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ABSTRACT 

The effect of oil shale leachate and SalInIty additions on the 
~roductivity of freshwater algae were studied In the laboratory uSIng 
batch bioassays. These batch bioassays were used to screen variations 
of ten salts in single and mUltiple addItIons of all possible combina
t ions of the ten salts; water extractions of dIfferent processed and 
unprocessed oil shales; and the concentrat Ion effects of both the 
salts from 0.3 N to 0.05 N as NaGl and the oil shale extractions on 
the ~rowth of standard test algae and IndIgenous algae from Lake 
PowelL 

The batch bottle bloassays were conducted following the standard 
al~al assay procedure as closely as possible. Variations in the 
standard algal assay procedure included media varIation with the use 
of indigenous al?,al species Isolated from Lake Powell and the use of 
three different algal species for test innoculum in the bioassay 
procedure. The bIomass was monitored uSlnl'! optical density, chloro
phyll ~ fluorescence, and/or cell counts. 

The indigenous algal speCIes were found to be neFatively affected 
but more tolerant to all salinIty additIons than the standard test 
alga. The growth of the Indigenous algal speCIes (Scenedesmus bijuga) 
was also st imulated by add I ng 011 shale ext ract at lower concent ra
t ions. HIgher concentrat Ions of oil shale leachate inhibited the 
Indigenous algal growth. 
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INTRODUCTION 

DefInitIon of Problem 

The development of the oil shale In
dusLry wIll produce large quantities of spent 
shale and brln", to the ground surface lar",e 
amounLs of formerly buried overburden mate
r lal and raw 0 il shale s t rata in the 1 nter
mounLaln WesL (Pfeffer and Kerr 1974). The 
raw and spenL 011 shale and overburden SOIls 
all contain high levels of salinity (Colorado 
SLale University 1971). Consequenlly, any 
mlnlng disturbances which add to the percola
t Ion of water through exposed soIls, sLrata, 
or wastes add to the salinlly loadIng of 
Lhe streams and rivers (Ward and ReInecke 
1972). 

Percolallon of water could be caused 
naturally due to precipllation. or art if i
clally as water I!> used Lo sLabilize the 
processed shale dIsposal siles after com
paclion (Holtz 1977). Even though Lhese 
dIsposal siLes WIll be deSIgned as LOLal 
contaInment systems (USDI 1973), leachate 
due to seepage from the bottom of the con
taH;ment basins or durin", periods of heavy 
preCIpItation could still enter the ",round 
waler or surface drainage system of the area. 
In the state of Utah, the draIna",e area that 
would be primarily affected would be the 
whIle RIver, a Lributary LO the Colorado 
RIver. Along WIth the addItIon of salInity, 
L he leach ing process throu",h the raw and 
spem oil shale could potent ially load both 
organIC compounds and heavy melals into the 
contacted draInage system. 

ObjectIves of ThIS Study 

1. UtIlIzation of the balch botLle bIoassay 
for Loxicity testing 
The Algal Assay Procedure: BoLtle Test 

1 s currently accepted (APHA 1975) for blO
slimulatory effects of wastes on phytoplank-

1 

Lon. ThIS procedure will be extended Lo sludy 
Lhe tOXIC effects of waSLes on phYloplankLon 
such as those that may be caused by the high 
salinIty of 011 shale leachate. 

2. Effects of salinity on freshwater 
phytop~nktonproductlvlty------------

VarIatIons In the salInIty concentration 
of an aquatIC sysLem could affect the primary 
productlvlty by causin", osmotic pressure 
changes wlthln the cells. Variations 10 the 
ions compriSIng the salinity could affect the 
active transporl of nutrients into the algal 
cells. 

3 • E:~.<!1:~.<!l:..~Q!!_Qi_£~_~~_A r I!!.Y_ C o!:J?_~ 0 f 
En&lneerS Standard Elulriate TeSl 
rne Sta-Maralfluliiiife-Tesfwas-aesignea 

by the U.S. Army Corps of Engineers to 
characler Ize the pollut ion potent lal of 
dred",ed malerial on water quality and aquatic 
organIsms (Keeley and Engler 1974). The 
applicablliLY of Lhis Lest to another waste, 
spenl 011 shale, WIll be investigaled. 

4. Effecls of oil shale leachate on fresh
water phytoplankton productivity 
Many metals are required for the growth 

of algae, but are toxic in excess of the 
requIremenL for growth. Some speCies of 
algae can utilize organic compounds directly 
as an energy source (Stewart 1974) although 
some organic compounds are toxic to algae. 
Therefore, a complex waste such as oil shale 
leachate could either st imulate or depress 
phytoplankton growth depending on the effec
tive concentration of the waste entering the 
aquat IC system. 

5. ~plication of the bioassay results to 
the Colorado River System 
The data gaIned from the batch bottle 

bloassays will be interpreted to estimate 
possible impacts of leachate release on the 
phytoplankton of Lake Powell. 



LITERATURE REVIEW 

011 Shale Development 

The energy contained within 011 shale 1& 

potentially as large as that in all of the 
known petroleum energy reserves (Petzr Ick 
1975). However, environmental, economic, 
legislative, and policy constraints have 
delayed construction of commercial prototypes 
(Maugh 1977). The major fract Ion of 011 
shale withIn the United States is contained 
in the Green River format Ion beneath north
western Colorado, northeastern Utah, and 
southwestern Wyoming. These depOsits are 
estlmated to contain 1.8 trillion barrels '1f 
011 (Donnell and BlaIr 1970). Both Indu,,
trial and governmental activity in oil shale 
development has increased since the leas Ing 
of the federal 011 shale tracts in 1974 
(Pforzhelmer 1974). 
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Commercial Extraction Operations 

Oil shale IS actually not a shale, but a 
marlstone. The composition of a typical oil 
shale is shown In decreas ing detail moving 
from left to right in Figure 1 (Siggia and 
Uden 1974). The oil is obtained from the 
organic matter in the shale, largely from 
a substance called kerogen. A synthetic 
crude 011 called syncrude is produced with 
the appl icat Ion of heat in retort iog and 
prereflnement of the retort product (Routson 
et a1. 1979). The retorting processes 
for extracting all from the shale are of two 
major types: The in situ process, in which 
the 011 JS extracte~vra-pyrolysis within the 
shale formation; and the above ground re
torts. Above ground vertical retorts have 
been proposed for development of the federal 
tracts U-a and U-b, within Utah (Figure 2). 
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FltrUre 2. Location of federal all shale 
tracts in Utah (USDI 1973). 



Two different vertIcal retorting processes 
are likely to be used; it has been suggested 
t hat about 85 percent of the shale be pro
cessed via the Paraho direct heat mode 
and the other 15 percent representing the 
crushed fInes be processed by the TaSCa I I 
process (Crawford et a1. 1977). Although 
most of these extraction processes are 
proprietary, they have been generally de
scr lbed and compared (Nat ional Petroleum 
CouncIl 1972). A generalIzed flow diagram of 
a 50,000 barrel per day oil shale mine and 
processIng unit is shown in Figure 3 (Conkle 
et al. 1974). 

MInIng OperatIons 

Three methods of mIning the 011 shale 
have been proposed: Open-pit, which IS 
extraction of the shale by a drag-line after 
removal of tl'le overburden: room-and-pillar, 
wh lch IS ext ract Ion of the shale by loader 
after selective rubblization leaving pillars 
of shale for support; and rubblizalion, which 

III 
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~~~~~:~m I 
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1,000 tonslcd I 

I 
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Retort water 
150,000 to 350 00 gal/cd 

is ext ract ion of the shale by l he 1n s ilu 
technIque. Since it has been est imaled thaL 
l.4 x 105 met[lC tons per day of oil shale 
will be required to operate the smallest 
economIcal ret ort ing plant, wh ich would 
pro d u c e 1 a 5 bar reI s per day, the mine 
assoc1ated WIth this development would ~ 
larger than any mine currently operat inl" in 
the United States (Sladek 1975a). 

Prerefinement Operations 

On site prerefining operations are 
desirable for two reasons. First, shale oils 
are usually heavier and more VISCOUS than 
petroleum, which makes transport without 
addItional refinement difficult. Second, 
the nItrogen and sulfur compounds contained 
In the shale oil poison heavy metal catalysts 
ut ilized in ref inement of oil. Therefore, 
pretreatmenl to facilitate transportation is 
des ira b 1 e, and the 0 n s i l e pre ref in i ng 
facilitIes may also be used to remove the 
nitrogen and sulfur compounds via hydrotreat
ment as water availability permits (Sladek 
1975b). 

Makeup natural 
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100,000 gallcd 

I 

Makeup wa ter from 
other plant sources pius 

freshwater as needed 

FIl'ure 3. Flow dIa~ram of 50,000-barrel-per-day under~round 011 shale mine and associated 
oil shale surface proceSSIng units (Conkle et al. 1974). 
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PollutIon Potential of the 011 
Shale Industry 

SOlId Waste DIsposal 

It has been proposed to dispose of 
nearly all of the solid and liquid wastes 
produced from the oil shale lndustry on 
the Ilround surface (Pfeffer and Kerr 1974). 
The spent oil shale will occupy, even under 
the greatest compaction, at least 12 percent 
more space than the In-place raw shale (USDI 
1973). This precludes the disposal of 
all of the spent shale in the locat ion from 
wh lch it was mined. As d supplemental or 
alternatlve dlsposal slle, the spent shale 
could be disposed of In canyons near retort
Inp: operations. For example, waste dlsposal 
for tract U-a in Utah IS expected to be 
Southam Canyon. A retention dam would be 
placed at the nonhern end of the canyon to 
prevent contamination of the White River 
(Crawford et a1. 1977). Spent shale from the 
Paraho process has been evaluated to deter
mIne If compaction of thls shale can be used 
to prOVide an impervious layer for dam and 
disposal area linIng: (Holtz 1977). Hand 
(lCJ69) has estimated that 1.0 1.8 x 106 
me t rIC tons of spent shale per day wou ld be 
produced by an above ground retort producing 
106 barrels of syncrude per day. Th is is a 
ratio of 5-6:1 of spent shale to oil on a 
volume baSIS. Overall, It IS estimated that 
the total volume of the projected disposal 
p de In Southam Canyon would reach 727 x 
106 cub IC meters WhICh would occupy approx
Imately 366 hectares (900 acres) with an 
averap:e depth of 61 melers (200 feet). 

Water Use 

The water requirements for the 011 shale 
industry have been estimated at 3.7 cubic 
meters of water per cubic meter of upp:raded 
shale Oil (Crawford et a1. 1977). The uses 
of the water are categorized In Flj!ure 4 
(Conkle et a1. 1974). A number of alterna
t ive sources are poss ible. One proposa 1 
suggested the dIversion of 36,000 acre feet 
of the Green RIver annually. This diversion 
would deplete 24,000 acre feet annually from 
the rIver system and return 12,000 acre feet 
annually of an unspecified quality return 
flow to the rIver. Because most oil shale 
development plans project total containment 
of wastes In the spent oil shale disposal 
sites, the estimate of 12,000 acre feet 
annually of return flow is probably too high. 
It has been estImated that thIS depletion 
would Increase 1 he sal inily of lhe Colorado 
River at ImperIal Dam by about 1.5 mg/l (USBR 
1974). The est lmated salinity Increases at 
ImperIal Dam due to Oil shale develop
ment are summarIzed In Table 1 (Siggia and 
Uden 1974). However, others hypothesized that 
the salinity of the Colorado River may 
actually decrease due to the removal of 
highly salIne groundwater contributions 
diverted Into 011 shale processing (Crawford 
et a1. 1977). The maintenance of lower 
salinIty In the Colorado River is of interest 
due lo the economIC importance of the water 
to downstream users. It is estImated that 
lhe annual economic losses are from $194,000 
to $395,000 (1974 dollars) per m~/1 increase 
In salinllY at Imperial Dam (USDI 1974). 
Additional damages occur in Mexico and create 
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Table I. EstImated 
Impet:Ial 
1 <)74). 

salInity Increases at 
Dam (Slggia and Uden 

Level of Development 

Shale Oil Production 
(1000 Barrels Per Day) 

Water Use 
(1000 Acre Feet Per Year) 

"alt Diverted 
At 400 mg/l 
(1000 Tons Per Year) 

Increased Salinity Concen
trations at Imperial Dam (mg/l) 

Resu.! t ing from Di.version 
of Water 

Resulting frnm Domestic 
Return Flow 

Total 

1977 

50 

9 

5 

0.5 

300 1000 1600 

52 155 245 

28 84 133 

9 14 

0.1 0.4 0.6 

3. 1 9.4 14.6 

d somewhat delicate International situation. 
The salInity load In the Colot:ado Rivet: IS 
al&o of Interest for other reasons. The 
Colot:ado River Salinity Control Act of 1974, 
wh Ich provides funding for construct Ion of 
several desaltIng and control pr0Jects, 
limitS effluents from Industrial dIscharges 
dnd duthor Izes research projects on future 
salinIty problems and programs (Science 
and PublIc PolIcy Program of the Univers ity 
of Oklahoma and Radian Corpvration 1977). 
The salInIty of the Colorado River, both past 
and present, has been dIscussed 1 n a number 
of publicat lons (Iorns et al. 1965; HoI 
burt and Valent Ine 1972; Blackman et al. 
1973; UWRL 1975). 

In order to contaIn potent Ial salinIty 
loading from the spent oil shale dIsposal 
dreas. all of the potential runoff must be 
cont 3Ined behInd catchment dams (BLM 1975), 
except for runoff released from the spillway 
durIng intense runoff events. Also, large 
volumes of shale are below the water table 
and must be dewatered before mining. Since 
much of the deeper groundwater is salIne and 
cannot be used or discharged to sur face 
waters, it must be treated before release or 
evaporated in the solid waste disposal areas. 
I t IS not uncommon for these groundwaters to 
have a total dissolved solIds concentration 
exceeding 40,000 mg/l (National Academy of 
SCIence 1979). 

LiqUId Waste Disposal 

It is proposed to dIspose of excess low 
quality water at the spent shale disposal 
s ltes. I t has been es t ima ted that a 50,000 
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bareel/day operat Ion on tract U-a or U-b in 
Utah would produce a low quality water 
waste stream to the process shale disposal 
site of between 0.4-0.7 ft3/s e c (Conkle eL 
al.1974). As an additional source of poor 
quality water, the shale must be leached with 
good quality water in oeder to establish 
vegetation (Bloch and KIlburn 1973). Studies 
(Colorado State University 1971; Ward and 
Reinecke 1972) show that the process will 
leach salinity ions into the water on a 
continuing basis (Table 2). These studies do 
not include the other solid and liquid 
wastes that would comprise approximately 3 
percent of the total wastes such as process 
wastewaters, OIly sludges, spent catalysts, 
shale coke and other prerefinery waste 
(Crawford et al. 1977). 

Trace elements are present within the 
was te, bu t of these only boron h as been 
reported in quantities that are toxic to 
plant growth (Bloch and Kilburn 1973). Also, 
the presence of trace organic materials 
wh ich are known carcinogens has been esta
blished (Siggia and Uden 1974). These com
ponents are polar and heterocyclic, which 
means they are potent lally toxic. Their 
polar characteristics may increase their 
solubilIty and entrance into water systems 
where bioaccumulation can occur. At critical 
tolerance levels of key terrestrial and 
aquat ic bIota, research is needed for pre
d ict Ive purposes to understand the possible 
hazards or successional changes and resulting 
environmental effects of ground disposal of 
shale oil wastes (Weaver 1974; Routson et al. 
1979). 

DIssolved Solids and Freshwater 
Phytoplankton 

Total Dissolved SolIds 

The effects of dissolved solids on 
phytoplankton has been studied in the lower 
ranges (0 to 0.5 gil) of dissolved solids 
concentratIons In order to delineate mainte
nance medIa for freshwater phytoplankton. 
However, little work has been done on the 
effects of greater salt concentrations on 
these freshwater organisms. A general 
literature reVIew of suspended and dissolved 
solids effects on freshwater biota, conducted 
by Sorensen et al. (1977), ment ioned ve ry few 
studies of phytoplankton. Specht (1975) 
reports inhibition of Selenastrum at sa 
linities greater than 900U-parts per million. 

It has been shown for lakes in central 
Alberta that with increase of total dIssolved 
solids (TDS), more nutrients become avail
able. This increases the productive capacity 
of the water to a certain point. A fur ther 
increase In the TDS in inland waters tends to 
InhIbit organic production, and so the 
productiVIty of the water decreases. In 
these study lakes, the optimum TDS and 
alkalinity is about 1400 mg/l and 450 
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T dble 2. Ex~erimental results of the [)erColation experIment conducted on TOSCO spent oil 
shale retorting resIdue (CSU 1971). 

Volume of Total volume Conductance Concentration (mg/I) of sample 
leachate of leachate of sample 

sample (cc) (cc) (1.lmhos/ cm @25O C) Na+ Ca++ Mg++ 8°4 Cl-

254 254 78,100 35,200 3,150 4,720 90,000 3,080 
340 594 61,600 26,700 2,145 3,725 70,000 1,900 
316 910 43,800 14,900 1,560 2,650 42,500 913 
150 1,060 25,100 6,900 900 1,450 21,500 370 
260 1,320 13,550 2,530 560 500 8,200 205 
125 1,445 9,200 1,210 569 579 5,900 138 
155 1,600 7,350 735 585 468 4,520 138 
250 1,850 6,825 502 609 536 4,450 80 
650 2,500 5,700 
650 3,150 4,800 
650 3,800 4,250 
760 4,560 3,850 
00* 00* 1,800 86 64 118 740 11 

*These are extrapolated values and were not actually observed. These extrapolated values are 
probably accurate to within + 6 percent. 

mg/l respect ively (Kerekes and Nursall 
1966). 

In t he Sea of Ga lilee, enr Ichment of 
water samples WIth an inorganic salt mediuw 
caused radical changes in the algal composl 
t Ion of the enriched samples. The appearance 
of a Chrysophycean flagellate, ~mn~Ium 
£~£~~~, in the enriched samples caused 
concern because th is alga is known to cause 
tOXIC blooms (Rahat and Dor 1968). Gupta 
(1972) dISi.:USSes the abIlity of blue-green 
a l/l'.ae to wIlhstand hIgh levels of salInity, 
but II IS usually assumed that something 
othtr than salInity controls al/l'.al growth 
(Van De Kreeke et a1. 1976). 

The effect of magnesium on freshwater 
phytoplankton has been studied more exten
s ively than that of the other ions because 
magnesium is an essential part of chlorophyll 
a (Sun and Sauer, 1972; Seitz and Seitz 
1973; Bennoun 1974). MagneSIum has been 
found not to InhIbit the growth of Selena-

capricornutum at concentratIons less 
92 mg/l (Internat 10nal Associat Ion of 

Theoret ical and Appl ied Limnology 1978). 
The effects of ratios of calcium to ma/l'.nesium 
and monova lent ion to diva lent ion on the 
growth of phytoplankton have been dIscussed 
by ProvasolI (1958). DIfferent genera have 
opt imum rat ios where they domInate communi
ties. For example, diatoms prefer waters 
WIth a monovalent ion/divalent ion ratio 
below 1.5 and have a wide flexibilIty toward 
dIfferent calcium to magnesium ratios. This 
WIde flexibility seems to narrow with unfavor
able total solId concentratIons and mono
valent Ion to dIvalent Ion rat lOS. The 
monovalent to dIvalent ion rat 10 (Na + K to 
Ca + Mg) based on the concentratIon (mg/I) of 
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each of the Ions was related to the per Iod
ICIty of speCIes composition of freshwater 
phytoplanktor by Munawar (1974). Both 
dIatoms and blue-green algae in that study 
Were found to requIre a monovalent to di
valent Ion rat to of less than 1.6. 

Most of the literature on salinity 
effects on freshwater phytoplankton deals in 
terms of specific cations or anions. Cations 
are often dIscussed as groups of metals. A 
study of heavy metal toxicity to algae of the 
Great Lakes showed that recommended levels of 
a number of metals for the Great Lakes were 
toxic to algae that were exposed to these 
levels of several of these metals s imulta
neously. The diatom tested displayed a 
greater sensitIVIty to heavy metal toxicity 
than the blue-green and the green algae 
tested (Wong et al. 1978). The syner/l'.istic 
effect of heavy metal toxicity on photosyn
thetic act IVlty of freshwater phytoplankton 
is dIscussed by Stumm and Baccini (1978). 
Metal tOXICIty in mammals has been extensive
ly Hudied (Luckey and Venugopal 1977). 

Many metals whIch would be common in the 
leachate from 011 shale are also known to be 
required substances for the growth of phyto
plankton. Many of these metals are hor
met ins. tOXIC agents that are s llmulatory in 
small doses. For these compounds it is 
customary to find the zero equivalent 
point whIch IS the concentration at which the 
hormetic agent has no ef fect. The suggested 
safe concentratIon is then established at 
th is pOInt. The ext ent to wh ich a metal is 
toxic can be pred icted In mammals by ident i
fying the group, period, and atomic weight of 
the metal (Luckey and Venugopal 1977). These 
types of tOXIcologIcal studies have (lot 



been widely applied to all!ae; nevertheless, 
t he concept of hormet Ins is appl icable to 
algae because essential nutrients for algal 
growth do become toxic to a e at higher 
concent rat ions. 

Required Elements for Phytoplankton 
Growth 

The positive effects of specIfic Ions on 
thE' productivIty of freshwater phytoplankton 
have als() been explored. Stewart (1974) 
reVIewed each of the macroelements required 
for Inorgal"IC nutrition In algae. Macro
elements reVIewed Included: sulfur, potassi
um. ,dlcium, and magnesium. Also he reVIewed 
each of the mlcroelements essentIal to all 
algae Iron, manganese, copper, zinc, 
mo lybdenum, chlor ine; and also the element s 
reqUired by only some algae: colball, boron, 
sillcon, vanadium, and IodIne. StumlJ1 and 
Morgan (1970) state that the ratIOS of 
carbon, nitrogen, and phosphorus necessary 
for algal growth as 106:15:1. They define 
algae stoichiometrically as CI06H26301l0N16Pl 
(3550 g/mole) WIth the minor elements being 
nel! lected. The carbon can be der ived from 
the aqueous phase (C02. bIcarbonate, car
bonate-inorganic carbon) as illustrated 
by Goldman et a1. (1972, 1974) and Lehman 
(1978) or It can be supplIed as C02 from 
the atmosphere, or from degradation of 
organIC:; In the water column and the sedI
ments (Mortimer 1971: Schindler and Fee 1978: 
Rudd and Hamilton 1978; Sonzogni et a1. 
L977). SchIndler (1971) and coUea[?:ues have 
shown that when other nutrients are supplIed 
1 n adequate or excess amounts, the C02 in
vaSIon rate from the atmosphere IS adequate 
Lo provlde suffiCIent carbon for algal 
blooms. 

OsmotIC Role of Dissolved Solids 

DIssolved solIds can also affect the 
productIVIty of algae osmotlcally. EcologIcal 
different iat Ion of algae Into mar Ine and 
freshwater forms is based on defInIte physio
logIcal differences (Stewart 1974). For many 
algae elevated osmotic pressure inhibits 
photosynthes is. Pos it ive buoyancy in some 
a e is also under ion ic cont rol and is 
regulated via the osmotic pressure of the 
cell (Kahn and Swift 1978). 

OsmotIC pressure (71) may be calculated 
1 n a number of different ways depending on 
the equation used. The classic equation used 
to calculate osmotic pressure is stated as 
(F Ind1ay 1919; Harned and Owen 1950; Moore 
1963) : 

where 

OSMOTIC PRESSURE (atm) 

71 

R 

i CRT 

gas lconstant 
mol- K-l, 

(1) 

0.820575 ~ atm 
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T 

C 

temperature K 

COlH';tltl rat ion mol ~ l. and 

number of ions from e lectro
lyte dissociation. 

Another method for calculat ing osmOL ie 
pressure IS based on the equivalent conduc
tance of the SolutIon. The equivalent 
conductance (f't) can be calculated WIth the 
follow equation (Moore 1963): 

EQUIVALENT CONDUCTANCE 

A 

where 

c 

K 

C 
(2 ) 

S clfiC conductance \1mhos/ 
, and 

normal concentratIon N. 

Th IS relat Ionsh ip is extrapolated to a zero 
concentration using a lInear regression to 
determine the equivalent conductance at 
infinite dIlution. 

Using these two variables, the Arrhenius 
degree of dissociation (a) can be calculated 
with the follOWIng equation: 

ARRHENIUS DEGREE OF DISSOCIATION 

a 

where 

A 

AO 

A 
AO 

(3) 

eqUIvalent conductance ohm- l 
cm2 equiv.- l , and 

eqUIvalent conductance at 
Infinite dilution ohm-l 
cm2 equlv.-l. 

The van't Hoff factor (i) can then be calcu
lated using the follOWIng equation: 

VAN'T HOFF FACTOR 

i 

where 

V 

a 

1 - a + Vel. (4) 

# of ions that one molecule of 
solute is capable of d issoc i
at Ing into, and 

degree of dissociation. 

The van't Hoff factor can then be used to 
calculate the osmol ic pressure of the solu
l ion shown In EquatIon 1. 



The activity of the solution may also 
affecL productivity. The activity coeffi
c lentS (y) can be establIshed via the DeBye
H~ckel equation (Barrow 1966): 

- 0.5091/Z+Z~/iC: 
Log (5) 

l+AiC: 

where 

A 1 

c concentration moles Q, -1, and 

z absolute ion charge. 

However Stumm and Morgan (1970) recommend the 
use of the Davies equation for calculation of 
actiVIty coefficients in solutions with 
higher ionIc strengths. The Davies equatIon 
is shown as follows: 

Log ± Y 0.3I 
1 

where ( 6) 

A (1.509, 

z absolute Ion charge, and 

Ionic strength of the solutIon. 

Osmot IC pressure and the aCl ivity 
coef f IC ient are both dependent on the Ionic 
strength of the growth medium for an alga 
and therefore change as the salinity of the 
medIum changes. Increases in these variables 
have been shown to cause Inhibition of 
phoLosynthesis In some freshwater algae 
(Stewart 1974). Therefore, an increase of 
these variables can be indIcatIve of a toxic 
response in freshwater algae. ThIS hypo
theSIS WIll be tested In thIS research. 

Phytoplankton Effects on SalInIty 

Not only does the salinity affect the 
productivity of the phytoplankton, but the 
phytoplankton directly affects the salinIty 
of the water. As algae photosynthesIze, they 
ut ilize carbon dIoxide. This increases the 
pH of the water WhiCh, In the presence of 
large quantities of calcium and carbonate 
Ions, could cause the precipitation of 
calCIum carbonate. This precipitation causes 
a phenomenon In the Great Lakes known as 
whiting (Strong and Eadie 1978). Also, it 
has been hypothesized that the electronopaque 
non-r igid f ibr ils of approximately 3 to 10 
nanometers In diameter that are found abun
dantly on the surfaces of common lake mi
crobes, free in the water column and free on 
the surface of the lake bottom, may be the 
prinCIpal component of an organic carrier 
system for the redistr ibut ion of bound but 
bIologically available cations in lakes 
(Leppard et al. 1977). 
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The effects of petroleum products on 
marIne phytoplankton have been studied 
extensively. Dunstan et al. (1975) projected 
that the SignIficant environmental effect of 
oil on marine primary production could be the 
growth st Imulat ion of part icular species by 
low molecular weight aromatic compounds which 
would result In an alterat ion of the natural 
phytoplankton community structure and ItS 
trophic relat lOnships. Other invest igators 
have found oils to have toxic inhibitory 
effects on algae (Gordon and Prouse 1973; 
Winters et aL 1976). Kauss and Hutch 
i nson (1975) observed a signIficant st imula
t ion of algal growth after the toxic com
pounds of the oil had evaporated. This work 
was done on a freshwater alga using only the 
water-soluble components of oil. Actual 
oil spills in marine environments suggest 
that phytoplankton are not strongly affected 
by oil when exposed for short periods (Ignat
iades and Mlmicos 1977). 

OrganiCS 

Some algae can utilize orRanics as a 
growth substrate, and vitamin requirements 
have been shown for many algal species 
(SWIft and Taylor 1974). Organic fractions 
of domest1c sewage have been found to stimu
late algal growth (Sathdev and Clescer i 
1978). 

Trace Metals 

The trace metals present in oil shale 
leachate could change the community composi
t ion of the phytoplankton. Patrick (1978) 
discusses the effects of trace metal pollu
tIon on dIatom communities. In the presence 
of mInor trace metal pollution, a shift in 
the diatom genera may occur. In the presence 
of larger amounts of trace metal pollut ion 
the diatom community may be replaced by forms 
of green and blue-green algae which tend to 
be more tolerant of trace metal contamination 
than are the diatoms. However, boron, which 
is abundant 1n some spent oil shale (Bloch 
and Kilburn 1973), has been identified as a 
possible requirement for diatom growth 
(Thomas and Dodson 1968). Meyer (1978) 
dIscusses the changes in algal populations 
that correlate with trace metals concentra
t ions In a reservoir. Th is included cyano
phytes as well as diatoms. It is difficult 
to generalIze about trace metal toxicity 
since it has been found to be species depen
dent and also dependent on the temperature of 
the enVIronment (CaIrns et al. 1978). 

Algal TOXICIty Tests Using Batch 
Bottle Bioassays 

The algal assay bottle test procedure, 
WhICh has been extensIvely applied to biosti-



mulatlon studies, IS presently being applied 
to toxicity studies. Apply the procedures 
to toxicity testing has only tentative 
approval as a Standard Method (APRA 1975). 
However, the USEPA has included thIS pro
cedure in its lalest protocol of the Selena
st £~cornutum, Printz, algal assay 

t e test (Miller et a1. 1978). It is 
ass umed t hat if alga 1 gr ow t h rema ins limIt ed 
when nutrlents are in sufficient supply and 
the physIcal conditions for growth exist, a 
tOXIcant IS present (Payne 1976). 

The use of mdigenous phytoplankton In 
these bioassays is not recommended unless 
there lS strong evidence of the presence of 
pers Istent sublethal toxicants to which 
indigenous populat ions mi t be tolerant 
(Greene et al. 1978). However, the use of 
ind s species in test ing procedures has 
prev ously been recommended by others because 
the testing is presumed to be more rational. 
Odum (1971) states that to study the micro
bIal activities In low-nutrient, constant
flow environments, the r t organisms, or 
those active under natural low-nutrient 
condIt ion, must be located. These may not 
be the "laboratory bugs" that have received 
the most intensive study. Phytoplankton and 
other organlsms which have evolved in and 
adapted to physically variable environments 
would, because of their adaptatIons, be 
better able to tolerate any toxic compound 
(and poss ibly any perturbat ion) than would 
morphologIcally similar organisms adapted to 
slable environments (Fisher 1977). 

VariatIons In tolerance WIthin the same 
taxonomic groups of algae have also been 
dIscussed by Rana and Kumar (1974). Thls 
varIatIon was noted while studying the 
tolerance of algae to effluents from a 
ZInc mine and smelter. Additional wide 
varidtions in tolerance to thIS waste was 
also noted between the a e of differing 
taxonomlC groups. 

Lee (1973) stresses the importance of 
chemlcal aspects of bioassay technlques for 
proper evaluat ions of the environment. The 
chemlcal aspects of a bot lIe bioassay would 
be dependent on the test alga. For example, 
blue-green algae produce hydroxamate chela
lors wh lch appear to act as agents to sup
press the growth of other e by mduc ing 
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iron deprIVatIOn (Murphy et a1. 1976). Also 
the presence of mixed a 1 cultures could 
affect the results of t e bioassay. The 
presence of Scenedesmus and Selena-
s mlnutum together to reduce 

e algicidal effect of CuS04 which sug
gests an Involvement of some physiological 
mechanism in this algal mixture (Dashora a~ 
Gupta 1978). Plant polyphenols have also 
been found to cause inhibition of calcite 
pre c i pIt at i on 1 n La k e P owe 11 ( R e y n 0 Ids 
1978). In this manner the algal assemblage 
may have a direct effect on the chemistry of 
carbonate lakes as well as the bioassay 
flask. However, the detection of algal 
growth react ions, whether inhibitory or 
stimulatory, becomes more accurate as 
detailed background informat ion accumulates 
on the physiology of a s Ie test species. 
Also, when using a single 1 test species, 
comparison of algal growth potent ials from 
dIfferent water sources is feasible (Miller 
et a1. 1978). 

Sources of Variation 

Any bIoassay whether testing Selenastrum 
£~E.E.l c 0E.g!:!..!:u~ , ani n dig en 0 usa 1 g a ,or 
a mixeaalgaf culture can have errors intro
duced through the biomass analys IS. Trees 
(1978) dIscussed substantial errors in 
suspended solids determination in waters with 
a high dIssolved solids content. The error 
In calculating dissolved solids is magnified 
when filterIng smaller volumes of saline 
water. The filters should be rinsed with 
distilled water after filtration to maIntain 
a linear relat ionship between sample volume 
and suspended solids content of the water 

Problems can also be encountered with 
biomass estimation via chlorophyll a 
measurements. It has that the 
ratio of chlorophyll a concentration to in 
vivo fluorescence chang-es in value during the 
course of bioassays. Tunzi et al. (1974) 
suggested that a conversion factor to convert 
in fluorescence to chlorophyll a 
conce ratIon should be calculated at the 
b inning and end of each algal bioassay. 
K i er (1973) showed that the ch lorophyll ~ 
of nitrogen-starved cells fluoresced more 
strongly than in unstarved cells. Therefore, 
care must be taken that the differences being 
measured are of algal biomass and not the 
cells dIfferential ability to fluoresce. 



MATERIALS AND METHODS 

The potential effects of the salInity 
and other constituents of 011 shale leachate 
on phytoplankton productivity were evaluated 
us Ing both standard and modified algal assay 
procedures. In general, algal assays consist 
of monitorIng the growth of test algae in 
separate Erlenmeyer flasks. Each flask is 
lnnoculated with an equal amount of cells and 
1 ncubated under ident lcal phys Ical con
dItions. Control flasks of the test alga and 
medIum were cultured along with the various 
treatment flasks which included the same 
test alga and medium, with the addlt ion of 
whatever was being tested. The effect of the 
treatment on the growth of the algae was 
determined by com~aring the growth of the 
algae in the treated flasks to that of the 
controls. Standard algal assay procedures 
were conducted to provide data which would be 
comparable to other investigat ions (USEPA 
1971: Miller et a1. 1978). The modIfications 
to the standard algal assay procedure were 
made USIng the general guidelines presented 

. In Standard Methods (APHA 1975). An Identi
fIcation matrIX of the bioassays conducted, 
as lIsted In Table 3, summarizes both the 
standard and modifIed procedures applied to 
the bioassays durIng this study. 

~Isolation and Culture Maintenance 

The standard algal assay organIsms 
utilIzed, Selenastrum caprlcornutum, Printz, 
and Anabaena flosaquae (Lyngbj(De Bre
bISSOrl), were secured from the NatIonal 
EutrophicatIon Research Program. These 
algae were maintaIned In AAM, a synthetic 
algal nutrient medium (Table 4). 

I n dIg e n 0 usa 1 g a e utIli zed, Sy n e s!!.~ 
dellcatissma var. angustissima andrScene
desmus ~iiu~, were isolated from samples 
coTLecte y Bureau of ReclamatIon personnel, 
under the supervision of E. G. Bywater, at 
the Wahweap station on Lake Powell. These 
algae are abundant in Lake Powell (Stewart 
and Blinn 1976). These algae were isolated 
and maintained in Lake Powell Synthetic 
Medium (TDS = 780 mg/l), which is AAM modi
fied by the addition of the major cations and 
anIons measured in Lake Powell (Table 5). 
UnIalgal cultures of all four of the test 
a 19ae (hereafter referred to as Selenastrum, 
~Eabaena, ~nedra, and Scenedesmus) wei-e 
maIntained via standard algal assay pro
cedures except for the media modificatIon 
already described. 
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Regular Bioassay Monitoring Techniques 

The bioassay flasks were monitored daily 
for the f 1[S t five days of the bioassay and 
every other day after that period unt il the 
algae ceased to grow. Algal growth was 
measured by a number of different variables: 
Opt ical dens lty (absorbance) was determined 
at 750 nanometers on a Bausch and Lomb 
Spectronlc 70 In a one centimeter cuvette 
(APHA, A Turner model III Fluorometer equip
ped WIth a #110-922 (430 nm) excitat ion and 
#110-021 «650 nm) emission filters, a red
sensItIve photomultiplier tube, and a high 
sensnivlty door (APHA 1975); 2) A Turner 
model 430 Spectrofluorometer operated at a 
band width of 60 nm for both excitation and 
emisslOn wave lengths of 440 nm and 670 nm 
respectIvely. Two auxiliary emission filters 
were used to block the emiSSIon interference, 
a standard polarIZIng fIlter and a Corning 
#2A glass f lIter. The procedure for ch loro
phyll ~ measurements on the spectrof luoro
meter is outlined by Turner Assoclates (1973, 
1976) • 

Cell counts and mean cell volume deter
mlnations of unialgal cultures of Selenastrum 
were conducted on a Coulter ElectronIC 
Particle Counter Model B with a Model J 
Part lcle Size Distribution Plotter (Coulter 
Electronics, Inc., no date; Miller et a1. 
1978). The aperture tube had a 100 micron 
orIfice. Cell counts of the mixed and other 
algal cultures were conducted via direct 
microscopic examinatlon in Sedwick-Rafter 
cells CAPHA 1975). Specific conductance was 
monitored using a Yellow Springs Instrument 
Company glass conductivity cell Model No. 
4303 and wheatstone bridge (APHA 1975). 

Llmitations were encountered with all of 
the bIomass monitoring techniques utilized. 
Optical density did not provide good sensi
tivity, therefore being of questionable value 
during the first few days of bioassay mea
surement. Optical density was also prone to 
interference from precipitates and precipita
tion is a common problem in samples with 
high total dissolved solids content especial
ly In batch bioassay systems where it is 
common to have the pH increase during algal 
growth. Chlorophyll ~ fluorescence was more 
sensitIve, therefore being of more value 
during the flrst few days of bIoassay mea
surement. It was also less prone to Inter
fer en c e from pre c i pit ate s a It h 0 ugh t his 
problem was st11l present. However, chloro-
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Table 3. Identlficatlon malrlx for algal bloassays. 
----_ ... _---------

Physical 
Test Algae Parameters Biomass Parameters 

Cell 
Bioassay Selenastrum Synedra Anabaena Scenedesmus Elect rical Optical Count 

Nutnber Conductivity pH i Density Fluoresence (displacement) 

I X X X X X 

II X X X X X X 
III X X X X X X 

IV X X X X X 

V X X X X X 

VI X X X X X 

VII X X X X X 

VIII X X X X 

(acclimated 
for 6 months 
in L.P.S.) 

IX X X X X X X 

(41-) 

X X X X X X 

aBase Media: AAM = Algal assay medium (Table 4); L.P.S. = Lake Powell Synthetic (Table 5). 

-

I Medium Perturbations 
Direct 

Cell Counts Addition Addition Base 
by Genera Levels (Medium)" 

gil 
16.000, 14.000, NaCl, KCI, MgS04 
10.000, 6.585, CaS04, Na2S04,MgCl 2, 
4.937, 3.000, K2S04, CaClz, (AAM ) 
5.8Z6, 7.768, 
3.00, 2.00, NaCI, KCI, MgS04 , 
1.00, 0.50, CaS04, NaZS04 
0.25 K2S04, CaCl 2 

i all NaCl, KCl, MgS04, 
0.03N CaS04, Na2 S04 , 

MgC1 2 , KZS04, 
CaCI Z, NaHC03, 
KHC03, (AAM) 

0.05N, O.toN, Same as Above 
O.2N, 0.3N (L.P.S.) 
O.05N All possible two 

way combinations a 
the 10 salts. 

10.05N 

(L.P.S.) 
All possible 3 and 
4 way combinations 
of the 10 salts 

(L.P.S. ) 
O.05N All possible 5, 6, 

7, 8, 9, and 10 
way combinations c 
the 10 salts 

(L.P.S.) 
0.30N, O.lON 10 salts at each 
O.OSN, Shaker level and shale 
Ext ract ed leachate (AAM) 
Elutriates 

X O.05N 10 salts and 4 
different ials 

Total 28 
(L.P.S.) 

5 ml, 10 rol, Oil shale elutri-
15 rol, 20 ml ates and leachate 

Matching salt 
solutions 

(L.P.S.) 



phyll a fluorescence measurements were more 
varIable than optical density measurements 
over the course of the bioassay. Cell counts 
conducted on the Coulter Counter are more 
sens Itive and precise than both the optical 
densIty and fluorescence measurement tech
n Iques; however, they could only be appl ied 

Table 4. The synthetic algal nutrient 
medium, AAM (USEPA 1971). 

Compound 

Macronutrients 

NaN03 
K2 HP04 
MgC12 
MgS04 7H20 
CaC12"2H20 
NaHCO) 

Compound 

Micronutrients 

H3B03 
MnC1 2 
ZnC1 2 
CoC1 2 
CuC1 2 
Na2Mo04·2H20 
FeCI) 
Na2EDTA.2Hi' 

Concen
tration 

(mg/l) 

25.500 
1.044 
5.700 

14.700 
4.410 

15.000 

tration 
(llg/l) 

185.520 
264.264 

32.709 
0.780 
0.009 
7.260 

96.000 
300.000 

Element 

N 
P 
Mg 
S 
C 
Ca 
Na 
K 

Element 

B 
'In 
Zn 
Co 
Cu 
Mo 
Fe 

Concen
tration 

(mg/l) 

4.200 
0.186 
2.904 
1.911 
2.143 
1.202 

11.001 
0.469 

tration 
(Ilg/l) 

32.460 
115.374 
15.691 
0.354 
0.004 
2.878 

33.051 

Table 5. Salt additIons to AAM for Lake 
Powell synthetic medium (Medine et 
a1. 1977), 

Salts 

CaC12·2H20 
CaS04· 2H20 
MgS04, 7H20 
Na2S04 
K2 s04 
NaHC03 
Na2SiOr9H2o 

Total Ions mg/l 
----. ~-------

Ca++
~lg++
Na+ 
K+ 
Si++-++ 
S04~ 

Cl
HCO)-

80.160 
32.225 

109.355 
4.299 
5.001 

291. 15 
79.04881 

175. 1194 

Concentration 
(mg/l) 

163.9 
152.4 
308.0 
108.7 

9.58 
241.1 

50.607 

meq/l 

4.0 
2.65 
4.76 
0.1099 
0.7123 
6.062 
2.229 ) 
2.87 
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to unialgal cultures of the lunicaLe al~a, 
Se lenast rum. The ind igenous algae wh ich 
na:-ve--attenuated morphology and clumpin/?, 
tendencies, did not lend themselves to 
analysis by displacement methods, therefore, 
direct microscopic counts usin?: a Sedwick
Rafter cell (APRA 1975) were utilized to 
determIne these cell counts. 

The cell counts are adjusted for varia
tion in cell sizes by the determination of 
the mean cell volume. Size variation does 
occur in algal cultures, WIth rapidly growing 
cultures being composed of smaller cells 
and slow growing popUlations beIng composed 
of larger cells. Size variatlon in algal 
cells can also occur with variation in the 
media. The mean cell volume of the automated 
cell counts of Selenastrum were determined 
USIng a Coulter Cell Size Plotter, Model J. 
The mean cell volume of the direct micro
SCOpIC counts were determined with an eye 
piece micrometer. This direct mIcroscopic 
technique is less precise than the automated 
techniques for cell count and cell volume 
determinations. 

Special Analyses 

The chemica 1 analyses per formed dur ing 
the project are summarized in Table 6. The 
flame photometric and atomic absorption 
procedures were conducted on a Var ian Tech
tron Atomic Absorption Spectrophotometer, 
AA6, model 63 (Varian Techtron, 1972; 1975). 
The automated procedures were conducted on a 
Technlcon Autoanalyzer II system from Techni 
con Instruments Corporation, The infrared 
combustion for the total organic carbon 
analyses was performed on a Oceanography 
International Corporation 0524B Total Carbon 
System, WIth an O.I.C. model 0512 EP elec
tronic printer. The rapid injection technique 
was utilized as explained by Oceanography 
International Corporation (no date). The 
actIvities of solutions were determined using 
a Wescor HR-33T Dew Point Microvoltometer 
equipped with a C-51 sample chamber psychro
meter (Wescor, Inc. no date). 

The potentiometric method utilIzed for 
measuring the total alkalinity of the samples 
had to be modIfIed due to interference in the 
test from the high total dissolved solids 
concentrations of the samples. This modifi
cation was the creation of a breakpoint curve 
based on the samples being analyzed to 
correct for the precipitation of low solu
bility compounds present in the samples. 
This modification is described in Stan
dard Methods (APRA 1975). 

011 Shale Extraction Procedures 

Both raw and processed 011 shales were 
extracted VIa two different elulriation 
techniques. The first technique is shown in 
Figure 5. The second technique (Figure 6) 



TabLe 6. An Index of the chemicaL analyses performed. 

Analytical Parameters 

Total hardness 
Total alkalinity 
Carhonate hardness 
Bicarhonate hardness 
Total dissolved solids 
Suspended solids 
Calcium, dissolved 
Chloride, dissolved 

Magnesium, dissolved 
Potassium, dissolved 
Sodium, dissolved 
Sulf ace, S04 

Barium, tot. diss. 
Boron, dissolved 
Cadmium, tot. diss. 

Chromium, tot. diss. 

Copper, tot. diss. 
Iron, tot. diss. 
Lead, tot. diss. 

Manganese, tot. diss. 
Nickel, tot. diss. 

Silver, tot. d1ss, 

Zinc, tot. diss. 
Arsenic, tot. diss. 

Selenium, tot. diss. 

Unit 
Sensitivity 

mg/l; as CaC03 
1 mg/l; as CaC03 
1 mg/l 
1 mg/l 
1 mg/l 
1 mg/l 
mg/l, 2 place 
mg/l, 2 place 

mg/l, 2 pI ace 
mg/l, 2 place 
mg/ l, 2 place 
mg/l, 2 place 

mg/l, 2 place 
mg/l, 2 place 
mg/ I, 3 place 

mg/l, 3 place 

mg/l, 3 place 
mg/l, 3 place 
mg/l, 3 place 

mg/l, 3 place 
mg/l, 3 place 

rng/l, 3 place 

mg/l, 3 place 
mg/l, 1 place 

mg/l, 2 place 

Method 

EDTA Titrimetric; SM p. 202 
Potentiometric; SM p. 278 
Calc. from CaC03 
Calc. from CaC03 
Gravimetric; SM p. 92 
Gravimetric; SM p. 94 
EDTA Titrimetric; SM p. 189 
Ferricyanide (automated; SM p. 613: 
Mercuric nitrate method; SM p. 302 
calc. from Tot. Hard 
Flame photometric; SM p. 234 
Flame photometric; SM p. 250 
Methylthymol hlue (automated); SM 
p. 628: Turhidometric method; SM 
p. 496 
Atomic ahsorpt1on; SM p. 152 
Carmine; SM p. 290 
Atomic ahsorption (flameless); EPA 
p. 78 
Atomic ahsorption (flame less} ; EPA 
p. 78 
Atomic ahsorption; SM p. 148 
Atomic ahsorption; SM p. 148 
Atomic ahsorption (flame less) ; EPA 
p. 78 
Atomic ahsorption; SM p. 148 
Atomic ahsorption (flame less) ; EPA 
p. 78 
Atomic ahsorption (flame less) ; EPA 
p. 78 
Atomic ahsorption; SM p. 148 
Atomic ahsorption (vapor genera-
t ion) ; SM p. 159 
Atom1c ahsorption (vapor genera-
tion) ; SM p. 159 

SM Standard Methods for Examinat10n of Water and Wastewater, 14th Ed., 
APHA, 1975. 

EPA = Methods for Chemical Analysis of Water and Wastes, USEPA 1974. 

used 1 S the s l and a r d t e c h n i que utIli zed 
by the Corps of ineers for analysis of 
dr d samples (Keeley and Engler 1974). 

Oil shale was also leached in an up-flow 
column (Figure 7). An up-flow rather than a 
down-flow column was used to avoid short 
c 1 rcuil ing of the water through the shale. 
This is a modification of the technique used 
by Maase el a1. (1975), using gravi ty flow 
instead of a pump to force the fluid through 
the bed of processed oil shale. The shale 
was air dried to a moisture content of 
approximately 2 percent and then 2500 grams 
of the shale was placed In the column without 
compaction. A sieve analysis of this shale 
before placement In the column IS shown in 
FIgure 8. The sieve analysis showed this 
shale to have an effective size of 0.098 mm 
and a uniformIty coefficient of 5.63. The 
f low of d ist Hled water through the column 
vdned slIghtly at around 1 liter per 
day. ThIS would YIeld a velOCIty In the 
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column of approxImately 3 x 10-4 centimeters 
per second. This velocity was chosen as 
being approximately the velocity that the 
water would percolate by gravity flow 
through spent shale dIsposal piles. Leachate 
and elutriate samples were collected and 
sterilized by filtration through 0.45 micron 
Millipore filters (Type HA) and placed in 
sterile containers In the dark under refr 
eration until use. 

The batch bioassays were conducted to 
study the effects on algae of large numbers 
of variatIons of salts, concentrations, test 
a e, and oil shale extraction techniques. 
The initial bioassays were used to establish 
the salt effects on algal growth. The 
standard test alga, Se1enastrum, was used 
as the test alga as suggested by the standard 



F q?:,ure 5. 

100 grams of 
oil shale in 

500 ml Erlenmeyer 
flask 

~ 
Add 

300 ml of 
distilled 

water 

~ 
Into constant 
tempe~atureoroom 

at 24 C ± 2 and 
constant light 

at 4300 lux ± 10% 

1 
Extract on shaker 

for 48 hours 
at 1500 rpm 

OIl shale eiutrlatlon technIque 
number 1. 

algal assay procedure. ThIS serIes of 
bloassays was followed by another series of 
bloassays USIng an alga WhICh IS IndIgenous 
LO Lake Powell, 5ynedra, as the test organ
Ism. This procedure is also suggested by the 
APHA (1975), when testing for algal tOXICity. 
After the salt effects on algal growth had 
been measured, the 011 shale ext racts were 
tested. These extracts are hIgh In salinIty 
and so the previous bioassays studying the 
salt effects on algal growth could be applIed 
to the interpretation of these results. 
Because changes in water chemistry often 
cause a shift in the dominant algal species 
and even the dominant algal phylum present in 
a body of water, a batch bIoassay was con
ducted using equal numbers of three different 
algal phyla as the test organisms. This 
bioassay attempted to identify If the com
pounds under study would select for a parti
cular algal phyla. 

Four bIoassays were conducted USIng the 
standard test organism, Selenastrum capri
£Q.!.nutum. Pr intz. In the ~1i1oassay, 
equivalent concentrations of eight different 
salts were used at the same normality as 
NaCl. These salt concentrations, from 3 grams 
per lIter to 16 gil, were added to the 
bIoassay flasks in additIon to AAM. A second 
bioassay was run with the addItion of salt 
concentrations at the same normalIty dS NaCl 
as follows: 3 gil, 2 gil, 1 gil, 0.5 gil, and 
0.25 gil. The eIght salts tested were: 
NaC!, KCl, MgC12, CaC12, Na2504. K2S04, 
MgS04, and Ca504. All of the addltlons 
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Figure 6. 

50 ml of oil 
shale in a 

500 ml Erlenmeyer 
flask 

1 
Add 

200 ml of 
distilled 

water 

r 
Into constant 

tempe6ature
o

room 
at 24 C ± 2 and 
constant light 

at 4300 lux ± 10% 

1 
Extract on shaker 

for 30 minutes 
at 1500 rpm 

OIl shale elutrlation technique 
number 2 (Keeley and Engler 1974). 

on the first two bioassays were single salts 
only. In the thIrd bioassay, the effects of 
two more salts were measured: NaHC03 and 
KHC03. Mg(HC03)2 and Ca(HC03)2 were not 
tested due to their relative insolubility in 
water. All possible combinations of these 
Len salts, taken two at a time, were tested 
at the 0.03 normal level ('\.< 2.0 gil as NaCl). 

Another bIoassay utIlized Selenastrum, 
which had been acclimated for six months to a 
higher salInity environment by maintaining 
the stock culture in Lake Powell Synthet ic 
medIum instead of the usual AAM medium. The 
same ten salts as in Bioassay 3 were tested 
agaIn as single salt additions at three 
levels: 0.3 N, 0.1 N, and 0.05 N. 

Four additional bioassays were conducted 
USIng the diatom indigenous to Lake Powell, 
~y~~~!.~. Single salt additions of the 
same ten salts were tested at the 0.3 N, 0.2 
N, 0.1 N, and 0.05 N concentrations. After 
this, all possible combinations at the 0.05 N 
level of the ten salts were tested. The 
medium used for all of these bioassays 
with ~nedra was Lake Powell Synthetic; 
otherWIse standard algal assay procedures 
were followed. 

Another modified bioassay was conducted 
using three algae in mixed culture. These 
algae were: Synedra, Scenedesmus, and 
Anabaena. The stanaara test-aIg;a-;-Anabaena, 
was used with the two indigenous species 
because an appropriate cyanophyte was not 



Isolated lr] the water samples from Lake 
Powell. These algae were tested with s Ie 
salt addillons of the ten study salts at a 
concentratIon of 0.05 N. Because of the 
mIxed all!.al cultures used as inoculum, the 
biolPass monlloring techniques were adjusted. 
Fluorescence was monitored on the s tro-
fluorometer at three different selt to 
monitor three different algal pIgments as 
summarized In Table 7. DIrect cell counts of 
each alga and heterocyst counts of 
were made. ThIS was in addition to 
cell counts. These cell counts were made 
uSing a Sedwick-Rafter cell (APHA 19 7 5). 
Ea(h speCIes was counted and the sum of 
the three speCIes was the total cell count. 
The medium for this bioassay was Lake Powell 
SynthetIC. Other than the above mod.flCa
t Ions. standard algal assay procedures were 
f (,I lowed . 

The all shale used for the elul r lat ion 
and leachate procedures are ldent If led by an 
alphabetIC code. The legend for chl code 
(AppendIX A-I) states that these are un
h Istorled samples from prototype processes 
and therefore may not be re~resentatlve of a 
full-scale operatIon. Elutrlates of shales 
CR. CP, DR. and DP, USIng elutrlatlOn pro-

20 I 

DISTILLED 
WATER 

RESERVOIR 

WASTE <II 
OVERFlOW 

INNER 
DIAMETER_ 

1/4 INCH 

(0.635 em) 

CONSTANT 
HEAD 
TANK 

INNER 1.5 FEET (46 ems) 
DIAMETER 
3 INCH (7.6 ems) 

!r--f--" LEACHATE 

2 FEET (61 ems) 

CLOSED ALL GLASS 
SYSTEM WITH TEFLON 
CONNECTIONS AND 
VALVES 

Flfure 7. The up-flow column for leachIng all 

shale (Maase et al. 1975). 
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cedure number one (F I/,-ure 5), were tebteo 
WIth acclimated Selenastrum as the lest 
organIsm. Elulrlalesor-shales AR, AP, BR, 
BP, USIng elutriation procedure nUI1.ber 
2 (F Igure 6), and leachate of shale AP were 
tested WIth Scenedesmus as the test orj.'anlsm. 

Each of the elutriates and leachates 
were subjected to the special chemical 
analyses previously described. The salt 
compOSItIon of the extractions, as deterlJ1ined 
by analYSIS, was then used to prepare the 
salt additions used in the bioassay. These 
salt additions, composed of reagent j.',rade 
salts and distIlled water, were mixed to 

Table 7. Fluorescence monItored for lPixed 
all!al cultures. 

Excitation Emission 
Pigment 

Wavelength Wavelength 
(nm) (nrn) 

Analyzed 
-----_._-

400 500 Carotenoid 
620 655 Phycocyanin 
655 680 Chlorophyll A 

1 
9 
8 
7 

P 6 
60 5 

4 

3 

2 
E 
E 

0:: 
UJ I t- 9 UJ 8 :E « 7 
i5 6 

Z 5 
<i UNIFORMITY 

"5.63 0:: 4 COEFFICIENT Pso c;!) 

3 
EFFECTIVE = O.098mm SIZE PIO 2 

PIO~ t----~ 
8 
7 
6 ~--~~~~~~~-~~~~~~~~~ 

2 5 10 15 20 3) 40 50 60 70 80 85 90 
PERCENTAGE 

SEDIMENT SAMPLE PASSING 

FIgure 8. The SIeve analYSIS of all shale. 



equal the salt composition of each elutriate 
and leachate. The elutriates, leachate, and 
saIl additions were then tested at four 
different concentrations of additions. 

Data and Statistical Analyses 

The actual analytical measurements made 
durIng the bioassays were coded onto IBM 
cards and processed on a Burroughs 6700 
computer. The algal biomass data were used 
to determine the maximum specific growth 
rate (Pb) and the day it occurred. The 
value of the growth rate for each treatment 
was calculated by the formula (USEPA 1971): 

In (X2/Xl ) 
A 

]Jb t2 - tl 
(7) 

where 

X2 biomass at tIme t2 

Xl bIomass at time tl 

The maximum growth rate was then the hIghest 
growt h rate determined for~ each treatment. 
The maXImum standing crop (X) of each treat 
ment and the day on WhICh it occurred was 
determIned as the biomass achIeved when the 
Increase in biomass was less than 5 percent 
per day (USEPA 1971). The use of this 
defInition of maximum standing crop was 
compared to the value of the maximum standing 
crop using the largest bIomass reading as the 
definition. No signIficant difference 
occurred In the stat ist ical conclus ions when 
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using either definition for the maXImum 
s tanding crop determinat ion. These param
eters were used for statistical analyses. A 
summary of the data interpretations based on 
variations of Pb and ~ is presented in Table 
8. 

StatIstical analyses were performed 
using STATPAC (Hurst 1972). All the treat-
ments were tested inst each other and the 
controls usinp t t-test (Middlebrooks 
1976). Duncan s multIple range and multiple 
F tests were also conducted on the data 
(Duncan 1955). Both the t-tests and multiple 
range tests were paired by time of sampling 
to eliminate varIation with time during the 
bioassay. 

Table 8. Summary of probable responses 
for algal assay growth parameters. 

Assay Protocol x 

Initial concen- Defines Defines 
tration of limiting rate limiting biomass limiting 

nutrient 

Standard additions 
of limiting and 
other nutrients 

Toxic 
Materials 

Growth rate 
stimulating 

chemicals 

Generally 
equal to 
maximum 
no effect 

Decreases 

Increases 

Increased 
biomass 

Decreases 

No effect 



RESULTS 

Effects of Increased Salt Concentrations on 
the Productivity of Selenastrum 

Effects of SIngle Salt Additions 

The concentrations of the salts under 
study were used at the same normality as 
NaCl. These salt concentrations, ranging 
from 3 gil to 16 gil, were selected based on 
current IHerature of estuarine salinity 
levels effects on the growth of the same 
specIes of Selenastrum, which would dIsplay 
no effect to algistatic on the growth of 
this green alga (Specht 1975). The levels 
and Ion specIes were also within the poten
tIal ion load of leachate from spent oil 
shale and the soil overburden In the areas of 
011 shale development (Colorado State Univer
Slty 1971: Ward and Reinecke 1972). 

A Duncan's multiple range analyses of 
the biomass data from this bioassay ranks the 
sail treatments from the least growth at the 
top of the lIstIng to the greatest growth, at 
the bOltom of the listing (Table 9). The 
growth depression of thls alga was so great 
a t all of the levels of salt add i t ions, as 
compared to the control, that no differen
t lat ion could be made between the var ious 
treatments. Any group of treatments which 
ar~ not significantly different from each 
other are connected by a line of stars to the 
right of the ranking list. All of the 
treatments produced biomass significantly 
lower than the controls. 

BIoassay two was conducted at lower 
levels of salt addH ions (Table 10). The 
concent rat ions of salts under study were 
again equated to the normalIty of NaCl. The 
molarity, grams per liter, activity coeffi
c lent s, and osmot lC pressures of each of 
these solut ions were also calculated. The 
act ivity coefficients were calculated using 
both the DeBye-Huckel equation and the Davies 
equatIon. The osmotic pressure calculations 
included both a van't Hoff factor (i) calcu
lated from the literature and a van't Hoff 
factor calculated from the equivalent con
ductance of the solution. 

A statistical analysis of the results 
was made using a split plot factorial anal
ysis of variance (Table 11). Time was a known 
source of va r iance and was elimi na ted from 
the testing procedure by pairing the results. 
From this analysis It was established that 
SIgnificant differences at the 99 percent 
level, between the treatments, exist with 
differences In concentration and catIon 
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additions. However, a significant difference 
does not exist with differences in anion 
additlOns. The interactions of cations and 
anions produce SIgnificant differences at the 
99 percent level between the different single 
salt additIons. By grouping the biomass data 
by monovalent versus divalent cations and 
applying a completely randomized design 
analYSIS of variance, a significant differ
ence was found at the 95 percent level of 
confIdence for the cell count data (Table 
12). Based on the optical density data, no 
signIfIcant difference was found. A signifi
cant difference in cell volumes was found 
when comparIng the dIfferent salt treatments. 
Algal growth had no apparent effect on 
salinity because the electrical conductivity 
of the media did not change significantly 
from the first day of algal growth to 
the last day of algal growth. 

LInear correlation coefficients with 
salt varIables and growth explained very 
little of the variance (Table 13). However, 
the results show that correlations signifi
cantly dIfferent from zero occur between X 
versus the following concentrat ion measure
ments in descending order of magnitude: 

molarIty> calculated osmotic pressure 
> normality> gil 

The act lvi ty coeff icienAt did not correlate 
sign lficantly with the X data. Correlat ions 
between 0 and the same concentration mea
surements occurred in the following descend 
ing order of magnitude: 

calculated activIty> normality> 
g/l > molarity> calculated osmot ic 
pressure 

The negat ive slopes and correlat ion coef f i
cients show the inverse relationship between 
many of the salt concentration variables and 
the biomass data. Therefore, as the salt 
concentrat ion increases, the algal growth 
response decreases. The cell volume data did 
not significantly correlate at the 95th 
percent ile to any of these concenlral ion 
measurements. The activity coefficient based 
on the Davies equation and the osmotic 
pressure based on the equivalent conductance 
calculation of the van't Hoff factor provided 
better correlations with the biomass data 
than the activity coefficient based on the 
DeBye-Huckel equat ion and the osmot ic pres
sure based on the literature value of the 
van't Hoff factor. Because of the lack of 
sensitivity of the optical density measure
ments during the first few days of the 



Table 9. Duncan's mUltiple range analyses of the biomass data from the 
initial bioassay with Selenastrum. 

Test based on: 
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-::; .... e t ~ I': ~ 
....,0 B 0 E 
'" E ""'+I 1;j 

~i 811 ~ 
Z. O,Z4 N [_8U4 
2'7 0,20 N CASf)4 
28 0,11 ~ [AS04 
29 I),OIl N CASOli 
30 0,0'5 ~I ["SOli 
31 o,to N CASOIl-
32 0,13 N CASOII 
25 0,27 N [4S0tl 
13 0,08 .. i<CL 
Ii? 0,11 N "I.:L 
U 0,05 N ... (~ 

15 cl,IIl r. "Cl 
III '1,13 N IICL 
45 0,08 N MGCL2 
10 0,21.1 N KCL 
It 0,21' N KCL 
9 0,27 N I<CL 

42 1),i?1I N "'GCl2 
43 O,l!! N "'GCl.? 
38 0,0'5 N ~.2S0~ 

I 0,27 " U,.Cl 
(17 0,11' N "GCl" 

8 0,13 N ~~LL 

3 0,20 N "IACl 
17 0,27 '" IoGSUq 

2 0,211 N II,ACl 
II 0.11 " .. I\Cl 

50 0.24 'II K.?SU<l 
211 0,1' "I >-&Sf)U 
51 0.20 N ~'?SOI.i 
37 U,08 'II ~A2snu 
49 0,27 N !',2S01l 
39 0.10 N ~A~SOu 
19 0.;>" " "uSOIJ 
3Q 0.2-11 ... Nli'&('" 
18 0.211 ~ MGSQIJ 
33 D,27 N N~?snQ 
22 0.05 N "'G501.1 
23 0,10 '" >;(,50" 
111 0,<:7 N "'GCl? 
52 0,11 ,. ~2501.1 

7 0.11) N "II\[l 
5 0.011 '" NAU 

20 0.11 N 1<+(,8U4 
i?1 O,UB ~. "bl:>UO 
53 a,,11l " ',iSIJ4 
48 v.B N "'GCL? 
35 0,20 N NA2S0~ 

II 0.0'5 N NACL 
1111 0.11 III "GeL? 
40 U,13 ~ NA2S0a 
lib O,OS N "'Gel'> 
$11 0.1Ie; N ~2ofJ(j 
16 0,11 N N42Sfla 
;7 0,27 'II (ACU' 
58 0.21.1 III CACl? 
56 0,1> N ~2S0'J 
55 0,10 III K2Sn" 
~II o.n '" eACl? 
59 0,20 N CACL2 
63 0,10 N CACl.? 
62 o,oe; III CACL? 
101 0,06 III CACL? 
100 0,11 N ("el2 
loS CO'npOL 

.. .. .. 
~ 

• .. .. 
.. 
.. 
* 
* .. .. 
.. 
• .. .. 
* 

* .. 

.. .. 

.. 
• 

* 

*Any group of treatments connected by a line of stars to the right of the 
ranking list are not significantly different from each other with 95 per
cent confidence. 
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Table 10. Sin/de salt aadditions to AAM for bIoassay 2 and the effects on SelenasLrum. 

Salt Normality Molarity gil 1fl(atm) 1f2(atm) 

NaCl 0.05133 0.05133 3.000 0.80531 0.8111 2.37812 1.9926 
0.03422 0.03422 2.000 0.83277 0.8310 1.58541 1 .3589 
0.01711 0.01711 1.000 0.87319 0.8639 0.80105 0.7021 
0.00856 0.00856 0.500 0.90550 0.8916 0.40493 0.3676 
0.00428 0.00428 0.250 0.93055 0.9106 0.20455 0.2041 

KCI 0.05133 0.05133 3.8269 0.80531 0.7990 2.35309 2.1132 
0.03422 0.03422 2.5513 0.83277 0.8188 1.59376 1.4471 
0.01711 O.Olllt 1.2756 0.87319 0.8524 0.80105 0.7523 
0.00856 0.00856 0.6382 0.90550 0.8824 0.40493 0.3925 
0.00428 0.00428 0.3191 0.93055 0.8890 0.20455 0.2632 

MgC1 2 0.05133 0.02567 2.4438 0.72342 0.6579 1. 72134 1.3778 
0.03422 0.01711 1.6292 0.76247 0.6912 1.12231 0.9455 
0.01711 0.00856 0.8146 0.81992 0.7434 0.57400 0.5078 
0.00856 0.00428 0.4075 0.86592 0.7938 0.28909 0.2679 
o 00428 0.00214 0.2037 0.901S3 0.8317 0.14559 0.1496 

Cael:! 0.05133 0.02567 2.8485 0.72342 0.6574 1.64623 1.3635 
0.03422 0.01711 1.8990 0.76247 0.6949 1.10562 0.9128 
0.01711 0.00856 0.9495 0.81992 0.7471 0.56357 0.4884 
0.00856 0.00428 0.4750 0.86592 0.7940 0.28700 0.2636 
0.00428 0.00214 0.2375 0.901'i3 0.8288 0.14507 0.1513 

Na2S04 0.05133 0.02567 3.6455 0.72342 0.6506 1.56486 1.3281 
0.03422 0.01711 2.4303 0.76247 0.6880 1.06390 0.8893 
0.01711 0.00856 1.2152 0.81992 0.7387 0.54687 0.4810 
0.00856 0.00428 0.6079 0.86592 0.7881 0.16176 0.2562 
0.00428 0.00214 0.3040 0.90153 0.8197 0.08662 0.1522 

KZS04 0.05133 0.02567 4.4725 0.72342 0.6299 1.53356 1.4219 
0.03422 0.01711 2.9817 0.76247 0.6701 1.16820 0.9344 
O.017U 0.00856 1.4908 0.81992 0.7242 0.45294 0.4986 
0.00856 0.00428 0.7459 0.86592 0.7727 0.28074 0.2706 
0.00428 0.00214 0.3729 0.90153 0.8191 0.14559 0.1436 

MgS04 0.05133 0.02567 3.0894 0.52334 0.4851 0.81373 0.9001 
0.03422 0.01711 2.0596 0.58135 0.5210 0.69675 0.6257 
0.01711 0.00856 1.0298 0.67228 0.5924 0.31309 0.3297 
0.00856 0.00428 0.5152 0.74982 0.6557 0.16385 0.1772 
0.00428 0.00214 0.2576 0.81276 0.7045 0.08662 0.0999 

CaS04 0.05133 0.02567 3.4941 0.52334 0.4966 0.99525 0.8491 
0.03422 0.01711 2.2394 0.58135 0.5260 0.66337 0.5957 
0.01711 ').00856 1. 1647 0.67228 0.5905 0.33188 0.3178 
0.00856 0.00428 0.5827 0.74982 0.6472 0.17429 0.1738 
0.00428 0.00214 0.2913 0.81276 0.6939 0.08714 0.0988 

+ 
(DeBye-Huckel equation) Yi Act ivi ty coef ficient 

+ 
'2 Activity coef ficient (Davies equation) 

1Tl osmotic Pressure 

IT Osmotic Pressure (equivalent conductance) 
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Table II. Spllt plot factorIal anaLysIs of varIance of sIngle saiL addltions to Selenastruw (bloassay 2). 

Var 2 (C.C.) 
Source DF SS MS VAR Calc F dF F 

REP 1 .4932267E-02 .4932267E-02 1 
REP (Replicates) 1 2.137594 2.137594 2 2.92449727 1/47 N.S. 3.18 1/47 N.S. 

A 5 1.884245 0.3768491 1 
A (Conc.) 5 688.4102 137.6820 2 223.45 5/47 S.Ol 204.89 5/47 5.01 

B 3 1.396716 0.4655719 1 
B (Cations) 3 1090.982 363.6606 2 276.05 3/47 5.01 541.18 3/47 S.Ol 

AB 15 0.4404872 .2936581E-Ol 1 
AB (Concentrations * 15 362.9585 24.19724 2 17.41 15/47 S.Ol 36.01 15/47 S.Ol 

Cat ions) 

C 1 0.1632817 0.1632817 1 
C (Anions) 1 103.9508 103.9508 2 96.81 1/47 N.S. 154.69 1/47 N.S . 

AC 5 0.1044255 . 2088510E-Ol 1 
AC (Concentrations * 5 26.13784 .'i. 227 569 2 12.38 15/47 S.Ol 7.78 5/47 S.05 

Anions) 

BC 3 0.2750743 .9169144E-Ol 1 
BC (Anions * Cations) 3 126.9280 42.30934 2 54.37 3/47 5.01 62.96 3/47 S.Ol 

ABC (Anions * Cations * 15 0.1753275 . 1168850E-Ol 1 
ABC Concentrations) 15 66.21303 4.414202 2 6.93 5/47 S.Ol 6.57 15/47 S.Ol 

N REP*ABC [(N-1) * 47 .7926713E-01 . 1686535E-02 1 
N REP*ABC (ABC-I)] 47 31.58291 0.6719767 2 

D 9 26.77909 2.975454 1 
D (Time) 9 8713.947 968.2163 2 8,467.23 9/432 S.Ol 4,482.84 9/432 S.Ol 

AD 45 1.389440 .3087645E-Ol 1 
AD (Conccentration 45 708.1549 15.73678 2 87.86 45/432 5.01 72 .86 45/432 S.Ol 

* Time) 

BD 27 1.238859 .4588366E-Ol 1 
BD (Cations * Time) 27 937.2202 34.71186 2 130.57 27/432 S.Ol 160.72 27/432 S.Ol 

ABD (Concentration * 135 0.8344270 .6180941E-02 1 
ABD Cations * Time) 135 339.9751 2.518334 2 17.59 135/432 5.01 11.66 135/432 5.01 
CD 9 0.1700606 .1889562E-Ol 1 
CD (Anions * Time) 9 72.39926 8.044362 2 53.77 9/432 5.01 37.25 9/432 S.Ol 

ACD (Concentration * 45 0.1208982 .2686627E-02 1 
ACD Anions * Time) 45 62.30643 1. 384587 2 7.65 45/432 5.01 6.41 45/432 5.01 

BCD (Cations * Anions 27 0.2495676 .9243244E-02 1 
BCD * Time) 27 438.6923 16.24786 2 26.30 27/432 5.01 75.23 27/432 5.01 

ABCD (Concentration * 135 0.4209221 .3117941E-02 1 
ABCD Anions * Cations 135 178.3998 1.321480 2 8.87 135/432 5.01 6.12 135/432 S.Ol 

* Time) 

ERROR [(N-1)*(d-1)* 432 0.1518086 .3514088E-03 1 
ERROR ABC] 432 93.30450 0.2159826 2 

TOTAL 959 35.87883 .3741275E-Ol 1 
TOTAL 959 14043.70 14.64411 2 



Tdble 12. Summary of completely randomized 
addItions (bioassay 2). 

des ign analyses of variance for Selenastrum 
s mgle salt 

Alternate 
Hypotheses 

Means of growth responses of 
cultures grown in the presence 
of divalent cations are differ-
ent from those grown in the 
presence of monovalent cations 

Mean cell volumes of cultures 
grown in the presence of differ-
ent salts are different 

Means of electrical conductivity 
of the cultures changed from Day 
o to Day 15 

Table 13. LInear relatIons between 
single salt additions to 

Dependent 
V ariab Ie (y) 

X (cells/ml) 

\l (day-I) 
(cell counts) 

+ 

Independent 
Vadab Ie (x) 

Norma Ii ty (N) 
Concentration (gil) 
Molarity (M) 
112 (atm) 
111 (atm) 
Specific Conductivity 

( ).!IIlhos/cm) 

Normality (N) 
Concentration (gil) 
Molarity (M) 
Y±l 
y± 

11/ (atm) 

Yl activity coefficient (DeBye-Huckel) 

Treatments 

( Na+ 
K+ 

{ Mg++ 
Ca++ 

NaCI 
KCl 
MgS04 
CaS04 
Na2S04 
MgCl 2 
K2 S04 
CaC1 2 
Control 

Day 0 
Day 15 

Number of 
Data Points 

45 
45 
45 
45 
45 
45 

45 
45 
45 
45 
45 
45 

+ activity coef ficient (Davies Equation) YZ 

111 Osmot ic pressure 

112 Osmot ic pressure (equivalent conduct ance) 

.... 
Variables 

0 

Tested til a 
Q) 0 
Q)'1;l (\J 
k (\J :l 
OOQ) ..... 
<lJ k '" O~ ~;::> 

Optical Density N.S. 1/398 2.73 
Cell Counts 0.05 + 6.58 

Cell Volume 0.01 8/34 9.60 
(\J 3) + 

Electrical 
Conductivity N.S. 1/78 1.88 

and dIfferent estimates of biomass for 

Correlation Equation 
Coefficienta y = mx + b 

-0.4381** y -2.381E-9x + 2.868E15 
-0.3851** y -1.4314E-7x + 6.830E06 
-0.5083** y 1.9l4E-9x + 6.830E06 
-0.4579** y 8.763E-8x + 6.830E06 
-0.3817* y -1.052E-6x + 3.487E06 
-0.3782* y -332.163x + 3.6l86E06 

-0.4753** y -0.0256x + 1.716 
-0.4008** y -1.462x + 3.677 
-0.3628* y -0.0138x + 1.716 

0.4982** y +0.1152x + 1.627 
0.5206** y +0.4l80x + 2.0098 

-0.3547* y = -0.6763x + 2.1614 

alf marked with (*), the value of the correlation coefficient is significantly different from zero at 
P ) 0.99. If marked with (**), the value of the correlation coefficient is significantly different from zero 
atP)0.95 
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bIoassay, the cell count data would appear to 
be more reliable. 

Determination of which of the cations 
affected the Selenastrum biomass data the 
greatest was achieved by the use of the 
Duncan's Mult iple Range Test (Table 14). 
ThIS test uses the same output format as used 
in the prevIous Duncan' s tes t output (Table 
9). The treatments are ranked in the least 
to greatest values from the top to the bottom 
of the listing. All treatments connected by 
one lIne of vertical stars is not signfi 
cantly different from each other. Cell 
count data were used for this analysis 
because of the greater sensitivIty of the 
measurement. Increasing concentratIons of 
the indiVIdual salts caused decreasing 
productivIty of Selenastrum when comparing 
groups of salts which are signIficantly 
different from each other. The catIons 
depressed the X in the following order: 

Mg, K '> Na, Ca 

For the Duncan's analys is of Q, the cat Ion 
order was Mg, Ca > K, Na. Because depression 
occurred in both the X and D as compared to 
the controls, the toxic effect of these 
cations was established. 

Selenastrum, whIch was acclImated to 
hIgher salinity conditIons by maintaining the 
culture in Lake Powell synthetic medium, was 
then tested In AAM with the concentrations of 
salt additions at the 0.3 N, 0.1 N, 0.05 N 
preVIously descr ibed first bioassay. A long 
lag time was noted as the acclimated Selena
strum adjusted to the AAM medium. The 
growtn of the acclimated Selenastrum did not 
show a sIgnificant ditrer.ence-oased o~ 
cations or anions (Table 15). Although the X 
for all of the salts was signifIcantly lower 
than the controls, the j1 for the majority 
of the salts was not significantly different 
than the controls. 

Effects of Two Salt AdditIons 

The effects of the addition of two salts 
at one concentration did not maintaIn the 
catIon dominance effect on algal growth 
depression. The Duncan's Multiple Range 
analysis (Table 16) of these data did not 
provide a clear relat ionship between mono
valent and divalent tOXIcity. 

DiffIcultIes were encountered in calcu
lation of actIVIty coefficients and osmotic 
pressures with mIxed salt solut ion. There
fore the electlcal conductIvity of these salt 
solutions was linearly correlated WIth 
the Selenastrum biomass data from the two 
salt addItIons (Table 17). Although the 
maXImum standing crop data do sIgnlficantly 
correlate with the electrical conductIvity, 
thIS correlation IS slightly lower than 
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the same correlatIon of the single salt 
addition data. 

Growth measurements of X are plotted 
versus specific conductivity and identified 
by the cat ions (F igure 9) and an ions (F igure 
10) that were added to the medium. From the 
plots, regional effects of the salts added 
can be noted. The combinat ion of monovalent 
and divalent cations encompasses a larger 
area than the monovalent or divalent cations 
alone and overlaps portions of each of these 
areas. This visually demonstrates the 
synergistic effects occurring between the 
monovalent and divalent cat ions present in 
the same salt solution. The areas of anion 
action overlapped more than the cation areas 
demonstratIng less distinct regions of effect 
based on the anions. 

Effects of Increased Salt Concentra
tIons on the ProductIVIty 

of Synedra 

The concentrations of the salts under 
study were normalIzed to the concentration of 
NaCl (Table 18). The Davies equation was 
used to calculate the activity coefficient 
and the osmotIC pressure of the solutions 
because these calculations had provided 
better llnear correlations with the biomass 
data In the SIngle salt additIon bioassay 
with Selenastrum. 

A randomIzed block design was used to 
test if there was a significant difference in 
growth based on the different salts. There 
was a significant difference at the 99th 
percentile (Table 19). A significant 
difference In the growth of Synedra occurred 
based on differences of cations, whIch agreed 
with the results of the single salt addition 
bioassay with Selenastrum. A difference did 
occur in the result of anion difference, with 
Synedra there was a Significant difference (P 
> 99%) in growth between the different anions 
tested. There was no significant difference 
based on anion differences with Selenastrum. 
The bicarbonate anion was tested only with 
the Synedra and so there was a slight change 
in the experimental design between the two 
exper iment s. When RC03 - was el imi nated 
from the experimental data, no significant 
difference in the biomass data could be found 
based on the anion differences. The electri
cal conductivity readings of the media did 
not change significantly over the time of the 
bioassay within each treatment flask. 

LInear correlation coefficients with 
salt variables and growth explained less of 
the variability in general than they did for 
the Selenastrum correlations (Table 20). 
Normality and the concentration in gil did 
not correlate significantly with either 
biomass variable. The only salinity concen
tration measurement which correlated signifi
cantly with both the X and P data was 
speCIfIC conductivity. 



N 
V1 

.. 

Table 14. Duncan IS mult Iple range analys lS for single salt add it ions to (b ioassay 2). 
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Table 15. Duncan's multiple range an~lysis for single salt additions to accli
mated Selenastrum (bioassay 2). 
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Table 16. Duncan's multiple range analysis for two salt additions to (blOassay2). 
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CatIons X K, Na ", tvlp 1 Ca 

An IOns X HC03, S04 " Cl 

Ca t Ions D K, Na Mp. > Ca 

Anions D HC03 > S04 Cl 

Deterrflnation of salt effects on the 
bloo~ass data of Synedra was done by the use 
of the Duncan's Mul t iple Range Test (Table 
21). Fluorescence data were used for these 
analyses because of the greater sensllivity 
of thIs measurement as compared to the 
optIcal denslty measurement. Increasinl" 
concentrat lons of the indIvidual salts 
oecrt-'dsed the growth of the ~nedr§l. when 
corr:pdrlnF salts which are sirlliTIcantly 
dIfferent from each other. The majorIty of 
the SdllS depressed growth below the levels 
{.f the controls. The catIon orders were 
~omewhat reversed from the fIrst bIoassay 
when compar in/" the cat ion and anIon effects 
on X and D . 

The relative inhibition of X IS plotted 
versus speCIfIC conductivity and idenllfied 
by valance of the callons (Fq!ure 11) and 
anions (Figure 12) added to the medium. The 
large area of overlap between the monovalent 
and dlvalent cations displays the lack of 
d 1 fferem lat Ion In inh lblt Ion based on the 
valance of the calIon. The total separat Ion 

Table 17. LIneal" l"elation between different estimates of bIomass for llvO salt additions LO 
Selenastrum (bioassay 3). 

-.,..., ---- ------ ------_. __ .. _----="-----
__________________ ___ ~~ _______ M ~ __ 

Dependent 
Variable (y) 

lnde pende nt 
Variable (x) 

Number of 
Data Points 

--------- ----------- -,----_ ...... _-, _.,--------
(cells/ml) Specific Conductivity 

( Ilmhos/cm) 
50 

Correlation 
Coefficient a 

-0.3414* 

----------_._-_._---

y 

Equat ion 
y~mx+b 

-l.223E-04x + 2.689E06 

alf marked with (*), the value of the correlation coefficient 15 significantly different from zero at 
P > 0.99. If marked with (**), the value of the correlation coefficient is significantly different from 
zero at P ) 0.95. 

~Q 
x 

E 
"-

0.60 

0.50 

~ 0.30 
z 

8 
..J 
..J 
ILl 
~ 0.20 

<x 

0.10 

LEGEND 
TIiE AREAS ENClDSED BY UNES ~ 
INCWDE ALL ADDITIONS OF SALlS WITH/r \ 

-"- DIVALENT /' 3' 
--- MONOVALENT 
- MONOVALENT a DIVALENT /., : 

96 

.' \ 
/~ \ 

06 5~ 

A 
.~. 

j' 

\ 
i ' 

l' 

23 
26 

85..,. 
I " 
I "" 

94 

27 

0.175 0.200 0.225 0.250 0.275 0.300 0,325 

SPECIFIC CONDUCTIVITY (~mhos/cm X 10-4) 

" " " " " " 

78 

I 

0.350 

~. 
I 
I 
I 

28 
I 
I 
I 
I 

I 
I 
I 
I 
42 
I 

I 
I 

FI?Ure 9. The re~ional effects of Lhe cal Ions added to Lhe medIa (bioassay 2). 

28 



Table 18. S Intr le salt add i t IOns to AAM and (bioassay 4). 

Salt Normality Molarity gIl 71"2 (atm) 

NaCl 0.300 0.300 17.5364 0.7347 11.9913 
0.200 0.200 11. 6909 0.7471 8.0834 
0.100 0.100 5.8455 0.7747 4.2646 
0.050 0.050 2.9182 0.8057 2.2800 

KCl 0.300 0.300 22.3636 0.7314 12.3804 
0.200 0.200 14.9091 0.7388 8.4527 
0.100 0.100 7.4545 0.7666 4.3222 
0.050 0.050 3.7273 0.7968 2.3157 

MgC12 0.300 0.150 14.2818 0.5469 7.7318 
0.200 0.100 9.5182 0.5608 5.6234 
0.100 0.050 4.7636 0.6048 3.0101 
0.050 0.025 2.3818 0.6572 1.6169 

CaC12 0.300 0.150 16.6455 0.5428 8.0083 
0.200 0.100 11.1000 0.5587 5.6429 
0.100 0.050 5.5455 0.5982 3.1022 
0.050 0.025 2.773 0.6542 1.6213 

Na2S04 0.300 0.150 21. 3045 0.5346 15.8356 
0.200 0.100 14.2045 0.5368 11.3480 
0.400 0.050 7.1000 0.5656 6.0079 
0.050 0.025 3.5500 0.6089 3.2786 

K2 S04 0.300 0.150 26.1409 0.5624 15.6339 
0.200 0.100 17.4273 0.5343 10.9261 
0.100 0.050 8.7136 0.5481 6.0593 
0.050 0.025 4.3545 0.5872 3.2320 

MgS04 0.300 0.150 18.0545 0.3306 5.2435 
0.200 0.100 12.0364 0.3584 3.6142 
0.100 0.050 6.0182 0.4115 1.9475 
0.050 0.025 3.0091 0.4608 1.0990 

CaS04 0.300 0.150 20.4182 0.5090 4.0259 
0.200 0.100 13.6182 0.5131 2.7954 
0.100 0.050 6.8091 0.5023 1. 6066 
0.050 0.025 3.400 0.4885 1.0401 

NaHC03 0.300 0.300 25.2000 0.7410 11.6096 
0.200 0.200 16.8000 0.7543 7.9759 
0.100 0.100 8.4000 0.7821 4.2591 
0.050 0.050 4.2000 0.8155 2.2387 

KHC03 0.300 0.300 30.0364 0.7329 12.5914 
0.200 0.200 20.0273 0.7424 8.6224 
0.100 0.100 10.0091 0.7682 4.5669 
0.050 0.050 5.0091 0.8077 2.2770 

+ 
Y~ = activity coefficient (Davies Equation) 

1[2 = Osmotic pressure (equivalent conductance) 
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2 

Table 19. Summary of analyses of varIance for Synedra sin?le salt additions (bioassay 4). 

Alternate Blocked Variables F 
Hypotheses By Treatments Tested 

~--. 

Means of NaCl 
sponses KCl Optical 
grown in presence Time MgS04 Density 0.01 9/70 3.16 
of dif ferent salts are CaS04 
different Na2S04 Fluorescence 0.01 <- 5.00 

MgC1 2 
K2S04 
CaC12 
NaHC03 
KHC03 
Control 

Means of growth re- Na Optical Density 0.01 3/316 24.68 
sponses of cultures K 
grown in the presence Mg Fluorescence 0.01 + 19.32 
of different cations Ca 
are different 

Means of growth re- Cl Optical Density 0.01 2/317 12.15 
sponses of cultures S04 
grown in the presence HC03 Fluorescence 0.01 20.37 
of different anions 
are different 
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Table 20. Linear relations between different estimates of biomass for salt additions 
to (bioassay 4). 

Number of Correlation Equat ion Dependent 
Variable (y) 

Independent 
Variable (x) Data Points Coef fici"ntB y = mx + b 

X (fluorescence) 

(day-l) 
(fluorescence) 

11 

Molarity (M) 
Specific Conductlvity 

( )Jmhos/cm) 

Specific Conductivity 
( )Jrnhos/cm) 

44 0.4400** 
44 -0.4600** 
44 -0.4100** 
44 -0.5710** 

44 -0.3900** 

.-.~-.----

y 1.14x + 6.77 
y -0.81x + 12.21 
y -33.12x + 11.64 
y -737.9x + 9.156E06 

y = -3.54E04 x +4.394E08 

-------------
alf marked with (*), the value of the correlation coefficient is significantly different from zero at 

P > 0.99. If marked with (**), the value of the correlation coefficient is significantly different from 
zero at P > 0.95. 

of the HC03- anIon at a greater level of 
Inhibition than the overlappinF Cl- and S04-
anion areas displays the sIgnificant differ
ence In growth based on the anIon present In 
the medIa when HC03- IS tested but not with 
the additIon of Cl- and S04-' 

In order to compare the bIoassay data 
from two differenl algae based on fluores
cence data, It was necessary to normalize 
them on the basis of the control data for 
that alga (Appendix B 1, B-2). ThIS elimI
nated the variabIlity due to dIfferent 
fluorescent characteristlcs of the dlfferent 
species of e. After normalizing the data 
and comparln? the bioassay results for single 
salt additions from accllmated Selenastrum to 
Sfnedra, 38 percent of the X and 18 percent 
o the D data for the acclimated Selenastrum 
was lower than the minimum results. 

Ef 

The effects of the addition of two salts 
at one concentration were dominated by 
synergistic effects rather than the dominance 
of Individual cations and anions (Table 22). 
There was also no clear relationshIp between 
monovalent and divalent toxicity. This same 
result occurred with the two salt additions 
to 

Linear relatIonships between bIomass 
measurements and specific conductivity 
measurements and did not provide any signifi
cant correlations. 

Effects of Multiple Salt Additions 

Depression of algal owth was attained 
with the addition of mult pIe combinations of 
salts to Synedra (Tables 23 and 24). Again 
t here was no relationsh ip for monova lent to 
divalent tOXIcity. 

Linear correlations of the fluorescence 
data with electrical conductiVity measure-
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ments prOVided slgnificant correlatlons WIth 
the ~ data for the multiple salt additlOns 
(Table 25). However, the 0 results (E'-redter 
than four salt additions) did not produce a 
s ignlf icant correlat ion. These correlat Ion 
coeffICIents were comparable to the correIa 
t Ion coefflclents obtained with the same 
relationshlp for the SIngle salt additions to 
Synedra. When combinIng all of the Synedra 
biomass data and correlating that with 
speclfic conductance, this relationship did 
not hold. The slope of the line became 
posItlve but was not si~nificant. 

Effects of Increased Salt Concentrations 
on the Productivit~ of Three Algal 

Species 

Effects of Single Salt Additions 

The effect of SIngle salt additions at 
one concentration (0.05 N) on Anabaena that 
was cultured with representat ives of two 
other algal species was analyzed with Dun
can's Multlple Range Tests (Table 26). 
Anabaena produces specialized cells, hetero
cysts, when nitrogen limitation in the growth 
medium is encountered. Counts of these cells 
were conducted separately from the total 
cell counts. The number of heterocysts were 
never greater than 0.001 percent of the total 
cell counts in any of the treatment flasks 
indicating that nitrogen fixation was in
sign i f icant and nit rogen wa s not llmi t ing. 
The e f f e c t s 0 f the s e sal t son the grow t h 
depreSSion of a were as follows: 

X cell counts all s a it s - CaS04, 
Na2S04 > Anabaena 
control --------

A 

11 cell counts Anabaena control " K'Cr;-rrac 1 , CaC12, 
CaS04, MgC12 

A 

X heterocysts all salts CaS01 
> Anabaena contro -----
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Table 21. Duncan's multIple range andlysis of single sall add!llOnS Lo Synedra (bioassay 4). 
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'6 4/0,30 N NAMe03 
40 4/0,30 N KHCo3 
~IQ N ~'~CC3 
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tF4/0.Jo N C.CLI 
11 4/0,20 ~ ~GCl2 
It_ 4JO.la N NAi!04 
n~(l N Ri'UU 
27 4/0,20 ~ ~GsrQ 
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TobJ.e 23. Duncan's I1lU1Liple range analysis of 3 and 4 salL addilions lO Synedra (bioassay 6). 
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Table 25. Linear relations between different estimates of biomass for multiple sall addi
lions to Synedra (bioassay 6 and 7). 

Number of Correlation Equation Dependent 
Variable (y) 

Independent 
Variable (x) Data Points Coefficient a y = mx + b 

X (fluorescence) 
(3&4salt 
addi t ions) 

X (fluorescence) 
(> 4 salt additions) 

X (fluorescence) 
(all Synedra_ data) 

D (fluorescence) 

Specific Conductivity 
( llmhos/cm) 

(3 & 4 salt additions) 

68 

60 

354 

68 

-0.5570** y -222.8x + 1.313E06 

-0.3227* y = 1.200E03x + l.906E07 

0.3750** y l.526E04x + -3.571E08 

-0.4734** y = -6.307E03x + 3.718E07 

alf marked with (*), the value of the correlation coefficient is significantly different from zero at 
P > 0.99. If marked with (**), the value of the correlation coefficient is significantly different from 
zero at P > 0.95. 

P heterocysts 

X phycocyanin 
fluorescence 

o phycocyan in 
fluorescence 

NaHC03 > 
control 

Anabaena control > 
arrsan.s CaS04 

CaC12. KHC03. 
NaHC03 :
control 

The effects of these salts on the growth 
depression of ~nedra (Table 27) were as 
follows: 

X cell counts 

U cell counts 

X carotenoid 
fluorescence 

j) carotenoid 
fluorescence 

all salts > Synedra 
control 
Synedra control> 
Nacr,--caC 12. MgS04. 
K2S04. CaS04, 
MgC12 

all salts - NaHC03, 
CaS04 > .§.YE.~!!E...'! 
control 

all salts - KCL > 
.§.YE.~!!E...'! con t r 0 1 

Scenedesmus data analyzed by the same method 
(Table 28) provided the following results: 

X cell counts 

j) cell counts 

X Chlorophyll a 
fluorescence-

0 Chlorophyll a 
fluorescence-

All Salts - MgS04, 
Na2S04 > Scenedesmus 
control 
Scenedesmus control 
::> CaC1 2, K2S04, 
MgCl2, CaS04. MgS04 

CaC12, KCL. MgCl2, 
NaCl > Scendesmus 
control ---------
CaC12, NaCl, Na2S04, 
KHC03, NaHC03 > 
Scendesmus control 

37 

Growth depression for the three algal general 
occurred in the following order: 

X cell counts 

o cell counts 

All salts - MgS04 > 
3 algae control 

three algae control> 
NaCl, CaC12, CaS04. 
MgCl2 

Linear correlation coefficients were used to 
assess the cell count biomass measurements 
with the fluorescence biomass measurements 
(Table 29). Anabaena consistently provided 
the lowest correlation values with the 
fluorescence data and the total cell counts 
consistently provided the highest correla
t ions with the fluorescence data. Although 
Scenedesmus correlated the best value with 
the chlorophyll a fluorescence measure
ments, Anabaena did not correlate the best 
with the phycocyanin fluorescence measure
ments and Synedra did not correlate the best 
with the carotenoid fluorescence measure
ments. Specific conductivity correlated 
better with the fluorescence measurements 
than with the cell count measurements. 

Comparing the overall growth depression 
of the three algal genera bioassay to the 
growth depression produced in the comparable 
Synedra bioassay, growth depression occurred 
In the following order with the percentages 
quantifying the relationship: 

X chlorophyll .'! 
fluorescence 

j} chlorophyll .'! 
fluorescence 

Syndedra (38 percent) 
> three algae 

Synedra (50 percent) 
> three algae 



Table 26. Duncan's mult range tes t for (bioassay 9). 
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Table 27. Duncan's mulLlple range test for Synedra (bioassay 9). 

II 
1 
<' 
I 

11 
III 

C 
5 

10 
17 

7 
CI 

Il 
~ 

CI Q I I, 4"'CC.~ 
10 Cli ~f,en 

'5 'll "A"Sr.~ 

x 

>- n q fS¥NEr.IH Co T~rL 
It1 Clf] Al GAF. COlpr.l 
2 91 ~CL 

n--'lI7iF7iFn""~ rl'"1<;pn 
1 ClI "ACL 
uCl/rACl~ 

"7 9f !'Gsell 
6 C/I K2Sel! 
8 91 CAsca 

rr"qfSTE-n-r:F.5~~ rr:~ TPrt 
1 ClI "Gel? 

<:/1 (Ael2 
"II ~GCL2 
ClI I(CL 
'11 t:l!cr 
Cl/A,,4"4F"A en r'lr.1 
'113 Al !';AF rC·Twrl 
<:/1 K<'Soa 
'11 NA2S0u 
"I 1\f<C()3 
<:/TSl:tr-rrnr"5'~ r.r.--r-RtL 
til ~GS('I.I 

'II NJ\HCt" 
Q/SYNFCRA r:c111 Tl'lr:L 
ClI C.ASCll .. 

• .. 

• 
• 

Synedra 
.. 
• .. . 

•• 
• • 
I 

C/ QI N""CO! 
II 'If C.CU' 

10 C/I .",en 
'TrqlA;"AIlA~~iA en. r'lrL 

1 91 "ACl 
3 ClI "Gel2 

-T1f/TA-s(a 
b QI ~25ru 

1/.1 '1/3 H r;Af. cC'l~n 
--~ ''l/ -""ascI.! 
12 Q/SC~"'D!S~L~ rr"lRrl 

7 Cli t'Gsr~ 
---j!- -1fT ~ cr 
13 Q/Sy"f~RA cr'T~rl 

Carotinoid 
q <:/1 "A>'fC3 .. 10 <:11 ~I-<CQ3 .. 1l CI,A"AIilAEN4 Lr" TI'CL 

~- -I .r--cr7SLF" -0£ S "-L -~ cc .. THI_ .. • 5 'II ',A,?$(\ti .. .. l! "I CACl2 .. .. e- -V7 C AS(, II .. .. 7 "I "'GSell .. 111 ClIl AlGAF er" TRLL 
-'~-'...-- --- ~'-1fT-li-ZSCT 

I '11 ",t.el 
• 'II ~ Cl 

"CIT Fr;cl, OJ 
13 "/SYNECIH en TIlr.t 

39 

•• • • • 
• •• 
• • 
• • 

• • • 
• • • • 

• • 
• • 

•• . . . 
* • lit • 

• • • 
•• •• 

• • 
• • 



Table 28. Duncan's multiple range test for Scenedesmus (bioassay 9). 

x 

9 91 I-;AHr03 
10 91 ~t;crn 
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Table 29. Linear relations between different estimates of biomass for single sall additions 
to three algal genera. 

Dependent 
Variable (y) 

Independent 
Variable (x) 

Number of 
Data Points 

Correlation 
Coefficienta 

Equation 
y = mx + b 

Phycocyanin fluorescence 
Chrotenoid fluorescence 
Chlorophyll ~ fluorescence 

Phycocyanin fluorescence 
Carotenoid fluorescence 
Chlorophyll ~ fluorescence 

Phycocyanin fluorescence 
Carotenoid fluorescence 
Chlorophyll a fluorescence 

Phycocyanin fluorescence 
Carotenoid fluorescence 
Chlorophyll a fluorescence 

Phycocyanin fluorescence 

Carotenoid fluorescence 

Chlorophyll ~ fluorescence 

Number of Anabaena/ml 

Number of Scenedesmus/ml 

Number of Synedra/ml 

Total # algal cells/ml 

Number of Anabaena/ml 
Number of Anabaena/ml 
Number of Anabaena/ml 

Number of Scenedesmus/ml 
Number of Scenedesmus/ml 
Number of Scenedesmus/ml 

Number of Synedra/ml 
Number of Synedra/ml 
Number of Synedra/ml 

Total # algal cells/ml 
Total # algal cells/ml 
Total # algal cells/ml 

Specific Conductivity 
( ).I mhos/cm) 

Specific Conductivity 
( ).I mhos/cm) 

Specific Conductivity 
( ).I mhos/cm) 

Specific Conductivity 
( ).I mhos/cm) 

Specific Conductivity 
( ).Imhos/cm) 

Specific Conductivity 
( ).l mhos/em) 

Specific Conductivity 
( ).I mhos/ em) 

125 
125 
125 

125 
125 
125 

125 
125 
125 

125 
125 
125 

125 

125 

125 

125 

125 

125 

125 

0.3052* 
0.3679* 
0.3834* 

0.569S* 
0.6917* 
0.7700* 

0.6568 * 
0.5550* 
0.4408 * 

0.7561 * 
0.8202 * 
0.8407 * 

-0.3061* 

-0.3019* 

-0.2627 * 

N.S. 

N.S. 

-0.3038* 

-0.2232* 

y = 2.105Ellx - 2.604E21 
Y 9.03SElOx - 1.llSE21 
Y = 8.599EIOx - 1.064E21 

y = 5.709Ellx - 4.l73E22 
y = 2.436Ellx - 1.701E22 
Y = 2.171Ellx - 1.587E22 

y = 2.823Ellx - 1.118E22 
Y 1.731Ellx - 6.852E21 
y = 2.l62Ellx - 8.55SE21 

y = 5.870Ellx - 7.574E22 
Y = 2.804Ellx - 3.617E22 
y = 2.712Ellx - 3.499E22 

y -1.907E04x + 5.700E07 

y = -1.002E04x + 2.995E07 

y -1.142E04x + 3.412E07 

y -5.764E-08x + 3.957EIO 

y = -6.272E-Olx + 1.290Ell 

alf marked with (*), the value of the correlation coefficient is significantly different from zero at 
P > 0.99. If marked with (**), the value of the correlation coefficient is significantly different from 
zero at P > 0.95. 

Evaluation of Elutriates and Leachates 
of 011 Shales 

Chemical Evaluations 

The cat Ions and an ions prevalent In 
previous spent oil shale analyses in the 
literature were also prevalent in the analy
ses of AP shale (Appendix A-I) WhICh was 
leached in the up-flow column (Appendix A-2). 
These analyses are grouped by the elapsed 
tIme at which the leachate was collected from 
the column. The analysis period extended 
over day 1 to day 12. The total concentra
t ion of the lOns and the pH of the leachate 
decreased steadily. Throughout this time 
period the anion concentrations (meq/l) 
rema ined in the same order of dominance: 

S04 > HC03 > Cl 

The relat ive abundance of the cat lOns with 
the exception of potassium and boron shifted 
durIng the analysis period as follows: 
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Day 1 
Day 2 
Day 3 
Day 5 
Day 9 & 12 

Na > Mg > Ca > K > B 
Na > Ca > Mg > K > B 
Ca > Mg > Na > K > B 
Ca > Na > Mg > K > B 
Ca > Mg > Na > K > B 

The cation and anion data were also normal
ized to the last analysis day to facilitate 
comparison of the relative abundance of these 
ions over the analysis period. Trace metals 
concentrations (\.I gIl) occurred in the 
following order of abundance: 

Ba > Zn > Fe-> Mn > Cu > Ag > Pb > Se 

The chemical analyses of the Type I and 
Type II elutriates for all the shales studied 
are summarized in Appendix A-3. For each of 
the shale identification codes, the first 
letter refers to the process used to extract 
the oil and the second letter identifies 
whether it is processed (S) or unprocessed 
(R). The chemical analyses were checked by 
calculating the ion balance for the leachate 



and type II elutriation procedures (Table 
30). The chemical analyses data for the Type 
I elutrlation procedure were balanced assum
lng an HC03 concentration. Alkalinity 
analyses were not conducted on the Type I 
elutrlation samples. The Type I elutriate 
for the AP shale is comparable to the day 1 
leachate composition, with similar electrical 
conductivities and the same dominance orders 
for cations and anions. The Type II elu
t riate for the same shale is comparable to 
Lhe day 2 leachate with similar electrical 
conductivities and dominance order for the 
concentration of cations. The pH of the Type 
II elutriate was higher adding C03= to 
prevalent anIons present in the solution. 
The concentration of C03= was less than 
the Cl and otherwise the dominance of the 
anions was the same as the day 2 leachate. 

Effects of all Shale Elutriates on 
Acclimated Selenastrum 

Type I elutriate (10 ml) was added to 
cultures of Selenastrum. Growth depression 
occurred in the following order: 

x CP > BP DP DR = BR > 
Selenastrum = CR 
CP BP - BR DP = DR = CR 
Selenastrum 

Effects of Oil Shale Elutriates on 
Scenedesmus 

The effect of varying concentrations of 
oil shale leachates and elutriates on the 
growth of Scenedesmus varied with the shale 
studied (Table 31). The AR elutriate and the 
AP leachate both showed var iat ions in X wi th 
variations in concentrations, while the other 
elu~riates did not show any effect. Figure 
13 IS a summary of the growth curves for the 
AP spent leachate comparing the growth curves 
at different concentrations of leachate addi 
tion to the growth curve of the Scenedesmus 
control. 

Raw and spent shales from A and B 
processes were tested. The raw shale elu
triates exhibited approximately the same 
amount of growth depression of Scenedesmus. 
The spent shales depressed growth in the 
fo llowing order: 

Table 30. Summations of catIon and anIon analyses of the oil shale leachates and elutriates. 

Material Extraction 
Ext racted Procedurea Cations Anions 

AP Leaching 178.6 161.8 

AP Leaching 131.9 128.3 

AP Leaching 75.18 66.45 

AP Leaching 45.70 40.25 

AP Leach ing 21.08 22.34 

AP Leaching 11.81 12.46 

AP Type I Elutriation 107.21 107.21 

AP Type II Elutriation 90.05 93.87 

AR Type I E1utriation 5.21 5.21 
Type II E1utriation 1.845 1.917 

BP Type I E1utriation 34.84 34.84 
Type II Elutriation 21.906 21.289 

BR Type I 1!1utriation 2.284 2.290 
Type II E1utriation 1.335 1.269 

CP Type I Elutriation 4.79 4.79 

CR Type I Elutriation 2.87 2.87 

DP Type I Elutriation 61. 73 61.73 

DR Type I Elutriation 4.98 4.98 

aType I elutriation analyses balanced with assumed HC03- concentration. 
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Table 31- Duncan's multiple range tes L of complex additions to (b ioassay 10) . 

X 
'11 

I lll~1L All ~L'IT't1. TE • t 20~L All ELu1QlA1E 

25 2~~L RP FLUTPI"E 
,. 41 CONTROL * 

27 10"L ~p i'l.,)l';lAH 32 SML !!P SALl S • * 
112 Ci,"TROL • • IS 10lo\L AP SALTS * .. 
U4 cu'HPOL * .. 3t> SML ~p COLUMN lE4CMATE * * * 
4') Cf"-nROl. 

. .. .. liS CONTIlOl. '* *' * * 
2& ISMl 8P F.l.UTRIATE 

.. . . l1li tON1F'OL '* * * It 

21 20"'L 'IQ SALTS * • * It> SML AI' SALTS .. '* '* • 
15 10"L ." SALT~ • .. * .. 20 SML ~~ ELUTP.IT1~ '* * .. '* 

7 10"l ,~ SAl.TS • * '* .. t> 15ML AP SIILTS '* '* '* • .. 
22 15t-11:. liP SALT-S .. .. ;II '* '* 31 lOML 8P SALTS * '* * '* * * 
37 '5MI:. OIl' SALTS '* '* • .. .. 40 SML 4P COLU~N SALTS * .. • .. * * * 
20 5ML ~A flUTIIIT1~ '* '* '* '* * '* 02 CONT!>oL .. '* '* '* '* • .. 

II 5Mt 611 ELUTRIA1F '* '* * '* • '* 12 '5~L AP ELUTPIATE * * .. * * * ., 
26 ~!-1L SP I!LUTRIIITF. .. .. • .. * * 21 c!()ML all SALTS .. • * * '* '* * * 
24 5"L iHI S~L TS '* * * .. '* .. 25 20Ml ~p ElUTf/IATE '* ... '* '* '* * '* '* 
30 15ML "p SALTS .. * '* '* '* .. 13 ?OML AP SALTS '* * '* '* .. .. .. '* 
43 CQ'HROL * • .. .. * '* .. 30 15ML BP SALTS '* * '* * '* * * * * 
10 I ~ "'l 41> EL'JlllI Hf '* '* .. ., '* '* '* 34 15~L 4P COLUMN LEAC~ATE * '* '* * * * .. '* • '* 
33 <!1"1l AP COLU~N LEACHATE • '* .. .. .. .. • 413 CONTROL .. .. * .. .. '* .. • .. .. 

P. t!3 , ('''L i<" S.~L n, • '* • '* • * • 211 i!OML BP SALTS .. .. .. .. .. • .. .. * * 
W 

b .""L A'l bOLTS *" '* * .. .. * ." 9 20ML AP fL~TRIATF * * .. .. .. * .. .. * * 
9 i'~'1L Ai' fLUTRIATE '* * • '* .. .. .. '5 20l-lL All SALTS .. .. .. .. * .. * * .. .. 

31 I (l"'l ;;P SAL TS * .. • .. .. .. • 7 1014L AFI SALTS .. .. .. * .. .. .. .. .. 
3 Il'ML A~ ~.LIJTP'IAH .. * '* * .. .. 23 I MIL IlR SALTS .. .. .. * .. .. .. * 

i9 In~L AR COLUMN SlLTS ." • .. .. '* * 4 '5ML All ~LUTIl!ATE ******* 
5 2(l"'L AI'> SALTS • * • .. • .. 2b 15~L ~P flUTI/IATf ", * .. .. .. * .. * 

IQ I '5"L A" SALTS It • .. .. • * 18 15~L 6R ELIJTPIATE * .. .. .. • .. • 
~ ..... \ '" SAL'S .*.*** 11 20"L ,II flUTRIATE • 'It * * .. .. '* .. 

12 srL AQ ELUTRIATE * • .. • .. .. * C!4 SMl all SALTS * .. * .. .. .. .. .. 
i! '~"'l A" 'l'JTQIATf .. .. * * ... \/I 15"l AP SALTS .. • * .. • .. .. .. 

III (li"0' "l .. • '* * .. • • 27 10ML SF ELU1RIATE .. • .. .. * • • .. 
Ib "'<il A" S'LT~ • • -- .. .. .. .. 28 5HL BP F.LUT>.IATf .. * .. .. • .. .. 
38 15"L ". CIIL'i''', SAL 15 • '* .. .. * • 10 15"L AP F.li!T..?UH • '* .. .. .. .. 
i!Q ;>0"'\ ....lP Sfd t~ * .. • • • • e o;"'L AI" S4LTS .. • * • * .. 
$;' i J'·'L ,g LUl~~h ~EACHAT~ '* .. .. • * !Ii' 3S I~ML 'P COLU"N LFAC~ATE • * * .. fr • 

13 2n'~L ~p SALTS • • * .. .. * 19 I~~L ~p fL~TIIATE .. • * * * 
Iq Iry~L AP tLu,a14TE .. . • ... 38 15~L .P CDLUMN SALTS *' *' • .. 
I~ ISML ~H fLUT>tATE • · . . 33 20ML AP tULUM~ (t'CHATF • * * * 
37 ?"''''L 4;:;:' ((Ill"'·! SAL 1 S • • • 311 10"L AD [nLUU~ SALTS .. .. .. 
10 !>"L AO CuLv .... t ~F~CHAH· • • It IO"L ~p ~LUTPI~'P .. .. .. 
17 20.'l ~~ FL0T~I~tF • • 22 lS"L 8~ S~LTS ,. .. 
14 )';~1L at::' rOll,I' " l~ACH4T" .. 37 2DML 4P [OL~~N SALTS 
lin ""L AP f0LU,·1. 5AL T1\ ? 1 S'·L l~ ~l UT'll ~ TE' 

11 IQ"L .P FLUlwHH .. 1 ,Oi"'l H ~LU1~lAT~ 

Legend! 1 = mg 804' 2 = mgCl2' 3 K2S04' 4 = KCl. 5 = KHC03' 6 = Nai804' 7 = NaCl, '8 = NaHC03' 9 = CaS04' 10 CaCl2 



AP elutriate > BP elutriate 

Tbe growtb of 
shale elutri ~;;;;.;;;...;;;,.:r-::.';;;";:"';:;';;:;'r:-"'-

sbale (Figure 14). 

was less in the BP 
growtb in tbe raw 

Significan~ linear correlation coeffi
c ient s for the X and jl data for Scenedesmus 
are summarized in Table 32. Tbe electrical 
conductivity correlated at a low level witb 
the X data and not at all with the P 
data. The beavy metals did not correlate 
witb either ~ or p. 

Unlike the results witb Selenastrum and 
Synedra, tbe electrical conductivity of the 
culture media did decrease significantly 
during the bioassay with Scenedesmus. An 
example of this is shown in Figure 15 by 
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showing a linear regression on tbe electrical 
conductivity data versus time for tbe bio
assay flask treated with AP leachate. 

The effects of oil sbale elutriates were 
compared to the salt effects by comparing the 
growth of the controls consisting of AAM plus 
salts equivalent to tbe salinity of tbe 
extract (determined by analysis) to the 
growtb of tbe extract additions Tbe raw 
shales both sbowed better growtb responses 
than their matcbing salt controls. Tbe spent 
shales produced the opposite effect with the 

CONTROL 
AP COLUMN LEACHATE 

i= a.. --I::J.- 20 ml ADDITION 
a 

15 ~ 15 ml ADDITION 
~ 10 ml ADDITION 
--A- 5 ml ADDITION 

10 

5 

0 

0 2 4 6 8 10 12 14 16 

TIME (DAYS) 

Figure 13. Concentration effects on the growth of Scenedesmus (bioassay 10). 

Table 32. relations between dIfferent estimates of biomass for complex additions to 
(bioassay 10). 

Dependent 
Variable (y) 

x fluorescence 

Independent 
Variable (x) 

Specific Conductivity 
( mhos/cm) 

Number of 
Data Points 

80 

Correlation 
Coefficienta 

0.2407* 

Equation 
y mx + b 

y 7.6l9E04x - 7.480E07 

arf marked with (*), the value of the correlation coefficient is significantly different from zero at 
P > 0.99. If marked with (**), the value of the correlation coefficient is significantly different from 
zero at P > 0.95. 
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FIgure 14. 

Figure 15. 
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Comparison of the growth of Scenedesmus wIth the addition of BR and BP elu
triates. 
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Decrease in the electrical conductivity of the culture medium plus AP leachate 
(20 ml) in the presence of Scenedesmus growth (bioassay 10). 
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spenL shale showing less growth than the 
maLching salt controls. This effect of the 
spenl shale and matching salt control is 
shown in Figure 16. Significant differences 
(p ~ 0.95) in growth rate measured by fluo
rescence occu~red although no significant 
difference in X was found. 

16 

14 

12 

C\I 10 0 

x 
I- a :z 
w 
u 
(/) 

Pearsall ion balances (Na + K/Mg + Ca in 
mg/l and meq/l) of the salt spikes and lhe 
oil shal~ elutriates were linearly correlated 
to the X and )1 for each concentrat ion of 
additions. No correlation could be found 
between these variables. 

w 6 0:: 
-0- SPENT SALT CONTROL 

Figure 16. 

0 
::) 

-fr- SPENT SHALE ADDITION 
..J 
lL 4 

2 

0 

0 2 4 6 a 10 12 14 16 
TIME (DAYS) 

Comparison of the growth of Scenedesmus grown in the presence of BP oil shale 
elutriate and its matching salt control. 

Growth 
Stimulation 

o--~----~----------------~------

Growth 
Depression 

Flgure 17. A beta toxicity curve (Luckey and Venugopal 1977). 
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DISCUSSION 

The results with respect to each of the 
fIve study objectives stated at the beginning 
of the report are discussed below. 

Utilization of Batch Bottle Bioassay 
for Toxicity Testing 

Test Algae 

Comparing the algal species tesled for 
salt toxICIty, these algal species displayed 
the following sensitivities to salt: 

Selenastrum > acclimated Selenastrum > 
~g~~~~ > 3 combined algal species 

The indigenous diatom, Synedra.. did tolerate 
higher salt concentrations than the test 
organIsm, Selenastrum. The acclimatIon of 
the Selenastrum ~improve its abili ty to 
tolerate increased salt concentrations, 
but the accllmatedSelenastrum dId not 
display the same reactlons-to-speci fic Ions 
as did the Synedra. The addition of three 
algal species to each test flask displayed 
the least sensItivity to salt. 

The greater tolerance of the indigenous 
algae to salt solutions illustrates the 
necessity of using indigenous organisms when 
testing for toxic responses. If indigenous 
algae are not available, then acclimation of 
the standard test algae to the receiving 
water is necessary. If possible, acclimated 
Selenastrum should also be used in order to 
establish-a data base wh ich is comparable to 
other algal bioassay data. 

Vat ia! ions L~_ Biomass Monitor ing Techniqu~~_ 

Variations occurred in the biomass 
measurements used to monitor the growth of 
the test algae. The optical density measure
ments were subject to interference from 
precipitates which occurred as the pH in
creased in test flasks of the less soluble 
salts such as CaS04. This measurement also 
displayed less sensitivity during the first 
days of the bioassay when the maximum speci
fic growth rates (Pb) occurred. 

The fluorescence measurements were also 
subject to interference from precipitates, 
allhough this interference was not as great 
as the precipitate interference with optical 
density. The toxic response of algae 
to some compounds is chlorotic, which affects 
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the algal fluorescence measurements. Chloro
sis did not appear to be a problem with the 
toxic substances tested but should be con
sidered as a possibility when considerin? 
biomass measurements with chlorophyll a 
fluorescence. The depression of algal 
photosynthesis after the transfer of algae to 
a higher salinity media has been stated in 
the literature (Stewart 1974). 

Automated cell counts adjusted to the 
mean cell volume appeared to have the leasl 
varIabilIty of all the biomass measurements. 
Cell volume does significantly change in the 
presence of different toxicants, there
fore the i;!djustment of the cell counts with 
the mean cell volume for biomass purposes is 
necessary and also more equivalent to bio
mass. 

The results of the bioassays therefore 
were based on automated cell counts adjusted 
by the mean cell volume when these data were 
available. Otherwise chlorophyll a fluores 
cence was used. The optical denSIty biomass 
measurements although collected, were not 
used in the analysis of results. For this 
reason, it is suggested that, if possible, 
an indigenous algal species be selected for 
toxicity testing that would be compatible 
with displacement cell counting techniques. 
This would necessitate an alga which is 
unicellular and has a morphologically simple 
shape. 

The use of three different fluorescent 
characteristics to differently monitor the 
growth of three different algal species 
requires further research to develop a simple 
yet reliable method. The phycocyanin fluores
cence, carotenoid fluorescence and chloro
phyll a fluorescence all correlated better to 
the sum of the three algal direct cell counts 
than they did to the individual Anabaena, 
Slnedra, and Scenedesmus cell counts respec
tIvely. The Anabaena cell counts correlated 
better with chlorophyll a fluorescence than 
the phycocyanin fluorescence suggesting that 
the chlorophyll a content of the Anabaena was 
easier to detect than the phycocyanin con
tent. The ~nedra cell counts correlated 
bet ter wi th t~ycocyani n fluorescence 
suggest ing t hat the carot enoid peak of the 
mixed culture was probably closer to the 
phycocyanin wavelengths than the carotenoid 
wavelengths used for monitoring the bioassay. 
The prox imi ty of these fluorescent peak s 
would be the cause of this interference at 
the 60 nanometer bandwidth used for lhis 
analysis. 



Effects of Salinity on Freshwater 
Pflytoplankton 

Concentration Effects 

The concentration of the compounds 
produced variable effects depending on the 
test alpa and the compound. The ions being 
studied are hormetins, toxic agents at higher 
concentrations but stimulatory at lower 
concentrat ions (Luckey and Venugopal 1977). 
With the except ion of Na and HC03, the ions 
are required ions for algal growth and so 
follow a beta toxicity curve (Figure 17). 

AAM IS a medium designed to provide all 
the required nutrients necessary for algal 
growth, WIth algal growth terminating from 
phosphorus limi tat lOn. Because of Liebig' s 
Law of the minimum, an increase in biomass 
would have to include the addition of a form 
of phosphorus which the algae could ulilize. 
Therefore, the growth st imulatory effects of 
the ions under study were eliminated, and the 
toxic concentration effects were expressed. 
This did occur using Selenas~rum as the test 
organism, with growth depression occurring at 
the 0.004 N (250 mg/l/as NaCl) concentration. 
Growth depression increased as the concentra
tion Increased. Therefore, the full nutrient 
growth potential of the medium was not 
utilized by the Selenastrum because of the 
effects of salinity added~ the AAM medium. 
Both the X and Pb were depressed. 

LPS is an AAM based medium to which 
addI t ional salinity has been added to equal 
the salinity of Lake Powell. No growth 
stImulatory effects were found using Synedra 
as the test organism. Growth depression 
began at the 0.05 N concentration and in
creased as the concentration of salts in
creased. However, Scenedesmus did exhibit 
growth stimulation with the addition of 
complex salt solutions. This would suggest 
that one of the salt ions under study and not 
phosphorus was limiting the growth of Scene
desmus. Vanadium (V) is a required trace 
eTement (Provasoli 1958) for the growth of 
Scenedesmus and LPS does not include V in the 
trace element addition. Provasoli (1958) 
also states that impur it ies in reagent salts 
used in nutrient media contain sufficient 
trace metals except Fe and Mn to support 
freshwater phytoplankton species. Therefore, 
not only the salt ions tested but also the 
trace metals, specifically V, may be limiting 
Scenedesmus growth. This apparent vari
aliTI1tY---rn- the nutrient requirements for 
different algal species demonstrates the 
importance of ident Hying changes necessary 
in the media to rna intain a known element of 
limitation when utilizing indigenous species 
for toxicity studies of complex wastes. 

Effects of Different Ionic Species 

Differences in ionic toxicity did exist 
with single salt additions to Selenastrum and 
Synedra. Mg was more toxic than the other 
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cat ions for both of these algal genera. Mg 
is an essential ion for photosynthesis. It 
is the central chelaled metal in chlorophyll 

.<! molecules. Mg is the ion with the smallest 
hydrated radius (8 ltngstrums) of the group 
II elements in the periodic table (Stumm and 
Morgan 1970). Na (4 R) hydrated radius, 
which also exhibited the same toxicity as Mg 
with single salt additions to Synedra, has 
the smallest hydrated radius of the group I 
elements of the periodic table. This 
smaller hydrated radius may have allowed 
greater selective adsorption of these two 
cations compared to the other cations in 
solution. Synedra, unlike Selenastrum, did 
react selectively to anion toxicities. 

The order of toxicity of the anions was 
reversed from their order of solubility and 
the size of their hydrated radius did not 
appear to be Significant. S04 (4 A) was 
the most toxic anion to Selenastrum. Most 
algae have Lhe ability to reductively assimi
late S04 to sulfide, which is essential 
for algal growth and cell division. Most 
algae also have the ability to reductively 
assimilate S03. The hydrated radii of HC03 
and CI are 4 Rand 3 ~ respectively. HC03 
was the most toxic anion to Synedra. 

Anabaena is a cyanophyte which has been 
mentioned in the literature as a dominant 
genus in high salinity (TDS> I gIl) environ
ments. In the presence of all of the salts 
except CaS04, the maximum standing crop of 
the heterocysts decreased. Heterocysts are 
specialized cells of Cyanophyta which 
are present when nitrogen f ixat ion by these 
algae occur. This would suggest that the 
medium may not be nitrogen limited for the 
Anabaena in the presence of these salts. The 
number of vegetative cells of ~~.<!~a~~.<! 
were low in the test flasks as comparea to 
the .§l.nedra and Scenedesmus. However, the 
short duration of the bottle test may have 
precluded Anabaena dominance. Blue-green 
algae are thought of as generally having 
slower growth rates than green algae (Stewart 
1974). Also, this Anabaena was a standard 
lest speCIes rather than an indigenous alga 
as were the other two genera representatives 
tested. Also the bioassay light level may 
have been high enough to inh ibit the growth 
of Anabaena because generally the standard 
test requIres 200 f-c not 400 f-c for blue
greens (APHA, 1975). 

A significant difference in the toxic 
response of Selenastrum because of in the 
synergistic interactions of cations and 
anions was shown. This effect appeared to 
control the amounts of .depression of growth 
of all of the algal species tested when more 
than one salt was added to the medium. 
Therefore, when complex salt solutions are 
added to receiving waters, measurement of one 
dominant ion pair cannot be used to predict 
the effect of the salts on the productivity 
of the phytoplankton. 



Evaluation of Concentration 
Measurements 

Concentration measurements may provide a 
better means of assessing the effects of 
increased salinity on the productivity of 
freshwater phytoplankton. Osmot ic pressure 
correlations from the bioassays with Selena
strum and Synedra were significant, but very 
~ This correlation was still less than a 
linear correlation of the same biomass data 
to electrical conductivity. 

Although consistently low, the most 
consistently significant correlations with 
biomass measurements for all the algal 
specIes tested were obtained with specific 
conducJ iv i ty. Thes';t correlat ions were bet ter 
with X than with]1 results. This linear 
relationship did not hold when grouping data 
from all the Synedra bioassays. Therefore 
t here were some incons is tenci es between 
bi oassays that were apparent ly a resul t of 
the different experimental conditions. 

The other concentration measurements 
tested dId not provide cons istent ly signif i
cant correlations with any of the biomass 
measurements. The correlatIons of the 
activity coefficient with the biomass data 
may have been lowered due to the calculations 
used. The measured activities which were 
linearly correlated with the Scendesmus 
biomass data suffered from problems: ~lL;-Tne 
activities of most of these solutions were at 
the lower end of the sensitivity range for 
the measurement technique utilized. 2) 
Calculations of activities and osmotic 
pressure based on 1 imit ing laws are not 
applicable to solutions of mixed electrolytic 
charges and the bioassay data support that 
conclusion (Stumm and Morgan 1970). 

Evaluation of the Corps of En~ineers 
Standard Elutriatlon Proce ure 

The chemical compositions of the two 
types of elutriation procedures and the 
leachate procedure were compared for the AP 
shale. The Type II elutriation procedure 
followed the Corps of Engineers standard 
elutriation protocol. The Type I elutriation 
procedure provided comparable data to the 
leachate produced from an up-f low column on 
the first day of operation. The Type II 
elutriation procedure produced comparable 
data to the day 2 leachate analyses, except 
t he pH of the Type II elut r iate was higher 
than the day 2 leachate. Otherwise the major 
ions present in the elutriate were comparable 
to the leachate of each day. 

The leachate did provide the additional 
knowledge that the compos it ion of the major 
cations changed in order of dominance over 
the extraction period and the pH increased 
steadily during the extraction period. 
Therefore, the ion composItion and pH of the 
leachate from the spent 011 shale dIsposal 
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sites will change depending on the contact 
time of the disposal water. Both of these 
variables affects the biostimulatory or 
toxic responses of phytoplankton and so the 
contact time of the leachate with the dis
posal site shale could change the phytoplank
ton response to the leachate. 

Problems in the utilization of the Corps 
of Engineers standard elutr iat ion procedure 
could occur because of the difference demon
strated with the leachate procedure. The 
water passing through a spent shale disposal 
pile will be moving at all times. The 
contact times of the water and shale will 
vary but with the recycling of this water, a 
longer contact time, such as the 48 hour 
contact time of the Type I elutriate may 
provide an elutriate more characteristic of 
the leachate from spent shale disposal 
sit es. 

The Type II elutriate procedure did not 
totally wet the interior of the most hydro
phobic shales. The standard elutriat ion 
procedure was obtained from standard soil 
analysIs and designed for testing samples 
from dredged sites, but the hydrophobic 
nature of some of the shales did preclude 
complete extraction using this technique. 

Effects of Oil Shale Leachates and 
Elutriates on Phytoplankton 

ProductIvIty 

The additIon of many of the spent oil 
shale elutriates and leachates stimulated the 
growth of Scenedesmus. The concentration 
effects of these addItions did not provide 
consistent conclusions. The extracts 
from the AP shale stimulated growth more than 
the extracts from the BP shale. Therefore, 
growth st imulat ion of Scenedesmus is depen
dent on the process applied to the shale. 

In general the extracts from the spent 
shales stimulated growth more than did the 
extracts from the raw shales. The processing 
of the shale appears to make growth st imu
lating compounds more available to Scene
desmus. These compounds may be low molecuLar 
weight aromatic hydrocarbons, which were 
found to stimulate algal growth in other 
petroleum products (Dunstan et al. 1975). 
The spent shales did st imulate growth as 
compared to their matching salt controls. 
Therefore, this stimulation was not caused by 
the addi t ion of any of the salt compounds. 

This differed from the comparison of the 
growth of raw shale extracts to their match
ing salt controls. The growth of the raw 
shale ext racts was less than the growth of 
the salt controls. This would suggest 
toxicity or a decrease in the limiting 
nutrient availability from a component of the 
oi 1 shale extract other than the salt com
ponent. Linear correlations were made 
between the biomass and the trace metals 
present in the extracts but no consistent 



correlat ions could be found between the 
Scenedesmus biomass data and the trace metal 
concentration in the extracts. Generally, the 
concentrat ions were lower than toxic level 
to a Igae and becau se of th is the grow th 
depression was probably not due to the trace 
meLals present in the extracts. 

Application of the Bioassay Results 
to the Colorado River System 

Increased growth of the three algae 
grown competitively suggest that competition 
was occurring between the algae when grown in 
higher salt concentrations. The lIterature 
would suggest that this increase in salt 
concentrations would provide a competitive 
advantage for cyanophytes (Gupta 1972). 
The increased presence of cyanophytes would 
change the species compositIon of Lake 
Powell. At present no cyanophytes are common 
In Lake Powell. The literature also suggests 
that lower Pearsall ion ratio « 1.5) also 
select for cyanophytes (Provasoli 1958). As 
the length of contact time with processed Oil 
sbale increases, the Pearsall ion balancf 
decreases and therefore recycling of disposa~ 
water through the oil shale would decrease 
the Pearsall ion balance and may also favor 
cyanophytes. 
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An increase in the salinity of LakE' 
Powell may inhibit the growth of Synedra. An 
increase to 0.05 N salinity will suppress the 
growth of Slnedra in the laboratory, but an 
increase 0 0.05 N salinity (1150 mg/l 
TDS as NaCl) would be a large increa~e in the 
salt content of this receiving water. The 
costs to agricultural water use of this 
salinity increase would probably prevenL 
attaining such a level~ 

Leachates from oil shale sites may 
increase the productivity of Scenedesmus in 
Lake Powell. Leachates from the spent 
disposal sites would appear to stimulate 
Scenedesmus growth more than leachates from 
t he raw shale. However, runof f leach ing raw 
shale from ground disruption could also 
stimulate the growth of Scenedesmus in Lake 
Powell. The trace metals present in the oil 
shale leachates should not effect the growth 
of Scenedesmus. 

Therefore, the increase in salinity 
because of water diversion will probably 
never reach a level high enough to affect the 
algal populat ion in Lake Powell because of 
downstream agr icultural interes ts. However, 
releases of leachates from the shale disposal 
sites may be biost imulatory to the algae of 
Lake Powell. 



CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

In batch bioassay tests: 

1. A single algal species indigenous to 
Lake Powell,~nedra, deli var. 
angustissima, was more toler s inity 
than the standard algal assay test alga, 

capricornutum, Printz. 

2. Acclimation of the standard test 
a , Selenastrum in a higher 
s inity medium incr tolerance to 
salinity but the acclimated Selenastrum 
capricornutum still was less tolerant to 
salinity than the indigenous alga, Synedra 

Issma. 

3. A mixture of three algal species 
a !.l o~9.~~~ ( cuI t u r e), S y ned r a 

~c~~~-~'s-s-ma (indigenous), and Scenedesmus 
(indigenous» were more toler

ty than any of the other tes t 

4. Salinity toxicity in Selenastrum 
£aE£~£Q£~~~~~ occurs with the addition 
or salts at the 0.004 N concentration. 

5. Salinity toxicity In Synedra deli-
occurs with the addltion of salts at 
N concentration. 

6. WIth multiple salt addItions, the 
interactlons of cations and anions have more 
effect on the growth inhibition toxicity 
than anyone cation and/or anion effect. 

7. Specific conductivlty correlates 
with algal productivity at a significant but 
a low level. 

8. Calculated osmot ic pressure and the 
act ivity coefficient do not correlate well 
with algal biomass variables. 
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9. Automated cell counts adjusted with 
mean cell volume measurements appear to be 
the best biomass monitoring technique when 
compared to chlorophyll ~ fluorescence and 
optical density. 

10. The Corps of Engineers standard 
elutriation procedure does not extract ions 
from oil shales as completely as elutriation 
procedures with longer extraction periods or 
leachate procedures uSIng an up-flow column. 

11. The ion compos it ion and pH of the 
oil shale leachate is dependent on the 
contact time of the water with the oil 
shale. 

12. The additIon of oil shale leachat~s 
to Lake Powell may be biQstimulatory to the 
phytoplankton. 

13. The Increase in salinity in Lake 
Powell may not decrease algal productivity 
but higher salinity and/or a decrease in the 
ratio of monvalent to divalent ions of the 
salinity may increase the cyanophytes present 
in Lake Powell. 

1. Microcosm stud ies are needed to 
study the effects of sediment action on the 
cyc ling of these salts and leachates in 
the reservoir. 

2. situ studies in Lake Powell are 
needed to try-ro-determine the possibility of 
a 1 population shifts in the presence 
of increased salinity or oil shale leachate 
concentrations. 
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Appendix A 

Analytical Results of the Oil Shale 

Leachate and Elutriate Analyses 

Appendix A-I 

Oil Shale Identification List 

These samples of oil shale were provided by the companies for analysis. 

These are all unhistoried samples from prototype operat ions and as such may 

not be representative of samples from a full scale operation. 

Table A-I. Oil shale identification listing. 

AR = Raw Utah Shale 

AP = Paraho Processed Utah Shale 

. BR = Raw Union Shale 

BP = Union Processed Shale 

CR = Raw Laramie Shale 

CP Laramie Processed Shale 

DR = Raw Geokinetics Shale 

DP = Geokinetics Processed Shale 
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Table A-2. Summary table for the characterization of oil shale leachates. 

Elapsed Sampling Time 
(Hours) 30 42 78 127 223 295 
(Days) 1. 25 1. 7 5 3.25 5.29 9.29 12.3 

Cations 
z 
T Na 2704.0 117.6 1990.8 86.60 438.6 19.08 183.2 7.971 35.57 1.550 21.87 0.95 
2 Mg 317.1 26.08 176.6 14.53 226.8 21.95 88.47 7.280 45.09 3.709 24.10 1.98 
1 K 454.98 11.64 159.7 4.083 357.1 9.134 72.0 1.84 12.62 0.323 8.28 0.212 
2 Ca 465.5 23.23 534.9 26.69 501.5 25.02 573.3 28.61 309.71 15.46 172.06 8.586 

1:1'78:"6 1: 131.9 1:75.18 I: 45.70 
I: 21.037 1:11.731 

Anions 
z 
T Cl 2.0 0.06 2.0 0.06 2.0 0.06 3.0 0.095 1.175 0.033 1.525 0.043 
2 S04 6600.0 137.4 5250 109.3 2775 57.78 1800 37.48 966.8 20.13 482.24 10.04 

0\ 
1 HC03 1483 23.31 1156 18.94 525.4 8.610 163.4 2.680 133.0 2.180 145.09 2.378 

N 2 C03 0 0 0 0 0 0 0 0 
I: 161.8 I: 128.3 I: 66.45 I: 40.25 I: 22.34 I: 12.461 

Ion Balance 4.93% 2.77% 12.3% 12.6% 3.00% 3.02% 

Trace Metals (Ilg/l) 
Se 2.2 
As <l 
Fe 28.5 
Ba 206.6 
Pb 4.9 
Mn 16.4 
Cu 15.9 
Zn 55.6 
Cd 20.5 
Cr 14.6 
Ag 15.2 
B 139.0 299.0 



Table A-2. Continued. 

Total Organic Carbon (mg/l) 

pH 8.27 8.26 

Alkalinity (mg/l @ CaC03) 1215.6 947.4 

Total Dissolved Solids (mg/l) 

Specific Conductivity (~mhos/cm) 10230 8258 

Pearsall Ion Balance 4.036 3.023 

Leachates normalized to the 12.3 day leachate 

Cations 
Na 123.8 91.16 
Mg 13.17 7.338 
K 54.91 19.26 
Ca 2.706 3.109 

l: 15 .12 l: 11.164 

0'1 Anions w 
Cl 1.395 1.395 
S04 13.69 10.89 
RC03 9.802 7.965 
C03 0 0 

l: 12.99 r 10.30 

*Leachate 2 was used in the bioassay procedure. 

7.79 7.30 

430.7 140.0 

4612 2956 

1.036 0.3856 

20.08 8.390 
11.09 3.977 
43.8 8.679 

2.914 3.332 
l:6.364 U.868 

1. 395 2.209 
5.755 3.733 
3.521 1.127 

0 
;: 5.33 l: 3.23 

13 

7.17 

109.02 

1550 

1695 

0.1358 

1.632 
1.873 
1.524 
1.801 

l: 1. 314 

0.7674 
2.005 
0.9167 
0 

l: 1. 79 

.1 [ 
I, 

10 

7.24 

118.93 

823 

1007 

, I 

0.1100 

1 
0 
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Table A-3. Summary table for the characterization of oil shale e1utriates. 

AP AR 
Type 1* E1utriate Type II* E1utnate Type 1* Elutriate Type 11* 

Cat 
Na 1045.8 45.49 821. 7 5 35.74 58.0 2.523 13 .62 
Mg 475.3 39.10 245.73 20.215 12.1 0.995 2.42 
K 110.4 2.823 54.60 1.396 2.0 0.051 11.1 
Ca 396.8 19.80 653.8 32.63 32.87 1.640 12.15 

E 107.213 E 5.21 
1:89.981 

Anions 
Cl 92.51 2.609 30.175 0.851 9.16 0.258 3.025 
S04 5013.1 104.37 4301.3 89.55 85.41 1.778 28.02 
RC03 14.05 0.230 180.16 2.953 193.61 3.173 61.66 
C03 15.46 7.14 

E 107.213 E 5.21 

Ion Balance 2.12% 

Trace Metals .~ g/l llg/l 
Se <1 <1 
As 10.5 2.5 
Fe <25.0 66.5 
Ba 135.0 <78 
Pb <1 1.7 
Mn <7 <7 
Cu <11 <11 
Zn 12.8 24.4 
Cd <13 <13 
Cr <11 <11 
Ag <9 <9 
B 246 592 

Total Organic Carbon (mg/l) 1.985 

Activi ty (Bars) 1. 75 0.234 0.089 

pR 8.84 

Alkalinity (mg/1 @ CaC03) 173.4 

Total Dissolved Solids (mg/1) 7056 

Specific Conductivity (llmhos/cm) 10060 6415 228 

Pearsall Ion Balance 1.326 0.9742 1.334 

*The Type I elutriation technique had a 48 hour extraction period. The Type II e1utriation technique had a 30 minute 
extraction time. Further differences in these two elutriation procedures are shown in Figures 4 and 5 in the Materials 
and Methods section. 

**Type I elutriation procedure balanced with assumed RC03 concentration. 

1 I I 

Elutriate 

0.592 
0.199 
0.284 
0.606 

1:T:68l 

0.085 
0.583 
1.011 

6.56% 

7.38 

0.523 

9.04 

121 

155 

1.697 
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Table A-3. Continued. 

Cations 
Na 625.6 27.21 109.5 4.545 5.7 0.248 2.68 0.117 
Mg 41.5 3.41 58.13 4.782 7.0 0.576 4.49 0.369 
K 8.1 0.207 7.43 0.190 0.8 0.020 1.60 0.041 
Ca 80.16 4.000 242.91 12.121 28.86 1.440 16.19 0.808 

l: 34.83 i: 2.284 
l: 21.638 El.335 

Anions 
Cl 24.59 0.6936 7.075 0.200 2.31 0.0652 1.425 0.040 
S04 1510.5 31.448 877.77 18.275 58.15 1.211 37.14 0.773 
HC03 164.24 2.6917 171. 7 2.814 61.54 1.0085 25.391 0.416 
C03 1.189 0.040 

1: 1. 21 1:2 E 1. 269 

Ion Balance 1.61% 5.07% 

Trace Metals Ilg/l Ilg/1 
Se <1 <1 
As (I (I 

Fe <25.0 34.4 
0- Ba <78 <78 
VI Pb 9.1 (I 

Mn <7 <7 
Cu <11 <11 
Zn 24.9 12.8 
Cd 15.9 <13 
Cr <11 <11 
Ag <9 <9 
B 966 <10 

Total Organic Carbon (mg/l) 11.3 0.153 

Activity (Bars) 0.234 0.234 0.523 

pH 8.33 8.85 

Alkalinity (mg!l @ CaC03) 

Total Dissolved Solids (mg/l) 1518 101 

Specific Conduct ivi ty (IJrnhos/cm) 3210 1601 308 128 

Pearsall Ion Balance 5.209 0.3718 0.1813 0.2070 

*The Type I elutriation technique had a 48 hour extraction period. The Type II elutriation technique had a 30 minute 
extraction time. Further differences in these two elutriation procedures are shown in Figures 4 and 5 in the Materials 
and Methods section. 

**Type I elutriation procedure balanced with assumed HC03 concentration. 
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Table A-3. Continued. 

Cat ions 
Na 
Mg 
K 
Ca 

Anions 
Cl 
5°4 
HC03 
C03 

Ion Balance 

Trace Metals (~g/l) 
5e 
As 
Fe 
Ba 
Pb 
Mn 
Cu 
Zn 
Cd 
Cr 
Ag 

Total Organic Carbon (mg/l) 

Act ivi ty (B'ars) 

pH 

Alkalinity (mg!l @ CaC03) 

Total Dissolved Solids (mg!l) 

Specific Conductivity (~mhos!cm) 

Pearsall Ion Balance 

94.9 4.13 
0.57 0.047 

19.4 0.496 
2.4 

57.74 1.629 
36.83 0.7668 

145.83 2.39 

1: 4.79 

345 

38.48 

6.9 0.30 541.5 23.55 106.7 
6.7 0.55 0.20 0.016 1.50 
0.70 0.018 34.4 0.879 0.80 

40.08 2.00 747.09 37.28 4.01 
l: 2.87 1:61.73 

5.20 0.147 29.19 0.823 4.19 
65.52 1.364 2298.23 47.849 41.83 
82.98 1.360 796.89 13.06 243.46 

-~~.--

,,2.87 1: 61.73 

5100 4520 

0.1625 0.7707 

*The Type I elutriation technique had a 48 hour extraction period. The Type II elutriation technique had a 30 minute 
extraction time. Further differences in these two elutriation procedures are shown in Figures 4 and 5 in the Materials 
and Methods section. 

**Type I elutriation procedure balanced with assumed HC03 concentration. 

,j 

4.64 
0.123 
0.0205 

0.118 
0.8709 
3.99 

l: 4.98 

500 

19.51 



Appendix B 

Listings of X and o Bioassay Results 

All raw bioassay data are on file in 
the library at the Utah Water 

Research Laboratory 
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Selenastrum 
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Acclimated Selenastrum 
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2''': (i- • 3-" ~. C A !',')b '\0.5 1111 25 I il.,'e:; I. ~at.:1.. 1.352(\ 2'5 

7 " .' t; " ,. G t L 2 ":;'1.81\'; i?b 2'\ 1I.!11 " CAS;l.l 1.'.1105 20 
;>1; n. I q " V.G&i)1i 'iil.lb'5 27 n 0.1,t; :. CA&oa '.(JII)~Q 27 

;> " • 1 'I 'H,C.t.. 1'>0.111'1'1 Cb J :, r: .... "'I.. A '41\ 1.5&,,1) 28 
23 /I. ! Ii " usn .. 'l'C;.3'H\ ?~ H Cr'lNTi<nl 1.bt35 2'=1 
n ~} • I); .\ C 6 ;:'1)<1 103.> .. 3f} ~ ~ Cr),JTI-IOl ! .b22tl !oIl 

! f', • " t.., ':~Cl 1 ~!04. n fI 31 ~P, IIl· ... L ::;R HIITRUTE \.1.)1.:>/:)5 31 
~Q I' "Il ;.;j.' FL\JHII~lt , 7 ~1 • 11/1 32 50 ".'IL AI) f LUTI)I,. Tt 1 .... 7~5 32 
H I '''< t UP F:LuT"lAT~ 172."" 33 30 !'l""L lIR fLUT~lATE. 1.(:.A25 33 
3i? 1 ""'L ')!< FLUTol A TF. 17 'I. ')11 .\11 51 I il"'1j. UP FI..\IT~IAH 1.7030 3l.1 
3A , n"l "' ... FltlHIIJlTI" ! p.ii' • I' I: 35 ~ 'J t fl.'1l ('0./ E'l'IH'!41E 1.924'5 3!; 
<1'1 1J.".hlA~:1' , A~,. 1\" 30 I::> r;. ~ '\ •. ~'(L 1.1. :; '5 7 30 
'J.;> C·,\: T ;:;r;l t? l) f ••• j (t 37 I" n. ;1\ " >\" <: 'J oJ ! r) .tH!7 51 
H C '.If; T "'Pl ,?fI:5. H' HI I j) f\ • :'c:, " ·'G!h1.:.l 11.3('9 38 
31 C;j',TP('L ;?Il/J. ·'(1 3~ ,{ Cil~T':;,)L It>.o2<1 3" 
31.1 ! ,> 'L C .... ~ V-jft:<1 An ? II 1:". ~1 (l J" 11 H. 1~' t' ,,21\l'.:I 2(\.oi,l.., 4" 
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Appendix B-2 

Single Salt Additions 
Synedra 

X 
CL~CA~S ~LLTIPLE RA~Gf TEST 

~ , 

CL~[A~S ~LLTIPlE RA~GE T~ST 

, TREAT~E~T AvERAGE RAh~I~G T~EAT~£~T A~E~AGe RA~~l~G 
--n--'dTIt .. 'l1r-'1\f(~--------"- -------O-;T1to-t1l'-- - - -t 'n -uro.2-o-" 11"~ {l-.-llt8e'O --;----

15 11/0.20 ~ ~A~CC3 0,11500 2 3~ 11/0.20 h ~~CO! 0,35250 2 
]@ 410.10 h ~~COl 0.13000 J 3e ~/O.IO ~ ~~CC! 0,35100 3 
JCiI 1110 • .:0 1'\ ~~cC] O.le!OO--4-----n;-- /1/0,30" ,,~"CCJ 1t,!!'SO --------/1----
36 4/0.JO ~ ~A~CCJ 0.2~!00 5 110 4/0,30 ~ "~CC3 0.115300 5 
lip 11/0.10 ~ ~~COJ 0.31500 6 311 11/0.10 ~ '~A~CCJ 0.U7200 6 

-:nr----<tnr.tlIri"" ' n Ii CO J - ------- - -o-.-!"t"!1tO"---_.. , 'llotrrr ;3-U- t>"f("U-014-lt '1>1)"f"lttt- -'f--
]7 11/0.05 ~ ~~CO] 0.33500 e 37 UIO,05 ~ ~rC03 0.62e50 8 
33 U'0.05 ~,,~A~ce3 0.58500 , 33 4/0.05 ~ '~AHC3 0.75200 , 
H, 1If11,3!) 1\ OCL2 ----tl.6e!~O ---te-- -~-.. O}0.1II" ~2$C1I ------,,-,U!CO--;--o------
II 1I/1l.20 ~ ,"GCLi! 1.2'500 II 2] 1.1/0.20" ~2S011 O.UOOO 11 
20 II/O.lll ~ I~ACSCII I,HOO 12 C/ II/C,Co; f\~GCl2 0.'31;00 12 -n-- ..... TO';'lV~ "noli .. ------ -t-~ tl- -IT- - 1i71r~~ll-l\-'Gct2 ____ d_____ --I .OSU-tl- ' 
21 11/0.20" i"GSOI.I 2.0150 14 28 4/0.10" ,~G!CI.I I.UJ5 111 
12 UI0 .. 3O" '''Gel2 2.H!C 15 10 11/1).10 "~GCl2 1.2un 15 
nr- a}O,20 1\ ,HiSCII 3.1(100 11r---"~'ill().C'5 K cleU ---r.2820 -------tll' 
28 U10.30 h~G!O~ 1.2500 17 21 II/o.iO h ~GSCII 1.2~~O 17 
II' 11/0.10 h '~AiSCu 3.~500 18 7 U/o.iO ~ ~Cl 1.35'0 Ie 

---1'.,-- --'1I70;-C-~ PI .UUC4 ------- '.'1:0-0-0----1"- -115 {j/ll;CO -J. -ottZ-t.lt'25" ---U---
e u/O wl0 ~ ~CL 4.6000 '20 16 11/0.30" C~CL2 1.366' 20 

l3 u/0.05 ~ C~CL:i 5.'1150 It 26 1I/0.tO ~ :1'G!OIl 1.11430 It 
1 470.20 j\ !CCL --;-.05QO- ·---n--"----"'71----r.mr~~T 1<26011 1.4520-n 

1U lI/0.l0 ~_ CAell!! 6.11150 23 11 Q/O.iO II" 'Geli I.S5~5 23 
10 11/0.10 II" i~GCl2 7.5000 ell 215 11/0.05" ~G!OIl 1,5715 24 

--or-- IJo .. 30 t'i !lIatt ---------&.-..s-o--- -'i-S-1T- -1t7tr.n--'j\-lnctt1i------.. -u-1"~---------iS--
25 1.110.05 ~ i"G!OIl 10,170 Z6 20 Ultl.30 ~ '~A2SCII I.U'S 26 
15 11/0.20" CAeLi 10~500 27 31 UIO.20 ~ C~SOI.l 1 7030 27 
-,-- /I, (') • :2 0 " i ~ A C to - -~--tti'1:'t1l--- ' , ~ ,- TIT---'"itTO';-r-n~-
~ 11/0.05" ~Cl 12.330 2~ 3~ 1I/~.30 ~ CASCII 1.7105 2' 
q 4/0,05 h ~GCl2 12.500 10 p 11/0.30 ~ ~CL 1.eo~o 30 

-r-----Itro- .1)-1)- 11-'1< *1:1.---- 'H08i-C--!i I a-ro .-os 1;':".('1;- t."t:fl-C- -- --- 31-
26 UI0.l0" ,"GSOu 13.835 l2 II 11/0.10" ~CL 1.'2UO 12 

2 {j/0.l0" ~ACl 14.165 33 30 1.1/0.10" C~SOIl 1.4]40 33 
---a-Z-------CO""'OL-- 1/.1.165 * 'r:; -aTe;~ I\" 1<ft-------------T.~550 *-

6 Ulo.l0 h ~CL 11.1.835 35 a I/O.!O h~ACL l.q'l! 35 
22 11/0.10" ~2S011 15.000 36 IP q/~.IO II" ~A2SCII 2.0ll80 36 
"ita- ---- -eCfr'Htet------------+SoHe-------- ,.,J~--- 17 '- -tf/'t,jCS "'-~U~a------ --- --'--i-.t-lH-e---- ---- ~1-

21 1I/1l.0S '" ~2SC{j 1!i.8J'S!8 J 1I/0.io ~ '~ACl 2.1~15:U 
U3 eO"'TROl U.8l!! 3C1 2 ~/O.l0 ~ I~ACl 2.11510 H 

--J-rr--- tj J 0.10 " C A! e ~----------*.-!!1l----" -41-&- "~------e-~--------- --- -- '- --- -, ~ i~&-e---- - -4Hl-" 
1.11 CCI\TRCL 20.665 III lIu CC"'I1CL c.U1l5 III 
iq UIO.r.S h CA!CU 22,000 it2 2~ Q/O,C5 ~ CASCD 2.e6~O Di 
h -/;I/O.Hl 1\ Nn~1J -H.f3~it3 '13 C1lf;HleL '-' "i'.Nlil-S- -413 
32 4/0.10" CASe" 2C1.500 Ilil 1.11 CC~TI:IOl 2.80e5 u 
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~--~ 3 & 4 Salt Additions to Synedra 

A 

X --------- -- 11 
Cl.~C·"5 _LLlIFLi ~.~Gf TEST Cl.~O~~ 'L~TiPl.! PHGF HSl 

HtU"E'l .VU.CE ~H~i'G TRfAHHT AVEUGF s. AP. K l ... r, 

2' illS t ! .10tlOtlf-"-CI t b'Q -1117 e fj \r O,583~O I 

~? b/\ . e 0,10500 0 h 6/4 5 10 O,elf1Cn 2 

3~ bib 10 0,18000 3 2'1 hiS t 'I O,HHo 3 

~" .-,~ ~ 7·e------- ---~~-- ~- -~~-- tto',.,ftO 
1. ./3 ~ O,21seo 27 ./S ~ 7 O.7875~ 

3" ./7 q 0,21500 • J~ 0/7 e Ie o,pune t 

S7 elU 6 q C;~ooo 
, -n- --1>7" ! b e O,~b100 I 

2. 1010 e O,28!OC e ole e 9 o,nl~o e 
~ oil 0 p 0,31500 q 1>/1 ~ 5 fj o,~P'o~ 'I 

1" bn ~ rrr ~~ -t1t 6,4 5 ~.....,..---- --(t-,-<t'l!:~ Ie 

Sn b/3 0 ~ • 0,35000 II blO ~ P 0.'10850 !1 

~" "/~ 0 , ~ 0,35000 Ii 'IP Ill. 5 b Ie O,fI.850 12 

J~ 11/8 q 10 ~ t! -bT """~-'--n-- o .. fll\8-!l\ \! 

!n "'S ~ Ie 0,4]000 14 25 ./4 ~ fj 1,0170 ! • 

5~ .,. S t e O,U500 15 ip 1>/5 • e 1.0255 IS 
q 01;- ! p- --~- ;-e-- "'-,-q- ~-~-~-- -ti~ft tt 

n ~/15 t 7 o,.soeo 17 H bIB q Ie l.o1i'!i 17 

0;. 1'>/3 0 5 Ie 0,45000 H 13 eli @ 1.0145 , ~ 
II bl4 7 c-,~oo- t~ T4I' -·lf/! -# -e- I,UOO 1'1 

o? 010 e 'I 0,50500 i!r 5! I>/! " 5 e 1,15t~ 2U 

". blS 'I 0,51>500 , I II b/3 (j 10 1.17ii5 21 

I. H; Q~ 11 ~-~-- ff -----,--,--- 612 , -.-.t'r!1t 1l 
~, Il/~ t 7 Ie O,bonco n t" b/'! 7 ~ 1.1"5~ n 
c. 01" ~ t IC O,7b500 H H bIll 7 H I,PH cl< 
~~ ~/" ! fl 7 Oi"'~- -iSC u- ---Tn-1I ,. "t- l.t~C is 

5' "/! " ~ 0,78000 U OIl 3 u I, te7~ a 
~, b/~ 7 Ie O,BOOOO 17 51 1>1 " ~ I> q I.'O~O n 
~, IflrQ-- -, ~ --H-- -----ar 511 l 7 -1 .. ~~11' ie 

1j/1 < ~ 0,81:500 l!- J~ ciS 10 1.;orQO 2q 

'" 
~/U 5 ~ 0.8b500 ]C , bl' i 5 1.2475 !O 

i1-~ biLl Ie ~- -- --,~+ --vj- - -.n~-rT- tt lifft"'j !1 

3" bl\ 3 1,0500 32 Ib 10/3 ~ 5 1.3110 !2 

". b/7 ! 0 Ie 1,0700 33 I~ 10/3 0 7 1.3ul! n 
'7 ~n---'! ~ 11 ~ -7<1- -----;a-- -~---wn--t-~ t.~ -!~ 

d" '12 3 0 I ,36~n 115 2i' 101. ~ 0 1.!7!.~ 113 
!, o/~ 7 ~ I.U500 H 3i> Ill/: 7 ~ 1.38on H 

'" br~ 3 'j -10~ -!-7 "2-n-- _r!-II-fI t.5H! H 

~i1 &/4 6 1,7000 38 iii 3 "/~ 5 7 1.'12.0 ]a 

• I b/1 • 3 1,850'0 ]q !P ell • ! 5 1,5270 3q 

! 1 ~/e 7 -,. -!~.-»!~ -Jl~ ----1rT - ---tsT!f--f--@--tt ~ I.'!!'~ uo 
"? ~/l j q 3.10~0 "I ]q 1l/\ 0 3 t I ,5!q~ "I . , ~ II ! IC 3,1000 u • "~ 1111 2 3 ~ 1.S0!15 0, 

10 ~/l q 
"'~ -JI-1 ---- _H .,u--tt 1,5510 u3 

u~ o/i! 3 u 1 ",0000 uu U &/1 2 6 l,oulO U 

Ill\ I 7 a,Oooo .5 u on 3 
• ! 

1.llul0 1<5 

." fife ~-g e -+,--t'!~- -~--lli:-- - -----It1- -----i>-ff-t-~- -!.IlH'! .~ 

21 bJ! U H 4.2000 .7 1'1 012 3 Ie 1 •• el~ ., 
Q ~J2 0 ",2500 U8 10 bl2 ! • 1 •• q3~ ue 

.p o-r~ ) .4 -il-i~ -1;+ --. --1rrt -r jj- t .'f005 U' 
0" bll ; 3 1 4 .. 5~00 50 a7 on 3 u e l.l0UO 50 

A ~/I • ! 0 ~,1>500 51 P till 2 IC 1,72QO 51 

I? errc-,- -,.- -~ -- ---'!-i-- I, 1>.2 3- -h~ S2 

7 01\ • 'I 4,7500 ~l ~b Ill. 3 ~ 7 I. 77"~ ~3 

\'; 012 ! 10 ~.0500 !" OP 0/. ! u ~ I,E04~ ~U 

2 b rt -Z- ~ - ~-,H# +5. ---!J- --;,-tIl 'I---t-- 1,80-7&- lSI! 

31 bll 2 3 ~, 3100 5e ! _6 bll Z e I,BUO Sb 
2n 11/3 " 'I J.UU !7 n "-/1 2 I 1,~U5 51 

l' bl3 " 7 5,B500 ~e 10 10/2 3 q 1.llie! se 
H oil • ~ 6,0500 Sq "5 Ill. 3 • 6 1 • q6-c~ ~q 

~o bO ! " Ie 0,]000 H OIl 0 3 i.2Q5'; ~n 

! 7 ./3 " ~ 6,5000 101 ~ 011 i! 7 •• o52~ o! 

II Ill? 3 6 ---'-.-&"0- ;':1; TS~ 1>rCCf; f1!1;\. 2,UZ'5 U 

IJ ~/I • e 8,3000 U !II 10/3 " 5 , 2.3eQS 03 , OIl • 3 13 .500 b4 17 10/3 4 0 2.37QS ~" 
h' ~7c-nf1>Ct n,6~0 -;,-or- - ----n'-- alec" I "Ct --.-~-"--.-. -I; .1t2'!~ b'5 

bC .ICC- T"el 16,000 to 7 Ill! i! 9 2,'55e5 u 
b. .ICC.T~Cl 17 ,OIS 67 05 "/CC"TRCL 2.7uS ~7 

67 bite. TRCL t1I,-JYC-- U -n ,,'C01'- TltCL l,n" ~e 

Legend: 1 == mg S04' 2 = mg C12 , 3 == K2S04 , 4 = KCI, 5 == KHC03 , 

6 = Na2S04, 7 == NaCI, 8 = NaHC03, 9 CaS04, 10 == CaCl2 
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Multiple Salt Additions to Synedra 

A 

X 
.. _--_ ...• _---

l~"l.f~l lVERlGE Rl~Kl~G TRE~T.£~l AVe"AGE 

~~~ ; ~ n e~·::~ -roo· 3~--~~r r:;-!o ~:m~~ 
7/1 ij S ~ .,.. 8 0,25000 3 46 7/4 5. e ~ C 0.ij57S0 
7'r-;-"!-·~T"----- 0,2&'00 u 31 713 If! .,.. e ... -~-o. 

I, 7/" e 7 e O •• POOO S~; 7/2 J U 7 8 4 O,b'I~O 
I~ 7/!. ~ • e 0,30000 6 I. 7/4 5 I> 7 e 0,.3150 
3~ 7/U ~ ~ ,., -v-.~c-o .-,_. -lfr-···-'f7]--;r-.,.· .. --t"-e·-.. · ··-O,-e4000 
u; 7/! ij 5 • 7 0,35000 8 51 7/2 3 u 5 6 7 & 0 O,6u700 
a. 7123u~618 G.uOOOO 4 Sa 7tI2l45.7@ 0 •• 5150 

-;t.- . ·--.,..,i<-T.,..,..~·rro-----,O~.:1#t"!HlOrt:C""!\II-·--·--te---n--~ 0 .-----O-;~ff." 

I" 7/. t 7 0 0.45000 II .~ 7/3 ij 5 7 e o.~~~oo 
"" 7/1 < ! ij 5 • 7 0 0.Ut500 12 I~ 7/3 u 5 t 0 O.~4700 

.,p 7/12:r-1r"5"~~ ~-o·----·--t"·---·T\-~"""4·~Ir"""'" -·"O.rt700 
43 7/2 3 • ! 6 7 0 0,50000 Iu 18 11u 5 6 , 0 0,75300 
2~ 7/2!.! 6 e 0,50000 15 13 7/3 u 5 • e 0.75uOO 

-,,~" ·····7n-:r-v·-~· 0.50000 .. ~ 7/2 ! .. ! 0 ,,~--.. 
2r 7/~ t 7 ~ 0 O,51!00 17 2a 7/t 2 ij 5 O.HOSt. 

711 • ! 4 5 e 0.51500 18 12 7/3 ij ~ t 7 O,8HSO 
., 1 7 n ]- If 5·· O· -v-,"'J'!1tC-O. -.-----;..... •. ·_·50- . --_ .. , Ii .,. .. II·!· 6·-'···t~ ,- ~ '1) .. un eo 
.~3' 713 ~ li 6 7 o,5e500 co 7/1 2 1 • & O.@~tSO 
I~ 7/3 ~ 5 t ° 0,63500 1I ! 7/1 l 3 4 7 O,87ijS~ 
7~· . ...,.,r-1-~.-e--'I"--. n.u!oe Ii .--~" 2 3 4 c·-_··- ~--·--------o--;Hi~C 

"e 

7/! ~ ~ t 7 e Q o.epOCo 23 \7 7/4 ~" O,QttOO 
7l\iJ.c 7 O,71HO 2a .q 7/123ijS67 O,qlqS~ 
'r! .• , e"-'" o,nooo -··--··--.. ~fl· ... ~ ·n·nm7(Q ·'5"";'·7 e-~. n.'IUSo 
7/1 34567 q 0.75000 cO 5~ 1/1i3a5·o eq 1,0010 
7/ti3~ij57 0.16500 i7 527/3a567e'l0 1.01llO 

." ... ~. '·/2, ij-.'!-'r. ._ .. ---.-_. -v,~· --·---n· .. ·--· .. ·,-·-'171·.......,..~~-·- .. ··~- ·1-;ot 0 5 
J~ "1.1 •. SeQ o.eooco i~ I. 1/3ij5~q I,OH!! 

70.J.~t 0.81500 30 .7 111'3~S~7e 1,0550 
7/q·S I: ·~Tci!· -4. ----"-~~"-·-"-H ~- --tn-,-,- .... -o ... _.- 1,0750 
'It 2 3 ~ 5 6 0,85000 H • 7/2 3 4 5 7 1,112:0 
7/~ e , e , 0.400t.O 3l H 7/.] 4 5 q 1,12.0 
7/[>"·!·~ ~-e-.'-.~-4.-~. -·--o-•• '!~·H··--·- .. ·····-*· .-... ~ -"'r¢·~,,·'·"!·o- 1.t"'~0 
7/t2Ja5·~7 0,'3500 35 S~ 7/12lij5678q 1,1715 
7/~ ~ 1 @ q 0 O,Q80CO lO .3 7/2 3 I: 1 n l,IH' 
7/~ 7 e ll." -t.iI-e-c~· ~n "0 ""I~ iI~ a ~5~ t 0 •• !B70 
7/. 674 1,0150 38 n 712 ~ 5 .. 7 1.lqCO 
7/1 l~567@qO 1.0500 34 iA 7/2!~ t8 1.2330 
7;'/ ,,~··t"'·t" 1,"""~ oIIe- ··M·" ·-'fl-"!·· 3011 '!·7 t .2Q50 
7/? 1,1450 UI H 7/1 i? 1 6 I.He; 
7/1 2 e 1,1500.i'/I • 3 • 1.331:0 
7/CC"'ACL 1."00 ··-413 !? "j.j'! '5 If 1.370~ 
7/1 • 3 4 " 1.250~ 4~ 16 715 e' q 0 1,17C5 
7/CCP~CL 1,4000 45 13 7/3 4 ,5 6 7 a 1,40.5 
7/~ 3 " ~~~ .~- . ··"II1l~O·-·-····-·-~ .;r _. ~"'.t!-"'-/j.~-!r-"+- ··t.~J'lO 
7/< J. 6 7 'I l.ij~OO U .~ 7/cc~nCL I.~SI:O 
7/3 • S q I,UOO ue 10 7/1. 3 ~ 6 q I.ij!>'~ 
7/1 i' 5 6·7 I,~O -4I'I.~ iq 1It-·l ij~5 6·'1~ 1.4&65 
7/3 • ~ ~ 7 Q 1,5500 50 2n 7/5 e 7 e 0 1.5435 
7/1iluO 1,5850 51 U 7I3Q5~7' 1.6025 
"3 '~"'~t-.-" -8-..... 1t. "1".~HO---·~----·-'S-t-·- ~--~t'lft-- -~~H:·5 
7ICC,THCL 1.7000 5] 10 7/5 6 7 e 'I 1.6sen 
1ICC>TRCL I ,705ft ~4 50 7/CC'TfiCL I,HOO 
7/. 6' e 'I ··0 1.-4t51l"*~ 51- ·--f·IC"e1rf~· ·I.ens 
7/137 i,lna 56 4P 7/123456'. l,e3l5 
711 3 5 2.2'50 57 !e 711 I J • 5 • e 1.1740 
711 J. i.6500 S8 21 7/e 7 e q 0 1,'1"$0 
7n 3 Ii I: l.]ota 5q 2. 7/1 2 3. 0 2,02" 
711 1 4 4,4!!O 1:0 2~ 7/1 3. 5 q 2,2475 

Legend: 1 =: mg S04' 4 = KCI, 5 = KHC03 , 

7 == NaCI, 8 = NaHC03, 9 = CaS04, 10 = CaCl2 
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A 

X 

C\,t-C.~S "lL TtPLE 

tREAnHT 
q 'II U~tC! 

10 91 ·"COl 
• ql on. 
\ 91 ~GCLi 
~ 91 OCl , " 'II! Ot.GA! CC.TROL 

U '1/SCE~eCE!.L! COhTReL 
1 ql t-JCL 

13 qlsneC~j CCt-TRQL 

" 
'I, K2SC/j 

1 'II "GSCU 
~ 'II ".SCu 

It '11At-A96!t-. CC'TRCL 
p 'II COSCQ 

Appendix B-3 
I 

Three Algal Genera 

RA~GE nIT cu~c.~! ~c~t!PL! 

nEUfl! RHKI~G TRUHHT 
O. ! -T- en fl;j.crr-- n 

0, iI t n 'II "'COl 
,QUOOhlO 3 ,. f//'~jeOf~. CC.TACt. 
,'4150(+10 ~ U f/1T,tt.1Ut C~Tittt 
,11800HI! 5 7 flI ~"GlQu 
,1371OE.11 6 • q, "'UQu 
,UUOE+II 7 ""--~ ¢II t<o"2SLili 
,20700(+11 e • 'I, oCL 
,25105£+11 4 1 'II '.ct. 
,2U!Ohll 10 "1'1 -- -QI1)Y1I"T1l1" -ct1<TlIt t. 
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