabaena, was used with the two indigenous species because an appropriate cyanophyte was not

isolated in the water samples from Lake These algae were tested with single salt additions of the ten study salts at a concentration of 0.05 N. Because of the $\,$ mixed algal cultures used as inoculum, the bromass monitoring techniques were adjusted. Fluorescence was monitored on the spectrofluorometer at three different settings to monitor three different algal pigments as summarized in Table 7. Direct cell counts of each alga and heterocyst counts of Anabaena were made. This was in addition to the total These cell counts were made cell counts. using a Sedwick-Rafter cell (APHA 1975). Each species was counted and the sum of the three species was the total cell count. The medium for this bioassay was Lake Powell Synthetic. Other than the above modifications, standard algal assay procedures were followed.

The oil shale used for the elutriation and leachate procedures are identified by an alphabetic code. The legend for this code (Appendix A-1) states that these are unhistoried samples from prototype processes and therefore may not be representative of a full-scale operation. Elutriates of shales CR. CP, DR. and DP, using elutriation pro-

cedure number one (Figure 5), were tested with acclimated <u>Selenastrum</u> as the test organism. Elutriates of shales AR, AP, BR, BP, using elutriation procedure number 2 (Figure 6), and leachate of shale AP were tested with Scenedesmus as the test organism.

Each of the elutriates and leachates were subjected to the special chemical analyses previously described. The salt composition of the extractions, as determined by analysis, was then used to prepare the salt additions used in the bioassay. These salt additions, composed of reagent grade salts and distilled water, were mixed to

Table 7. Fluorescence monitored for mixed algal cultures.

Excitation Wavelength (nm)	Emission Wavelength (nm)	Pigment Analyzed		
400	500	Carotenoid		
620	655	Phycocyanin		
655	680	Chlorophyll A		

Figure 7. The up-flow column for leaching oil shale (Maase et al. 1975).

Figure 8. The sieve analysis of oil shale.

equal the salt composition of each elutriate and leachate. The elutriates, leachate, and salt additions were then tested at four different concentrations of additions.

Data and Statistical Analyses

The actual analytical measurements made during the bioassays were coded onto IBM cards and processed on a Burroughs 6700 computer. The algal biomass data were used to determine the maximum specific growth rate ($\hat{\mu}_b$) and the day it occurred. The value of the growth rate for each treatment was calculated by the formula (USEPA 1971):

$$\hat{\mu}_b = \frac{\ln (X_2/X_1)}{t_2 - t_1} (7)$$

where

$$x_2$$
 = biomass at time = t_2

$$X_1$$
 = blomass at time = t1

The maximum growth rate was then the highest growth rate determined for each treatment. The maximum standing crop (\hat{x}) of each treatment and the day on which it occurred was determined as the biomass achieved when the increase in biomass was less than 5 percent per day (USEPA 1971). The use of this definition of maximum standing crop was compared to the value of the maximum standing crop using the largest biomass reading as the definition. No significant difference occurred in the statistical conclusions when

using either definition for the maximum standing crop determination. These parameters were used for statistical analyses. A summary of the data interpretations based on variations of $\hat{\mu}_b$ and $\hat{\chi}$ is presented in Table 8.

Statistical analyses were performed using STATPAC (Hurst 1972). All the treatments were tested against each other and the controls using the t-test (Middlebrooks 1976). Duncan's multiple range and multiple F tests were also conducted on the data (Duncan 1955). Both the t-tests and multiple range tests were paired by time of sampling to eliminate variation with time during the bioassay.

Table 8. Summary of probable responses for algal assay growth parameters.

Assay Protocol	μ̂ _b max	x
Initial concentration of limiting nutrient	Defines rate limiting	Defines biomass limiting
Standard additions of limiting and other nutrients	Generally equal to maximum - no effect	Increased biomass
Toxic Materials	Decreases	Decreases
Growth rate stimulating chemicals	Increases	No effect

RESULTS

Effects of Increased Salt Concentrations on the Productivity of Selenastrum

Effects of Single Salt Additions

The concentrations of the salts under study were used at the same normality as NaCl. These salt concentrations, ranging from 3 g/l to 16 g/l, were selected based on current literature of estuarine salinity levels effects on the growth of the same species of Selenastrum, which would display no effect to algistatic on the growth of this green alga (Specht 1975). The levels and ion species were also within the potential ion load of leachate from spent oil shale and the soil overburden in the areas of oil shale development (Colorado State University 1971: Ward and Reinecke 1972).

A Duncan's multiple range analyses of the biomass data from this bioassay ranks the salt treatments from the least growth at the top of the listing to the greatest growth, at the bottom of the listing (Table 9). The growth depression of this alga was so great at all of the levels of salt additions, as compared to the control, that no differentiation could be made between the various treatments. Any group of treatments which are not significantly different from each other are connected by a line of stars to the right of the ranking list. All of the treatments produced biomass significantly lower than the controls.

Broassay two was conducted at lower levels of salt additions (Table 10). The concentrations of salts under study were again equated to the normality of NaCl. The molarity, grams per liter, activity coefficients, and osmotic pressures of each of these solutions were also calculated. The activity coefficients were calculated using both the DeBye-Hückel equation and the Davies equation. The osmotic pressure calculations included both a van't Hoff factor (i) calculated from the literature and a van't Hoff factor calculated from the equivalent conductance of the solution.

A statistical analysis of the results was made using a split plot factorial analysis of variance (Table 11). Time was a known source of variance and was eliminated from the testing procedure by pairing the results. From this analysis it was established that significant differences at the 99 percent level, between the treatments, exist with differences in concentration and cation

additions. However, a significant difference does not exist with differences in anion additions. The interactions of cations and anions produce significant differences at the 99 percent level between the different single salt additions. By grouping the biomass data by monovalent versus divalent cations and applying a completely randomized design analysis of variance, a significant difference was found at the 95 percent level of confidence for the cell count data (Table Based on the optical density data, no 12). significant difference was found. A significant difference in cell volumes was found when comparing the different salt treatments. Algal growth had no apparent effect on salinity because the electrical conductivity of the media did not change significantly from the first day of algal growth to the last day of algal growth.

Linear correlation coefficients with salt variables and growth explained very little of the variance (Table 13). However, the results show that correlations significantly different from zero occur between X versus the following concentration measurements in descending order of magnitude:

 $\begin{array}{l} \text{molarity} > \text{calculated osmotic pressure} \\ > \text{normality} > \text{g/l} \end{array}$

The activity coefficient did not correlate significantly with the \hat{x} data. Correlations between $\hat{\mu}$ and the same concentration measurements occurred in the following descending order of magnitude:

calculated activity > normality > g/l > molarity > calculated osmotic pressure

The negative slopes and correlation coefficients show the inverse relationship between many of the salt concentration variables and the biomass data. Therefore, as the salt concentration increases, the algal growth response decreases. The cell volume data did not significantly correlate at the 95th percentile to any of these concentration measurements. The activity coefficient based on the Davies equation and the osmotic pressure based on the equivalent conductance calculation of the van't Hoff factor provided better correlations with the biomass data than the activity coefficient based on the DeBye-Huckel equation and the osmotic pressure based on the literature value of the van't Hoff factor. Because of the lack of sensitivity of the optical density measurements during the first few days of the

Table 9. Duncan's multiple range analyses of the biomass data from the initial bioassay with $\underline{\text{Selenastrum}}$.

Took board on	Coll Countra	Ontical Donaity	
Test based on:	Cell Counts	Optical Density	
+ +		# #	
Treatment Number Concen- tration Treatment		Treatment Number Concen- tration Treatment	
ti io si ii		eatme: nmber nncen- ition	
Treatmer Number Concen- tration Treatmer		Nur Con trat trat	
26 0.24 N CASO4	*	26 0.24 N CASU4 27 0.20 N CASU4	*
27 0.20 N CAS04 28 0.11 N CAS04	*	28 0.11 N CAS04	*
29 0.08 N CASU4		29 0.08 N CASO4	*
30 0.05 N CASO4	*	30 0.05 H CASO#	* .
31 0.10 N CASO4	*	31 0.10 N CASO4	*
32 0.13 N CASO4	•	32 0.13 N CASO4	*
25 0.27 N CASO4	*	25 0,27 N CASO4 13 0,08 N KCL	
42 0.24 N MGCL2 47 0.10 N MGCL2	t	12 0.11 N KCL	·
43 0.20 N MGCL2		14 0.05 N KCL	•
8 0.13 N NACL	*	15 0.10 N KCL	*
48 0.13 N MGCL2	. *	16 0,13 N KCL	*
45 0.08 N MGCLZ	*	45 0.08 N MGCL2	*
17 0.27 N MGS04	*	10 0.24 N KCL	*
37 0.08 N NA2SO4	*	11 0.20 N KCL 9 0.27 N KCL	
4 0.11 N NACL	*	42 0.24 N MGCL2	*
39 0.10 N NA2504	*	43 0.20 N MGCL2	*
40 0.13 N NA2504	*	38 0.05 N NAZSO4	*
3 0.20 N NACL	*	1 0.27 N NACL	*
1 0.27 N NACL	*	47 0.10 N MGCL2	*
36 0.11 N NA2504 9 0.27 N KCL	*	8 0.13 N NAUL 3 0.20 N NACL	
34 0.24 N NA2504	*	17 0.27 N MGS04	*
10 0.24 N XCL	*	2 0.24 N NACL	*
24 0.13 N MGS04	•	4 0.11 N NACL	*
35 0.20 N NA2504	*	50 0.24 N K28U4	*
7 0.10 N NACL	•	24 0.13 N NGSN4 51 0.20 N K2804	*
12 0.11 N KCL 2 0.24 N NACL	*	37 0.08 N NA25114	
44 0.11 N MGCL2	*	49 0.27 N N2804	•
23 0.10 N MGS04	*	39 0.10 N NA2504	*
16 0.13 N KCL	•	19 0,20 N MUSON	•
19 0.20 N MG504	*	34 0.24 N NASS(14	*
22 0.05 N MGSU4	*	18 0.24 N MGSU4	*
21 0.08 N MGSU4 51 0.20 N K2SU4	.	33 0,27 N NA2804 22 0,05 N MG504	
41 0.27 N MGCL2		23 0,10 N MGSQ4	*
13 0.98 N KCL		41 0.27 N MGCL2	*
20 0.11 N MG5U4	•	52 0.11 N #2504	*
52 0.11 N k250a	*	7 0.10 N NACL	*
18 0.24 N MG\$(14	*	5 0.0A N NACL 20 0.11 N MG5U4	*
11 0.20 N KCL 50 0.24 N K25H4	•	21 0.08 N 56504	•
15 0.10 N KCL	*	53 0.08 N H2504	
33 0,27 N NA2504	•	48 0.13 N MGCL2	*
49 0.27 N K2504	*	35 0.20 N NA2504	*
5 0.08 N NACL	*	6 0.05 N NACL 44 0.11 N MGCL2	*
57 0.27 N CACL2 53 0.08 N K2504	*	40 0.13 N NSC22	*
14 0.05 N KCL	*	46 0.05 N MGCL2	•
58 0.24 N CACL2	*	54 0.05 N +2504	*
6 0.05 N NACL	*	36 0.11 N NA25114	•
54 0.05 N K2804	•	57 0.27 N CACL2	*
56 0.13 N K2804	*	58 0,24 N CACL2 56 0,13 N K2504	-
55 0.10 N K2864 46 0.05 N MGCL2	*	55 0,10 N K2804	*
59 0.20 N CACL2	*	64 0.13 N CACL2	•
64 0.13 N CACL2	*	59 0.20 N CACL2	*
60 0.11 N LALLE	*	63 0.10 N CACL2	*
61 0.08 N CACL2 63 0.10 N CACL2	#	62 0.05 N CACL? 61 0.08 N CACL?	*
65 0.02 4 CACES	*	90 0'11 V CVCES	,
65 CONTROL	*	65 CONTROL +	
	-	Man and the state of the state	

^{*}Any group of treatments connected by a line of stars to the right of the ranking list are not significantly different from each other with 95 percent confidence.

Table 10. Single salt additions to AAM for bioassay 2 and the effects on Selenastrum.

				γ±	Υ±	Z	
Salt	Normality	Molarity	g/l	' 1	'2	π ₁ (atm)	π ₂ (atm
NaCl	0.05133	0.05133	3.000	0.80531	0.8111	2.37812	1.9926
	0.03422	0.03422	2.000	0.83277	0.8310	1.58541	1.3589
	0.01711	0.01711	1.000	0.87319	0.8639	0.80105	0.7021
	0.00856	0.00856	0.500	0.90550	0.8916	0.40493	0.3676
	0.00428	0.00428	0.250	0.93055	0.9106	0.20455	0.2041
KCI	0.05133	0.05133	3.8269	0.80531	0.7990	2.35309	2.1132
	0.03422	0.03422	2.5513	0.83277	0.8188	1.59376	1.4471
	0.01711	0.01711	1.2756	0.87319	0.8524	0.80105	0.7523
	0.00856	0.00856	0.6382	0.90550	0.8824	0.40493	0.3925
	0.00428	0.00428	0.3191	0.93055	0.8890	0.20455	0.2632
MgCl ₂	0.05133	0.02567	2.4438	0.72342	0.6579	1.72134	1.3778
	0.03422	0.01711	1.6292	0.76247	0.6912	1.12231	0.9455
	0.01711	0.00856	0.8146	0.81992	0.7434	0.57400	0.5078
	0.00856	0.00428	0.4075	0.86592	0.7938	0.28909	0.2679
	0 00428	0.00214	0.2037	0.90153	0.8317	0.14559	0.1496
CaCl ₂	0.05133	0.02567	2.8485	0.72342	0.6574	1.64623	1.3635
2	0.03422	0.01711	1.8990	0.76247	0.6949	1.10562	0.9128
	0.01711	0.00856	0.9495	0.81992	0.7471	0.56357	0.4884
	0.00856	0.00428	0.4750	0.86592	0.7940	0.28700	0.2636
	0.00428	0.00214	0.2375	0.90153	0.8288	0.14507	0.1513
Na2S04	0.05133	0.02567	3.6455	0.72342	0.6506	1.56486	1.3281
- '	0.03422	0.01711	2.4303	0.76247	0.6880	1.06390	0.8893
*	0.01711	0.00856	1.2152	0.81992	0.7387	0.54687	0.4810
	0.00856	0.00428	0.6079	0.86592	0.7881	0.16176	0.2562
	0.00428	0.00214	0.3040	0.90153	0.8197	0.08662	0.1522
K ₂ SO ₄	0.05133	0.02567	4.4725	0.72342	0.6299	1.53356	1.4219
2 .	0.03422	0.01711	2.9817	0.76247	0.6701	1.16820	0.9344
	0.01711	0.00856	1.4908	0.81992	0.7242	0.45294	0.4986
	0.00856	0.00428	0.7459	0.86592	0.7727	0.28074	0.2706
	0.00428	0.00214	0.3729	0.90153	0.8191	0.14559	0.1436
MgSO ₄	0.05133	0.02567	3.0894	0.52334	0.4851	0.81373	0.9001
	0.03422	0.01711	2.0596	0.58135	0.5210	0.69675	0.6257
	0.01711	0.00856	1.0298	0.67228	0.5924	0.31309	0.3297
	0.00856	0.00428	0.5152	0.74982	0.6557	0.16385	0.1772
	0.00428	0.00214	0.2576	0.81276	0.7045	0.08662	0.0999
CaSO ₄	0.05133	0.02567	3.4941	0.52334	0.4966	0.99525	0.8491
	0.03422	0.01711	2.2394	0.58135	0.5260	0.66337	0.5957
	0.01711	0.00856	1.1647	0.67228	0.5905	0.33188	0.3178
	0.00856	0.00428	0.5827	0.74982	0.6472	0.17429	0.1738
	0.00428	0.00214	0.2913	0.81276	0.6939	0.08714	0.0988

 $[\]gamma_1^{\pm}$ = Activity coefficient (DeBye-Hückel equation)

 $[\]gamma_2^{\dagger}$ = Activity coefficient (Davies equation)

 $[\]pi_1$ = Osmotic Pressure

π, = Osmotic Pressure (equivalent conductance)

						ar 1 (D.D.)			ır 2 (C.C.)	
Source	DF	SS	MS	VAR	Calc F	dF	F	Calc F	dF	F
REP (Replicates)	1 1	.4932267E-02 2.137594	.4932267E-02 2.137594	1 2	2.92449727	1/47	N.S.	3.18	1/47	N.S.
A A (Conc.)	5 5	1.884245 688.4102	0.3768491 137.6820	1 2	223.45	5/47	s.01	204.89	5/47	s.01
B B (Cations)	3 3	1.396716 1090.982	0.4655719 363.6606	1 2	276.05	3/47	s.01	541.18	3/47	s.01
AB AB (Concentrations * Cations)	15 15	0.4404872 362.9585	.2936581E-01 24.19724	1 2	17.41	15/47	\$.01	, 36.01	15/47	S.01
C C (Anions)	1 1	0.1632817 103.9508	0.1632817 103.9508	1 2	96.81	1/47	N.S.	154.69	1/47	N.S.
AC AC (Concentrations * Anions)	5 5	0.1044255 26.13784	.2088510E-01 5.227569	1 2	12.38	15/47	\$.01	7.78	5/47	s.05
BC BC (Anions * Cations)	3 3	0.2750743 126.9280	.9169144E-01 42.30934	1 2	54.37	3/47	s.01	62.96	3/47	S.01
ABC (Anions * Cations * ABC Concentrations)	15 15	0.1753275 66.21303	.1168850E-01 4.414202	1 2	6.93	5/47	s.01	6.57	15/47	S.01
REP*ABC [(N-1) * REP*ABC (ABC-1)]	47 47	.7926713E-01 31.58291	.1686535E-02 0.6719767	1 2						
D D (Time)	9 9	26.77909 8713.947	2.975454 968.2163	1 2	8,467.23	9/432	s.01	4,482.84	9/432	S.01
AD AD (Conccentration * Time)	45 45	1.389440 708.1549	.3087645E-01 15.73678	1 2	87.86	45/432	s.01	72.86	45/432	S.01
BD (Cations * Time)	27 27	1.238859 937.2202	.4588366E-01 34.71186	1 2	130.57	27/432	s.01	160.72	27/432	S.01
ABD (Concentration * ABD Cations * Time)	135 135	0.8344270 339.9751	.6180941E-02 2.518334	1 2	17.59	135/432	s.01	11.66	135/432	S.01
CD (Anions * Time)	9 9	0.1700606 72.39926	.1889562E-01 8.044362	1 2	53.77	9/432	s.01	37.25	9/432	8.01
ACD (Concentration * ACD Anions * Time)	45 45	0.1208982 62.30643	.2686627E-02 1.384587	1 2	7.65	45/432	s.01	6.41	45/432	S.01
BCD (Cations * Anions BCD * Time)	27 27	0.2495676 438.6923	.9243244E-02 16.24786	1 2	26.30	27/432	s.01	75.23	27/432	s.01
ABCD (Concentration * ABCD Anions * Cations * Time)	135 135	0.4209221 178.3998	.3117941E-02 1.321480	1 2	8.87	135/432	s.01	6.12	135/432	s.01
ERROR [(N-1)*(d-1)* ERROR ABC]	432 432	0.1518086 93.30450	.3514088E-03 0.2159826	·1 2				V00 ****	may year	
TOTAL TOTAL	959 959	35.87883 14043.70	.3741275E-01 14.64411	1 2	•					,

3 (1)

Table 12. Summary of completely randomized design analyses of variance for $\frac{\text{Selenastrum}}{\text{single salt}}$

	F TEST	es e			
Alternate Hypotheses	Treatments	Variables Tested	Significance	Degrees of Freedom	F Value
Means of growth responses of cultures grown in the presence of divalent cations are different from those grown in the presence of monovalent cations	(Na+ K+ (Mg++ (Ca++	Optical Density Cell Counts	N.S. 0.05	1/398 +	2.73 6.58
Mean cell volumes of cultures grown in the presence of differ- ent salts are different	NaCl KC1 MgSO4 CaSO4 Na ₂ SO4 MgCl ₂ K ₂ SO4 CaCl ₂ Control	Cell Volume	0.01	8/34 +	9.60
Means of electrical conductivity of the cultures changed from Day 0 to Day 15	Day 0 Day 15	Electrical Conductivity	N.S.	1/78	1.88

Table 13. Linear relations between salinity variables and different estimates of biomass for single salt additions to $\underline{\text{Selenastrum}}$.

	ndent able (y)	Independent Variable (x)	Number of Data Points	Correlation Coefficienta	Equation $y = mx + b$
x	(cells/ml)	Normality (N)	45	-0.4381**	y = -2.381E - 9x + 2.868E15
		Concentration (g/l)	45	-0.3851**	y = -1.4314E-7x + 6.830E00
		Molarity (M)	45	-0.5083**	y = 1.914E - 9x + 6.830E06
		π ₂ (atm)	45	-0.4579**	y = 8.763E - 8x + 6.830E06
		π_1^2 (atm)	45	-0.3817*	y = -1.052E - 6x + 3.487E06
		Specific Conductivity (µmhos/cm)	45	-0.3782*	y = -332.163x + 3.6186E06
û	(day-1)				
	(cell counts)	Normality (N)	45	-0.4753**	y = -0.0256x + 1.716
		Concentration (g/l)	45	-0.4008**	y = -1.462x + 3.677
		Molarity (M)	45	-0.3628*	y = -0.0138x + 1.716
		Y [±] 1 Y [±] 2	45	0.4982**	y = +0.1152x + 1.627
		γ^{\pm}	45	0.5206**	y = +0.4180x + 2.0098
		π_2^2 (atm)	45	-0.3547*	y = -0.6763x + 2.1614

 $[\]gamma_1^{\pm}$ = activity coefficient (DeBye-Hückel)

 $[\]gamma_2^{\pm}$ = activity coefficient (Davies Equation)

 $[\]pi_1$ = Osmotic pressure

π₂ = Osmotic pressure (equivalent conductance)

alf marked with (*), the value of the correlation coefficient is significantly different from zero at P > 0.99. If marked with (**), the value of the correlation coefficient is significantly different from zero at P > 0.95.

broassay, the cell count data would appear to be more reliable.

Determination of which of the cations affected the <u>Selenastrum</u> biomass data the greatest was achieved by the use of the Duncan's Multiple Range Test (Table 14). This test uses the same output format as used in the previous Duncan's test output (Table The treatments are ranked in the least to greatest values from the top to the bottom of the listing. All treatments connected by one line of vertical stars is not signficantly different from each other. Cell count data were used for this analysis because of the greater sensitivity of the Increasing concentrations of measurement. the individual salts caused decreasing productivity of Selenastrum when comparing groups of salts which are significantly different from each other. The cations depressed the \hat{X} in the following order:

Mg, K > Na, Ca

For the Duncan's analysis of \hat{u} , the cation order was Mg, Ca > K, Na. Because depression occurred in both the \hat{x} and $\hat{\mu}$ as compared to the controls, the toxic effect of these cations was established.

$\begin{array}{cccc} \underline{Effects} & of & \underline{Single} & \underline{Salt} & \underline{Additions} & on \\ \underline{Acclimated} & \underline{Selenastrum} \end{array}$

Selenastrum, which was acclimated to higher salinity conditions by maintaining the culture in Lake Powell synthetic medium, was then tested in AAM with the concentrations of salt additions at the 0.3 N, 0.1 N, 0.05 N previously described first bioassay. A long lag time was noted as the acclimated Selenastrum adjusted to the AAM medium. The growth of the acclimated Selenastrum did not show a significant difference based on cations or anions (Table 15). Although the \hat{X} for all of the salts was significantly lower than the controls, the $\hat{\mu}$ for the majority of the salts was not significantly different than the controls.

Effects of Two Salt Additions

The effects of the addition of two salts at one concentration did not maintain the cation dominance effect on algal growth depression. The Duncan's Multiple Range analysis (Table 16) of these data did not provide a clear relationship between monovalent and divalent toxicity.

Difficulties were encountered in calculation of activity coefficients and osmotic pressures with mixed salt solution. Therefore the electical conductivity of these salt solutions was linearly correlated with the Selenastrum biomass data from the two salt additions (Table 17). Although the maximum standing crop data do significantly correlate with the electrical conductivity, this correlation is slightly lower than

the same correlation of the single salt addition data.

Growth measurements of \hat{X} are plotted versus specific conductivity and identified by the cations (Figure 9) and anions (Figure 10) that were added to the medium. From the plots, regional effects of the salts added can be noted. The combination of monovalent and divalent cations encompasses a larger area than the monovalent or divalent cations alone and overlaps portions of each of these areas. This visually demonstrates the synergistic effects occurring between the monovalent and divalent cations present in the same salt solution. The areas of anion action overlapped more than the cation areas demonstrating less distinct regions of effect based on the anions.

Effects of Increased Salt Concentrations on the Productivity of Synedra

Effects of Single Salt Additions

The concentrations of the salts under study were normalized to the concentration of NaCl (Table 18). The Davies equation was used to calculate the activity coefficient and the osmotic pressure of the solutions because these calculations had provided better linear correlations with the biomass data in the single salt addition bioassay with Selenastrum.

A randomized block design was used to test if there was a significant difference in growth based on the different salts. There was a significant difference at the 99th percentile (Table 19). A significant difference in the growth of <u>Synedra</u> occurred based on differences of cations, which agreed with the results of the single salt addition bioassay with Selenastrum. A difference did occur in the result of anion difference, with Synedra there was a significant difference (P > 99%) in growth between the different anions tested. There was no significant difference based on anion differences with Selenastrum. The bicarbonate anion was tested only with the Synedra and so there was a slight change in the experimental design between the two When HCO3 was eliminated experiments. from the experimental data, no significant difference in the biomass data could be found based on the anion differences. The electrical conductivity readings of the media did not change significantly over the time of the bioassay within each treatment flask.

Linear correlation coefficients with salt variables and growth explained less of the variability in general than they did for the Selenastrum correlations (Table 20). Normality and the concentration in g/l did not correlate significantly with either biomass variable. The only salinity concentration measurement which correlated significantly with both the \hat{X} and $\hat{\mu}$ data was specific conductivity.

Table 14. Duncan's multiple range analysis for single salt additions to Selenastrum (bioassay 2).

	X ***		75		,
0.030 A MGSCO	X	37 0.030 N CACL	μ		
0.030 x "GCL>		29 0.009 \ MGCL			,
0.050 K MGSC4	^ •	11 0.050 - 4GSC			<u>.</u>
TO OSO K KEE		135 0 050 K PGC		* ***	
0.050 N MGCL2	* *** *	12 0.030 N MGSC			
0.020 N PG5C4	* * *	16 0.020 N CAS			7.7
0,030 K KEL	* * *	TO OFFICE NACE			* *
0.050 k <28Ca		26 0.050 N MGCL			
	* * * * *	13 0.020 N MGSC			. * *
0.020 A MGCL2	* * * * *	19 0.009 K C180		The state of the s	
0.004 K MGSCU	The second secon	27 0.030 K MGCL			
0.009 K MGCL2	* * * * *	16 0.050 N CASC			
0.004 K MGCL2	* * * *				* * *
O.OSU A NACL	1,41	3E 0.020 K CACE	. •		
0.050 A NACL	* * * *	9 0*050 V KCF			* * *
0.009 K K28C4	* * * *	14 0.009 K MGSC	. 4		* * * *
0.050 K CASCO	The second secon	- 7 0.030 K KEE			- A A A A A A A A A A A A A A A A A A A
0.004 K MGSC4	* * * *	17 0.030 N CASC			* * * * * *
0.020 N NACL	* * *	20 0.004 % CASC		<u> </u>	* * * * *
0.020 K KSSCA					4-1-4-4
0.030 N CASC4	* * *	34 0.009 K K250	4		* * * * *
0.020 N KCL	* * *	6 0.050 A KCL		* *	* * * *
O'GUS V CASCO	The same of the sa	- 34 0.009 X CYCL		and the second s	9 4 9 · ·
0.930 N CACL2	* *	24 0.009 h NA29		* * *	* *
0.050 N CACLS	* *	33 0,020 N K280	8	* * *	•
U'UUA Y CUCES		36 0,050 K CACL	5		
0.026 % CACL>	* * *	9 0.009 A KCL		* * *	
CONTROL	* * *	23 0.020 A NAPS		* * *	
CONTROL	The same of the sa	55 0'020 K MASE		The state of the s	••
0.004 A NACL	* * *	31 0.050 K K28C		* *	
CONTROL	* *	30 0.004 N MGCL		* *	
CONTROL	The second secon	MO 0.004 K CACE		and the second s	
CONTROL	* *	35 0.030 F K580	4	* *	
CONTROL	* *	10 0.004 N KCL		* *	
**************************************	the second comments and the second comments are second comments are second comments and the second comments are second comments and the second comments are second comments are second comments are second comments and the second comments are second	3 0.030 K NACE		The state of the s	
CONTROL	* *	35 0.004 K K25C		* * *	
0.004 K NA25C4	* *	25 0.004 N NA25		* * *	
ጣ ብንስ እግሊልያያሰው	Marketine and the second of th	15 0.000 K MESC		The state of the s	
0,020 % NA28FU	* *	5 0.004 % NACL		* *	
0,009 % KCL	* * *	3 0.020 K MACE		* * *	
OTONO K KZSCO	water to the second of the sec	4 0.009 N NACL		1 mgrange is 10 min	·
CONTROL	# *	47 CONTROL		* *	
0.009 N CASC#	4 4	48 CONTROL		* *	
0.020 N CARCO	Commence of the Commence of th	#5 CONTROL		The second secon	#154p
O. NOU . CACLS	t t	42 CONTROL		* *	
0.030 6 X25C0	* *	44 CONTHOL		* *	*
8.009 1 NECLT	•	## CONTROL		The state of the s	•
0.004 A KCL	•	43 CONTECL		•	

Table 15. Duncan's multiple range analysis for single salt additions to acclimated Selenastrum (bioassay 2).

x		$\hat{\mu}$	
u e		Treatment Number Concentration Treatment	
Number Concentration Treatment		Treatment Number Concentrat Treatment	
Number Concentrat Treatment		Treatment Number Concentral Treatment	
<u>a</u> <u>a</u>		at of the	
		. 함께 전 함께 전	
		-	
27 6.30 N NAHCO3	*	14 0.10 N NAZSO4	
28 6.05 N KHCD3	*	30 0.30 N KHC03	
IA 0.30 N K2504	*	28 0.45 N MHC/3 8 0.40 N MGCL2	7
29 n. to n xHCO3	•	13 0.05 N NA2504	
30 U.30 N XPC-)3	•	29 0.10 N KHCH3	-
17 0.10 N K2504	•	27 0.30 N NAME 03	
6 0.3" N KCL	-	9 0.30 N MGCL 2	*
35 TOME OF ELUTRIATE	Ī	15 0.30 N NASSU4	
25 0.05 N NAHCO3		26 0.10 N NAHCOR	
9 0.30 N MGCL2	•	12 0.30 N CACL2	*
14 0.10 N NA2SU4	•	16 0.05 N K2804	*
16 0.65 N K2804	•	2 0.10 N NACL	*
15 0.30 U NA2804	-	7 0.05 N MGCL2	*
SP J'IU M MAHCA?		21 0 40 N MG504	*
10 0.05 N CACL2		11 n. in N CACL2	*
13 0.05 W N2504		4 0.05 N KCL	
8 0.13 N MGCL2	•	35 10ML CP ELUTRIATE	•
12 0.30 N CACL2 5 0.10 N KCL	•	25 0.05 N NAHCO3	+
11 0.10 W CACES	*	10 0.05 N CACL2	
3 0.34 N NACL	•	5 0.10 N KCL	•
21 0.36 V MGS04	`	24. 0.30 N CASO4	•
4 0.05 N XCL	*	20 0.18 N MG504	
19 0.65 N MG\$04	*	3 0.30 N NACL	*
24 0.30 N CASO4	*	1 0.05 N NACL	+
7 0.05 4 MGCL2	*	23 0.10 N CASO4	•
20 0.10 N MGS04	•	22 0.05 N CASÚ#	*
2 0.10 N NACL	*	40 D.W.BLANK	•
23 0.10 N CASU4	*	32 CONTROL	
22 0.05 N CASO4	*	33 CONTROL	
1 0.05 N MACL	*	38 10HL BR ELUTRIATE	4
39 10ML BP ELUTRIATE	*	39 10ML BP ELUTRIATE	•
37 INML DE ELUTRIATE	* *	36 IOML OR FLUTRIATE	*
36 JOML OF ELUTRIATE	* *	37 10ML DP FLUTSIATE	•
36 10ML SE ELUTRIATE	* *	34 104L CP ELETRIATE	•
40 D.W.BLANK	*	6 0.30 N KCL	*
32 CONTROL	*	18 0.30 N K2804	*
33 CONTROL	*	19 0.05 N MGS04	. •
31 CONTROL	*	31 CONTROL	*
34 10ML CH ELUTRIATE	•	17 0.10 N K2504	•

Table 16. Duncan's multiple range analysis for two salt additions to Selenastrum (bioassay 2).

Â.		û	
A 2 MG\$04,KHC03		* 25 K2SD4,KHC03	
E CONTROL		* 4 MGCL2.KHC03	•
# MGCL 2. KHCC3		* 40 NA2504, NAHCC3	• •
NAZSU4, NAHCC3	to the second of	* 19 REL, KHE03	
MG504,NAHCO3		* 7 MGCL2, NAHCO3	•
MGCL2.NAHCO3		* 46 CONTROL	•
NACL NAHCC3		* TS MGSO4, NAHCO3	
KHC03.CASCU		* 12 MGS04,KHCC3	* *
5 K2804.KHCG3	*	* 44 NAHCO3, CASO4	1
NAHCO3,CASON		* 34 KHCO3, CACLE	The state of the s
KCL.KHCO3	•	* 35 KHC03,CASC4	* *
CONTROL	•	* 37 NACL, NAHCO3	# *
MGCL2, MGSC4	The second secon	* I MGCLZ, MGSC4	
NAHCO3, CACLE	•	* 33 KHC03, NAHC03	* *
KHC03.NA2804	* *	* 13 MGSO4, NACL	★ ★
KHCC3, NAHCC3		# 137 #G804, CASOM	Notes that I will have a constrained or the contract of the co
KCL, X2304	* * *	* 43 NAMEO3, CACL2	* * *
KHC03.CACL2	* * * *	47 CONTROL	* * *
CONTROL		16 MGSO4, CACL2	
NACL, NAZSC4	* * *	27 K2S04, NA2S04	* * * *
MA2804,C4504	* * *	3 MGCL2,x28C4	* * *
NACL, CASO4		45 CACLZ, CASC4	TOWARD C AT A TAXABLE A PART PART OF THE P
MG804,KCL	* * * *	6 MGCL2,NA2804	* * * *
K2804, NAHCO3	1 1 1	# MGCLZ,CASC4	* * *
MGS04, NACL		18 KCL, KZSC4	
MGSC4, NA 2504	* * * * *	30 K2S04,CASC4	* * *
KHCD3, NACL	* * * * *	24 KCL, CASC4	* * *
MG804, CAS04		EN KESU4, CACLE	70 M 1 5 M 2
KCL, NAHCO3	* * * *	36 NACL, NA2804	* * *
MGCL2,NAZ804		## NA2804, CA804	* * *
*CL,C1304		5 MGCL2, NACL	
MGCL2,CACL2	* * *	38 NACL + CACLS	* * *
"GCFS", VCF	* * * *	32 KHC03, NA2804	* * 1
NACLICACES		8 MGCLS,CACLS	
MGS04,CACLE	* * * *	26 K2504, NACL	* * *
MG804,K2504	* * * *	22 KCL, NAHCO3	* * *
KSSC4*LVCFS		23 KCL, CACLS	
NA2504,NAHCC3	* * * * *	39 NACL, CASC4	• • • •
K2804, MACL	* * * *	10 MGSC4,KCL	# # #
MGC12, #2804		31 KHCO3, NACL	_
MGCF5'KCF	* * * *	11 MG804, K2SC4	
MGCL2,CASO#	東京市	2 MGCLZ,KCL	The second section of the contract of the second se
KCL, NACL	* *	21 KCL, NASSOU	* *
K2504, NA2504	- T	20 KCL, NACL	# # * *
KCL,NA25C4	TO THE SECOND PROPERTY OF THE SECOND	26 K2SO4, NAHCO3	THE RESERVE CONTRACTOR
KCL,CACE2		49 CONTROL	• •
CONTROL	* *		
K28G4,CASC4	T 7	50 CONTROL 41 NA2SO4, NAFCC3	THE STATE OF THE S
CACLETCASCA CONTROL	"	46 CONTROL	

Determination of salt effects on the biomass data of Synedra was done by the use of the Duncan's Multiple Range Test (Table 21). Fluorescence data were used for these analyses because of the greater sensitivity of this measurement as compared to the optical density measurement. Increasing concentrations of the individual salts decreased the growth of the Synedra when comparing salts which are significantly different from each other. The majority of the salts depressed growth below the levels of the controls. The cation orders were somewhat reversed from the first bloassay when comparing the cation and anion effects on \hat{x} and $\hat{\mu}$.

Cations \hat{X} : K, Na $\stackrel{>}{\sim}$ Mg, Ca Anions \hat{X} : HCO3, SO4 $\stackrel{>}{\sim}$ C1 Cations $\hat{\mu}$: K, Na $\stackrel{>}{\sim}$ Mg $\stackrel{>}{\sim}$ Ca Anions $\hat{\mu}$: HCO3 $\stackrel{>}{\sim}$ SO4 $\stackrel{>}{\sim}$ C1

The relative inhibition of X is plotted versus specific conductivity and identified by valance of the cations (Figure 11) and anions (Figure 12) added to the medium. The large area of overlap between the monovalent and divalent cations displays the lack of differentiation in inhibition based on the valance of the cation. The total separation

Table 17. Linear relation between different estimates of biomass for two salt additions to Selenastrum (bioassay 3).

Depen	ndent	Independent	Number of	Correlation	Equation $y = mx + b$
Varia	ible (y)	Variable (x)	Data Points	Coefficienta	
â	(cells/ml)	Specific Conductivity (µmhos/cm)	50	-0.3414*	y = -1.223E-04x + 2.689E06

Alf marked with (*), the value of the correlation coefficient is significantly different from zero at P > 0.99. If marked with (**), the value of the correlation coefficient is significantly different from zero at P > 0.95.

Figure 9. The regional effects of the cations added to the media (bioassay 2).

Table 18. Single salt additions to AAM and Synedra (bioassay 4).

Salt	Normality	Molarity	g/1	γ [±] ₂	π ₂ (atm)
NaC1	0.300	0.300	17.5364	0.7347	11.9913
Maci	0.200	0.200	11.6909	0.7471	8.0834
			5.8455	0.7471	4.2646
	0.100	0.100			
	0.050	0.050	2.9182	0.8057	2.2800
KC1	0.300	0.300	22.3636	0.7314	12.3804
	0.200	0.200	14.9091	0.7388	8.4527
	0.100	0.100	7.4545	0.7666	4.3222
	0.050	0.050	3.7273	0.7968	2.3157
MgCl ₂	0.300	0.150	14.2818	0.5469	7.7318
	0.200	0.100	9.5182	0.5608	5.6234
	0.100	0.050	4.7636	0.6048	3.0101
	0.050	0.025	2.3818	0.6572	1.6169
CaCl ₂	0.300	0.150	16.6455	0.5428	8.0083
2	0.200	0.100	11.1000	0.5587	5.6429
	0.100	0.050	5.5455	0.5982	3.1022
	0.050	0.025	2.773	0.6542	1.6213
Na2S04	0.300	0.150	21.3045	0.5346	15.8356
	0.200	0.100	14.2045	0.5368	11.3480
	0.400	0.050	7.1000	0.5656	6.0079
	0.050	0.025	3.5500	0.6089	3.2786
K ₂ SO ₄	0.300	0.150	26.1409	0.5624	15.6339
	0.200	0.100	17.4273	0.5343	10.9261
	0.100	0.050	8.7136	0.5481	6.0593
	0.050	0.025	4.3545	0.5872	3.2320
MgSO ₄	0.300	0.150	18.0545	0.3306	5.2435
~ 4	0.200	0.100	12.0364	0.3584	3.6142
	0.100	0.050	6.0182	0.4115	1.9475
	0.050	0.025	3.0091	0.4608	1.0990
CaSO ₄	0.300	0.150	20.4182	0.5090	4.0259
7	0.200	0.100	13.6182	0.5131	2.7954
	0.100	0.050	6.8091	0.5023	1.6066
	0.050	0.025	3.400	0.4885	1.0401
NaHCO3	0.300	0.300	25.2000	0.7410	11.6096
J	0.200	0.200	16.8000	0.7543	7.9759
	0.100	0.100	8.4000	0.7821	4.2591
	0.050	0.050	4.2000	0.8155	2.2387
KHCO3	0.300	0.300	30.0364	0.7329	12.5914
	0.300	0.300	20.0273	0.7424	8.6224
	0.100	0.100	10.0091	0.7682	4.5669
				0.7682	
	0.050	0.050	5.0091	0.80//	2.2770

 $[\]gamma_1^{\pm}$ = activity coefficient (Davies Equation)

 $[\]pi_2$ = Osmotic pressure (equivalent conductance)

Figure 10. The regional effects of the anions added to the media (bioassay 3).

Table 19. Summary of analyses of variance for Synedra single salt additions (bioassay 4).

Alternate Hypotheses	Blocked By	Treatments	Variables Tested	Significance	Degrees of Freedom	F
Means of growth re-		NaC1				
sponses of cultures		KC1	Optical			
grown in the presence of different salts are	Time	MgSO ₄ CaSO ₄	Density	0.01	9/70	3.16
different		Na ₂ SO ₄ MgCl ₂ K ₂ SO ₄ CaCl ₂ NaHCO ₃ KHCO ₃ Control	Fluorescence	0.01	+	5.00
Means of growth re- sponses of cultures		Na K	Optical Density	0.01	3/316	24 .6 8
grown in the presence of different cations are different	-	Mg Ca	Fluorescence	0.01		19.32
Means of growth re- sponses of cultures		C1 SO ₄	Optical Density	0.01	2/317	12.15
grown in the presence of different anions are different	-	нсо3	Fluorescence	0.01		20.37

Figure 11. The relative inhibition of the \hat{X} identified by the cation present during growth (bioassay 4).

Figure 12. The relative inhibition of the \hat{X} identified by the anion present during growth (bioassay 4).

Table 20. Linear relations between different estimates of biomass for single salt additions to Synedra (bioassay 4).

•	endent iable (y)	Independent (y) Variable (x)		Correlation Coefficienta	Equation $y = mx + b$
x	(fluorescence)	γ [±] π Molarity (M) Specific Conductivity (μmhos/cm)	44 44 44 44	0.4400** -0.4600** -0.4100** -0.5710**	y = 1.14x + 6.77 $y = -0.81x + 12.21$ $y = -33.12x + 11.64$ $y = -737.9x + 9.156E06$
û	(day ⁻¹) (fluorescence)	Specific Conductivity (µ mhos/cm)	44	-0.3900**	$y = -3.54E04 \times +4.394E08$

alf marked with (*), the value of the correlation coefficient is significantly different from zero at P > 0.99. If marked with (**), the value of the correlation coefficient is significantly different from zero at P > 0.95.

of the $\rm HCO_3^-$ anion at a greater level of inhibition than the overlapping C1- and $\rm SO_4^-$ anion areas displays the significant difference in growth based on the anion present in the media when $\rm HCO_3^-$ is tested but not with the addition of C1- and $\rm SO_4^-$.

In order to compare the bioassay data from two different algae based on fluorescence data, it was necessary to normalize them on the basis of the control data for that alga (Appendix B-1, B-2). This eliminated the variability due to different fluorescent characteristics of the different species of algae. After normalizing the data and comparing the bioassay results for single salt additions from acclimated Selenastrum to Synedra, 38 percent of the X and 18 percent of the A data for the acclimated Selenastrum was lower than the minimum Synedra results.

Effects of Two Salt Additions

The effects of the addition of two salts at one concentration were dominated by synergistic effects rather than the dominance of individual cations and anions (Table 22). There was also no clear relationship between monovalent and divalent toxicity. This same result occurred with the two salt additions to Selenastrum.

Linear relationships between biomass measurements and specific conductivity measurements and did not provide any significant correlations.

Effects of Multiple Salt Additions

Depression of algal growth was attained with the addition of multiple combinations of salts to Synedra (Tables 23 and 24). Again there was no relationship for monovalent to divalent toxicity.

Linear correlations of the fluorescence data with electrical conductivity measure-

ments provided significant correlations with the \hat{X} data for the multiple salt additions (Table 25). However, the $\hat{\mu}$ results (greater than four salt additions) did not produce a significant correlation. These correlation coefficients were comparable to the correlation coefficients obtained with the same relationship for the single salt additions to Synedra. When combining all of the Synedra biomass data and correlating that with specific conductance, this relationship did not hold. The slope of the line became positive but was not significant.

Effects of Increased Salt Concentrations on the Productivity of Three Algal Species

Effects of Single Salt Additions

The effect of single salt additions at one concentration (0.05 N) on Anabaena that was cultured with representatives of two other algal species was analyzed with Duncan's Multiple Range Tests (Table 26). Anabaena produces specialized cells, heterocysts, when nitrogen limitation in the growth medium is encountered. Counts of these cells were conducted separately from the total cell counts. The number of heterocysts were never greater than 0.001 percent of the total cell counts in any of the treatment flasks indicating that nitrogen fixation was insignificant and nitrogen was not limiting. The effects of these salts on the growth depression of Anabaena were as follows:

x	cell counts	:	all salts - CaSO4, Na ₂ SO ₄ > <u>Anabaena</u> control
û	cell counts	:	Anabaena control > KCl, NaCl, CaCl ₂ , CaSO ₄ , MgCl ₂
Ŷ	heterocysts	:	all salts - CaSO4 > <u>Anabaena</u> control

Table 21. Duncan's multiple range analysis of single salt additions to Synedra (bioassay 4).

			The transfer of the transfer o
A		μ	
4/0.30 N K28C4	•	35 4/0,20 N NAHCC3	
4/0.20 N NAFCC3	•	39 4/0.20 N KHCC3	
4/0.10 N KHCC3		38 4/0,10 N KHC03	
4/0,20 N KHC03	The state of the s	38 470,30 N KAPECS	The Processing State of the American State of the State o
4/0.30 N NAHED3	* *	140 4/0.30 N KHCO3	*
4/0.30 N KHC03	* *	34 4/0.10 N NAHCO3	* *
470.10 N NAFCC3		24 470.30 K KSSCA	
4/0.05 N KHCC3	* *	37 4/0.05 % KHCC3	* *
4/0.05 N NAFCC3	* * *	33 4/0.05 N NAHCO3	* *
4/0.30 N CACL2		## 470.10 N K2800	
4/0.20 N MGCL2	* * *	2\$ 4/0.20 N K2504	* * *
4/0.30 N NA2804	* * *	# 4/0.05 N MGCL2	* *
470.20 N KZEC4		12 470,30 K PGC(2	
4/0.26 K MGSC4	* *	28 4/0.30 N MGSC4	* *
4/0.30 N MGCL2	* * *	10 4/0.10 N MGCL2	* *
4/0,20 N NA2504		13 470.05 N CACLS	
4/0,30 N MG504	* *	27 4/0.20 N PGSC4	
4/0.10 N NA2804	* *	7 4/0.20 N KCL	* *
4/0.05 N KA28C#		15 4/0.20 % CACLE	
4/0.30 N KCL	•	16 470,30 K CACL2	* *
4/0,05 N CACI 2	· · · · · · · · · · · · · · · · · · ·	26 4/0.10 N MG5r4	* *
470.20 N KCL		31 470.05 N K25C4	* * * * * * * * * * * * * * * * * * * *
4/0.10 N CACL2	* *	11 4/0.20 N MCCFS	7 1 1
4/0,10 N MGCL2	*	135 4/0.05 N MGSC4	T T
470.30 N KACL	•	19 470.20 N KAZECA	* *
4/0.05 A MGSC#	•	20 4/0.30 N NASSC4	*
470.20 N CACLS		31 4/0.20 N CASC4	A the second of
470.20 N KACE		"14"470"10 N CACL?	
4/0.05 N KCL	<u>.</u>	32 4/0.30 N CASC4	
4/0.05 N FGCL2	and a superior of the superior	8 4/0,30 N KCL	The second secon
470.05 K KACL	# *	6 4/0.10 N KECL	• •
4/0.10 K MG804	*		
4/0.10 N NACL	置 界 	30 4/0.10 N CASC4	The second secon
CONTROL	• • •	4 4/0.30 N NACL	•
4/0.10 N KCL 4/0.10 N K2SC4	* * *	18 4/0.10 N KA25C4	* •
CONTROL	The state of the s	17 470.05 N KAZETU	va de la companya de
4/0.05 K X28C4	•	3 4/0.20 N NACI	•
CONTROL		2 4/0.10 K NACL	•
470110 K CASDA	* *	-42 CONTROL	★ ★
CONTROL	•	44 CONTROL	* *
4/0.05 N CASC#	•	29 4/0.05 N C48C4	* *
470.20 K CASCA	A CONTRACTOR OF THE CONTRACTOR	43 CCKTRCL	The second secon
4/0.30 h CASC#		41 CONTROL	

^		^	
X		μ	
	•		•
34 57142504114-003		* 45 5/NA-CC3/45CC3	± *
35 5/NA28C4+x-CCT		* 34 5/NA25C4,NAECC3	* *
23 57490647. NAMOOT		• 43 5/CASP4.NAMCC3	* *
34 SYRZSCS PRICCS		* 35 SYKAZSCHIKHCCI	* *
# SYNACL_NAMCCS		* 41 S/MGS04, NAHCC3	* *
45 SZNAHCCS, KHCCS		* 34 5/K2504,KHCC3	
38 5742504.54-073	The state of the s	# 30 21C8CC5 # FCC #	
17 5/KCL, 4-003		 4 5/%40L/KHCC3 	
41 5/#GSC4, NAHCE3		* 23 5/4GCL2.NAMCC3	The second secon
TA STREE, VARCOS	and the second s	* 02 SYMGSCO, KHCCT	
9 SANACL AMCOS		* 17 5/KCL, KHC63	4 4 4
30 S/CACLE, KHCC3		* 38 5/*2804,NAHCC3	
29 57545527, 144553		* 16 SYXCL, KAPCTS	
43 5/C4804, NA-C73		* 24 5/MGCL2,4MCC3	
42 5/4GSCu, 4HCC3		# 29 S/CACL2, NAMCC3	
AE SYCASCO, KHCCS	man and the same state of the same of the	* B SYNACL, WARCES	A STATE OF THE PARTY OF THE PAR
4 5/4461,442864	•	44 5/C4800, WHCC3	· · · · · · · · · · · · · · · · · · ·
10 5/*CL, *6CL?	•	31 5/AAZSCU, KZSCU	
	The second delication of the second s	22 STRECTS, CARCO	and the same of th
24 5746012,44604	*	4 5/4461,442964	. •
2 SYNACL, MGCL2		13 5/KCL, K25C4	•
31 5/115500145500	★ **	27 S/CACLE, PGSC4	per the property of the property of the period of the peri
TA PARECES WESSER	• •	26 5/CACL2, ×29C4	•
22 5/>GCL2,C45C4	• •	2 5/NACL, MGCL2	* *
5 5/NACL, X2804	the state of the s	TH SPUGGLE CACCE	The same of the sa
SI PLACES ACRET	• •	25 5/C4CL2.NA28CH	* * * *
13 5/*CL,=25C4		5 5/NACL, K2804	* * * *
54 21. CCF5 458C#	The second secon	28 5776012,42500	the state of the s
P SYNICE, MGSCO		an 5/MGSC4.C4SC4	* * *
18 STACCTS CACTS			* * *
27 5/CACL2, "GSC#		12 5/KCL, NA2804	
#8 SYCCATECE	* * * *		* *
14 SZKCL, MGSCH		10 5/KCL+YGCL2 21 5/YGCL2,YG8C4	* *
1 5754057405			5 to a seminary common province was provinced to the seminary of the seminary
48 SYCCATECE		15 STACLICASCO	4 4
36 5/x25c0,468c0		11 5/KCL,CACL?	* *
SP 2/CVCFS'x52Ca		14 5/FGCF5'VYSELA	A signed when the signed the signed and the signed
\$2 21C #C#5 * # 5 2 C#		SE STOCKTECL	t
40 5740504,04504	* * *	48 SZCCNTECL	•
18 5745041 47574	* * *	7 5/NACL, CASCA	CANADA MARINE A SER MAN AND SER MAN A SER MAN AND SER
-3 STARELICACUE	The second secon	-3 SYNACL, CACLS	
32 5/NA28C4,4G5C4	* * *	1 SANACLIKCE	•
15 5/KEL,CASC4	* * *	6 S/NACL, MGS24	The state of the s
# 7 5/0057#66	A STATE OF THE STA	SE SYCACLE, CASCS	
49 5/0157700	* * *	47 SVCCNTACE	• •
7 SZNACUJEASO4	* * *	14 SIKCL, "GSC"	• *
to Samou action	* T	-WA-SYCCHTACL	* *
28 5/04012,04504	•	32 5/ha2sc4, MGSCH	· ·
33 5/548304,04504	•	33 5/h#25C#;C#5C#	*
34 5/#250+/C150F	•	37 5/4250 a, C \$400	7

Table 23. Duncan's multiple range analysis of 3 and 4 salt additions to Synedra (bioassay 6).

X		μ	
5 6 Р 3 и 5 Р		* 60 6/2 6 G 1. * 26 6/4 5 10	
6 7 10		* * 29 6/5 6 6	
5 6 7 8	•	* * * '54 6/3 4 5 Tr * * * 27 6/5 6 7	•
7 6 9	· · · · · · · · · · · · · · · · · · ·	* * * 35 6/7 8 10	• · · · · · · · · · · · · · · · · · · ·
4 2 E 4	V WINE THE PERSON VERY PERSONNELLY PROPERTY OF THE SECOND	* * * 56 674 5 4 F	t describe a second consistent a supercontragagement and approximation of the way of
4 5 A	* * *	* * * 62 6/6 7 A 9 * * * 53 6/3 4 5 9	* * *
7-6-10	* * *	* * * * 35 6/4 5 6 7	
3 4 5 6	* * *	* * * 24 6/4 5 8	* * *
5 6 7 9 9 4 10	The first of the contract of t	* * * 56 6/4 5 6 10 * * * * 151 675 6 7 17	The second secon
5 t 10	A * *	* * * 25 6/4 5 9	* * #
4 5 6 8	* * *	* * * 28 6/5 6 8	5 g 4 g
7 3 8 5 6 7	* * * *	* * * '36 6/8 9 10	* * * * *
4 5 10	* * *	* * * 13 6/2 3 P	
7 5 7		* * * "19 6/3 0 8	A A A A
7	4 * * * *	* * * 52 6/3 4 5 8 * * * 21 6/3 4 10	* * * * *
4.5		* * * "12 672 3 7	A Company of the Comp
6 7 10	* * *.* *	* * * 60 6/5 6 7 9	* * * *
5 6 10		* * 33 6/6 7 10 * * 30 6/3 4 5 6	
4 4 9		* 9 6/2 3 4	* * * *
7 e 10	* * * * *	57 6/4 5 £ 9	* * * *
25		30 6/5 6 10	* * * *
1.1	* * * * *	3 6/1 2 5	
5 10	A A A A	43 671 5 3 10	The state of the s
2 % 5 8 9 10	* * * *	18 6/3 4 5	* * *
3 4 8		\$8 6/7 6 Q	The same of the sa
! 3 4 5 : 7 9	* * *	22 6/4 5 6 32 6/6 7 9	* * *
		20 6/3 4 9	THE RESIDENCE OF THE PARTY WHEN THE PROPERTY OF THE PARTY
5 6	* * * *	23 6/4 5 7 38 6/1 2 3 5	* * *
2 3 8		30 0/1 6 3 3 	The state of the s
239	•	34 6/1 ≥ 3 6	* * *
2.3 10		#2 6/1 2 3 9	The state of the s
3 4 7	• • • • • • • • • • • • • • • • • • •	# e/1 2 e	* * * * *
2.7	• •	40 6/2 3 4 5	* * * *
3 4 6	# # # ·#	15 6/2 3 10	
4 10 3 4	* * * *	10 6/2 3 5	* * * *
304	A AND SECURITION OF THE PROPERTY OF THE PROPER	-2 6/1 2 0	
. 2 3 7 . 2 10	* * * *	47 6/2 3 4 8 8 6/1 2 10	* * *
3 7	The state of the s	11 6/2 3 6	A STATE OF THE STA
. 2 9	* * *	46 6/2 3 4 7	• • •
3 10	* * *	48 6/2 3 4 9	東京
2 3 4	* 4	6 6/1 2 8	• •
, 4 9	* *	37 6/1 2 3 4	A CONTRACTOR OF THE PROPERTY O
236	•	45 6/2 3 4 6	*
3 4 10	* * *	1 6/1 2 3	• "
3 4 t	* *	5 6/1 2 7	•
2 3 6	• •	68 6/CCNTACL	• •
126	* -	51 6/3 4 5 7 17 6/3 4 6	* *
CONTROL	A STATE OF THE PROPERTY OF THE PARTY OF THE	67 6/CCNTPEL	The second secon
CONTROL CONTROL	. 4	7 6/1 2 9	. •
		65 BYCCKTRCL	•

Table 24. Duncan's multiple range analysis of multiple salt additions to Synedra (bioassay 7).

			* * * * * * * * * * * * * * * * * * * *						**************************************	***	****	10 manual 1 m m m m m m m m m m m m m m m m m m					TARANTA AND AND AND AND AND AND AND AND AND AN	
									Andrews Indiana, at a constant day			•	•	* * *	***			
144/2 24/2 24/2 24/2 24/3 24/4 24/4 24/4	# 566 7/20 W 1 56 P 7 66 P 7 66 P 7 7 7 7 7 7 7 7 7 7 7	0 1	* 18 7/4 5 6 7 0 * 13 7/3 4 5 6 4	在 50 年 50 年 50 年 60 年 60 年 60 年 60 年 60 年	1 20 1/2 3 4 3 6 3 6 4 6 4 6 4 6 6 6 6 6 6 6 6 6	27 7/2 W W W W W W W W W W W W W W W W W W W	36 7/1 2 3 4 5 6 7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 7/3 cm	8 772 3 u 5 7 10 772 3 u 5 9	(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		27 77 20 20 20 20 20 20 20 20 20 20 20 20 20	36 7/3 4 7 8 9 0 38 7/3 4 5 6 7 0		100 1/10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 7/5 6 7 8 9 19 7/5 6 7 8 9 19 7/5 6 7 8 9	36 771 2 3 4 5 £ 7 € 36 771 2 3 4 5 £ 9	100 - 100 -
	•									****				**************************************		: : • •		
							g- #U				0 0			Mary 18,35, Table 18,5000000000000000000000000000000000000		•	•	•

Table 25. Linear relations between different estimates of biomass for multiple salt additions to $\underline{\text{Synedra}}$ (bioassay 6 and 7).

Dependent Variable (y)	Independent Variable (x)	Number of Data Points	Correlation Coefficient ^a	Equation $y = mx + b$
x (fluorescence) (3 & 4 salt additions)	Specific Conductivity (µmhos/cm)	68	~0.5570 * *	y = -222.8x + 1.313E06
(fluorescence) (> 4 salt additions))	60	-0.3227*	y = 1.200E03x + 1.906E0
<pre></pre>		354	0.3750**	y = 1.526E04x + -3.571E6
μ̂ (fluorescence) (3 & 4 salt addition	ns)	68	-0.4734**	y = -6.307E03x + 3.718E

alf marked with (*), the value of the correlation coefficient is significantly different from zero at P > 0.99. If marked with (**), the value of the correlation coefficient is significantly different from zero at P > 0.95.

	heterocysts	:	NaHCO3 > Anabaena control
Ŷ	phycocyanin fluorescence	:	Anabaena control > all salts - CaSO4
Û	phycocyanin fluorescence	:	CaCl2, KHCO3, NaHCO3 > Anabaena control

The effects of these salts on the growth depression of $\underline{\text{Synedra}}$ (Table 27) were as follows:

ŵ.	cell counts	:	all salts > Synedra control
û '	cell counts	:	Synedra control > NaCl, CaCl2, MgSO4, K 2 S O 4, CaS O 4, MgCl2
	carotenoid fluorescence	:	all salts - NaHCO3, CaSO4 > Synedra control
	carotenoíd fluorescence	:	all salts - KCL > Synedra control

Scenedesmus data analyzed by the same method (Table 28) provided the following results:

\hat{X} cell counts	:	All Salts - MgSO4, Na ₂ SO ₄ > Scenedesmus
$\hat{\mu}$ cell counts	:	Scenedesmus control K2S04,
X Chlorophyll <u>a</u> fluorescence	:	MgCl ₂ , CaSO ₄ , MgSO ₄ CaCl ₂ , KCL, MgCl ₂ , NaCl > Scendesmus control
û Chlorophyll <u>a</u> fluorescence	:	CaCl2, NaCl, Na2SO4,

Growth depression for the three algal general occurred in the following order:

\hat{X} cell counts	:	All salts - MgSO4 > 3 algae control
$\hat{\mu}$ cell counts	:	three algae control > NaCl, CaCl ₂ , CaSO ₄ , MgCl ₂

Linear correlation coefficients were used to assess the cell count biomass measurements with the fluorescence biomass measurements (Table 29). Anabaena consistently provided the lowest correlation values with the fluorescence data and the total cell counts consistently provided the highest correlations with the fluorescence data. Although Scenedesmus correlated the best value with the chlorophyll a fluorescence measurements, Anabaena did not correlate the best with the phycocyanin fluorescence measurements and Synedra did not correlate the best with the carotenoid fluorescence measurements. Specific conductivity correlated better with the fluorescence measurements than with the cell count measurements.

Comparing the overall growth depression of the three algal genera bioassay to the growth depression produced in the comparable Synedra bioassay, growth depression occurred in the following order with the percentages quantifying the relationship:

\hat{X} chlorophyll <u>a</u> fluorescence :	Syndedra (38 percent) > three algae
$\hat{\mu}$ chlorophyll <u>a</u> fluorescence :	Synedra (50 percent) > three algae

Scendesmus control

Table 26. Duncan's multiple range test for Anabaena (bioassay 9).

Ŷ		û	
	Ana	<u>baena</u>	
9 97 NAMCOS 10 97 KHCOS 4 97 CACL2 3 97 MGCL2 2 97 KCL 14 973 ALGAE CCATECL 12 97SCENEDESMLS CONTROL 13 97SYNEDRA CCATECL 13 97SYNEDRA CCATECL 2 97 K2SCU 5 97 K2SCU 5 97 K2SCU 11 97ANABAENA CONTROL 8 97 CASCU	# # # # # # # # # # # # # # # # # # #	9 9/ NAHCU3 10 9/ KHCC3 11 9/ANABAENA CONTPOL 14 9/3 ALGAE CONTPOL 7 9/ MGSC4 6 9/ K2SC4 5 9/ NACC 1 9/ NACC 13 9/SYNFORA CONTPOL 4 9/ CACC2 12 9/SCENFORSMIS CONTPOL 8 9/ CASC4 3 9/ MGCL2	
· · · · · · · · · · · · · · · · · · ·			
	Hete	rocysts	
7 7 N4HC03 10 9/ KHC03	:	9 9/ NAHÇC3 10 9/ NHCC3	*
3 9/ MGCL2		12 9/SCF CHOFSMLE CONTROL	4 4
# 4/ CACES		4 9/ CACLS	
2 9/ KCL 6 9/ K2804	• •	1 9/ NACL	4 4 4 4
TTY/ KACL	* *	TI TYAKARAFNA CONTROL	# # # #
5 9/ NAZS04	* *	13 9/SYNEDRA CONTROL 8 9/ CASC4	
7 9/ MGSO4 T4 9/3 ALGAE CONTACT	· · · · · · · · · · · · · · · · · · ·	6 9/ X2SC4	
12 9/SCENFORSMLE CONTROL		7 9/ MGSE4	* * *
11 9/ANABAFNA CONTROL	were the same and	14 9/3 ALGAE CONTROL 5 9/ NAZSON	
8 9/ CASO4		2 9/ KCL	•
		4.40	
	Phyco	ocyanin	
11 9/ANABAENA CONTROL		4 9/ CACL2 10 9/ KHCC3	
14 9/3 ALGAE CONTROL	* *	9 9/ NAHCO3	* *
5 9/ NA2504 6 9/ K2504		THE 973 ALGAE CONTROL	* *
12 9/SCENFOFSHLE CONTROL	. :	6 9/ K2SG4 12 9/SCENEDESMUS CONTROL	* *
JO AN KHC03	1.18.18	2 47 NY5204	4
3 9/ #GCL2 2 9/ KCL	* *	13 9/SYNERRA CONTOCL	* *
1 47 KACL		1 9/ NACL	* *
£03HAA \P P	•	8 9/ CASC4	4 4 4
8 9/ CASC4 7 9/ PG804	. *	2 9/ KCL	* * *

Table 27. Duncan's multiple range test for Synedra (bioassay 9).

```
Ŷ
                                                                              û
                                                    Synedra
                                                             9 9/ NAHCO3
4 9/ CACL2
10 9/ MHCO3
TT 9/ANABAENA CENTREL
   9 97 NAHCG3
10 9/ KHCC3
5 9/ NAZSO4
> 13 9/SYNEDPA CCKTRCL
                                                              1 9/ NACL
3 9/ MGCL2
8 9/ CASCA
  14 9/3 ALGAE CONTPOL
 S 84 KCF
                                                             6 97 K25C4
14 9/3 ALGAE CONTROL
   1 9/ NACL
4 9/ CACL?
7 9/ MGSC4
                                                               5 9/ NA2504
                                                             12 9/SCENFOESHLE CONTROL
   6 9/ K2SC4
 8 9/ CASC4
TZ 9/SCENFOESMUS TONTHOL
                                                               7 9/ MGSC4
2 9/ MEL
   3 9/ MGCL 2
                                                             13 9/SYNFORA CENTRES
```

Carotinoid 4 9/ CACL2 3 9/ MGCL2 4 10 9/ KHC03 4 11 9/ANABAENA CCNTRCL 4 11 9/ANABAENA CCNTRCL 5 9/ KCL 7 12 978CFNFDESML8 CCNTRCL 4 4 5 9/ KA2SOU 4 4 8 97 CACL2 5 9/ NA2SOU 5 9/ NA2SOU 6 9/ KASOU 7 9/ MGSCU 7 9/ MGSCU 7 9/ MGSCU 7 9/ MGSCU 8 1 9/3 ALGAF CCNTRCL 8 9/ NACCS 8 9/ NACCS 8 9/ KASOU 8 1 9/ NACC 8 9/ NACCS 8 9/ CASOU 8 1 9/ NACC 8 9/ CASOU 8 1 9/ NACC 8 9/ CASOU 8 1 9/ SYNEDRA CCNTRCL 8 9/ CASOU 8 1 9/ SYNEDRA CCNTRCL 8 9/ CASOU

Table 28. Duncan's multiple range test for Scenedesmus (bioassay 9).

X 9 9/ NAHCO3 10 9/ KHCO3 11 9/ANABAFNA CONTROL 13 9/SYNFDRA CONTROL 3 9/ MGCL2 1 9/ NACL 4 9/ CACL 2	<u>Scenede</u>	P SMUS 9 9/ NAHCC3 10 9/ KHCC3 5 9/ NA2SC4 T4 9/3 ALGAE CONTROL 12 9/SCANPOPESMLA CONTROL 2 9/ KCL 11 9/ANAHAENA CONTROL	* * * * *
2 9/ KCL 8 9/ CASCU 14 9/3 ALGAF CCNTRCL 6 9/ H2SCU 5 9/ NAZSCU 12 9/SCENEDESMLS CCNTRCL 7 9/ MGSCU	* * * * * *	1 9/ NACL 4 9/ CACL2 T3 9/SYNEORA CONTECL 6 9/ N2SC4 3 9/ MGCL2 8 9/ CASC4 7 9/ MGSC4	

Chlorophyll a

```
4 9/ CACL2
                                                                    9 9/ KAHCC3
                                                                   10 9/ KHCC3
11 9/ANABARNA CONTROL
                                                                   14 9/3 ALGAE CONTECL
 3 97 MGCL 2
                                                                    5 9/ NA2504
1 9/ NACL
1 9/ NACL
6 9/ K2SC4
14 9/3 AUGAE CONTROL
                                                                   4 9/ CACL2
                                                                  6 9/ K2SC4
3 9/ MGCL2
2 9/ KCL
12 9/SCENFDESMLS CGNTHCL
11 9/ANABAENA CGNTHCL
7 9/ MGSC4
12 9/SCENEDESMLE CONTROL
10 9/ KHCO3
13 9/SYNFORM CONTROL
 5 9/ 642804
 9 9/ NAHCO3
 7 9/ MGSC4
 8 9/ CASC4
                                                                  13 9/SYNFERA CONTROL
```

Total Cell Counts

```
9 9/ NAHCG3
                                                           9 97 MAHCO3
10 97 KHCC3
                                                          10 9/ KHCC3
 4 9/ CACLE
                                                          11 9/ANAHAENA CONTROL
11 TYANABARNA CENTREL
                                                          13 9/SYNEDRA CENTROL
 1 9/ NACL
3 9/ MGCL 2
                                                         6 9/ K2SO4
5 9/ NA2SO4
14 9/3 ALGAE CCNTRCL
2 9/ KCL
13 9/8YNEDRA CONTROL
                                                          12 9/8CEMETESMLE CONTECL
8 9/ CASO4
                                                         2 9/ KCL
7 9/ MGSr4
1 9/ NACL
6 9/ K2504
5 9/ NA2504
                                                         8 9/ CACL2
 7 9/ MGSC4
14 9/3 ALGAE CONTROL
                                                          3 9/ MGC12
```

Table 29. Linear relations between different estimates of biomass for single salt additions to three algal genera.

Dependent Variable (y)	Independent Variable (x)	Number of Data Points	Correlation Coefficient ^a	Equation y = mx + b
Phycocyanin fluorescence	Number of Anabaena/ml	125	0.3052*	y = 2.105E11x - 2.604E21
Chrotenoid fluorescence	Number of Anabaena/ml	125	0.3679*	y = 9.038E10x - 1.118E21
Chlorophyll <u>a</u> fluorescence	Number of Anabaena/ml	125	0.3834*	y = 8.599E10x - 1.064E21
Phycocyanin fluorescence	Number of Scenedesmus/m	1 125	0.5698*	y = 5.709E11x - 4.173E22
Carotenoid fluorescence	Number of Scenedesmus/m	1 125	0.6917*	y = 2.436E11x - 1.701E22
Chlorophyll <u>a</u> fluorescence	Number of Scenedesmus/m	1 125	0.7700*	y = 2.171E11x - 1.587E22
Phycocyanin fluorescence	Number of Synedra/ml	125	0.6568 *	y = 2.823E11x - 1.118E22
Carotenoid fluorescence	Number of Synedra/ml	125	0.5550 *	y = 1.731E11x - 6.852E21
Chlorophyll \underline{a} fluorescence	Number of Synedra/ml	125	0.4408 *	y = 2.162E11x - 8.558E21
Phycocyanin fluorescence	Total # algal cells/ml	125	0.7561*	y = 5.870E11x - 7.574E22
Carotenoid fluorescence	Total # algal cells/ml	125	0.8202 *	y = 2.804E11x - 3.617E22
Chlorophyll \underline{a} fluorescence	Total # algal cells/ml	125	0.8407*	y = 2.712E11x - 3.499E22
Phycocyanin fluorescence	Specific Conductivity			
	(µmhos/cm)	125	-0.3061 *	y = -1.907E04x + 5.700E07
Carotenoid fluorescence	Specific Conductivity (u mhos/cm)	125	-0.3019*	v = -1.002E04x + 2.995E07
Chlorophyll a fluorescence	Specific Conductivity	123	-0.3019 "	y = -1.002E04x + 2.993E07
onforophyll a lidorescence	(µmhos/cm)	125	-0.2627 *	y = -1.142E04x + 3.412E07
Number of Anabaena/ml	Specific Conductivity			
HOLDER STREET	(umhos/cm)	125	N.S.	_
Number of Scenedesmus/ml	Specific Conductivity	-		
	(μmhos/cm)	125	N.S.	-
Number of Synedra/ml	Specific Conductivity			
	(μmhos/cm)	125	-0.3038 *	y = -5.764E - 08x + 3.957E10
Total # algal cells/ml	Specific Conductivity			•
-	(μmhos/cm)	125	-0.2282 *	y = -6.272E-01x + 1.290E11

alf marked with (*), the value of the correlation coefficient is significantly different from zero at P > 0.99. If marked with (**), the value of the correlation coefficient is significantly different from zero at P > 0.95.

Evaluation of Elutriates and Leachates of Oil Shales

Chemical Evaluations

The cations and anions prevalent in previous spent oil shale analyses in the literature were also prevalent in the analyses of AP shale (Appendix A-1) which was leached in the up-flow column (Appendix A-2). These analyses are grouped by the elapsed time at which the leachate was collected from the column. The analysis period extended over day 1 to day 12. The total concentration of the ions and the pH of the leachate decreased steadily. Throughout this time period the anion concentrations (meq/1) remained in the same order of dominance:

$$SO_4 > HCO_3 > C1$$

The relative abundance of the cations with the exception of potassium and boron shifted during the analysis period as follows:

Day l	:	Na >	Mg	>	Ca	>	K	>	В
Day 2	:	Na >	Сā	>	Mg	>	K	>	В
Day 3	:	Ca >	Mg	>	Na	>	K	>	В
Day 5		Ca >							
Day 9 & 12	:	Ca >	Mg	>	Na	>	K	>	В

The cation and anion data were also normalized to the last analysis day to facilitate comparison of the relative abundance of these ions over the analysis period. Trace metals concentrations (μ g/l) occurred in the following order of abundance:

The chemical analyses of the Type I and Type II elutriates for all the shales studied are summarized in Appendix A-3. For each of the shale identification codes, the first letter refers to the process used to extract the oil and the second letter identifies whether it is processed (S) or unprocessed (R). The chemical analyses were checked by calculating the ion balance for the leachate

and type II elutriation procedures (Table 30). The chemical analyses data for the Type I elutriation procedure were balanced assuming an HCO_3 concentration. Alkalinity analyses were not conducted on the Type I The Type I elutriate elutriation samples. for the AP shale is comparable to the day l leachate composition, with similar electrical conductivities and the same dominance orders for cations and anions. The Type II elutriate for the same shale is comparable to the day 2 leachate with similar electrical conductivities and dominance order for the concentration of cations. The pH of the Type II elutriate was higher adding CO3 to prevalent anions present in the solution. The concentration of CO_3^- was less than the Cl and otherwise the dominance of the anions was the same as the day 2 leachate.

Effects of Oil Shale Elutriates on Acclimated Selenastrum

Type I elutriate (10 ml) was added to cultures of \underline{Selen} astrum. Growth depression occurred in the following order:

X CP > BP = DP = DR = BR >Selenastrum = CR CP = BP = BR = DP = DR = CR >

û Selenastrum

Effects of Oil Shale Elutriates on Scenedesmus

The effect of varying concentrations of oil shale leachates and elutriates on the growth of Scenedesmus varied with the shale studied (Table 31). The AR elutriate and the AP leachate both showed variations in X with variations in concentrations, while the other Figure elutriates did not show any effect. 13 is a summary of the growth curves for the AP spent leachate comparing the growth curves at different concentrations of leachate addition to the growth curve of the Scenedesmus control.

Raw and spent shales from A and B processes were tested. The raw shale elutriates exhibited approximately the same amount of growth depression of Scenedesmus. The spent shales depressed growth in the following order:

Table 30. Summations of cation and anion analyses of the oil shale leachates and elutriates.

Material Extracted	Extraction Procedure ^a	Cations	Anions
AP	Leaching	178.6	161.8
AP	Leaching	131.9	128.3
АР	Leaching	75.18	66.45
AP	Leaching	45.70	40.25
AP	Leach ing	21.08	22.34
AP	Leaching	11.81	12.46
AP	Type I Elutriation	107.21	107.21
AP	Type II Elutriation	90.05	93.87
AR	Type I Elutriation Type II Elutriation	5.21 1.845	5.21 1.917
ВР	Type I Elutriation Type II Elutriation	34.84 21.906	34.84 21.289
BR	Type I Elutriation Type II Elutriation	2.284 1.335	2.290 1.269
СР	Type I Elutriation	4.79	4.79
CR	Type I Elutriation	2.87	2.87
DP	Type I Elutriation	61.73	61.73
DR	Type I Elutriation	4.98	4.98

aType I elutriation analyses balanced with assumed HCO3 concentration.

Table 31. Duncan's multiple range test of complex additions to Scenedesmus (bioassay 10).

```
\hat{\mu}
       Ŷ
                                                                               1 20ML AR ELUTRIATE
1 200L AR ELUTRIATE
                                                                              41 CONTROL
25 20ML AP ELUTPIATE
                                                                              32 SML BP SALTS
27 10HL AP FLUTRIATE
                                                                              15 10ML AP SALTS
42 COSTROL
                                                                              36 SML AP COLUMN LEACHATE
44 CONTROL
                                                                               45 CONTROL
45 CONTROL
                                                                              44 CONTROL
26 15ML BP ELUTRIATE
                                                                                  SML AP SALTS
21 20ML BR SALTS
                                                                                  SML BR ELUTRITTE
15 INML AP SALTS
                                                                                6 15ML AP SALTS
7 10ML AR SALTS
                                                                               31 10ML BP SALTS
22 15HL BP SALTS
                                                                                  SML AP COLUMN SALTS
32 SML BP SALTS
                                                                               42 CONTPOL
    SML BR ELUTRITTE
                                                                               12 5ML AP ELUTRIATE
    SML AR ELUTRIATE
                                                                               21 20ML BR SALTS
28 5ML SP ELUTPIATE
                                                                               25 20ML BP ELUTRIATE
    SYL BR SALTS
                                                                               13 ZOML AP SALTS
30 15ML HP SALTS
                                                                               30 15ML BP SALTS
43 CONTROL
                                                                               34 15HL AP COLUMN LEACHATE
10 15ML AP ELUTRIATE
                                                                               43 CONTROL
33 ZOML AP COLUMN LEACHATE
                                                                               29 SOML BP SALTS
23 10ML BP SALTS
                                                                                9 20ML AP ELUTRIATE
 6 154L AR SALTS
                                                                                5 20ML AR SALTS
 9 21HL AP ELUTRIATE
                                                                                7 10ML AR SALTS
31 10ML SP SALTS
                                                                               23 10ML BR SALTS
 3 LOME AR ELUTRIATE
                                                                                4 SML AR ELUTRIATE
39 IAML AP COLUMN SALTS
                                                                               26 ISHL BP ELUTRIATE
 5 20HL AP SALTS
                                                                               18 15ML BR ELUTPIATE
14 154L AP SALTS
                                                                               17 20ML BR ELUTRIATE
    SHE AR SALTS
                                                                               24 SML BR SALTS
 12 SOL AD ELUTRIATE
                                                                               14 15ML AP SALTS
 2 15ML AR ELUTRIATE
                                                                               27 10ML BP ELUTPIATE
 41 CONTPOL
                                                                               28 SML BP ELUTHIATE
 16 SHI AP SALTS
                                                                               10 15ML AP ELUTRIATE
 38 154L AD CHEHIN SALTS
                                                                                8 SML AP SALTS
 24 148 95 Jans 95
                                                                               35 10ML AP COLUMN LEACHATE
 35 19ML AP COLUMN LEACHATE
                                                                               19 10ML BR ELUTRIATE
 13 204L AP SALTS
                                                                               38 15ML AP COLUMN SALTS
 19 104L AP FLUTRIATE
                                                                               33 SOME AP COLUMN LEACHATE
 18 15ML HE FLUTPIATE
                                                                               39 TANE AP COLUMN SALTS
 37 POME AP COLUMN SALIS
                                                                               11 10ML AP ELUTPIATE
 36 SML AP CULUTE LEACHATE
                                                                               22 15ML BR SALTS
 17 20ML HR FLUTHIATE
                                                                               37 20ML AP COLUMN SALTS
 34 15ML AP COLU'S LEACHATE
                                                                                2 15HL AR FLUTRIATE
 40 SML AP COLUMN SALTS
                                                                                3 TOME AF PLUTHTATE
 11 TOME AP ELUTRIATE
 Legend: 1 = \text{mg SO}_4, 2 = \text{mg Cl}_2, 3 = \text{K}_2 \text{SO}_4, 4 = \text{KCl}, 5 = \text{KHCO}_3, 6 = \text{Na}_2 \text{SO}_4, 7 = \text{NaCl}, 8 = \text{NaHCO}_3, 9 = \text{CaSO}_4, 10 = \text{CaCl}_2
```

AP elutriate > BP elutriate

The growth of <u>Scenedesmus</u> was less in the BP shale elutriate than the growth in the raw shale (Figure 14).

Significant linear correlation coefficients for the \hat{X} and $\hat{\mu}$ data for Scenedesmus are summarized in Table 32. The electrical conductivity correlated at a low level with the \hat{X} data and not at all with the $\hat{\mu}$ data. The heavy metals did not correlate with either \hat{X} or $\hat{\mu}$.

Unlike the results with Selenastrum and Synedra, the electrical conductivity of the culture media did decrease significantly during the bioassay with Scenedesmus. An example of this is shown in Figure 15 by

showing a linear regression on the electrical conductivity data versus time for the bioassay flask treated with AP leachate.

Omparison of the Salt Effects to the Oil Shale Elutriate Effects on the Productivity of Scenedesmus

The effects of oil shale elutriates were compared to the salt effects by comparing the growth of the controls consisting of AAM plus salts equivalent to the salinity of the extract (determined by analysis) to the growth of the extract additions The raw shales both showed better growth responses than their matching salt controls. The spent shales produced the opposite effect with the

Figure 13. Concentration effects on the growth of Scenedesmus (bioassay 10).

Table 32. Linear relations between different estimates of biomass for complex additions to $\frac{\text{Scenedesmus}}{\text{Scenedesmus}}$ (bioassay 10).

	endent iable (y)	Independent Variable (x)	Number of Data Points	Correlation Coefficienta	Equation $y = mx + b$
Ŷ	fluorescence	Specific Conductivity (mhos/cm)	80	0.2407*	y = 7.619E04x - 7.480E07

alf marked with (*), the value of the correlation coefficient is significantly different from zero at P > 0.99. If marked with (**), the value of the correlation coefficient is significantly different from zero at P > 0.95.

Figure 14. Comparison of the growth of $\underline{\text{Scenedesmus}}$ with the addition of BR and BP elutriates.

Figure 15. Decrease in the electrical conductivity of the culture medium plus AP leachate (20 ml) in the presence of <u>Scenedesmus</u> growth (bioassay 10).

spent shale showing less growth than the matching salt controls. This effect of the spent shale and matching salt control is shown in Figure 16. Significant differences (P $_{\rm 2}$ 0.95) in growth rate measured by fluorescence occurred although no significant difference in \hat{X} was found.

Pearsall ion balances (Na + K/Mg + Ca in mg/l and meq/l) of the salt spikes and the oil shale elutriates were linearly correlated to the \hat{X} and $\hat{\mu}$ for each concentration of additions. No correlation could be found between these variables.

Figure 16. Comparison of the growth of <u>Scenedesmus</u> grown in the presence of BP oil shale elutriate and its matching salt control.

Figure 17. A beta toxicity curve (Luckey and Venugopal 1977).

DISCUSSION

The results with respect to each of the five study objectives stated at the beginning of the report are discussed below.

Utilization of Batch Bottle Bioassay for Toxicity Testing

Test Algae

Comparing the algal species tested for salt toxicity, these algal species displayed the following sensitivities to salt:

<u>Selenastrum</u> > acclimated <u>Selenastrum</u> > <u>Synedra</u> > 3 combined algal species

The indigenous diatom, Synedra, did tolerate higher salt concentrations than the test organism, Selenastrum. The acclimation of the Selenastrum did improve its ability to tolerate increased salt concentrations, but the acclimated Selenastrum did not display the same reactions to specific ions as did the Synedra. The addition of three algal species to each test flask displayed the least sensitivity to salt.

The greater tolerance of the indigenous algae to salt solutions illustrates the necessity of using indigenous organisms when testing for toxic responses. If indigenous algae are not available, then acclimation of the standard test algae to the receiving water is necessary. If possible, acclimated Selenastrum should also be used in order to establish a data base which is comparable to other algal bioassay data.

Variations in Biomass Monitoring Techniques

Variations occurred in the biomass measurements used to monitor the growth of the test algae. The optical density measurements were subject to interference from precipitates which occurred as the pH increased in test flasks of the less soluble salts such as CaSO4. This measurement also displayed less sensitivity during the first days of the bioassay when the maximum specific growth rates $(\hat{\nu}_b)$ occurred.

The fluorescence measurements were also subject to interference from precipitates, although this interference was not as great as the precipitate interference with optical density. The toxic response of algae to some compounds is chlorotic, which affects

the algal fluorescence measurements. Chlorosis did not appear to be a problem with the toxic substances tested but should be considered as a possibility when considering biomass measurements with chlorophyll a fluorescence. The depression of algal photosynthesis after the transfer of algae to a higher salinity media has been stated in the literature (Stewart 1974).

Automated cell counts adjusted to the mean cell volume appeared to have the least variability of all the biomass measurements. Cell volume does significantly change in the presence of different toxicants, therefore the adjustment of the cell counts with the mean cell volume for biomass purposes is necessary and also more equivalent to biomass.

The results of the bioassays therefore were based on automated cell counts adjusted by the mean cell volume when these data were available. Otherwise chlorophyll a fluorescence was used. The optical density biomass measurements although collected, were not used in the analysis of results. For this reason, it is suggested that, if possible, an indigenous algal species be selected for toxicity testing that would be compatible with displacement cell counting techniques. This would necessitate an alga which is unicellular and has a morphologically simple shape.

The use of three different fluorescent characteristics to differently monitor the growth of three different algal species requires further research to develop a simple yet reliable method. The phycocyanin fluorescence, carotenoid fluorescence and chloro-phyll a fluorescence all correlated better to the sum of the three algal direct cell counts than they did to the individual Anabaena, Synedra, and Scenedesmus cell counts respectively. The Anabaena cell counts correlated better with chlorophyll a fluorescence than the phycocyanin fluorescence suggesting that the chlorophyll a content of the <u>Anabaena</u> was easier to detect than the phycocyanin content. The Synedra cell counts correlated better with the phycocyanin fluorescence suggesting that the carotenoid peak of the mixed culture was probably closer to the phycocyanin wavelengths than the carotenoid wavelengths used for monitoring the bioassay. The proximity of these fluorescent peaks would be the cause of this interference at the 60 nanometer bandwidth used for this analysis.

Effects of Salinity on Freshwater Phytoplankton

Concentration Effects

The concentration of the compounds produced variable effects depending on the test alga and the compound. The ions being studied are hormetins, toxic agents at higher concentrations but stimulatory at lower concentrations (Luckey and Venugopal 1977). With the exception of Na and HCO3, the ions are required ions for algal growth and so follow a beta toxicity curve (Figure 17).

AAM is a medium designed to provide all the required nutrients necessary for algal growth, with algal growth terminating from phosphorus limitation. Because of Liebig's Law of the minimum, an increase in biomass would have to include the addition of a form of phosphorus which the algae could utilize. Therefore, the growth stimulatory effects of the ions under study were eliminated, and the toxic concentration effects were expressed. This did occur using <u>Selenastrum</u> as the test organism, with growth depression occurring at the 0.004 N (250 mg/l/as NaCl) concentration. Growth depression increased as the concentration increased. Therefore, the full nutrient growth potential of the medium was not utilized by the <u>Selenastrum</u> because of the effects of salinity added to the AAM medium. Both the \hat{X} and $\hat{\mu}_b$ were depressed.

LPS is an AAM based medium to which additional salinity has been added to equal the salinity of Lake Powell. No growth stimulatory effects were found using Synedra as the test organism. Growth depression began at the $0.05\ \mathrm{N}$ concentration and increased as the concentration of salts increased. However, <u>Scenedesmus</u> did exhibit growth stimulation with the addition of complex salt solutions. This would suggest that one of the salt ions under study and not phosphorus was limiting the growth of Scenedesmus. Vanadium (V) is a required trace element (Provasoli 1958) for the growth of Scenedesmus and LPS does not include V in the trace element addition. Provasoli (1958) also states that impurities in reagent salts used in nutrient media contain sufficient trace metals except Fe and Mn to support freshwater phytoplankton species. Therefore, not only the salt ions tested but also the trace metals, specifically V, may be limiting Scenedesmus growth. This apparent variability in the nutrient requirements for different algal species demonstrates the importance of identifying changes necessary in the media to maintain a known element of limitation when utilizing indigenous species for toxicity studies of complex wastes.

Effects of Different Ionic Species

Differences in ionic toxicity did exist with single salt additions to $\frac{\text{Selenastrum}}{\text{than the other}}$

cations for both of these algal genera. Mg is an essential ion for photosynthesis. It is the central chelated metal in chlorophyll a molecules. Mg is the ion with the smallest hydrated radius (8 Ångstrums) of the group II elements in the periodic table (Stumm and Morgan 1970). Na (4 Å) hydrated radius, which also exhibited the same toxicity as Mg with single salt additions to Synedra, has the smallest hydrated radius of the group I elements of the periodic table. This smaller hydrated radius may have allowed greater selective adsorption of these two cations compared to the other cations in solution. Synedra, unlike Selenastrum, did react selectively to anion toxicities.

The order of toxicity of the anions was reversed from their order of solubility and the size of their hydrated radius did not appear to be significant. SO₄ (4 Å) was the most toxic anion to Selenastrum. Most algae have the ability to reductively assimilate SO₄ to sulfide, which is essential for algal growth and cell division. Most algae also have the ability to reductively assimilate SO₃. The hydrated radii of HCO₃ and Cl are 4 Å and 3 Å respectively. HCO₃ was the most toxic anion to Synedra.

Anabaena is a cyanophyte which has been mentioned in the literature as a dominant genus in high salinity (TDS \geq 1 g/l) environments. In the presence of all of the salts except CaSO₄, the maximum standing crop of the heterocysts decreased. Heterocysts are specialized cells of Cyanophyta which are present when nitrogen fixation by these algae occur. This would suggest that the medium may not be nitrogen limited for the Anabaena in the presence of these salts. The number of vegetative cells of Anabaena were low in the test flasks as compared to the <u>Synedra</u> and <u>Scenedesmus</u>. However, the short duration of the bottle test may have precluded <u>Anabaena</u> dominance. Blue-green algae are <u>thought</u> of as generally having slower growth rates than green algae (Stewart 1974). Also, this <u>Anabaena</u> was a standard test species rather than an indigenous alga 1974). as were the other two genera representatives Also the bioassay light level may tested. have been high enough to inhibit the growth of Anabaena because generally the standard test requires 200 f-c not 400 f-c for bluegreens (APHA, 1975).

A significant difference in the toxic response of Selenastrum because of in the synergistic interactions of cations and anions was shown. This effect appeared to control the amounts of depression of growth of all of the algal species tested when more than one salt was added to the medium. Therefore, when complex salt solutions are added to receiving waters, measurement of one dominant ion pair cannot be used to predict the effect of the salts on the productivity of the phytoplankton.

Evaluation of Concentration Measurements

Concentration measurements may provide a better means of assessing the effects of increased salinity on the productivity of freshwater phytoplankton. Osmotic pressure correlations from the bioassays with Selenastrum and Synedra were significant, but very low. This correlation was still less than a linear correlation of the same biomass data to electrical conductivity.

Although consistently low, the most consistently significant correlations with biomass measurements for all the algal species tested were obtained with specific conductivity. These correlations were better with \hat{X} than with $\hat{\mu}$ results. This linear relationship did not hold when grouping data from all the Synedra bioassays. Therefore there were some inconsistencies between bioassays that were apparently a result of the different experimental conditions.

The other concentration measurements tested did not provide consistently significant correlations with any of the biomass measurements. The correlations of the activity coefficient with the biomass data may have been lowered due to the calculations used. The measured activities which were linearly correlated with the Scendesmus biomass data suffered from problems: 1) The activities of most of these solutions were at the lower end of the sensitivity range for the measurement technique utilized. 2) Calculations of activities and osmotic pressure based on limiting laws are not applicable to solutions of mixed electrolytic charges and the bioassay data support that conclusion (Stumm and Morgan 1970).

Evaluation of the Corps of Engineers Standard Elutriation Procedure

The chemical compositions of the two types of elutriation procedures and the leachate procedure were compared for the AP shale. The Type II elutriation procedure followed the Corps of Engineers standard elutriation protocol. The Type I elutriation procedure provided comparable data to the leachate produced from an up-flow column on the first day of operation. The Type II elutriation procedure produced comparable data to the day 2 leachate analyses, except the pH of the Type II elutriate was higher than the day 2 leachate. Otherwise the major ions present in the elutriate were comparable to the leachate of each day.

The leachate did provide the additional knowledge that the composition of the major cations changed in order of dominance over the extraction period and the pH increased steadily during the extraction period. Therefore, the ion composition and pH of the leachate from the spent oil shale disposal

sites will change depending on the contact time of the disposal water. Both of these variables affects the biostimulatory or toxic responses of phytoplankton and so the contact time of the leachate with the disposal site shale could change the phytoplankton response to the leachate.

Problems in the utilization of the Corps of Engineers standard elutriation procedure could occur because of the difference demonstrated with the leachate procedure. The water passing through a spent shale disposal pile will be moving at all times. The contact times of the water and shale will vary but with the recycling of this water, a longer contact time, such as the 48 hour contact time of the Type I elutriate may provide an elutriate more characteristic of the leachate from spent shale disposal sites.

The Type II elutriate procedure did not totally wet the interior of the most hydrophobic shales. The standard elutriation procedure was obtained from standard soil analysis and designed for testing samples from dredged sites, but the hydrophobic nature of some of the shales did preclude complete extraction using this technique.

Effects of Oil Shale Leachates and Elutriates on Phytoplankton Productivity

The addition of many of the spent oil shale elutriates and leachates stimulated the growth of Scenedesmus. The concentration effects of these additions did not provide consistent conclusions. The extracts from the AP shale stimulated growth more than the extracts from the BP shale. Therefore, growth stimulation of Scenedesmus is dependent on the process applied to the shale.

In general the extracts from the spent shales stimulated growth more than did the extracts from the raw shales. The processing of the shale appears to make growth stimulating compounds more available to Scenedesmus. These compounds may be low molecular weight aromatic hydrocarbons, which were found to stimulate algal growth in other petroleum products (Dunstan et al. 1975). The spent shales did stimulate growth as compared to their matching salt controls. Therefore, this stimulation was not caused by the addition of any of the salt compounds.

This differed from the comparison of the growth of raw shale extracts to their matching salt controls. The growth of the raw shale extracts was less than the growth of the salt controls. This would suggest toxicity or a decrease in the limiting nutrient availability from a component of the oil shale extract other than the salt component. Linear correlations were made between the biomass and the trace metals present in the extracts but no consistent

correlations could be found between the Scenedesmus biomass data and the trace metal concentration in the extracts. Generally, the concentrations were lower than toxic level to algae and because of this the growth depression was probably not due to the trace metals present in the extracts.

Application of the Bioassay Results to the Colorado River System

Increased growth of the three algae grown competitively suggest that competition was occurring between the algae when grown in higher salt concentrations. The literature would suggest that this increase in salt concentrations would provide a competitive advantage for cyanophytes (Gupta 1972). The increased presence of cyanophytes would change the species composition of Lake Powell. At present no cyanophytes are common in Lake Powell. The literature also suggests that lower Pearsall ion ratio (< 1.5) also select for cyanophytes (Provasoli 1958). the length of contact time with processed oil shale increases, the Pearsall ion balance decreases and therefore recycling of disposal water through the oil shale would decrease the Pearsall ion balance and may also favor cyanophytes.

An increase in the salinity of Lake Powell may inhibit the growth of Synedra. An increase to 0.05 N salinity will suppress the growth of Synedra in the laboratory, but an increase of 0.05 N salinity (1150 mg/l TDS as NaCl) would be a large increase in the salt content of this receiving water. The costs to agricultural water use of this salinity increase would probably prevent attaining such a level.

Leachates from oil shale sites may increase the productivity of <u>Scenedesmus</u> in Lake Powell. Leachates from the spent disposal sites would appear to stimulate <u>Scenedesmus</u> growth more than leachates from the raw shale. However, runoff leaching raw shale from ground disruption could also stimulate the growth of <u>Scenedesmus</u> in Lake Powell. The trace metals present in the oil shale leachates should not effect the growth of <u>Scenedesmus</u>.

Therefore, the increase in salinity because of water diversion will probably never reach a level high enough to affect the algal population in Lake Powell because of downstream agricultural interests. However, releases of leachates from the shale disposal sites may be biostimulatory to the algae of Lake Powell.

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

In batch bioassay tests:

- l. A single algal species indigenous to Lake Powell, Synedra, deli catissma var. angustissima, was more tolerant to salinity than the standard algal assay test alga, Selenastrum capricornutum, Printz.
- 2. Acclimation of the standard test alga, Selenastrum capricornutum in a higher salinity medium increased its tolerance to salinity but the acclimated Selenastrum capricornutum still was less tolerant to salinity than the indigenous alga, Synedra delicatissma.
- 3. A mixture of three algal species (Anabaena flosquae (culture), Synedra delicatissma (indigenous), and Scenedesmus capricornutum (indigenous)) were more tolerant to salinity than any of the other test algae.
- 4. Salinity toxicity in Selenastrum capticornutum occurs with the addition of salts at the 0.004 N concentration.
- 5. Salinity toxicity in Synedra delicatissma occurs with the addition of salts at the 0.05 N concentration.
- 6. With multiple salt additions, the interactions of cations and anions have more effect on the growth inhibition toxicity than any one cation and/or anion effect.
- 7. Specific conductivity correlates with algal productivity at a significant but a low level.
- 8. Calculated osmotic pressure and the activity coefficient do not correlate well with algal biomass variables.

- 9. Automated cell counts adjusted with mean cell volume measurements appear to be the best biomass monitoring technique when compared to chlorophyll \underline{a} fluorescence and optical density.
- 10. The Corps of Engineers standard elutriation procedure does not extract ions from oil shales as completely as elutriation procedures with longer extraction periods or leachate procedures using an up-flow column.
- 11. The ion composition and pH of the oil shale leachate is dependent on the contact time of the water with the oil shale.
- 12. The addition of oil shale leachates to Lake Powell may be biostimulatory to the phytoplankton.
- 13. The increase in salinity in Lake Powell may not decrease algal productivity but higher salinity and/or a decrease in the ratio of monvalent to divalent ions of the salinity may increase the cyanophytes present in Lake Powell.

Recommendations For Further Research

- 1. Microcosm studies are needed to study the effects of sediment action on the cycling of these salts and leachates in the reservoir.
- 2. <u>In situ</u> studies in Lake Powell are needed to try to determine the possibility of algal population shifts in the presence of increased salinity or oil shale leachate concentrations.

REFERENCES

- APHA, AWWA, WPCF. 1975. Standard methods for the examination of water and wastewater. 14th Ed. American Public Health Association, Washington, D.C. 1193 p.
- Barrow, G. M. 1966. Physical chemistry. McGraw-Hill Book Company, New York. 843 p.
- Bennoun, P. 1974. Correlation between states I and II in algae and the effect of magnesium on chloroplasts. Biochimica Et Biophysica ACTA 368:141-147.
- Blackman, W. C., Jr., J. V. Rouse, G. R. Schillinger, and W. H. Shafer, Jr. 1973. Mineral pollution in the Colorado River Basin. Journal of the Water Pollution Control Federation 45(7):1517-1557.
- Bloch, Mary Belle, and Paul D. Kilburn, Editors. 1973. Processed shale revegetation studies, 1965-1973. Colony Development Operation. Atlantic Richfield Company. Denver, Colorado. 208 p.
- Bureau of Land Management. 1975. Proposed development of oil shale resources by the Colony Development Operation in Colorado. Draft Environmental Statement. Department of the Interior, Washington, D.C. 500 p.
- Bureau of Reclamation. 1974. Alternative sources of water for prototype oil shale development Colorado and Utah. Upper Colorado Region of the Bureau of Reclamation, Salt Lake City, Utah. 114 p.
- Cairns, J., A. L. Buikema, A. G. Heath, and B. C. Parker. 1978. Effects of temperature on aquatic organism sensitivity to selected chemicals. Bulletin 106. Virginia Water Resources Research Center, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
- Colorado State University. 1971. Water pollution potential of spent oil shale residues. EPA, U.S. Government Printing Office, Washington, D.C. 116 p.
- Conkle, N., V. Elizey, and K. Murthy. 1974. Environmental considerations for oil shale development. EPA, NTIS PB 241 942, Washington, D.C. 114 p.

- Coulter Electronics, Inc. No date. Instruction manual: Model B Coulter Electronic Particle Counter. Coulter Electronics, Inc., Hialeah, Florida. 200 p.
- Crawford, K. W., C. H. Prien, L. B. Baboolal, C. C. Shih, and A. A. Lee. 1977. A preliminary assessment of the environmental impacts from oil shale developments. U.S. EPA. EPA-600/7-77-069. NTIS PB 272 283. Washington, D.C. 173 P.
- Dashora, M. S., and R. S. Gupta. 1978. Effect of chlorine and copper sulfate on the growth and physiology of a mixed culture of algae. Indian Journal of Environmental Health 20(1):50-61.
- Donnell, J. R., and R. W. Blair. 1970. Resources appraisal of three rich oil-shale zones in the Green River formation. Colorado School of Mines Quarterly 65(4):73-87.
- Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics 11:1-42.
- Dunstan, W. M., L. P. Atkinson, and Natoli. 1975. Stimulation and inhibition of phytoplankton growth by low molecular weight hydrocarbons. Marine Biology 31:305-310.
- Findlay, A. 1919. Osmotic pressure data of Morse in osmotic pressure. Longmans, Green and Co., Inc., New York.
- Fisher, N. S. 1977. On the differential sensitivity of estuarine and open-ocean diatoms to exotic chemical stress. The American Naturalist 111(981):871-893.
- Goldman, J. C., W. J. Oswald, and D. Jenkins. 1974. The kinetics of inorganic carbon limited algal growth. Journal Water Pollution Control Federation 46(3):554-574.
- Goldman, J. C., D. B. Porcella, E. J. Middlebrooks, and D. F. Toerien. 1972. The effect of carbon on algal growth--its relationship to eutrophication. Water Research 6:637-679.
- Gordon, D. C., and N. J. Prouse. 1973. The effects of three oils on marine phytoplankton photosynthesis. Marine Biology (Berlin) 22:329-333.

- Greene, J. C., W. E. Miller, R. A. Shiroyama, R. A. Soltero, and K. Putnam. 1978. Use of laboratory cultures of Selenastrum, Anabaena, and the indigenous isolate Sphaerocystis to predict effects of nutrient and zinc interactions upon phytoplankton growth in Long Lake, Washington. Mitt. Int. Ver. Limnol. 21:372-384.
- Gupta, R. S. 1972. Blue-Green algal flora of Rajashan. Nova Hedwigia 23(2-3):481-492.
- Hand, J. W. 1969. Planning for the disposal of oil shale, chemical and mini-wastes. Colorado Geological Survey, Special Publication 1:33-38. Denver, Colorado.
- Holburt, M. B., and V. E. Valentine. 1972.
 Present and future salinity of Colorado
 River. A.S.C.E. Journal of the Hydraulics Division 98(HY3):503-520.
- Harned, H. S., and B. B. Owen. 1950. Physical chemistry of electrolytic solutions. Reinhold Publishing Corp., New York.
- Holtz, W. G. 1977. Disposal of retorted oil shale from Paraho Shale Project--final report Bu Mines OFR 27-77, PB 263 793. National Technical Information Service, Springfield, Va. 472 p.
- Hurst, R. L. 1972. Statistical program package (STATPAC). Department of Applied Statistics and Computer Science. Utah State University, Logan, Utah.
- Ignatiades, L., and N. Mimicos. 1977. Ecological responses of phytoplankton on chronic oil pollution. Environmental Pollution 13: 109-118.
- International Association of Theoretical and Applied Limnology. 1978. Experimental use of algal cultures in limnology. Communications No. 21. E. Shcweezer bart'sche, Verlagsbuchhandlung, Stuttgart, Germany.
- Iorns, W. V., C. H. Hembree, and G. L. Oakland. 1965. Water resources of the Upper Colorado River Basin--Technical Report. Geological Survey Professional Paper 441. United States Government Printing Office. Washington, D.C.
- Kahn, N., and E. Swift. 1978. Positive bouyancy through ionic control in the non-motile marine dinoflagellate Pyrocystis noctiluca Murray ex Schuett Limnology and Oceanography 23(4):649-658.
- Kauss, P. B., and T. C. Hutchinson. 1975.
 The effects of water-soluble petroleum components on the growth of <u>Chlorella vulgaris</u> Beijerinck. Environmental Pollution 9:157-174.

- Keeley, J. W., and R. M. Engler. 1974.
 Discussion of regulatory criterial for ocean disposal of dredged materials:
 Elurtriate test rationale and implementation guidelines. Miscellaneous Paper D-74-14. U.S. Corps of Engineers. Vicksburg, Mississippi. 13 p.
- Kerekes, J., and J. R. Nursall. 1966. Eutrophication and senescence in a group of Prairie-Parkland Lakes in Alberta, Canada. Proceedings International Association of Theoretical and Applied Limnology 16(1):65-73.
- Kiefer, D. A. 1973. Chlorophyll a fluorescence in marine centric diatoms: Responses of chloroplasts to light and nutrient stress. Marine Biology 23:39-46.
- Lee, G. F. 1973. Review paper: Chemical aspects of bioassay techniques for establishing water quality criteria. Water Research 7:1525-1546.
- Lehman, J. T. 1978. Enhanced transport of inorganic carbon into algal cells and its implications for the biological fixation of carbon. Journal of Phycology 14:33-42.
- Leppard, G. G., A. Massalski, and D. R. S. Lean. 1977. Electron-opaque microscopic fibrils in lakes: Their demonstration, their biological derivation and their potential significance in the redistribution of cations. Protoplasma 92(3/4):289-310.
- Luckey, T. D., and Venugopal. 1977. Metal toxicity in mammals. Volume I. Plenum Press, New York. 238 p.
- Maase, D. L., S. Srinivasan, R. S. Reimers, W. C. Baytos, and R. G. Brown. 1975. Laboratory characterizations of leach bed disposal of primer mixer wastes at the Twin Cities Army Ammunitions Plant. Battelle, Columbus, Ohio. 56 p.
- Maugh, T. H., II. 1977. Oil shale: Prospects on the upswing . . . again. Science 198:1023-1027.
- Medine, A. J., D. B. Porcella, and P. A. Cowan. 1977. Microcosm dynamics and response to a heavy metal loading in a Lake Powell sediment-water-gas ecosystem. Utah State University, Logan, Utah. 131 p.
- Meyer, R. L. 1978. The effects of heavy metals on algal populations in a south central reservoir. Project Completion Report A-041-ARK. Arkansas Water Resources Research Center. University of Arkansas, Fayetteville, Arkansas.
- Middlebrooks, E. J. 1976. Statistical calculations. Ann Arbor Science Publishers, Inc. Ann Arbor, Michigan. 119 p.

- Miller, W. E., J. C. Green, and T. Shiroyama. 1978. The Selenastrum capricornutum Printz algal assay bottle test. EPA-600/9-78-018 Corvallis Environmental Research Laboratory. U.S. Environmental Protection Agency, Corvallis, Oregon.
- Moore, W. J. 1963. Physical chemistry. 3rd Edition. Prentice Hall, Englewood Cliffs, New Jersey. 844 p.
- Mortimer, C. H. 1971. Chemical exchanges between sediments and water in the Great Lakes--speculations on probable regulatory mechanisms. Limnology and Oceanography 16:387-404.
- Munawar, M. 1974. Limnological studies on freshwater ponds of Hyderabad, India. IV. The Biocenose. Periodicity and Species Composition of Unicellular and Colonial Phytoplankton in Polluted and Unpolluted Environments. Hydrobiologia 45(1):1-32.
- Murphy, T. P., D. R. S. Lean, and C. Nalewajko. 1976. Blue-green algae: Their excretion of iron-selective chelators enables them to dominate other algae. Science 192(4242):900-902.
- National Academy of Science. 1979. Redistribution of trace elements from mining and processing of oil shale. Chapter 2. In: Redistribution of accessory elements and compounds associated with mineral resource exploitation. Rep. of the Committee on Accessory Elements, National Resources Council, Washington, D.C.
- National Petroleum Council. 1972. United States energy outlook, and interim report. Sup. 5. An initial appraisal by the Oil Shale Task Group of the other Energy Resources Subcommittee. National Petroleum Council, Washington, D.C.
- Oceanography International Corporation. No date. Operating procedure manual for 0524 B total carbon system. Oceanography International Corporation, College Station, Texas. 50 p.
- Oceanography International Corporation. No date. Preliminary operating procedures manual for the Direct Injection Module. Oceanography International Corporation, College Station, Texas. 50 p.
- Odum, E. P. 1971. Fundamentals of ecology, 3rd Ed. W. B. Saunders Company, New York. 574 p.
- Patrick, R. 1978. Effects of trace metals in the aquatic ecosystem. American Scientist 66(2):185-191.

- Payne, A. G. 1976. Application of the algal assay procedure in biostimulation and toxicity testing. In: E. J. Middle-brooks, D. H. Falkenborg, and T. E. Maloney, eds. Biostimulation and Nutrient Assessment. PRWG168-1. Utah Water Research Laboratory, Utah State University, Logan, Utah. p. 3-28.
- Petzrick, P. A. 1975. Oil shale--an ace in the hole for national security. Shale Country 1(10):18-20.
- Pfeffer, F. M., and R. S. Kerr. 1974.
 Pollutional problems and research needs
 for an oil shale industry. EPA 600/274-067. National Technical Information
 Service, Springfield, Virginia.
- Pforzheimer, H. 1974. Paraho--new prospects for oil shale. Chemical Engineering Progress 70(9):62-65.
- Provasoli, L. 1958. Nutrition and ecology of protozoa and algae. Annual Review of Microbiology 12:279-308.
- Rahat, M., and I. Dor. 1968. The hidden flora of a lake. Hydrobiologia 31:186-192.
- Rana, B. C., and H. D. Kumar. 1974. Effects of toxic waste and wastewater components on algae. Phykos 13(1):67-83.
- Reynolds, R. C. 1978. Polyphenol inhibition of calcite precipitation in Lake Powell. Limnology and Oceanography 23(4):585-597.
- Routson, R. C., R. E. Wildung, and R. M. Bean. 1979. A review of the environmental impact of ground disposal of oil shale wastes. Journal of Environmental Quality 8(1):14-19.
- Rudd, J. W. M., and Hamilton. 1978. Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnology and Oceanography 23:337-348.
- Sachdev, D. R., and N. L. Clesceri. 1978.
 Effects of organic fractions from secondary effluent on <u>Selenastrum capricornutum</u> (Kutz). Journal Water Pollution Control Federation 50(7): 1810-1820.
- Schindler, D. W. 1971. Nutrients and eutrophication. Journal of Phycology 7:321.
- Schindler, D. W., and E. J. Fee. 1973.
 Diurnal variation of dissolved organic carbon and its use in estimating primary production and CO₂ invasion in Lake 227. Journal of the Fisheries Research Board of Canada 30:1501-1510.

- Science and Public Policy Program of the University of Oklahoma and Radian Corporation. 1977. Energy from the west--a progress report of a technology assessment of western energy resource development. Volume I. U.S. EPA 600/7-77-072a. NTIS PB-271 752 Springfield, Virginia. 153 p.
- Seitz, U., and U. Seitz. 1973. Biosynthese der ribosomalen RNS bei der blaugunen algae <u>Anacystis</u> <u>nidulans</u>. Arch. Mikrobiol 90: 213-222.
- Siggia, S., and P. C. Uden. 1974. Report of the conference--workshop entitled Analytical Chemistry Pertaining to Oil Shale and Shale Oil. National Science Foundation, Washington, D.C. 194 P.
- Sladek, T. A. 1975a. Recent trends in oil-shale--Part 2: Mining and shale oil extraction processes. Colorado School of Mines Mineral Industry Bulletin 18(1):21.
- Sladek, T. A. 1975b. Recent trends in oil-shale--Part 3: Shale oil refining and some oil-shale problems. Colorado School of Mines Mineral Industry Bulletin 18(2):11.
- Sonzogni, W. C., D. P. Larsen, K. W. Malneg, and M. D. Schuldt. 1977. Use of submerged chambers to measure sedimentwater interactions. Water Research 11:461-464.
- Sorensen, D. L., M. M. McCarthy, E. J.
 Middlebrooks, and D. B. Porcella.
 1977. Suspended and dissolved solids
 effects on freshwater biota: A review.
 Utah Water Research Laboratory, Utah
 State University, Logan, Utah
 P.
- Specht, D. 1975. Seasonal variation of algal biomass production potential and nutrient limitation in Yaquina Bay, Oregon. In: Biostimulation and Nutrient Assessment Symposium. Utah State University, Logan, Utah.
- Stewart, A. J. and D. W. Blinn. 1976. Studies on Lake Powell, USA: Environmental factors influencing phytoplankton success in a high desert warm monomictic lake. ARCH. Hydrobiol. 78(2):139-164.
- Stewart, W. D. P., Ed. 1974. Algal physiology and biochemistry. Botanical Monographs, Volume 10. Blackwell Scientific Publications, Oxford, England.
- Strong, A. E. and B. J. Eadie. 1978. Satellite observations of calcium carbonate precipitations in the Great Lakes. Limnology and Oceanography 23(5):877-887.

- Stumm, W. and Baccini. 1978. Man-made chemical perturbation of lakes. Chap. 4. In: Lakes: Chemistry, Geology, Physics. A. Lerman, Editor. Springer-Verlag, New York.
- Stumm, W., and J. J. Morgan. 1970. Aquatic chemistry. J. Wiley and Sons, New York. 583 p.
- Sun, A. S. K., and K. Sauer. 1972. Pigment systems and electron transport. In: Chloroplasts II. Emerson Enhancement in Broken Spinach Chloroplasts. Biochimica et Biophysica ACTA 256:409-427.
- Swift, D. G., and W. R. Taylor. 1974. Growth of vitamin B₁₂--limited cultures. Journal of Phycology 10:385-391.
- Thomas, W. H. and A. N. Dodson. 1968. Effects of phosphate concentration on cell division rates and yield of a tropical oceanic diatom. Biological Bulletin 134:199-208.
- Trees, C. C. 1978. Analytical analysis of the effect of dissolved solids on suspended solids determination. Journal Water Pollution Control Federation 50:2370-2373.
- Tunzi, M. G., M. Y. Chu, and R. C. Bain. 1974. <u>In vivo</u> fluorescence, extracted fluorescence, and chlorophyll concentrations in algal mass measurements. Water Research 8:623-636.
- Turner Associates. 1973. Determination of algae in natural waters by fluorometry. Turner, a Division of the American Sterilizer Company. 2524 Pulgas Avenue, Palo Alto, California. 4 p.
- Turner Associates. 1976. Operating instructions and service manual. Turner, a Division of the American Sterilizer Company. 2524 Pulgas Avenue, Palo Alto, California.
- United States Department of the Interior. 1973. Final environmental statement for the prototype oil shale leasing program. Volume I. Regional Impacts of Oil Shale Development, Washington, D.C. 500 p.
- United States Department of the Interior. 1974. Colorado River water quality improvement program--status report. Bureau of Reclamation, Washington, D.C.
- United States Environmental Protection Agency. 1971. Algal assay procedure: Bottle test. National Eutrophication Research Program. Pacific Northwest Environmental Research Lab., Corvallis, Oregon. 81 p.

- United States Environmental Protection Agency. 1974. Manual of methods for chemical analysis of water and wastes. EPA-625-16-74-003. Technology Transfer. Washington, D.C. 298 p.
- Utah Water Research Lab. 1975. Colorado River regional assessment study. National Commission on Water Quality. UWRL, Logan, Utah.
- Van De Kreeke, J., J. D. Wang, R. G. Rehrer, and M. A. Roessler. 1976. Freshwater inflow and its effect on the salinity and biota of shallow lagoons. Rosenstiel School of Marine and Atmospheric Science Technical Report TR44-4. University of Miami, Miami, Florida. 150 p.
- Varian Techtron. 1972. Analytical methods for flame spectroscopy. Varian Techtron Pty. Ltd. Springvale, Vic., Australia. 250 p.
- Varian Techtron. 1975. Analytical methods for carbon rod atomizers. Varian Techtron Pty Ltd. Springvale, Vic., Australia. 150 p.
- Ward, A. K. 1974. Sodium: A factor in growth of blue-green algae. Thesis. Department of Botany and Plant Path-

- ology, Michigan State University, East Lansing, Michigan. 44 p.
- Ward, J. C., and Reinecke. 1972. Water pollution potential of snowfall on spent oil shale residues. Bureau of Mines Open File Report 20-72. Colorado State University, Fort Collins, Colorado. 51 p.
- Weaver, G. D. 1974. Possible impacts of oil shale development on land resources. Journal of Soil and Water Conservation 29(2):73-76.
- Wescor, Inc. No date. Instruction manual: HR-33. Dew Point Microvoltmeter. Wescor, Inc., Logan, Utah. 25 p.
- Winters, K., R. O'Donnell, J. C. Batterton, and C. Van Baalen. 1976. Water-soluble components of four fuel oils: Chemical characterization and effects on growth of microalgae. Marine Biology (Berlin) 36:269-276.
- Wong, P. T. S., Y. K. Chau, and P. L. Luxon. 1978. Toxicity of a mixture of metals on freshwater algae. Journal of the Fisheries Research Board, Canada 35(4): 479-481.

APPENDICES

Appendix A

Analytical Results of the Oil Shale

Leachate and Elutriate Analyses

Appendix A-1

Oil Shale Identification Listing

These samples of oil shale were provided by the companies for analysis.

These are all unhistoried samples from prototype operations and as such may not be representative of samples from a full scale operation.

Table A-1. Oil shale identification listing.

AR = Raw Utah Shale

AP = Paraho Processed Utah Shale

BR = Raw Union Shale

BP = Union Processed Shale

CR = Raw Laramie Shale

CP = Laramie Processed Shale

DR = Raw Geokinetics Shale

DP = Geokinetics Processed Shale

Table A-2. Summary table for the characterization of oil shale leachates.

							AP					
		hate l		hate 2*		Leachate 3 Leachate 4			Leachate 5		Leachate 6	
	mg/1	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/1	mg/l	meq/1
Elapsed Sampling Time												
(Hours)		30		42		78		127		223		295
(Days)		1.25		1.75		3.25		5.29		9.29		12.3
Cations												
z												
	2704.0	117.6	1990.8	86.60	438.6	19.08	183.2	7.971	35.57	1.550	21.87	0.95
2 Mg	317.1	26.08	176.6	14.53	226.8	21.95	88.47	7.280	45.09	3.709	24.10	1.98
1 K	454.98	11.64	159.7	4.083	357.1	9.134	72.0	1.84	12.62	0.323	8.28	0.213
2 Ca	465.5	23.23	534.9	26.69	501.5	25.02	573.3	28.61	309.71	15.46	172.06	8.586
		Σ 178.6		Σ 131.9		Σ 75.18		Σ45.70				
										Σ 21.037		Σ 11.731
Anions												
<u>z</u> 1 C1								0 005			1 505	0.045
T cı	2.0	0.06	2.0	0.06	2.0	0.06	3.0	0.095	1.175	0.033	1.525	0.043
2 so ₄	6600.0	137.4	5250	109.3	2775	57.78	1800	37.48	966.8	20.13	482.24	10.04
1 HCO ₃	1483	23.31	1156	18.94	525.4	8.610	163.4	2.680	133.0	2.180	145.09	2.378
2 co ₃	0	0	0	0	0	0	0	0	0	0	0	_0
		Σ161.8		Σ128.3		Σ66.45		Σ 40.25		Σ 22.34		Σ 12.461
Ion Balance		4.93%		2.77%		12.3%		12.6%		3.00%		3.02%
Trace Metals (µg/l)												
Se	2.2											
As	<1											
Fe	28.5											
Ва	206.6											
Pb	4.9											
Mn	16.4											
Cu	15.9											
Zn	55.6											
Cd	20.5									*		
Cr	14.6											
Ag	15.2											
В									139.0		299.0	

Table A-2. Continued.

					. Al	•					
	Leachate 1	Leac	hate 2 *	Leac	hate 3	Leac	Leachate 4		Leachate 5		nate 6
	mg/l meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/1	mg/l	meq/1
Total Organic Carbon (mg/l)									13		10
pН	8.27		8.26		7.79		7.30		7.17		7.24
Alkalinity (mg/l @ CaCO3)	1215.6		947.4		430.7		140.0		109.02		118.93
Total Dissolved Solids (mg/l)									1550		823
Specific Conductivity (µmhos/cm)	10230		8258		4612		2956		1695		1007
Pearsail Ion Balance	4.036	5	3.023		1.036		0.3856		0.1358		0.110
Leachates normalized to the 12.3	day leachate										
Cations											
Na	123.8		91.16		20.08		8.390		1.632		1
Mg	13.17		7.338		11.09		3.977		1.873		1
K	54.91		19.26		43.8		8.679		1.524		1
Ca	2.706	<u>5</u>	3.109		2.914		$\frac{3.332}{3.069}$		1.801		1
	Σ15.12		Σ11.164		Σ6.364		Σ3.868		Σ1.314		1
Anions											
C1	1.39	5	1.395		1.395		2.209		0.7674		1
so ₄	13.69		10.89		5.755		3.733		2.005		1
нсо́ ₃	9.802	2	7.965		3.621		1.127		0.9167		1
co ₃	0	_	0		_0		0		0		0
	Σ 12.99		× 10.30		Σ 5.33		Σ 3.23		Σ 1.79		

^{*}Leachate 2 was used in the bioassay procedure.

Table A-3. Summary table for the characterization of oil shale elutriates.

		Al				Al		
	Type I*	Elutriate	Type II*	Elutriate	Type I*	Elutriate	Type II*	Elutriate
	mg/l	meq/l	mg/l_	meq/l	mg/l	meq/l	mg/l	meq/l
Cations								
Na	1045.8	45.49	821.75	35.74	58.0	2.523	13.62	0.592
Mg	475.3	39.10	245.73	20.215	12.1	0.995	2.42	0.199
K	110.4	2.823	54.60	1.396	2.0	0.051	11.1	0.284
Ca	396.8	19.80	653.8	32.63	32.87	1.640	12.15	0.606
		Σ 107.213				Σ5.21		
				Σ89.981				Σ1.681
A								
Anions	00 51	0. 600	20 175	0.051	0.16	0.050	3 005	0.005
C1	92.51	2.609	30.175	0.851	9.16	0.258	3.025	0.085
so ₄	5013.1	104.37	4301.3	89.55	85.41	1.778	28.02	0.583
HCO ₃	14.05	0.230	180.16	2.953	193.61	3.173	61.66	1.011
co ₃			15.46	0.515			7.14	0.238
		Σ107.213		Σ93.873		Σ5.21		Σ1.917
Ion Balance				2.12%				6.56%
Trace Metals			μg/l				μg/l	
Se			ζ1				<1	
As			10.5				2.5	
Fe			<25.0				66.5	
			135.0				<78	
Ba			<1 <1				1.7	
Pb			<7				<7	
Mn							<11	
Cu			<11					
Zn			12.8				24.4	
Cd			<13				<13	
Cr			<11				<11	
Ag			<9				<9	
В			246				592	
Total Organic Carbon (mg/1)				1.985				7.38
Activity (Bars)		1.75		0.234		0.089		0.523
рĦ				8.84				9.04
Alkalinity (mg/l @ CaCO ₃)				173.4				
Total Dissolved Solids (mg/l)				7056				121
Specific Conductivity (µmhos/cm)		10060		6415		228		155
Pearsall Ion Balance		1.326		0.9742		1.334		1.697

^{*}The Type I elutriation technique had a 48 hour extraction period. The Type II elutriation technique had a 30 minute extraction time. Further differences in these two elutriation procedures are shown in Figures 4 and 5 in the Materials and Methods section.

^{**}Type I elutriation procedure balanced with assumed HCO3 concentration.

Table A-3. Continued.

——————————————————————————————————————		В				BI	3	
	Type I* mg/1	Elutriate meq/l	Type II* mg/l	Elutriate meq/l	Type I* mg/1	Elutriate meq/l	Type II* mg/l	Elutriate meq/l
Cations								
Na ·	625.6	27.21	109.5	4.545	5.7	0.248	2.68	0.117
Mg	41.5	3.41	58.13	4.782	7.0	0.576	4.49	0.369
К	8.1	0.207	7.43	0.190	0.8	0.020	1.60	0.041
Ca	80.16	$\frac{4.000}{5.34.83}$	242.91	12.121	28.86	$\frac{1.440}{\Sigma 2.284}$	16.19	0.808
				Σ 21.638				Σ1.335
Anions								
C1	24.59	0.6936	7.075	0.200	2.31	0.0652	1.425	0.040
so ₄	1510.5	31.448	877.77	18.275	58.15	1.211	37.14	0.773
нсо3	164.24	2.6917	171.7	2.814	61.54	1.0085	25.391	0.416
co ₃	104.24	2.0717			01.54	1.0005	1.189	0.040
		Σ34.83		Σ21.289		Σ2.284	1.109	$\frac{0.040}{\Sigma 1.269}$
		534.03				227204		
Ion Balance				1.61%				5.07%
Trace Metals			μg/l				μ g /l	
Se			<1				<1	
As			<1				<1	
Fe			<25.0				34.4	
Ва			<78				<78	
Pb			9.1				<1	
Mn			<7				<7	
Cu			<11				<11	
Zn			24.9				12.8	
			15.9				<13	
Cd								
Cr			<11				<11	
Ag			<9				<9	
В			966				<10	
Total Organic Carbon (mg/l)				11.3				0.153
Activity (Bars)		0.234		0.234		No.		0.523
pН				8.33		~~		8.85
Alkalinity (mg/l @ CaCO ₃)		•		***				
Total Dissolved Solids (mg/l)				1518				101
Specific Conductivity (µmhos/cm)		3210		1601		308		128
Pearsall Ion Balance		5.209		0.3718		0.1813		0.2070

^{*}The Type I elutriation technique had a 48 hour extraction period. The Type II elutriation technique had a 30 minute extraction time. Further differences in these two elutriation procedures are shown in Figures 4 and 5 in the Materials and Methods section.

^{**}Type I elutriation procedure balanced with assumed HCO3 concentration.

Table A-3. Continued.

	CP		CR		DP		DR	
	Type I* mg/l	Elutriate meq/l						
Cations								
Na	94.9	4.13	6.9	0.30	541.5	23.55	106.7	4.64
Mg	0.57	0.047	6.7	0.55	0.20	0.016	1.50	0.123
ĸ	19.4	0.496	0.70	0.018	34.4	0.879	0.80	0.0205
Ca	2.4	0.120	40.08	2.00	747.09	37.28	4.01	0.20
		Σ 4.79		Σ 2.87		Σ61.73		Σ 4.98
Anions								
C1	57.74	1.629	5.20	0.147	29.19	0.823	4.19	0.118
so ₄	36.83	0.7668	65.52	1.364	2298.23	47.849	41.83	0.8709
ноб з	145.83	2.39	82.98	1.360	796.89	13.06	243.46	3.99
co₃ ̃	-7							
3		Σ 4.79		52.87		Σ 61.73		Σ 4.98

Ion Balance

Trace Metals (µg/1) Se

As

Fe

Ва

Рb Mn

Çu

Zn

Cd

Cr

Total Organic Carbon (mg/l)

Activity (Bars)

pН

Alkalinity (mg/l @ CaCO3)

Total Dissolved Solids (mg/l)

345 5100 Specific Conductivity (µmhos/cm) 0.1625

Pearsall Ion Balance

38.48

4520

0.7707

19.51

^{*}The Type I elutriation technique had a 48 hour extraction period. The Type II elutriation technique had a 30 minute extraction time. Further differences in these two elutriation procedures are shown in Figures 4 and 5 in the Materials and Methods section.

^{**}Type I elutriation procedure balanced with assumed HCO3 concentration.

Appendix B

Listings of $\hat{\textbf{X}}$ and $\hat{\boldsymbol{\mu}}$ Bioassay Results

All raw bioassay data are on file in the library at the Utah Water Research Laboratory

Selenastrum

Single Salt Additions

		^	_		^	A1600000014	
		X			μ	•	
	CUNCANS"	PULTIPLE PANGE TEST			CUNCARS PLLTI	PLE RANGE TEST	
	TREATMENT	AVERAGE	RANK		TREATHERT	AVERAGE	
26	0.24 + CASC4	0.		27	0,24 N CASC4 0,20 N CASC4	0.	1 2
27 24	0.11 N CASC4	0.	3	28	0.11 N CAB04	0.	3
29	0.08 N CASO4			29	0.08 K CASCU	0.	· · 4
30	0.05 K CASC4 0.10 K CASC4	0, 0,		3 n 3 t	0.05 N CASC4 0.10 N CASC4	0. 0.	3
31	0.13 K CASC4	_ -		32	0,13 N CA804	· · · · · · · · · · · · · · · · · · ·	7
5=	0.27 N CASC4	0. 6444.0	5 9	• 2	0.27 N CAS64	0.	₽ 9
3 C	0.10 N N#2864	9068.5	·t-o	44	0.27 N K2804	4,4215	
43	0.20 N MGCL2	0771 0	11	42	0.24 h FGCL2	4,4920 6,4170	1.1
3 0	0.05 N NAZSC4	9785,0 10896.	12		0.08 K MG[[2	0.0/35	12
47	0.10 K MGCL2	11171.	14	43	0.20 N NACL	8.7620 8.7970	13 14
3 42	O.ZW K PGCL2	11503.	15	1	0.27 N KACL	8.8240	15
36	0.11 N N#25C4	11729	- 16- 17	61	0.05 N CACLS	8.8425	1¢
48	0.13 N MGCL2 0.24 N N#2904	12480. 12717.	18	6 Z	0.05 N CACL2 0.05 N NACL	8.8440	17 18
30	0.13 K KA28C		14.	33°	0.27 N K#28C4	6.8540	19
Q	0.27 N MCL	13415.	20	24	0.13 N PG804	8.8565	20
1	0.27 N NACL	13852. 14075.	21 22		0.13 N CACLE	8.8565 8.8575	21
44	0.27 % K25C#" 0.08 k MGCL2	14131.	23	1 2	0.27 N KCL 0.08 N KCL	8.8645	23
4 4	O.11 N NACL	14326.	24	13	0.08 N NACL	8,8665	24
to	0.24 K KEL			8	O 13 N KACL	0,2710	25
ج	0.24 N NACL	14731. 15108.	26 27		0.10 k kcl 0.24 k kæsc4	8.8715 8.8755	26 27
17	0.11 A MGCL2 0.27 N MGCL2				0.24 K KACL	e.e.775	-2-6
10	0.20 N MGS04	15680.	29	1.0	0.24 N KCL	8.8865	2 9
7	0.10 N NACL		-	14	0.05 N HCL	8,8905	30 31
41	0.20 N N425C4	16685.	32	4	0.10 N CACLE 0.11 N NACL	- 8.8935 8.8980	32
16	0.13 N KCL	17174.	33	50	0.24 N K28C4	8,9025	33
37	0.08 N N#28C4	·		•	- 0,10 k KACL	- 0,9090	34
12	0.11 K KCL 0.24 K MG804	17738. 16113.	35 36	23	0.10 K MG8C4 0.11 K MCL	8.9245 8.9305	35 36
1 A 21	0.08 × × G8C4	10047	36 - 37	51	0,20 K K2504	8,9420	37
54	0.13 A MG8C4	19464.	36	35 4e	0.20 N NA28C4	8.9460	3 e
21	0.10 A MGEC4	19871.	- 46-	46	0.13 h rGCL2 0.11 h rGCL2	8,9490 8,9605	39 40
20 33	0.11 N YG804 0.27 N N##8C4	20326.	41	≥0	0.11 N MG8C4	8.9730	4 1
źź	0.05 N MG804	20693.	42	47	0.10 K MGCLZ	8.9740	42
13	- 0,08 K KCL	23632.	44		0.15 N NAZ8C4	8,9760	4 3 4 4
11 51	0.20 N KCŁ 0.20 N K28C#		45	50	0.05 k MGCL2 0.20 k CACL2	8.9785 8.9800	45
⊃) -1e	0.10 N KCL	25765		60	······································	e.9945	46
50	0.24 N KZ5C4	25765, 25763. 26052.	47.	41	0.27 N MGCLZ	8,9995	47
55	0.11 N K25C4	20052. 27103.		11	0.20 K KCL 	9.0045 9.0120	1 9
-97	0.08 N K25C4	27825.	50	52	0.11 h K2504	9,0130	50
- F	O.OE N NACL	30555.	51	57	0.27 N CACL2	9.0225	5.1
10	-0.05 N MCL	33652. 33956. 36367.		65	0.27 h +GEC4	9,0 29 5 9,0350	·52 53
\$8 &	0.24 N CACLZ 0.05 N NACL	36367.	54	21	CCNTRCL 0.08 N MG8C4	9.0470	54
-5¢	0.10 K K2804			-5	0.10 N K2804	9.0480	-55
54	0.43 K #25C4	37386.	56	22	0.05 N MG8C4	9,0550	56
46	0.05 K MECL2	39148.	5.7		0.13 N K8864 0.08 N N#28C4	9.0580 9.0685	57 58
54	0.05 K K28C4	40108.	58 59-	37	0.20 K MB28CM	9,000	5 9
5 9	0,20 N"C#CL2 0.13 N CACL2	80033.		3.4	0.05 N NAZSC4	9,0865	έn
60	0.11 N CACLE	83618.	61	3A 53	0.08 K #28C4	9.0775	£1
67	n.th K CACES	-10362E+06			0,24 % CACUZ 0,13 % KCL	9.0960 9.0985	53 63
61	O.OB N CACLE	.10715E+06	63 50	16 54	0.05 N K2504	9,1150	64
62 65	0.05 K CACLZ CONTROL	11384E+06	· ·····•5		0.24 N MG8C4	9,1700	65

Single Salt Additions

ı	HANKING	+	rue m	7	w	40	8 ~	6 0	o	0:	, ; 	2	77			1.	1.6	*	O .		25	1 2		9 (67	900	o M	#	N I	e0 €	, w	e Pr	37	e E	or e	÷	e	4 P	7 7	e al	46	6.7	a) 7
AANGE TEST	AVERAGE	1.2115	0 C	1000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.3665		1,3860	•	0000	1	1,5040	1,5510	100	265	1.6095	1,6205	1,6249	1.6260	1.6685	1.00 to 1.	1 1 2 2 0	1.7345	1.7460	1.7610	1.0135	1.89.5	•	1.8960	2,000	•						•		•	20000	• ,•		640
H H ELNCANS PLETIPLE R	THEATHENT	O. OBO N'CACL	c c	100 x 100 0	0.030 × ×680	0.02C N C45C	D.OSC A NACE	0.050 N MECL	0.020 N MGSC	847 N 2000	100 V 200 V	0.050 × 0.000	· c	2000	TALK NEG	0.040 A CASC	0.004 N CASC	0.050 K NEZ	785 X 7 500°C	0,050 h KCL	7 4 4 9 0 0 0 0	100	0.05C N CAC	10 N KCF	244 4 050.0	AND DECIDENT A NUMBER OF THE PROPERTY OF THE P	0.00 N XGC	O. OOU N. CAC	0.03C A KES	0.00 × ×CH	10 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 700 0	0.00 × × 000.0	0,004 N NAC	0.050	2 pot 5	X ()		1 to	2 6	はよくしい	CCATE	1 CCNTR
	AVERAGE RANKING	÷*	N P	n #	un	e e	•	oc.	Φ.		→ (h =		the second secon	11	- T- G	•	0.71		U m	1 27 V V	114	-0 (Nu (N. I		, ci	,	ru i	en t	r u	1 40 1 PH	t-M	eu en	(Jr. 1)		r	7 7	7 4	1 T T T T T T T T T T T T T T T T T T T	5F+06 40)E+C6 47	90+35360
X X	TRENT	*G8C4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	700C	ر ا ا	F68C4	אנו	KISCA	21094	*GSC4	1 L	***	,	3 10 10 10 10 10 10 10 10 10 10 10 10 10		3000	7004	#2854	CASC4	×C	3000	Λ. τ. τ. Γ. τ. τ. Γ. α. μ.	Cattle	CACLZ		טיטמע אדנו				11 11 11 11 11 11 11 11 11 11 11 11 11	7) N U A A	N 2 2 5 C 4	7 4 7 4 6 6 4	N. & 2. S. C. d.	10 ×	****		ないのくし	1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	X () () () () () () () () () (* * C C C	۲. ب	2
		·-		i	_	_	_	_	_	Γ,	υ,	ן כ			1	_	_	٦	_	_	- '-			-	U	-		Ü	_	۲,	, (, .	٠	٠		٠.	٠.				_	-	_

X
DUDCANS MULTIPLE PAUGE TEST

DUMCANS MULTIPLE PANGE TEST

	TEFATHENT	AVERAGE	PANKING		TREATMENT	AVERAGE	PANKING
27	0.30 1 NAHEO3	0.13000	1	1.4	0.16 % 102504	0.39490	1
5 K	0.05 % KHC03	0.15900	2	30	n_36 % KHC63	0.39400	5
1.5	1.30 % K2504	0.16500	3	85	0.05 N KHC03	0.45750	3
29	0.10 N KHC03	0.17000	4	A	ALIA - MGCLZ	0.46000	4
30	0.30 N KHCO3	0.21500	5	1.3	9.65 N 4A2S04	0.47800	5
17	9.10 N K2804	0.32000	6	ۋ ئے	0.10 % KHCU3	0.47800	6
6	1.30 & KCL	0.38500	7	27	0.30 N MAHCOS	0.50600	7
35	10ML CP FLUTRIATE	0.48000	6	à	0.30 N MGCL2	0.52800	8
25	9.95 N NAMECT	0.55989	9	15	0.30 N NA2508	0.53250	9
Q.	0.30 % MG(L2	0.98500	10	26	0.10 N HAHCO3	0.55750	10
14	0.10 N NA2504	1.2500	11	12	0.30 N CACL2	0.56800	11
16	1.15 A K2804	1.2590	12	16	0.05 N K2504	0.62000	12
15	0.30 N NA2500	1.3000	13	ş	9.10 N NACL	0.65550	13
26	0.16 V NAHCOS	1.5650	14	7	O.OS A MOCES	0.73100	14
10	0.05 N CACL2	1.6500	15	21	0.30 N MGS04	0.79390	15
13	0.05 N NA2804	1.9350	16	11	0.10 M CACL2	0.81150	16
9	0.10 % MGCL2	1.9500	17	4	9.05 N KCL	6.83900	17
12	n.se CACL2	2.5009	16	35	TOME OF FLUTRIATE	0.90450	18
5	0.10 % KCL	2.8359	19	وَج	0.05 & NAHCO3	0.93800	19
11	0.10 + CACL2	3,4000	20	10	0.05 + CACL2	0.94700	50
3	0.30 N NACL	4.4650	21	5	0.10 N KCL	0.99250	21
21	0.30 N MGS04	10.085	55	2 i	n.30 N CAS04	1.1565	55
4	0.05 N KCL	22.000	23	50	0.10 N MGS04	1.2175	23
19	0.05 N MG804	23.420	24	٦,	0.30 N WACL	1.2305	24
24	0.30 % CAS94	30,500	25	1	0.05 % NACL	1.3520	25
7	0.05 % MGCL2	52,885	26	23	0.10 N CAS04	1.4105	26
26	0.10 r. MG504	58,165	27	جَحَ	0.05 % CASO4	1.4580	27
>	P. 19 '. MACL	60.000	28	40	D. H. HLANK	1.5680	28
23	0.16 % CASO4	75.340	24	32	CONTROL	1.6135	Só
جَج	0.05 × C4504	103.34	3.0	5.5	CONTROL	1.6220	30
1	1.95 . MACL	164.00	31	5.8	10ml BR FUUTRIATE	1.6665	31
30	19ML SP FLUTRIATE	170,0n	32	30	109L BP FLUTPIATE	1.6795	32
37	TAME UP ELUTPLATE	172.00	33	3 is	1941 UR FLUTRIATE	1.6825	33
36	10%L OR FLUTPIATE	174.00	34	37	TAME UP PLUTRIATE	1.7030	34 -
38	TOME HE FEUTRIATE	00.581	35	34	TOME OR ELUTPIATE	1.9245	35
40	D. M. BLANK	188,00	36	5	0.30 N KCL	10.357	30
3.2	CONTROL	200,30	37	18	n.3n N K2504	10.897	37
33	CUNTEDL	203.10	38	10	0.05 9 46504	11.309	38
31	Contect	204.40	39	31	CONTAGE	16.624	34
34	TORE OR FEUTERATE	206,00	40	17	0.10 t x2804	20.646	40

70

Two Salt Additions

	FANKING	1	nu i	n		, 4 0	+	4 00 (or s		. 21	#	T 1	6.7	2.1	40	+	O.	N.	23	24	54	O P) (F (V	e ·		100 100 100 100 100 100 100 100 100 10	**	33 22 23 24	40 F		36	0		1W F	**************************************	, ui	4	£ 77	ا ا	5 •
LE RANGE TEST	AVERAGE	05062.0	0,36000	00.36900	000000	00800	0.54750	0.63300	00679.0		0.76650	0.78000	05787.0	00310*0	0.0000000000000000000000000000000000000	0.93600	0.45100	0.47650	0.996.0	1.0270	1,0405	1,0410	1.0065	2040	1.1025	1,1390	- 0001°1		0141-1	1,1715	1.1795	1.1975	2002	3 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.2900	5662.1	0000 F	10 PM = 1		1.5210		SE35.
CLACANS MILTIPLE RANGE TEST	TARATIVENT	K2804, KFOC3	MECLE	NAZSCU, NAFOCS		0071101	このいしょれて、さいのいと	MORON XTOUR	NATION O ABOA	ストしい ひょうかして カストラン・ファック・ファック・ファック・ファック・ファック・ファック・ファック・ファック	7 00 1 4 4 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0	MCCL2, MGCC4	ATOOM PATOOM	מפטר בי אפור		CCNTRCL	MGSO4, CACL 2	K2904, NA2804	MGCLZyKZGC4		#U041, 2100M	KCLTK25C4	X NO CA TO A BOCA	ALL FLASCA	ないのでもとっこしゃく	7829C4.CA604		ないというというないない。	POCKE, CACKE	KZSC4, NACL	KOL , NAFOCA	マンション・コンマン マンマン・コンマン・コンマン・コンマン	プロン マンのはえ	**CCB, NACL	3000円 * 3000円	10 Lune 10 Lun	KOL S N S S G C C	かいし 本々と、かいのかと	ないのはなべ、さいのは	CCATFCL	CCMTRCL	N'ESOCO PARCON
	FANKING	+ :	7 : N	07	un	97		~	70	11 50	12 37				17 41	16 47	. 21	200	1	A 60	3 . R	- E	24 50		30	30 05		1 14.1 1 14.1 10 4.0			36	36 10	1	er er	41 11	~ ·	tu r			.	C U	50 07
FILTIPLE RANGE TEST	AVERAGE	522 - 00	515	000016	1430.0	1595,0	0.004	0.095	0.004	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2.0222	0.0488		20031	18610	22200	20150.	27650.	00617	10 CO	40300	-00000		00111	in i	58700.	66650	900	**************************************	74950	74950	78400	79456	P.0.550.	* 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5			.005/6	-13500F+06	.14450E+06	. 1 F 1 05 F + C 6	. 15610F+Gb
CIACANS MILITRIE	TREATHENT	AGGGG, AFORM		TELECONFILES VANDARCES ARTON	TORON PATONS	*GCLZ, *AFCC3	WATE, KAPEES	すしのすし "門ひし上米」	KENCE, NYCO 3	まつり t コペリント E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CCNTRCL	MGCL2, FGBC 8		まるのはなどがつつして	KULYNOCE	KHCC3,CACL2	CCNTRCL	さいのれると、1042 1000	NAZSCA, CARCE	よっていることがなった。 そうしき というしゅ としじゅ としじゅ としじゅ としじゅ としじゅ としじゅ としじゅ とし	X 20 CO A A B T C C C	MCSCG, NECL	まらのに、 アカルのこと	ATCOL ACT	**************************************	MGCLZ, NAZSC4	大人により自分のは まのつ かんしょう	はいない こうしゅん はいしん 大き こうしょう はいしょう はいまいまい はいまいまいまましまいまましまままままままままままままままままま	**************************************	% GSC 4 C 4 CL 2	かい ないかい さいかい はんしょ	と しょうしゅう しゅうしゅう かんしょう しょうしゅん とうしゅん とうしゅん とうしゅん		#eft2: x28c#	K GC L S. K CT.	70L03.C90L0		これでは、またのでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	*EL, Cack 2	CCATHOL	* NOTE 10 10 10 10 10 10 10 1	CATLE, CASCA
	,	2	1 T	9 6	<u>. u</u>	^	37	gr i	ur.	3 c	7 7	—	en r	; 2 t	· a.	3	e 37	. 0	2	e c	ď.	1	7 ·	:	- Pu	æ	.	ισ	1	<u>+</u>	= ;	A 4	- A	μ.	n,	o (L #	ù ru	*	c o	i.	3

Synedra

Single Salt Additions

 $\widehat{\widehat{X}}$ cuncans multiple hange test

L CLNCANS MULTIPLE RANGE TEST

	oenoune (cert) (CC Mande (Ed)			PENCANS POLITPE	TE MARRE 150:	
	TREATMENT	AVERAGE	RANKING		TREATMENT	AVERAGE	RANKING
54	470.30 K K2804	0.10000	-·· · •	" 35 "		0.20800	
35	4/0.20 N NAHCC3	0.11500	2	39	4/0.20 N MHCG3	0.35250	2
38	4/0.10 N KHC03	0.13000	3	38	4/0.10 K KHCCE	0.35700	Ĵ
39	470.20 N KHCC3	0.18500		36	470.30 K NAPCC3	0.35750	
36	4/0.30 N NAHCC3	0.28500	5	40	4/0.30 K HECG3	0.45300	Ę
4.0	4/0.30 N KHCQ3	0.31500	6	34	4/0.10 N NAHCC3	0.47200	Ā
34	470.10 N KAPCC3	0.31500	··· 7	24	470.30 K #2804	0.60200	
37	4/0.05 N HHCG3	0.33500	8	37	4/0.05 N KHC03	0.62850	À
33	4/0.05 N.INAHCO3	0.58500	ğ	33	4/0.05 N INAHCC3	0.75200	ě
16	470.30 K CACL2	0,68500		- 55	470.10 K #28C4	0.81500	1 ó
11	4/0.20 N MGCL2	1.2500	11	23	4/0.20 N H2504	0.86000	ii
20	4/0.30 N NA28C4	1,3200	iè	e 3	4/0.05 N +GCL2	0.93900	12
53	470.20 N K2504	1.6350	· <u>i-3</u>	-12	470.30 K PGCL2	1.0165	:5-
ēŤ	4/0.20 N MG804	2.0150	14	58	4/0.30 N MG804	1.1235	14
12	4/0.30 N MGCL2	2.3150	15		4/0.10 N +GCL2	1.2435	15
10	470.20 N NAZSC4	3,1000	- · · · i i · · · ·	10	4/0.05 N CACL2	1.2820	
28	4/0.30 N MG8C4	3.2500	17	13			17
18	4/0.10 N INASSC4	3.9500	18	27	4/0.20 N MGSC4	1.2960	16
17	470.05 KINA2804	4,1000	19	7	4/0.20 N KCL	1.3590	1 C
	4/0.30 N KCL			15	4/0.20 x CACLE	1.3625	
. 8		4.6000	20	16	4/0.30 V CACES	1.3665	20
13	4/0.05 N CACU2	5.9150	21	56	4/0.10 N #G804	1.4430	21
7	470.20 K KCL	6.0500	55	51	470.05 K H2804	1,4520	55
14	4/0.10 N. CACL2	6.4150	23	1 1	4/0.20 N MGCL2	1.5595	23
10	4/0.10 N MGCL2	7.5000	24	25	4/0.05 N MGSD4	1,5715	24
4	470-30 N KACL	6.6650		19	470.20 K 1842804	1,6005	
25	4/0.05 N IMG804	10,170	56	20	4/0.30 N NAZSC4	1,6295	56
15	4/0.20 N CACL2	10.500	27	31	4/0.20 N CA804	1.7030	27
3	470.20 K INACL	12.170	····- 58 ···	10	4/0.10 K CACL2	1.7060	
5	4/0.05 N HCL	12.330	29	32	4/0.30 h CASO4	1,7105	29
Q	4/0.05 N MGCL2	12.500	30	ę	4/0.30 N KCL	1.8090	30
	470.05 K KACL	13.830	<u>3</u> 1	1	470.05 K KACL	1,8970	· 3-1
26	4/0.10 N FG804	13.835	32	6	4/0.10 N KCL	1.9240	32
5	4/0.10 N NACL	14,165	-33	30	4/0.10 N CASO4	1,9340	33
- 45	CONTROL	14,165	— · · · 3 4	- 12	470.65 K KCL	1.9550	3 4
6	4/0.10 N KCL	14.835	35	l)	4/0.30 N.NACL	1.9915	35
55	4/0,10 h k2864	15.000	36	18	4/0.10 K KA28C4	2.0480	36
40	CONTROL	15.330		17	4/0,05 K KA28C#	2.1900 -	
21	4/0.05 h K2804	15.835	38	3	4/0.20 N :KACL	2.1915	38
43	CONTROL	17.835	39	2	4/0.10 A MACL	2.4510	39
- 311	4/0.10 K CASC4	20.330			CCATRCL	2.5580	
4 1	CONTROL	20,665	41	4 4	CONTROL	2.6445	41
29	4/0.05 N CASC4	55.000	42	29	4/0.05 N CASC4	2.6690	42
31	" "#70.20 N CASO4	27.835	-43	43 -	CONTROL	2.7845	-43
32	4/0.30 h CASO4	29,500	44	41	CONTROL	2,8085	44

Two Salt Additions to Synedra

47						
CUNCANS MILTIPLE	E RANGE TROF			CLACANS PULTIPLE	LF RANGE TEST	
	AVERAGE	RANKING		TOELTYENT	AVERAGE	FANKING
S/NAZSO4JRAHCCS	0.21500	+- (5.7	SZNAFCOZZKRCOZ	\$0.300006*05	+
いこします。するのではという		~ -	# : M :	いくごういのじょう とていいい かんしい ひょくしょく しょくしょく しゅくしょく	110006=01	~ •
	00515.0	+	2	ACTOR ACTOR ACTOR		- -
	0.47000	. Rv	1 2	門のロエマス、マロのロネへい	13500011	ın
	0.50000	•	m	N/KEBOA, NTCCH	145005+01	•
STREEDS, KINCOS	000550	† †	30	Sycacleyardes	10-2006-01	<u>_</u>
	000000000000000000000000000000000000000	10	0	S/NACL, KFCD3	.16500E-01	G D :
, MODEL' 2000X/N	0.0000	σ.	53	S/MGCL2, NATCO3	100005=01	o- ;
	200000	-	Ri I	3/76504/RFCC3	10-100502	.:
	0000	÷ 0	- c	コンドニュ ドチウロシ	TOBUSON TO	 -
***************************************	000111	2	2	DANKACA NATICE	1200E#01	2 4
		* =	Ф :	カイスト・マネストル おしかい はっぱん はっぱん はっぱん はっぱん はっぱん はっぱん はっぱん はっぱん		n =
	0002	w)		からしている。これでして	10140000001	
	0500	-		SAN CONTRACTOR	0.00000	
	100 mm	-	. 7		101300810	-
	0.000	6 0	, F	3 X X X X X X X X X X X X X X X X X X X	.71000E=01	W
	4.6550	-	22	9/*GCL2,CA804	- BHOODE - OI	•
	05500	°	7	3/7 4/1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1		
	0040	~	Ē.	めノ木にし、木砂砂の立	0.10800	~
5/#GCL2, K72804	005-11	22	to	SYCACLE, MESCH	0.1140	2
	000	7 = V	es (はしいとしている。またのは	0.1000	.
	11.500	7 4	~	3/// 2/ 3/60 6	0.13130	35
		n -c	E W	コンドランドングランドングのから、アンドングランドングランドングランドングランドングランドングランドングランドング	0.0000	n -c
	100	~	. M.	S/NACL, K2604	0,14300	-
	12,500	2	2	Syrecternoca	0.14550	2
	12,835	<u>ل</u> د	. J	57 Y G G G G 4 C A B C 4	0,14600	ot no
	1 W 1 7 O	e i	2	S/xCL, NAZSCA	0.15250	en i
			2	# O O O C C C C C C C C C C C C C C C C	00551.0	
	000	u .	c.	3/KCL, FGCL &		¥ ;
	060.61	7 7	~		0.14400	
	000 91		£ ;	SACE CATE	0.001.0	2 12
	0000	ř	··· (0 C) (
	200 #1-		. ‡	17.00年には、17	001110	
	011	- si	B 4		000110	- W2
	15.170		; P	2004U . LASS	00181.0	(P)
	15.335	‡		- Alterial	0.16250	4.5
5/7 b 2 8 C 2 . 4 G 8 C 2	16.170	7		SINACLIFCL	0.18450	17
	16,335	~	-6	5/NACL, PESCA	0,19750	23
: : !	17.000	4	ţ	Sycacusycasta	0.50000	+
	17,165	77	47	S/CCNTRCL	0.21100	77
	18,333	ts Tu	1 4	S/KCL, FGSC4	0.21200	24 C
	000		00	-S/cc+ Pct	0.21600	
3/LACLES-LASC4	00000		M	さしからとうしのでくくい	0.41.00	7
						•

3 & 4 Salt Additions to Synedra

$\hat{\mathbf{x}}$	THE P. P. LEWIS CO., LANSING MICH. SHOWING MICH. AND ADDRESS SECTION 1.		μ	
CUNCARS MULTIFLE	FANGE TEST		CUNCARS WELTIPE	LE HANGE TEST
TREATMENT		KIKG .	TREATHERT	AVERAGE SANK
6/5 6 8	.70000E=01	2 26	"877 8 9 10 6/4 5 10	0,58350 1 0,61900 2
6/3 4 5 8 6/6 7 10	0.14500 0.18000	3 29	6/5 6 9	0,68350 3
675 6 7 8	0.20000	# 50°	- 6/3 4 5 10	0.78750 A
6/3 4 5	0.21500	5 27	6/5 6 7	0.78750 5 0.86106 6
6/1 5 6 9	0.21500 0.25000	6 35 7 36	6/7 E 10 16/4 516 E	0.86700 7
6/4 5 8	0.28500	8 62	6/6 7 8 9	0.87150 8
6/1 2 8	0.31500	9 53	6/3 4 5 9	0.88900 9
677 8 10		10 55	874 5 6 7	0.94850 10
6/3 4 5 6		11 24	6/4 5 8 6/4 5 6 10	0.94850 12
6/5 6 7 9	0.35000			0,96850 13
6/5 é 10	0.43000	14 25	6/4 5 9	1.0170 14
6/4 5 6 8	0,43500	15 20	6/5 6 8	1.0255 15
415 3 8		59	6/8 9 10	1,0725 17
6/5 £ 7 6/3 4 5 10	0.45000 0.45000	17 3e 18 13	6/5 3 8	1.0745 18
6/4 5 7		19 19	-6/3 4 8	1.1200 19
6/6 7 8 9	0.56500	20 52	6/3 4 5 8	1,1565
6/5 6 9		21	6/3 4 10	1,1725 21 1,1730 22
6/3 4 8 6/5 6 7 10		23 60	6/2 3 7	1.1755
6/4 5 6 1C		24 31	6/6 7 10	1,1770 24
6/4 % 6 7	0.76500	5 Sn		- 1.1790 25
6/3 4 5 5		26 0	6/2 3 4	1.1870 26
6/6 7 6 1C	0.80000	27 57	6/4 5 6 9	1,2000 21
673 0 * 7 · · · · · · · · · · · · · · · · · ·	0.81500	29 3c	6/5 6 10	1.2040 2
6/4 5 9		30 3	6/1 2 5	1,2475 30
874 5 10	1,0500	11 43	- 671 2 3 10	1,2515
6/1 2 3 5		52 16	6/3 4 5	1.3110 36 1.3415 33
6/7 8 9 10		18 18 30	6/3 4 7	ተ : ተ : ተ : ተ : ተ : ተ : ተ : ተ : ተ : ተ :
h/2 3 4 5		\$	6/4 = 6	1.3755
6/6 7 9	1.4500	36 32	6/6 7 9	1.3820 30
6/2:3 5		37 Zn	-6/3 4 9	1.50 15 31 1.5220 31
6/4 5 6		38 23 39 38	6/4 5 7 6/1 2 3 5	1.5270
6/1 2 3 E 6/6:7:8 ~~		40 - 63	6/6 7 E 10	1.5325 44
6/1 2 3 9	3,1000	11 39	6/1 2 3 6	1,5395
6/1 2 3 10	3,1000	12 42	6/1 2 3 9	1,5435
6/2 3 9				1.5516 4:
6/2 3 4 7		94 8 95 40	6/1 2 6 6/2 3 4 5	1.6470 4
6/1 2 7 6/2 3 4 6		16	- 6/1 2 3 8	· · 4745· 41
6/3 4 10	4.2000	7 15	6/2 3 10	1.6815
6/2 3 4		8 10	6/2 3 5	1.6935 # 1.7065 #
672 3 4 9		50 47	6/2 3 4 8	1,7040
6/1 2 3 7 6/1 2 10		51 P	6/1 2 10	1.7290 5
672 3 7	4.6750	i	6/2 3 6	
0/1 2 9	4.7500	3 46	6/2 3 4 7	1.7745
7/2 3 10		54 up	6/2 3 4 9	1.8045 5
6/1 2 3 4		56 1 6	6/6 7 8	1.8120 5
6/3 4 9	5.3750	7 37	#/1 2 X 4	1,8135 5
0/3 4 7	5,8500	5e 1a	6/2 3 9	1.4225 5:
6/1 2 3 E		59 45	6/2 3 4 6	1105"
6/2 3 4 10		1	6/1 2 3	2,2455 6 2,2525 6
6/3 4 6 6/7 3 6		11 5 12 68	6/1 2 7 B/CCNTRCL	2,3225
6/1 2 6	6,3000	5 51	6/3 4 5 7	2,3695 é
6/1 2 3	13.500	54 17	6/3 4 6	2.3795 6
AZCENTREL -	15,6%0	67	- BYCCKTRCL	2,5565 6
BACCNIRCL		66 7 67 65	6/1 2 9 6/00\ TBC!	2.7405 6
6/CCNTRCL		67 65 66 86	6/CCNTRCL ************************************	2.7755 6

Legend:
$$1 = \text{mg SO}_4$$
, $2 = \text{mg Cl}_2$, $3 = \text{K}_2\text{SO}_4$, $4 = \text{KCl}$, $5 = \text{KHCO}_3$, $6 = \text{Na}_2\text{SO}_4$, $7 = \text{NaCl}$, $8 = \text{NaHCO}_3$, $9 = \text{CaSO}_4$, $10 = \text{CaCl}_2$

Multiple Salt Additions to $\underline{Synedra}$

<u> </u>		<u> </u>	-
A CUNCANE MULTIPLE R	ANGE TEST	CUNCANS FELTIPLE PA	INGE TEST
THEATMENT	AVERAGE RANKING	TREATMENT	AVERAGE HANKING
24 7/1 2 3 4 % 6		19-1-772-3-4-5-6	0.35700 1
9 7/2 3 4 5 8	0,25000 2	30 7/2 3 4 5 6 0	0.37200 2
31 7/3 4 5 6 7 8	0.25000 3	46 7/4 5 6 7 8 9 0	0.45750 3 0.48800 4
16 7/4 5 6 7 8	0.26500 5	55 7/2 3 4 5 6 7 8 9 0	0.62150 5
13 7/3 4 5 6 8	0.30000 6	16 7/4 5 6 7 8	0.63150 6
36 7/4 5 6 7 6 0	0.32000	44 773 # 5 6 7 8 9	~ ~~0.64000 7
45 7/3 4 5 6 7 8 0 41 7/2 3 4 5 6 7 8	0.35000 8 0.40000 9 :	51 7/2 3 4 5 6 7 8 0 54 7/1 2 3 4 5 6 7 8 0	0.64700 8 0.65150 9
7/2343070	0.45000 10	11 7/2 3 4 5 0	0.65600 10
19 7/45670	0.45000 11	45 7/3 4 5 6 7 8 0	0.68900 11
49 7/1 2 3 4 5 6 7 0	0.46500 12	15 7/3 4 5 6 0	0.69700 12
38 7/1 2 3 4 5 6 8 43 7/2 3 4 5 6 7 0	0.50000 14	16 7/4 5 6 7 0	0.75300 14
28 7/2 3 4 5 6 B	0,50000 15	13 7/3 4 5 6 8	0.75400 15
36 7/2 3 H 5 6 0	0.50000 16	7 7/2 3 4 5 6	0.75650 16
2c 7/5 6 7 6 0 ac 7/1 2 3 4 5 6 0	0,51500 17 0,51500 18	24 7/1 2 3 4 5 8 12 7/3 4 5 6 7	0.7905C 17 0.83850 18
96 7/1 2 3 4 5 6 0			0.84000 19
31 7/3 4 5 6 7 0	0.58500 . 20	4 7/1 2 3 4 8	0.84650 20
"1s 7/3 4 5 6 0	0.63500 21	3 7/1 2 3 4 7	0.87450 21
27 7/2 1 4 5 6 7 8 9	0.6500 22	7 7/1 2 3 4 E	0.91600 23
47 7/1 2 3 4 5 6 7 8	0,71500 24	49 7/1 2 3 4 5 6 7 0	0.91950 24
12 7/3 6 5 6-7		34 17777774 5 6 7 8 9	0.98850 25
53 7/1 2 3 4 5 6 7 8 9	0.75000 26 0.76500 27	56 7/1 2 3 4 5 6 7 8 9 0 52 7/3 4 5 6 7 8 9 0	1,0010 26 1,0190 27
21 7/1 2 3 4 5 7	0.77000	52 7/3 4 5 6 7 8 9 0	
30 7/1 2 3 4. 5 6 9	0.00000 29	14 7/3 4 5 6 9	1,0395 25
7 7/2 3 4 5 6	0.81500 30	47 7/1 2 3 4 5 6 7 8	1.0550 30
22 7/1 2 3 4 5 6	0.85000 32	A 7/2 3 4 5 7	1.0750 31 1.1120 32
1º 7/5 6 7 8 9	0.90000 33	10 7/2 3 4 5 9	1,1220 33
55 7/2-3 4 5 to 7-8 4 6 mm		39 774 5 6 7 6 0	- · · 1300 · · 34
37 7/1 2 3 4 5 6 7	0.93500 35 0.98000 36	53 7/1 2 3 4 5 6 7 8 9	1,1715 35 1,1765 36
34 7/5 6 7 6 9 0 21 7/6 7 6 9 0	1.0000	40 7/1-2-3 4-5-6 0	1.1870 37
17 7/4 5 6 7 9	1.0150 35	27 7/2 3 4 5 6 7	1,1900 38
56 7/1 2 3 4 5 6 7 8 9 0	1.0500 39	26 7/2 3 4 5 6 8	1,2330 39
-50 7/2 3 4 5 % 7 & 4 · · · · · · · · · · · · · · · · · ·	**1.0650 **** 40 *** 1.1450 41	27 7/1 -2 3 4 5 7 37 - 7/1 2 3 4 5 6 7	1.2950 40 1.3005 41
4 7/1 2 3 4 8	1.1500 42	= 7/1 2 3 4 9	1.3360 42
SA TICCATROL	1,2000 43	22 771 2 3 4 5 6	1,3705 43
E 7/1 2 3 4 9	1,2500 44 1,4000 45	36 7/5 6 7 6 9 0 31 7/3 4 5 6 7 0	1.3705 44
50 7/CCNTRCL 20 7/2 3 4 5 6 4		33 7/3 4 5 6 7 0	1,4390 46
42 7/2 3 4 5 6 7 9	1,4200 47	60 TICCNTECL	1,4560 47
16 7/3 4 5 6 9	1.4200 48	30 7/1 2 3 4 5 6 9	1.4625 48
48 7/1 2 3 4 5 6 7 9 T 3 2 7/3 4 5 6 7 9	1.5500 ··· ·-49	29 7/2-3 4-5 6-9 · · · · · · · · · · · · · · · · · · ·	1,4865 49 1,5435 50
32 7/3 4 5 6 7 9 6 7/1 2 3 4 0	1.5850 51	32 7/3 4 5 6 7 9	1,6025 51
\$2 7/3 4 5 to 7 to 9 to 1	1.5850 52	SA 7/CCNTRCL	
57 T/CCNTRCL	1.7000 53	10 7/5 6 7 8 9	1.6580 53 1.7400 54
- 60 7/CCNTRCL - 46 7/0 7/4 5/6 7/8 9/0		50 7/CCNTRCL 57 7/CCNTRCL	1.7490 54 1:8035 55
3 7/1 2 3 4 7	2,1850 56	4P 7/1 2 3 4 5 6 7 9	1.8315 56
1 7/1 2 3 4 5	2,2650 57	38 7/1 2 3 4 5 6 8	1.8740 57
24 7/1 2 3 4 5 9		2: 7/6 7 8 9 0	1,9050 58 2.0255 59
2 7/1 2 3 4 6 2 7/1 2 3 4 5 0	3.3000 59 4.4850 60	26 7/1 2 3 4 5 0 25 7/1 2 3 4 5 9	2.0255 59 2.2975 60
2+ 7/1 2 3 4 5 0	-,4530 60	MAY THE STATE OF T	

Legend:
$$1 = \text{mg SO}_4$$
, $2 = \text{mg Cl}_2$, $3 = \text{K}_2\text{SO}_4$, $4 = \text{KCl}$, $5 = \text{KHCO}_3$, $6 = \text{Na}_2\text{SO}_4$, $7 = \text{NaCl}$, $8 = \text{NaHCO}_3$, $9 = \text{CaSO}_4$, $10 = \text{CaCl}_2$

Three Algal Genera

Single Salt Additions to 3 Algal Genera

	x				· ×		
	X		Anab	aan	μ		
			Anab	acii		1505 7547	
	CUNCANS MULTIPLE R			,	DUNCANS PULTIPLE R		RANKING
	TREATMENT 9/ NAMCC3	AVERAGE 0.	RANKING 1		TREATHERT 9/ NAMCC3 9/ NAMCC3 9/ANABAENA CONTROL 973 ALGAE CONTROL 9/ MGBO 9/ MSBO#	AVERAGE	4 4 4 4 4 4 4 4
	9/ KFC03	0.	2	10	9/ KFC03	0.	2
	9/ CACL2	.48400E+10	3	11	9/ANABAENA CONTROL	1.3635	3
	an Aecrs	.54850E+10 .11800E+11	š.	1.0	973 ALGAE CONTROL	2,7920 3.3230	Ę
	9/ KCL 9/3 ALGAE CONTROL	.13710E+11	ő	4	9/ K280#	3.3250	ŧ
	9/SCENEDESPLS CONTROL	.14680E+11	7 -	-	9/ KCL 9/ KCL		7
	Q / NACI	.24700E+11		2	9/ KCL	7.8160	ę
	9/SYNEDHA CONTROL 9/ K25C4	25105E+11	10	1	9/ NACL 9/ CACLE 9/ CACLE 9/ CASCA 9/ CASCA 9/ CASCA 9/ CASCA 9/ FGCLE	15.197	10
	9/ MGSC4	64350E+11	11	13	9/ CACLE	16,069	11
	9/ MGSC4 9/ NA2SC4	.81550E+11	12	12	9/SCENECESML8 CCNTRCL	20,336	12
	YYANADAENA CUNINUL	.13350E+12	1.5	ħ.	97 CASCA	20.717	13
	9/ CASC4	.1/5406416		3	47 FGCL2	20,010	
		AMAA 3.7 S	Heter	осÿ	sts		
					CLNCARS PLLTIPLE	RANGE TEST	
	NICE ALLE DEL TERES	*****			TREATMENT	AVERAGE	
	CUNCANS MULTIPLE F					0.	1
	TREATMENT	AVERAGE	RANKING	10	9/ KHCO3 9/8CENECESML8 CONTROL	2.8175	2
	Considerable and the second	4.		3	9/SCENECESPLS CONTROL 9/ PGCL2 9/ CACL2 9/ NACL 9/ NACL 9/ NACL 9/ NACL 9/ NACL 9/ NACL 9/ SACL 9/ SACL 9/ CASO4 9/ F2SCH 9/ F2SCH 9/ F2SCH 9/ SACCH 9/ NACCH	3.3320	4.
	97 KECS	0.	S	11	9/ CACL2	3,8815	5
	47 PGCL2	392.00 2156 .0	3	3	9/ NACL	5.0330	É
	9/ KCL	15660.	5	11	ANNUARENT CONTROL	5,2660	7 8
	9, NECL3 9, MECL2 9, KCL 9, K280 9, K280	15650. 17640. 23520.	é		97 CA804	5.8380 6.3980	9
	4. KACT	23320.		ъ.	97 K\$804	6.5520 7.0715	10
	9/ NA25C4 9/ MG9C4	26264.	8	. 7	97 46864	7.0715	
	9/3 Alicafi centino	27440	46	14	4/3 ALGAE CONTROL	7,0720	12
	9/8CENECEEMLS CONTROL	39200.	11	,	9/ KCL	4.2635 9.5960	14
	9/ANABAENA CONTROL	74480.	15	-			• -
	9/8CENECESMLS CONTROL 9/ANABAENA CONTROL 9/STNECHA CONTROL 9/ CASCA	2520. 26264. 27440. 27440. 39200. 74480. 82320. 94080.	14				
	-, CA9U4		14				
	CUNCARS FULTIFLE	8 4065 	Phyco	суа	nin CUNCARS PLLTIPLE	GARGE TEST	
					THEATMENT		RANK]
*	97 CACLS	0,23000			- TACES	0.16300	1
	9/ANABAENA CONTROL	0.66500	2	10	9/ KHC03	0.37150	2
	Y/S ALGAE CENTREL	0.78000	.	9	9/ MAHCC3	0.47250	
	9/3 ALGAE CENTREL 9/ NAZSER 9/ KZSE4	0.02500	5	16	4/ K5804	0.58150	5
	9/8CENEDEEHL8 CONTROL	0.83000	ó	12	9/8CENECEEMUS CONTROL	0.59750	6
	97 XFCC3	0.85000			4/ MWS8Cm	0.63250	7
	9/ MGCL2	0.86000	5	13	9/84NEDRA CONTROL	0,64950	8
	dy KCT	U.E650U		4	9/ NACL 9/ MGCL2 9/ KCL	- 0.67350	- 10
	9/ NAHCC3	1.0250	ii	3 g	9/ CABC4	0.68600	11
	9/ CASG4	1,0650	12	2	9/ KCL	0.69900	12
	97 F4864	1.0900	13	-TĪ	PYANABAENA CONTROL	0.78400	1.3
	9/SYNEDRA CONTROL	1.3000	14	7	9/ MG804	0.79550	14

û

Synedra

	CUNCANE PULTIPLE	RANGE TEST			CUNCANS MILITIPLE	FANGE TEST	
	TREATHENT	AVERAGE	RANKING		TREATHERT	AVERAGE	RANKING
3	97 NAFCC3			. 4	9/ NAHCCS"	Ů.	1
10	9/ KFCC3	0.	5	10	97 KHC03	0.	5
11	9/4NABAENA CONTROL	.14700E+09	3	-	9/ NA2504	1.9020	3
12	SYSCEMECESMUS CONTROL	196202+10-		13	97SYKECKA CCKTRCL	2.0420	ä
5	9/ 142564	.14900E+11	5	14	9/3 ALGAE CENTREL	2.7695	5
B	9/ CACLS	.21170E+11	6	2	9/ KCL	8.1180	É
	TO CASE	.494002+11		17	TYANABAENA CONTROL	9.7495	7
7	9/ PGSC4	.57250E+11	8	4	9/ NACL	10.936	8
10	9/3 ALGAE CENTREL	.65250E+11	9	à	9/ CACLE	11.200	q
· .	97"H2804				97 FGSC4	·*·** ** te. #11	t o
ì	97 NACL	.11050E+12	11	i	9/ H250e	19.321	11
,	97 KCL	.13090E+12	15	7	9/ CASEA	19.854	iż
'n	oy +GCL2	.193002+12	13		PYSCENECEEMUS CONTROL	20.480	11
13	9/SYNECRA CONTROL	\$1+300065.	14		9/ HGCL2	892.58	iã

Carotinoid

	CURCANS MULTIPLE -	#NGE- TEBT			CUNCARS PLLTIPLE	RANGE TEST	
	TREATHENT	AVERAGE	RANKING		TREATHENT	AVERAGE	RANKING
4	- CICES	0.26000 -		9	97 NAMECS	0.37750	1
7	9/ FGCL2	1.0150	2	£	9/ CACL2	0.41600	2
2	9/ KCL	1.0250	3	10	9/ KHC03	0.48100	ī
1	97 NACL	1,1000	4	- +	GARAGAENA CONTROL	0 5235 0 ·	
11	9/ANABAENA CONTROL	1.1500	5	.;	9/ NACL	0.60800	
1 4	9/3 ALGAE CONTROL	1.3000	6	1			7
74 .	97 K28C4	1.4250		3	9/ MCCFS	0.68050	e e
4	9/ NAZSCH	1.4750	g .	F	TOV CARCA"	0.69250	
1 n	9/ KEC3	1.5600	ň	6	9/ K2864	0.70450	8
12	*/SCENECES*LS CONTROL		.,	14	9/3 ALGAE CONTROL	0.71700	9
٠.٠	9/ MGSC4	1.5750	10		97 K#23C4	0-72000	10
		2,1250	11	12	9/SCENECESPLS CONTROL	0.88850	11
	9/ NAMEOS	2.3000	15	7	9/ MG504	0.98750	12
13	*/SYNEGRA-CCNTRCL	2.3500		7	TY KCE	1.0460	11
A	9/ CASC4	2,6500	14	13	9/BYNEDRA CONTROL	1.2205	14

Ŷ

Scenedesmus

edesmus

	CUNCANS FULTIFLE R	ANGE TEST	TREATHENT	AVERAGE	RANK ING
	TREATHENT	AVERAGE PARKING	97 NAMCC3	0. 0.	1 2
9	9/ KAPCCS	V •	9/ 142804	2.3085	3
10	97 KFCC3	.78500E+09 3	973 ALGAE CONTROL	2,8605	4
11	GYANABAENA CONTROL		9/8CENECESMLS CONTROL	5.0045	5
1.7	9/SYNECHA CENTREL	21150E+11 4	9/ KCL	7.0000	6
1	9/ MGCL2	.21600E+11 5	97AKABABKA CONTROL	9.6780	7
í	9/ RACL	.30600E+11 6	9/ NACL	10.478	8
ä	TO CACES	328502+11	9/ CAELS	11.529	q
>	9/ KCL	.37600F+11 8	978YKEDRA CCHTRCL		. 10
ã	9/ CASC4	*130105415 10.	9/ K2804	20.720	11
14	9/3 ALGAE CONTROL	1631345.14	9/ MGCL2	20.790	12
	9/ K2504	25750E+12 11	9/ C#804	21.249	13
-	9/ NA28C#	,27850E+12 . 12	9/ FG804	21.382	1.4
.:	9/SCENECESPLS CONTROL	- 30100E+12 13	77 FUGUN	2,,362	•
12	9/ FGSC4	.40300E+12 14			Carrier V. A.
7	4) Fuges	-			

Chlorophyll A

	BUNCANS MULTIPLE T			CUNCANS PULTIPLE RANGE TEST			
	TREATHERT	AVERAGE	MARKING		TREATHENT	AVERAGE	RANKING
ü	d) CACES	0,47000		· •	**************************************	0.27750	1
>	97 KCL '	1,0750	2	10	9/ KHC03	0.36150	2
11	9/ANABAENA CENTROL	1.1000	3	14	9/3 ALGAE CONTROL	0.55450	3
3	9/ MGCL2	1,1250	- 4		97 NA28C4	0.36650	****
1	9/ NACL	1.1500	5	1	9/ NACL	0.58450	5
é	9/ K2804	1.3500	6	ä	9/ CACLE	0.58800	6
10	9/3 ALGAE CCNTRCL	1,4750	 	·····#	9/ CA804	0.64700	7
12	9/SCENECESPLS CONTROL	1.6250	e		9/ #2804	0.65100	8
10	9/ KFCC3	1.6500	9	ž	9/ MGCL2	0.65150	9
1.1	9/8YNEDRA CONTROL	1.0250		- 	97 KCL	0.00450	10
ς.	9/ NA28C4	1.8250	11	12	9/SCENECESMLS CONTROL	0.77200	11
ė	9/ NAHCC3	2.3350	12	11	9/ANABAENA CONTRCL	0.81800	12
7	9/ MESC4	2.9100			97 FG804	1.0695	13
F	9/ CASC4	2.7500	14	13	9/8YNEDRA CCHTRCL	1.3600	14

Total Cell Counts

	CUNCARS PULTIPLE RANGE TEST				CLKCARS MULTIPLE RANGE TEST			
	TREATHENT	AVERAGE	RANKING		TREATHENT	AVERAGE	RANKING	
-	97 N#FCC3	0.	 -		97 KAHC03	0.	i	
10	9/ KFC63	0.	2	10	9/ KHC03	0.	2	
4	4/ CACLS	.57981E+11	3	11	9/ANABAERA CONTROL	1.3920	3	
11	9/ANABAENA CONTROL			13	9/SYNEORA CONTROL	2,0395	4	
1	9/ NACL	.15130E+12	5		97 K2804	2,3035	5	
Ť	9/ MGCL2	.17480E+12	é	Š	9/ NAZSC4	2.5645	6	
	9, **	-17455E+12		10	9/1 ALGAE CONTROL	2.7925	7	
13	9/8YNEDRA CONTROL	.29165E+12	8	13	9/SCENEBBBHUS CONTROL	3,3200	ě	
ē	9/ CASC#	.30185E+12	9	٠,	9/ KCL	8.1930	9	
17	9/SCENEDESHUS CONTROL				97 ×6804	6,4065	10	
	. 9/ K2804	.351256+12	11	1	9/ NACL	11.156	11	
Ę	9/ hazaca	37140E+12	12	á	9/ CACL2	12.019	12	
7	9/ +G804	.505652+12			97 CASUA	21.981	- 13	
10	9/3 ALGAE CENTREL	.56495E+12	14	š	9/ MECFS	23,395	14	

Scenedesmus

Complex Additions to $\underline{\text{Scenedesmus}}$

X
OUNCANS POLITIPLE RANGE TEST

LL DUNCANS MULTIPLE RANGE TEST

		Server Et. Kange Fed						
	TREATMENT	AVEPAGE	RANKING		TERATMENT	AVERAGE	PANKING	
1	21ML AG ELUTGIATE	.89500F=01	1	1	20ML AR FLUTPIATE	0.47300	1	
25	ZOME RP ELUTRIATE	.90500E-01	2	41	CONTROL	0.54700	ź	
27	10ML BP FLUTRIATE	0.10100	3	32	5ML BP SALTS	0.56200	3	
42	CONTROL	0.19609	4	15	IOML AP SALTS	0.56300	4	
44	CONTROL	0.10900	5	36	SML AP COLUMN LEACHATE	0.57000	5	
45	CONTROL	0.11000	6	45	CONTRUL	9.57150	5	
56	15ML BP ELUTRIATE	0.11050	7	44	CONTROL	0.57150	7	
21	ANNI FR SALTS	0.11110	8	16	SML AP SALTS	0.58250	8	
15	TOTAL AP SALTS	0.11150	9	20	SML BR ELUTPITTE	0.58890	9	
7	10ML AR SALTS	0.11200	10	6	15ML AR SALTS	0.59450	10	
5.5	15ML BR SALTS	0.11350	11	31	10ML PP SALTS	0.60250	11	
32	5ML BP SALTS	0.11450	12	40	5ML AP COLUMN SALTS	0.60350	iż	
50	5ML BR BLUTRITTE	0.11650	13	42	CONTROL	0.60950	13	
U	SML AR ELUTHIATE	0.11750	14	12	5ML AP ELUTPIATE	4.60950	14	
28	SML BP ELUTATATE	0.11750	15	21	SOME BR SALTS	0.61600	15	
24	SML FR SALTS	0.11900	16	25	SOME BE ELUTRIATE	0.62050	16	
30	15ML BP SALTS	0.12000	17	13	SOML AP SALTS	0.63000	17	
43	CONTROL	4.12100	18	3.9	ISML BP SALTS	0,63750	18	
10	ISML AP FLUTRTATE	0.12250	19	3.0	15ML AP COLUMN LEACHATE	0.64200	19	
33	SOME AP COLUMN LEACHATE	0.12250	50	43	CONTROL	0.64850	20	
23	THML FR SALTS	0.12250	21	29	204L BP SALTS	0.65000	21	
6	15ML AR SALTS	0.12250	22	Ų	SOML AP ELUTRIATE	0.65300	55	
Q	ISME AR SALTS 20ME AP ELUTRIATE 10ME PP SALTS	0.12350	23	5	204L AM SALTS	0.67050	23	
31	INME PP SALTS	0.12400	24	7	INML AM SALTS	0.68400	2 4	
3	1 MAL AR FLUTPIATE	0.12550	25	23	10ML BH SALTS	0.68550	25 25	
39	INML AP COLUMN SALTS	0.12550	26	4	SML AR ELUTRIATE	0.69200	56	
5	20ML AR SALTS	0.12700	27	26	15ML AP ELUTRIATE	0.69550	27	
14	15-L AP SALTS	0.12700	28	18	15ML OF ELUTRIATE	0.70650	28	
ę	SML AR SALTS	0.12750	29	17	SOME BE ELUTRIATE	0.70850	59	
12	SML AP FEHTPLATE	0.12800	30	24	SIL AP SALTS	0.76900	30	
ج	15 L AR ELUTRIATE	H.12850	31	14	15"L AP SALTS	0.71350	30 31	
4.1	('STACL	0.13050	32	27	13ML PP FLUTRIATE	0.71550	32	
16	SML AP SALTS	n.13050	33	28	SML BP ELUTRIATE	0.72300	33	
38	15-L AP COLUMN SALTS	0.13100	34	10	15ML AP FLUTPIATE	9.72450	33	
29	20 L BP SALTS	9.13150	35	6	SML AP SALTS	0.72500	35	
3.5	TAME AF COLUMN LEACHATE	0.13150	36	35	TOME AP COLUMN LEACHATE	0.72960	36	
13	PLAT AP SALTS	0.13400	37	19	TOPL BE ELUTHIATE	0.73500	37	
19	TANE HE FLUTGIATE	0.13550	38	3 14	154L AP COLUMN SALTS	0.73650	36	
1.8	15-L BR FLUTALATE	0.13600	39	33	ZUML AP COLUMN LEACHATE	0.74750	39	
3.7	PUML AP CULLING SALTS	0.13650	40	39	11ML AP COLUMN SALTS	0.77600	40	
3.5	SEL AP CELLINE LEACHATE	0.13750	41	11	THE AP PLUTRIATE	0.79050	41	
17	PIN BE ELUTRIATE	0.13890	42	2 ż	15ml SELTS	a.79566		
34	1541 AM CELLINE LEACHATE	0.14000	43	57	20ML AF CULUMO SALTA	0.85450	42	
4.	SAL AF COLORS SALTS	14000	44	ē	15ML AP PEUTDIATE	1.1860	44	
11	THE AR PLATETATE	9.14600	45	3	THE AN ELITHTATE	1.3660	45	
			-	-		4 4 3 5 5 5	47	