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ABSTRACT 

 

Characterizing Ecologically Relevant  

Variations in Streamflow Regimes 

 

 

by 

 

 

Kiran J. Chinnayakanahalli, Doctor of Philosophy 

 

Utah State University, 2010 

 

 

Major Professor:  Dr. David G. Tarboton 

Department:  Civil and Environmental Engineering 

 

 

Maintaining the ecological health of streams is vital for sustainable water 

resources management.  Streamflow is a primary factor influencing the structure and 

function of ecological communities.  A quantitative understanding of how stream biota 

respond to variation in streamflow is required for stream bioassessment.  This dissertation 

focuses on quantifying relationships between streamflow regime and stream 

macroinvertebrate richness and composition.  The contribution comprises statistical 

models that predict stream macroinvertebrate class from streamflow regime and predict 

streamflow regime from watershed attributes, and a tool that helps derive watershed 

attribute variables used in these models. 

The dissertation is a collection of three papers.  In the first paper 12 variables 

were used to represent streamflow regime at 543 sites in the western US.  Principal 

component analysis (PCA) and K-means clustering were used to obtain statistically 

independent factors and streamflow regime classes.  We examined the relationship 
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between these characterizations of streamflow and macroinvertebrate richness and 

composition at 63 of the 543 sites where there was also biological data.  This analysis 

identified specific aspects of the streamflow regime that were useful in predicting 

macroinvertebrate richness and composition and that have potential application in 

classification-based bioassessment and management. 

A regional-scale study such as this requires tools for efficiently delineating 

watersheds and deriving their attributes.  Paper two presents a multiple watershed 

delineation tool that addresses issues such as a) incorrectly positioned outlets and b) large 

Digital Elevation Models.  This tool has capabilities to delineate stream networks with 

the threshold that determines drainage density being objectively determined so that the 

resulting networks adhere to geomorphological stream network laws.  It also derives a 

suite of geomorphological watershed attributes that were used in prediction models in 

paper three. 

In paper three, we developed statistical models to predict streamflow regime class 

from watershed attributes. Four popular statistical methods were used and the uncertainty 

associated with class predictions for each method was quantified.  Paper three also 

identified the watershed attributes that were most important for discriminating 

streamflow regime classes. 

(226 pages) 
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CHAPTER 1 

INTRODUCTION 

River systems touch all spheres of human endeavors and have been subjected to 

human actions throughout the world; directly by dams, reservoirs and channelization, and 

indirectly by land-use developments [Naiman et al., 2002].  Human influence has greatly 

affected riverine ecosystems - chemical contamination has occurred; physical habitat has 

deteriorated; some species of both flora and fauna have disappeared; non-native species 

have invaded and the functional characteristics of riverine ecosystems have been 

disrupted [Petts, 1994]. 

The initial concern for river health was mainly a response to pollution problems 

related to human health [e.g., Karr, 1991; Petts, 1994].  It was soon recognized that 

chemical control approaches aimed at reducing pollution were inadequate to maintain the 

overall health of the river.  Additionally, the awareness that environmental systems that 

cannot sustain themselves cannot support human life [see Karr and Chu, 1997] 

contributed to the inclusion of concepts of ecological sustainability while defining the 

health of river systems [Richter et al., 2003, 2005]  Accordingly, the objective of the U.S. 

Clean Water Act (PL 92-500, Sec. 101, 33 U.S.C. 1251) has been “… restoring and 

maintaining the chemical, physical, and biological integrity of the Nation's waters."   

One of the challenges facing river scientists to achieve the above objective is to be 

able to define the ecosystem needs clearly enough to help the formulation of policy and 

management actions to balance the competing demands [Poff et al., 2003].  This 

dissertation strives to answer questions directly related to hydrologic needs of 

macroinvertebrates, an important group of aquatic biota. 
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Figure 1.1 illustrates how environmental factors interact and influence the 

structure and function of riverine ecosystems (Figure 1.1) [Allan, 1999; Naiman et al., 

2002].  These include sediment and flow that determine the physical habitat and are 

dictated by climate and watershed attributes.  Flow habitat and watershed properties drive 

stream temperature.  The quality of water in the stream is characterized by its chemistry 

which depends on watershed attributes including sources of contamination within the 

watershed.  The composition, diversity and function of stream ecosystems depends on 

habitat, temperature and chemistry.  These all need to be considered in river ecosystem 

management.   

Nevertheless, among different environmental factors, the characteristics related to 

amount and variability of discharge are considered to be the most fundamental variables 

defining the stream ecosystem [see Poff and Ward, 1989; Bunn and Arthington, 2002] 

and the alteration of flow regimes is often claimed as the most serious threat to the 

ecological sustainability of rivers [e.g., Richter et al., 1996].  To highlight the importance 

of hydrology for ecosystem sustainability, Bunn and Arthington [2002] describe four key 

mechanisms that link hydrology and aquatic biodiversity: a) flow is a major determinant 

of the habitat, a key driver of the aquatic composition, b) aquatic species have evolved 

life-history strategies in response to the natural flow regime, c) the natural pattern of the 

longitudinal and lateral connectivity in the river system is important for supporting 

populations of aquatic species and d) the invasion and success of non-native species is 

facilitated by alterations to streamflow. 

Ecologists have identified 5 aspects of the streamflow regime that are thought to 

influence ecological processes in rivers (Figure 1.2): flow magnitude, duration, 
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frequency, timing, and rate of change [Poff, 1996; Poff et al., 1997; Puckridge et al., 

1998].  However, the relative effects of specific aspects of flow variation on the 

ecological structure and function of streams are still a source of significant uncertainty 

[Bunn and Arthington, 2002; Snelder and Biggs, 2002; Monk et al., 2006].  A quantitative 

understanding of how stream biota respond to variation in streamflow regimes is a 

necessary precursor for developing strategies for effective assessment, conservation, and 

restoration of stream biota.  The central theme of this dissertation is to provide a 

quantitative understanding of the interaction between hydrology and macroinvertebrate 

composition and richness over the scale of the western US.  Towards achieving this 

objective, this dissertation offers solutions to two related questions;  

a) how do we efficiently derive watershed boundaries and related watershed 

attributes from digital elevation models for multiple watersheds spread over large 

geographical regions?  

b) how do we quantify the ecologically relevant streamflow characterizations at 

watersheds without streamflow data? 

This dissertation is made up of five chapters including this introduction and a 

summary chapter (Chapter 5).  The middle three chapters forming the core of this 

dissertation are written in the format of papers intended for publication as separate 

journal articles.  Each is outlined in the following paragraphs. 

Chapter 2 focuses on the main objective of this dissertation- characterizing 

ecologically relevant variations in the streamflow regime.  The requirement of regional 

scale characterization of streamflow regime relevant to stream biota is in demand for use 

in bioassessment, monitoring and management of lotic ecosystems [Wiken, 1986; 
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Omernik, 1987; Snelder and Biggs, 2002].  Many studies have looked into the 

characterization of streamflow regimes relevant to stream ecology at regional scale, but 

they have not directly quantified the effects of streamflow regime on the biology of the 

stream [e.g., Poff and Ward, 1989; Poff, 1996; Sanz and del Jalon, 2005; Sanborn and 

Bledsoe, 2006].  Only a few studies have tested specific hypotheses on the interaction 

between hydrology and ecology at a regional scale [Poff and Allan, 1995; Clausen and 

Biggs, 1997; Extence et al., 1999; Riis and Biggs, 2003; Sheldon and Thoms, 2006; Suren 

and Jowett, 2006; Monk et al., 2007, 2008; Konrad et al., 2008]. 

In Chapter 2, we characterized the flow regimes at 543 minimally impacted 

gauged streams in 13 western US states and tested whether invertebrate assemblage 

structure (taxa richness and composition) at 63 sites was associated with variation in flow 

regime.  We first identified 12 streamflow variables deemed to be sufficient to quantify 

the five aspects of streamflow regime thought to influence ecological processes 

mentioned earlier (Figure 1.2).  These were evaluated long-term flow records for each 

gauged stream.  We then used Principal Component Analysis to condense the 12 

dimensional flow data to 7 factors that characterized statistically independent properties 

of streamflow: 1) zero flow day factor, 2) flow magnitude, 3) predictability, 4) flood 

duration, 5) seasonality, 6) flashiness, and 7) base flow.  These seven factors which 

quantify 98% of the variability from the original twelve variables are still deemed 

sufficient to quantify the five aspects of streamflow regime important to ecological 

processes.   

We next used K-means cluster analysis to classify streams into 4 to 8 

hydrologically different groups based on these 7 factors.  We also used empirical models 
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to estimate three aspects of stream temperature (mean annual, mean summer and mean 

winter) at each site.  We classified the 63 sites with invertebrate data into 6 biotic groups 

defined by their taxonomic composition and developed Random Forests [Breiman, 2001] 

statistical models to predict both taxa richness at a site and the probability of taxonomic 

class membership from both streamflow and stream temperature variables. 

From this study we were able to identify specific aspects of streamflow regime 

that were relatively more important in explaining the variation in the macroinvertebrate 

composition.  We also tested continuous (7 factors) versus categorical characterization 

(from the K-means classification) of streamflow regime for their use in explaining the 

variation in the invertebrate assemblage composition.  Based on observed to expected 

species ratio and Bray-Curtis measure [Van Sickle, 2008] we found that Random Forest 

models predicting macroinvertebrate composition from streamflow regime factors and 

temperature variables performed significantly better than null models.  These models 

performed the best when both streamflow regime factors and temperature variables were 

used as predictors.  We found that for the data used in this research, the base flow factor 

was most directly associated with invertebrate composition.  Seasonality appeared to be 

another important streamflow regime factor influencing the invertebrate composition, but 

the effect of seasonality was hard to separate from the effect of temperature so this 

finding may be due to confounding between these two variables.  We also evaluated the 

probability of each biotic group conditioned on streamflow regime class from counting 

their joint occurrence across the study sites.  We  found that the prediction of invertebrate 

composition based directly on conditional probability of the biotic groups with respect to 

the streamflow regime classes was as good as for the Random Forest models that used 
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continuous streamflow variables as predictors.  This means that there is little loss in 

fidelity involved in using streamflow regime classes as opposed to continuous streamflow 

regime variables or PCA factors.  This is important because management approaches that 

use classification are easier to formulate than management approaches based on 

continuous variables. 

Chapter 3 presents a GIS tool developed for deriving multiple watershed attribute 

data.  Watersheds have been widely accepted as basic functional units for various water 

resources management purposes.  The emphasis on watershed approaches to answer 

water resource related questions has increased the demand for information about 

watersheds of interest.  Furthermore most of these studies are done at regional scales 

requiring quick derivation of watershed boundaries, stream network structure and 

characteristics at a large number of locations.  Increased computational power, and GIS 

capabilities coupled with abundant spatial data have made it possible to derive 

watersheds and their characteristics digitally.  Nevertheless, when delineating a large 

number of watersheds spread across large regions there are still some limitations. 

For proper delineation of watersheds from a Digital Elevation Model (DEM) the 

outlet for which the watershed is being delineated should exactly be positioned on the 

digital representation of the stream.  When the number of watersheds being delineated are 

small, this is a simple matter of manually shifting the coordinates of the outlets to match 

the digital streams.  However, when delineating large number of watersheds, this can 

become very laborious.  Further, most of the currently available GIS based watershed 

delineation tools have difficulty handling very large DEMs, such as a single DEM 

extending across half of State Utah. 
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The Multi-Watershed-Delineation (MWD) tool we developed addresses the above 

mentioned limitations in delineating multiple watersheds from large digital elevation 

models.  This tool also derives a suite of stream network and watershed attributes 

relevant for prediction of streamflow regime.  The MWD tool has two versions: 1) a 

standalone Graphical User Interface (GUI) program and 2) a command line executable.  

For one of the analyses in this dissertation, we ran the command line MWD tool in a 

batch process for nearly two days to create 441 watersheds spread across the western US.  

The drainage area ranged between 15 km
2
 to 12416 km

2
 and we used a DEM with 

approximately 30 m grid cell resolution for this run.   

Within the context of this dissertation, this tool was important in quickly deriving 

watershed attributes for multiple watersheds that were then used in the prediction models 

for estimating the streamflow regime at ungauged watersheds.  MWD derived the 

following attributes for each watershed: a) drainage area, b) elevation statistics, c) 

elevation –relief ratios, b) 15 hypsometric curve indices, c) two types of watershed shape 

factors, d) drainage density based on objectively estimated threshold for stream 

delineation, and e) stream network geomorphology. 

Traditionally, predicting streamflow statistics at ungauged watersheds has been 

considered important for estimating flood magnitude [Thomas et al., 2001; Ries and 

Crouse, 2002] and for quantifying the adequacy of the stream to waste disposal, irrigation 

requirements, and maintenance of suitable conditions for fish [Riggs, 1972; Ries, 1997; 

Ries and Friesz, 2000].  In the US, considerable work related to estimation of the flow 

statistics at ungauged basins has been carried out by the USGS under their National Flood 

Frequency program [Jennings et al., 1993; Ries and Crouse, 2002] and more recently by 
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their Streamstats programs [Ries and Gray, 2002].  As a result of this work, many 

statistical models have been developed to estimate either the low or high flow statistics 

which represent the magnitude component of the flow regime discussed in the previous 

section.  Recently, focus has shifted to describing the biological quality of streams which 

requires that other ecologically relevant components of flow regime, namely frequency, 

timing, duration, and rate of change be estimated at ungauged sites to help understand the 

biological-hydrological interactions across broad geographic regions.  This recent focus 

on the biological quality of streams has led to interest in estimating a broader range of 

hydrologic indices relevant to stream ecology at ungauged sites [Sanborn and Bledsoe, 

2006]. 

One of the characterizations of streamflow regime considered in Chapter 2 is a 

series of classifications consisting of 4-8 streamflow regime classes (categorical response 

variables).  Chapter 4 focuses on predicting these ecologically relevant streamflow 

regime classes at ungauged sites from watershed attributes (geomorphology, climate and 

soils/geology related). 

We developed the following statistical models for predicting the streamflow 

regime classes at ungauged sites in the western US: 1) Linear discriminant methods, LDA 

[see Rao, 1965], 2) Classification and Regression Trees, CART [Breiman et al., 1984], 3) 

Random Forests, RF [Breiman, 2001], and 4) Support Vector Machines, SVM [see 

Vapnik, 1998].  The uncertainty in the prediction was quantified using bootstrapping and 

the best model in each case was identified based on its classification error.  We also 

identified the watershed attributes that most discriminated the streamflow regime classes.   
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For predicting classifications that had 4 to 8 streamflow regime classes, LDA, 

CART, RF and SVM had median prediction error ranging between 28-40, 30-47, 25-32 

and 27-37% respectively suggesting that predictions of class for ungauged basins is 

possible with about 70% accuracy, and that the RF model was slightly better than the 

other models for predicting the streamflow regime classes used in this study. 

This dissertation provides a knowledge base for:  a) characterizing streamflow 

regimes relevant to stream ecology in general; b) quantifying the relationship between 

streamflow regime and stream macroinvertebrates (composition and richness) and 

identifying the streamflow regime variables that are most important in explaining the 

observed variation in the stream biota; c) delineating multiple watersheds and their 

stream network using large DEMs and deriving geomorphic attributes for these 

watersheds; and d) predicting streamflow regime classes at ungauged sites from 

watershed attributes. 
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Figure 1.1. Conceptual diagram showing the causal relationships between watershed 

attributes; the flux of water, sediment, and chemicals from a watershed; structural and 

thermal habitat; and aquatic biota. 

  



 

Figure 1.2. Conceptual depiction of how the f

related to ecological integrity of river systems

 
Conceptual depiction of how the five aspects of streamflow regime

related to ecological integrity of river systems.  Source: Poff et al. [1997]
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flow regime are 
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CHAPTER 2 

RELATIVE EFFECTS OF FLOW REGIME AND TEMPERATURE ON 

INVERTEBRATE TAXONOMIC RICHNESS AND 

COMPOSITION IN STREAMS OF THE 

WESTERN UNITED STATES
1
 

Abstract 

In this study we tested how strongly aquatic macroinvertebrate taxa richness and 

composition were associated with variation in flow regime and stream temperatures 

across streams of the western United States.  We first used long-term flow records from 

543 minimally impacted gauged streams to quantify 12 streamflow variables thought to 

be ecologically important.  We then used Principal Component Analysis to reduce the 

dimensionality of the data from 12 variables to 7 principal component (PC) factors that 

characterized statistically independent aspects of streamflow: 1) zero flow day factor, 2) 

flow magnitude, 3) predictability, 4) flood duration, 5) seasonality, 6) flashiness, and 7) 

base flow.  We used K-means to group streams into 4 to 8 hydrologically different classes 

based on these 7 factors.  We also used empirical models to estimate mean annual, mean 

summer, and mean winter stream temperatures at each site.  We then used invertebrate 

data from 63 sites to determine how well flow and temperature predicted both taxa 

richness and taxon-specific probabilities of capture at a site.  We used Random Forests 

models for both predictions.  We used the predicted taxon-specific probabilities of 

                                                 
1
 Coauthored by Kiran J. Chinnayakanahalli, David G. Tarboton, Ryan A. Hill, and 

Charles P. Hawkins. 
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capture to estimate how well predicted assemblages matched observed assemblages as 

measured by RIVPACS-type observed/expected (O/E) indices and Bray-Curtis 

dissimilarities.  Based on observed to expected species ratio and Bray-Curtis measures, 

stream temperature and flow predicted assemblage composition better than a null model.  

Predictions were most precise when both temperature and streamflow PC factors were 

used, although predictions based on streamflow PC factors alone were also better than 

null model predictions.  We were also able to predict assemblage composition from the 

conditional probabilities of hydrologic class membership nearly as well as Random 

Forests models that were based directly on the continuous principal component factors.  

Of the 7 factors of the streamflow regime we examined, variation in the factor describing 

the baseflow index, appeared to be most directly associated with invertebrate 

composition. 

2.1. Introduction 

A goal of stream ecology is to understand the environmental factors that structure 

natural communities.  Natural flows are thought to be critical to the maintenance of 

healthy stream ecosystems [Poff et al., 1997; Bunn and Arthington, 2002] , but we 

currently know less about the effects of flow on the distribution of stream invertebrates 

than that of temperature [e.g., Sweeney and Vannote, 1981; Hawkins et al., 1997; Poff 

and Zimmerman, 2009].  Furthermore, we know little about the relative or interactive 

effects of these two factors on stream invertebrates.  

Ecologists have identified 5 aspects of the streamflow regime that are thought to 

influence ecological processes in rivers: flow magnitude, duration, frequency, timing, and 
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rate of change [Poff, 1996; Poff et al., 1997; Puckridge et al., 1998].  To quantify these 

five aspects, Poff [1996] focused on flow variables that represented the variability and 

predictability of low, average and high flow conditions.  Other investigators have 

suggested additional streamflow variables to characterize streamflow regime [Richter et 

al., 1996; Puckridge et al., 1998; Snelder and Biggs, 2002; Sanz and del Jalon, 2005; 

Sanborn and Bledsoe, 2006; Snelder et al., 2009].  Olden and Poff [2003] compiled a 

comprehensive list of 171 flow variables and noted that most variables generally 

described aspects of 1 of the 5 aspects of the streamflow regime listed above. 

Classification has played an important role in efforts to synthesize and understand 

the variability of streamflow regimes and other stream properties, with a number of 

different classifications being developed for a variety of purposes [Rosgen, 1994; 

Montgomery and Buffington, 1998; Snelder and Biggs, 2002; McDonnell and Woods, 

2004; Wagener et al., 2007; Snelder et al., 2009].  One approach to study the relationship 

between the biota and streamflow regime is to group watersheds into those with different 

streamflow regime classes and then assess if the composition and richness of the stream 

biota are significantly different across these streamflow regime classes.  Poff [1996] used 

10 streamflow variables to classify 806 relatively undisturbed gauged streams in the 

continental U.S.  Others have also pursued watershed classifications relevant to stream 

biota [Wiken, 1986; Omernik, 1987; Lipscomb, 1998; Snelder and Biggs, 2002; Snelder et 

al., 2004, 2005; Snelder and Hughey, 2005; Sanborn and Bledsoe, 2006] which is in 

demand for practical applications like bioassessment, monitoring and management of 

lotic ecosystems.  . 
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Although our understanding of how streams differ in terms of their flow regimes 

has greatly increased over the last 15 years, there is still uncertainty regarding either how 

biota differ among streams with different flow regimes or flow regime classes, and how 

specific aspects of flow variation influence the ecological structure and function of 

streams [Bunn and Arthington, 2002; Snelder and Biggs, 2002; Monk et al., 2006] 

particularly at regional scales.  Several studies have considered the general relevance of 

regional variation in streamflow regimes for stream ecology, but they have not directly 

quantified relationships between flow regime and biotic assemblages [e.g., Poff and 

Ward, 1989; Poff, 1996; Sanz and del Jalon, 2005; Sanborn and Bledsoe, 2006].  A 

number of studies have tested specific hypotheses regarding the effects of regional 

differences in hydrologic regimes on the ecological properties of streams [Poff and Allan, 

1995; Clausen and Biggs, 1997; Extence et al., 1999; Riis and Biggs, 2003; Sheldon and 

Thoms, 2006; Suren and Jowett, 2006; Monk et al., 2007, 2008; Konrad et al., 2008].  

However, such studies have often relied on aggregate biological measures, such as LIFE 

scores [Extence et al., 1999], to summarize biotic responses to differences in flow regime 

rather than more direct measures of biodiversity such as taxonomic composition and 

richness.  Furthermore, most of these studies have focused on the short-term response of 

stream biota to specific flow disturbances [e.g., Stehr and Branson, 1938; Fisher et al., 

1982; Rae, 1987; Scrimgeour and Winterbourn, 1989; Boulton and Lake, 1992; 

Schlosser, 1992; Bickerton, 1995; Feminella, 1996; Miller and Golladay, 1996; Wood et 

al., 2000, 2001; Cortes et al., 2002; Wright et al., 2004; Jackson et al., 2007; Ilg et al., 

2009].  These single-site or single-hydrological-event studies have established the general 
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importance of different aspects of streamflow regime for stream biota, but it is difficult to 

draw inferences from this collective work regarding how biotic assemblages as a whole 

vary across large landscapes as a function of hydrologic regime.  Studies that cover large, 

heterogeneous regions are needed. 

In this study we focus directly on how aquatic macroinvertebrate taxonomic 

composition and richness vary across a spatially extensive set of streams that differ 

markedly in their flow regimes.  The main goal of our study was to quantify the 

relationships between the richness and composition of stream invertebrate assemblages 

and both the long-term characteristics of streamflow and aspects of the temperature 

regimes that exist at the subcontinental scale of the western United States.  Our specific 

objectives were to quantify the variation in flow regime that exists among streams in the 

western U.S. using a small number of carefully chosen variables, further condense these 

variables into independent factors, classify streams based on these factors into 

homogeneous classes, and determine how well flow regime factors or classes predict the 

composition and richness of stream invertebrate assemblages in the context of the thermal 

regime that also exists among streams.  The results of this study have implications for 

both our understanding of natural stream invertebrate communities as well as our ability 

to conduct bioassessments. 
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2.2. Methods 

2.2.1. General Approach to Characterizing 

Flow Regimes 

We characterized flow regimes across the western United States by analyzing 

daily flow data collected at 543 relatively unimpaired streams in thirteen western U.S. 

states (Figure 2.1).  The watershed areas for these sites ranged between 15-114,793 km
2
.  

In past work there is limited consistency among the specific choice of ecologically 

relevant streamflow regime variables [Richter et al., 1996; Puckridge et al., 1998; 

Snelder and Biggs, 2002; Sanz and del Jalon, 2005; Sanborn and Bledsoe, 2006; Snelder 

et al., 2009].  Based on Olden and Poff’s [2003] suggestion and our own personal 

judgment, we selected 12 flow variables that we deem sufficient to characterize those 

flow regime properties important to stream biota.  These 12 variables were: 1) base flow 

index (BFI), 2) daily coefficient of variation (DAYCV), 3) average daily flow (QMEAN), 

4) average number of zero flow days (ZERODAYS), 5) bank full flow (Q1.67), 6) 

Colwell’s index of predictability (P), 7) Colwell's index of constancy (M), 8) Colwell's 

index of contingency (C),  9) average 7 day minimum flow ( minQ7 ), 10) average 7 day 

maximum flow ( maxQ7 ), 11) average number of flow reversals ( R ), and 12) flood 

duration (FLDDUR). 

We then used Principal Component Analysis (PCA) with varimax rotation to 

identify a set of derived variables (factors) that were statistically independent of one 

another.  Factor scores from the PCA were used in a K-means cluster analysis to classify 

the gauged streams into 4, 5, 6, 7, and 8 streamflow regime classes. 
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2.2.2. Flow Data 

The Hydro Climatic Data Network (HCDN) is a national dataset of streamflow 

that is relatively free from anthropogenic influences and has been developed for studying 

natural variations in surface-water conditions [Slack and Landwehr, 1992].  The HCDN 

data cumulatively span the period between 1874 and 1988, but the periods of record 

differ between sites and not all sites are considered unaffected for this entire period.  We 

only used data for the period where a site was considered by the USGS [Slack and 

Landwehr, 1992] to be not significantly impacted by flow regulation (listed in Appendix 

A).  We refer to this as unimpaired streamflow.  The period from 1940 to 1988 had the 

highest number of sites with unimpaired flow data (Figure 2.2).  Fifty-one HCDN sites 

within our study area were excluded for one or more of the following reasons: a) closer 

examination revealed that they drained reservoirs, b) flows were unimpaired for less than 

10 water years, or c) the HCDN database comments indicated that only monthly 

streamflow was considered free of human influence.  We included flow data from an 

additional 32 gauged sites at which  benthic invertebrate samples were collected and that 

Carlisle et al. [2009] indicated also had periods of unimpaired streamflow.  For each site, 

we used daily streamflow records for only the period identified as having unimpaired 

flows to calculate values of the following 12 flow variables: 

• The baseflow index (BFI) is the average across all years of the ratios of the annual 

lowest daily flow to the annual average flow expressed as a percentage.  

According to Poff [1996] BFI represents flow stability.   
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• The coefficient of variation of daily flows (DAYCV) is the ratio of the standard 

deviation of daily flows to the average of daily flows.  DAYCV represents the 

overall variability of the streamflow regime [Poff, 1996]. 

• Mean daily discharge over all years of record (QMEAN, m
3
/s) represents the 

magnitude of the flow.   

• The mean number of zero flow days per year (ZERODAYS) quantifies low flow 

disturbances and intermittence in streamflow [Poff, 1996]. 

• The daily flow with a 1.67 year recurrence interval, Q1.67,  is determined by fitting 

a log-normal probability distribution to the annual maximum daily flow series 

[Dunne and Leopold, 1978], then selecting the value that has a probability of 

exceedance of 1/1.67.  Note that we base calculations on streamflow aggregated at 

the daily time scale, not the instantaneous peak values as is sometimes done.  Q1.67 

is considered by some geomorphologists [e.g. Dunne, 1978] to be a measure of 

bank full or channel forming discharge, but the recurrence interval may vary 

regionally and with climate, and is generally between 1 and 2 years [Poff, 1996; 

Wilkerson, 2008].  

• Colwell’s [1974] indices of predictability (P), constancy (C), and contingency (M) 

quantify the temporal patterns of persistence and temporal organization of a 

seasonal process.  A process is maximally predictable if it is constant or follows 

the same seasonal pattern from year to year.  Predictability (P) is thus comprised 

of 2 separate components, constancy (C) and contingency (M) which are 

quantified based on entropy measures of uncertainty from Shannon's information 
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theory [see Jelineck, 1968].  A process has high constancy when the uncertainty is 

small regardless of season.  A process has high contingency when the uncertainty 

contingent (i.e. conditional) upon season is small.  Predictability combines 

constancy and contingency through P = C + M.  P, C and M are scaled to range 

from 0 to 1. 

• Calculation of Colwell's indices P, C and M is based on Shannon's entropy and 

requires that values be binned into discrete groups.  As with all information 

measures absolute values are dependent on this binning, but a consistent binning 

allows relative comparisons.  Seasonal organization can be quantified by dividing 

the year into periods (e.g. months or days) and constructing a table that gives the 

number of times a value is in group i and period j and is denoted as Nij.  This 

discretization provides t×s states, where t is the number of periods and s the 

number of value groups (bins) into which flow can be categorized.  Following 

Gordon et al. [2004], with µ equal to the mean of daily streamflow values, we 

used the binning (<0.5µ, 1µ, 1.5µ, 2µ, 2.5µ, 3.0µ, >3.0µ) that defines groups 

scaled according to the mean of the daily streamflow values.  We used months 

(i.e. t=12) to represent the seasonal cycle and counted the number of occurrences 

of daily streamflow values in states defined by groups (bins) and periods 

(months).  Colwell [1974] can be referred for further details regarding the 

calculation of Colewell’s index.  P is scaled to be between 0 and 1, with the value 

0 representing maximum uncertainty and the value 1 representing complete 

certainty as to which value group the streamflow is in each period.  Constancy (C) 
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also scaled between 0 and 1, is a measure of temporal invariance and Contingency 

(M) (scaled between 0 and 1) is the degree to which time period and value group 

are dependent on each other and is a measure of seasonality. 

• minQ7  is the average annual minima of 7 day means of daily mean streamflow.  

For each year in the period of record, 7-day means are calculated from the daily 

mean streamflows and the minimum among them is the 7-day minimum flow for 

that year, 
i

minQ7 .  minQ7  is the average of those yearly 7-day minimum values 

and should characterize the average magnitude of low flow disturbances. 

• maxQ7  is the average annual maxima of 7 day means of daily mean streamflow.  

For each year in the period of record, 7-day means are calculated from the daily 

mean streamflows and the maximum among them is the 7-day maximum flow for 

that year 7Qmaxi.  maxQ7  is the average of those yearly 7-day maximum values.  

maxQ7  should characterize the average magnitude of high flow disturbances. 

• R is the average number of daily flow reversals per year.  Flow-reversals are 

defined from the daily mean streamflow as days when the trend (increasing or 

decreasing) from the previous day is reversed.  R  represents a measure of daily 

flow stability. 

• FLDDUR is flood duration calculated as the average number of days per year 

when flow equals or exceeds Q1.67.  FLDDUR is derived from the daily flows in 

excess of Q1.67.  Consequently FLDDUR is generally > 1/1.67 and quantifies the 
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duration of flooding in terms of the average number of days per year that flow is 

above the threshold. 

The record lengths for 540 of these sites ranged between 10-103 years (Figure 2.3).  

Three sites for which we had invertebrate samples had less than 10 years of data (6, 7 and 

8 years).  Because we were concerned that records < 10 years in length would not 

adequately characterize long-term flow patterns (and hence biological associations), we 

conducted preliminary analyses both with and without these 3 sites.  There were no 

significant differences between these two data sets in terms of model performance 

(described later), and we therefore present results based on the full data set.  To maximize 

the data available for analysis, we did not constrain the period of record to be of either 

similar length or to cover a specific period of the overall record.  As a consequence, the 

records at some sites were not continuous (i.e., there were missing years) and some sites 

had flow records available for different years than other sites.  Because we were 

characterizing streams that were unimpaired, the intermittency (missing water-years) in 

the data should not affect the characterization of long-term flow regime.  Differences in 

the period of record could potentially influence analyses because of natural variation in 

climate across years, but the fact that the most of the sites had unimpaired flow records 

between 1940 and 1988, should minimize such influences. 

At many sites with biological data, the sample was collected later than the 

compilation of the HCDN database (that ended in 1988).  There was a possibility that the 

streamflow regime had changed since 1988 at these sampling sites.  We checked for 

evidence of potential streamflow regime change at these sites by computing streamflow 
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regime variables for the periods where streamflow was designated by the USGS as 

unimpaired as well as for the period following this up to the most recent data available.  

This recent data has the highest potential for impact due to recent climate change.  The 

correlation coefficient between HCDN unimpaired and post HCDN periods for 11 of the 

streamflow variables varied between 0.85 and 0.99, while for Zerodays the correlation 

coefficient was 0.64.  This allayed concern that potential changes in the streamflow 

regime may bias the analysis.  

2.2.3. Quantifying and Classifying Flow 

Regimes 

We used Principal Component Analysis (PCA) [Jackson, 1991] with varimax 

rotation [Kaiser, 1958] based on the correlation between flow variables to identify the 

major statistically independent axes of hydrologic variation across stream gauge sites.  

Because PCA assumes that variables are normally distributed, we normalized each of the 

12 flow variables using the Box and Cox [1964] transformation with parameter chosen to 

maximize the W-statistic in a Shapiro-Wilks normality test [Royston, 1982].  The 

transformed variables were then scaled by subtracting their mean and dividing by their 

standard deviation to obtain transformed standardized variables with mean of zero and 

standard deviation of one.  Scaling removes the undue influence of a few variables on 

principle components (PCs) [Jackson, 1991]. 

PCA produces NV PCs where NV is the number of original variables.  However, 

generally a relatively small number of the NV possible PCs are associated with most of 

the variation exhibited by the raw variables.  Selection of a subset of the PCs for further 
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analysis can focus on either selecting those first nv < NV PCs associated with most of the 

variability in the original raw variables or identifying those PCs that provide unique 

information.  Traditionally, choice of the subset of PCs used in analyses has followed the 

first approach [Kaiser's rule: Lattin et al., 2003].  However, Monk et al. [2007] cautions 

that such traditional methods for variable selection may not represent all of the important 

aspects of the streamflow regime.  In this work, we selected PCs based on how well they 

identified independent and unique aspects of the flow regime that we considered to be 

ecologically important. 

We first chose a minimum number of PCs to work with by selecting those PCs 

with eigenvalues > 1 [based on Kaiser's rule: Lattin et al., 2003].  We then used varimax 

rotation [Kaiser, 1958] on the PCs to obtain factors such that each variable is maximally 

aligned with a single factor.  We inspected the resulting factors for the degree to which 

they represented each of the 12 variables as quantified by the variable factor loadings.  If 

a variable was not represented in the set of factors based on its maximum loading we 

selected the PC with the next highest eigenvalue and repeated the varimax rotation.  This 

process was continued until the selected PCs, when rotated into factors, had a loading of 

at least 0.6 from each of the 12 variables in at least one rotated factor.  The final outputs 

from this process was table of loadings of the flow variables on varimax rotated PC 

factors and a matrix of factor scores, F, of dimension 543 × k, where k was the selected 

number of PCs.  

We used the PC factor scores, F, in a K-means clustering analysis [Gordon, 1999] 

to identify streamflow regime classes.  We used the kmeans() function available with the 
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R statistical software [R Development Core Team, 2007] to perform the K-means cluster 

analyses.  K-means classification requires that the number of clusters be input.  Because 

we had no a priori sense of how many classes would  be optimal in terms of partitioning 

flow variability relevant to stream invertebrates, we examined a range of K values (K = 4 

to 8).  The number of classes we could examine was constrained by both resolution of 

flow information and sample size.  K < 4 would not provide enough classes to 

discriminate all the streamflow regime characteristics of interest, whereas too few 

observations occurred per class when K was > 8. 

2.2.4. Temperature Data 

Temperature is an important environmental factor that impacts the distribution of 

stream invertebrates [e.g. Sweeney and Vannote, 1981; Hawkins et al., 1997].  We 

included 3 measures of water temperature to help evaluate the potential importance of 

streamflow relative to another factor that can vary strongly over spatial and temporal 

scales.  We used estimates of mean annual temperature (MAT), mean summer (June, 

July, August) temperature (MST), and mean winter (December, January, February) 

temperature (MWT) derived from stream temperature models (RMSE = 0.86, 2.2, and 1.7 

o
C, respectively) developed for the western United States (unpublished models, R. Hill 

and C. P. Hawkins, Utah State University, see Appendix B). 

Because aspects of flow and temperature may co-vary among streams, we 

assessed the relationships between these 3 temperature measures and each of the different 

continuous measures of flow (PCs).  We used backward stepwise multiple linear 

regression to determine which continuous flow factors were most strongly associated 
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with temperature (response variable).  We also used ANOVA to assess how much 

variation in stream temperature was associated with the flow classes. 

2.2.5. Invertebrate Data 

Between 1992 and 2003, USGS National Water-Quality Assessment Program 

(NAWQA) personnel collected benthic invertebrate samples at 63 of the 543 gauged sites 

(Figure 2.1) we used to characterize flow regimes.  Samples for 59 of these sites were 

collected in one of the four months between June and September.  For four of the sites the 

samples were collected in October, December or January.  Carlisle et al. [2009] indicated 

that streamflow at all these sites was unimpaired, but that 30 of them had watersheds in 

non reference condition, meaning that the watersheds had alteration that may impact 

macroinvertebrates through other effects.  Because our focus was on the effect of 

streamflow and limiting the invertebrate samples to only the 33 that Carlisle indicated 

were in reference condition would have resulted in a very small sample we used all 63 

sites with invertebrate samples in our analyses.  

Invertebrate samples were collected from 1.25 m
2
 of stream bottom at each site 

following a standard protocol [Moulton et al., 2000].  Samples were processed in the 

laboratory and a minimum target count of 300 (usually many more) randomly selected 

organisms were identified and enumerated.  Invertebrate sample data included lists of 

taxa collected at each site and their counts.  Taxa were generally identified to genus, but 

immature individuals of some genera cannot be distinguished from one another.  Because 

the number of such problematic individuals varied across samples, we applied a 

standardized taxonomic resolution to all samples.  This standardization involved either 
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combining problematic taxa at a coarser level of taxonomic resolution (e.g., family) or 

excluding from analyses those individuals that could not be unambiguously assigned to a 

target level of taxonomic resolution [see Carlisle et al., 2008].  The choice of combining 

or excluding individuals was based on both the frequencies of higher and lower 

resolution identifications for specific taxa and the best professional judgment by one of 

us (C. P. Hawkins) regarding the ecological differences between higher resolution taxa.  

In situations where the frequencies of higher and lower resolution identifications were 

similar, i.e., ~ 50% low resolution identifications, we proceeded as follows.  If higher 

resolution taxa were ecologically similar, we tended to combine those taxa into a lower 

resolution taxon, whereas if higher resolution taxa were significantly different in their 

ecological preferences and tolerances, we tended to exclude the individuals identified to a 

coarser level.  

Following taxonomic standardization and exclusion of ambiguous individuals, to 

limit bias from sample size differences we used the approach taken by the NAWQA 

program [Moulton et al., 2000].  500 individuals were randomly drawn from samples 

with more than 500 individuals.  The entire sample was retained for samples with less 

than 500 individuals.  From these samples, we extracted 2 assemblage-level measures:  

taxa richness (the number of unique types of organisms in a sample) and taxa 

composition (the list of specific taxa observed in a sample).   



31 

 

2.2.6. RIVPACS Approach and Macroinvertebrate- 

defined Groups of Sites 

We used RIVPACS-type models  [Moss et al., 1987] to assess the associations 

between macroinvertebrate taxonomic composition and both continuous measures of 

flow variability (PC factors) and flow classes.  Predictive models like RIVPACS are 

frequently used in bioassessment programs to evaluate the degree to which observed 

taxonomic composition matches the expected composition given specific environmental 

conditions [Moss et al., 1987; Wright et al., 1993; Hawkins, 2006].   

The RIVPACS approach generally consists of the following steps [Moss et al., 

1987]: 1) classification of sites into groups based on their taxonomic composition 

(presence-absence data), 2) estimation of the frequencies of occurrence of different taxa 

within each group, 3) prediction of the probability of group membership for a site from 

environmental factors, and 4) estimation of probabilities of capture of specific taxa as the 

taxon occurrence frequency within each group combined with probabilities of group 

membership.   

The classification of the 63 sites into macroinvertebrate groups required for the 

RIVPACS approach was based on their compositional similarity.  We first used the 

Sørensen index to estimate compositional distance between all pairs of sites.  We then 

used the flexible β hierarchical clustering method (β  = -0.5) in the PC-ORD
®

 software 

package [McCune and Grace, 2002] to construct a dendrogram that was used to identify 

different biologically-defined classes of sites.  To facilitate interpretation of the 

dendrogram, compositional dissimilarity between sites and groups of sites was scaled by 

Wishart’s [1969] objective function expressed as the percentage of information 
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remaining.  Wishart’s objective function is a measure of information loss as clustering 

proceeds.  It is calculated as the sum of squares of the distances between the centroids of 

each groups to the items in those groups.  From the sample data in each group, we could 

estimate mean richness per group and the probability of occurrence of each taxon within 

each group.  We also identified specific indicator taxa representative of each group 

following the method of Dufrêne and Legendre [1997] but applied to presence-absence 

data.  These were used to illustrate the biological differences among the 

macroinvertebrate groups.   

2.2.7. Invertebrate-Flow and Temperature 

Relationships 

2.2.7.1.  Null Models 

We used null models to establish the values of model performance measures that 

would be expected from chance sampling alone.  The null models predict the same 

richness and taxonomic composition at all sites within a population of sites [e.g., Van 

Sickle et al., 2005].  Richness at each site was estimated as the average richness observed 

across all sites and taxonomic composition at each site was estimated as the frequencies 

of occurrence of different taxa among all sites.  These null models ignore the effects of 

environmental variability among sites, and thus serve as a basis for evaluating models 

that include the effects of environmental variability.   
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2.2.7.2.  Taxa Richness-Flow-Temperature 

   Relationships 

We used two type of modeling approaches for predicting taxa richness, Random 

Forests (RF), and direct prediction from contingency tables.  For the first type, 8 different 

RF models were developed for predicting invertebrate taxa richness to help assess the 

relative performance of different combinations of predictors.  These comprised a model 

using continuous streamflow factors (PCs) alone, categorical measures of streamflow 

alone (5 models, one for each streamflow classification), streamflow PCs plus measures 

of stream temperature, and temperature alone. 

We used the random forest package [Liaw and Wiener, 2002] in the R software [R 

Development Core Team, 2007] to develop RF predictive models.  RF models make no 

assumptions regarding the type of relationships (linear or non-linear) between predictor 

and response variables, can use both continuous and categorical predictors, and have been 

shown to perform well in a number of ecological settings [Prasad et al., 2006; Cutler et 

al., 2007].  When RF models are used in regression mode they predict the values of the 

response variable given different combinations of predictor variable values.  In this case, 

the fit between observed and expected values can be expressed as R
2
, which describes the 

fraction of variance in the response variable associated with the predictor variables.  In 

regression mode, RF models quantify the importance of each predictor variable by the 

percentage increase in the mean square error (MSE) when the variable is left out.   

The second type of model predicted taxa richness directly from the contingency 

table between macroinvertebrate groups and streamflow classes.  Each site is associated 
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with both a flow regime class and macroinvertebrate group.  A contingency table gives 

the number of sites in each macroinvertebrate group occurring for a given streamflow 

regime class in each of the K=4-8 classifications.  For a given streamflow regime 

classification, we computed the probability of a site to belong to different 

macroinvertebrate groups (Pb) directly from the contingency table.  The taxa richness for 

a site was then estimated by averaging the mean richness per macroinvertebrate group 

weighted by Pb.  This approach estimates the same taxa richness for all sites belonging to 

the same streamflow regime class.  

2.2.7.3.  Taxa Composition-Flow-Temperature 

   Relationships 

Similar to taxa richness, we also used RF and direct contingency tables for 

predicting taxa composition.  The RF method was used in classification mode here, to 

predict the probability of macroinvertebrate group membership.  Again there were 8 

different RF models from 8 different sets of predictor variables.  In classification mode, 

the importance of predictive variables is quantified by the Gini index score, a measure of 

the homogeneity at RF splits based on that variable [Breiman et al., 1984].  For the direct 

contingency table approach, the number of sites in each macroinvertebrate group 

occurring for a given streamflow regime class was again used to derive the group 

membership probabilities.  Once group membership probabilities had been estimated they 

were used in the RIVPACS approach to estimate the probabilities of capture of different 

taxa.   
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Agreement between observed and predicted assemblage composition can be 

measured as either the O/E ratio (where O is the number of taxa observed in the sample 

that were predicted to occur, and E is the number of predicted taxa, see Moss et al. 1987), 

or by a Bray-Curtis (BC) type measure of compositional dissimilarity between observed 

and expected taxa [Van Sickle, 2008].  We used both measures to assess the overall 

performances of the models. 

The performance of O/E indices is typically assessed by the precision of model 

predictions.  The 10
th

 percentile of the distribution of O/E values across sample sites is a 

measure of model precision that is less affected by outliers than estimates of the standard 

deviation [Van Sickle, 2008].  A better model should have O/E 10
th

 percentile values 

closer to 1.  This was used to assess model performance relative to the null model and to 

evaluate between models with different predictor variables such as streamflow regime, or 

temperature or both.  Because predictive models perform best on relatively common taxa, 

we restricted estimation of O/E statistics to just those taxa with predicted probabilities of 

capture > 0.5 [Hawkins et al., 2000; Van Sickle et al., 2007]. 

Van Sickle [2008] recommended comparing observed and expected assemblages 

based on the 90
th

 percentile of BC values.  90
th

 percentile BC values closer to 0 (greater 

similarity) indicate a better fit between observed and predicted assemblages.  For 

consistency with O/E based assessments, BC estimates were also based on taxa with 

predicted probabilities of capture > 0.5. 
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2.2.8. Evaluation of Flow Regime Classification 

for Distinguishing Taxonomic Composition 

To assess whether individual flow classes were associated with taxonomic 

composition, we also calculated classification strengths following Van Sickle [1997].  

Classification strength is measured as the difference between the mean within-class 

similarity and the mean between-class similarity ( M ).  We used the Sørensen index as 

the measure of between-site compositional similarity and constructed mean similarity 

dendrograms [Van Sickle, 1997] to visualize the relative strengths of association between 

individual classes and  taxonomic composition. 

2.3 Results 

2.3.1. Independent Components of Flow 

Variability 

The traditional approach to PC selection based on Kaiser’s rule (eigenvalues 

greater than 1), would have retained only the first 3 components and 77% of the total 

variance in the flow data would have provided information on only the magnitude, flood 

duration and predictability aspects of the streamflow regime.  By retaining seven PCs, 

selected following our iterative approach involving varimax rotation, the rotated PC 

factors (Table 2.1) explain 98% of the total variance in the flow data.  The loadings 

reported in Table 2.1 define the rotated PC factors in terms of the original flow variables 

and can be used to physically interpreted the 7 factors to represent: 1) zero days, 2) 

magnitude, 3) predictability, 4) flood duration, 5) seasonality, 6) flashiness, and 7) 

baseflow.  For example, ZERODAYS had a high positive loading with factor one meaning 



37 

 

that streams with high values of factor 1 should be more susceptible to going dry than 

streams with low values of this factor.   

2.3.2. Hydrologic Classification 

When conducting the K-means analyses, we found that as K was incremented 

from 4 to 8, each subsequent classification resulted in the addition of a new class while 

retaining classes with attributes very similar to the previous ones.  We therefore present 

the results for the first and the last classifications only (i.e. for K= 4 and 8) because they 

are representative of all the classifications. 

The K-means clustering results in classes that are discriminated by differences in  

one or more flow factors (Figure 2.4 and 2.5).  Examination of the distribution of flow 

factors for each of these classes identifies the dominant factors that characterize each 

class.  In the K = 4 classification the classes are characterized by (1) seasonal streams, (2) 

smaller predictable intermittent streams with low baseflow, (3) mid-size perennial 

streams with low seasonality, and (4) big streams with low predictability and short flood 

duration (Figure 2.4).  In the K = 8 classification the first four classes are characterized by 

the same factors as K=4 classes, with further classes characterized by (5) baseflow 

dominated streams, (6) big seasonal streams with high flood duration, (7) small 

unpredictable streams with high flood duration, and (8) small flashy streams with high 

susceptibility to drying (Figure 2.5). 

Plots of the 5
th

, 50
th

 and 95
th

 percentiles of average daily flows in each month for 

the different classes illustrate some of the major differences in seasonal pattern and 

magnitude among the K = 8 classes (Figure 2.6).  The monthly mean values for the 
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typical stream in each class (stream located closest to the centroid in the factor space of 

each class) illustrated similar, although not identical, differences among classes as did 

class 50
th

 percentiles (Figure 2.6). 

The K = 8 classes of streams represented a wide range of streamflow regimes.  

Streams belonging to the "seasonal stream" class (Class 1) were characterized by high 

seasonality (factor 5).  Class 2 streams had high zero flow day factor and low baseflow.  

Streams in these watersheds can be intermittent.  Class 3 streams had perennial flow (low 

zero flow day factor, factor 1) and low seasonality (factor 5).  Class 4 consisted of big 

streams with unpredictable flows and short flood duration (factor 4).  The fifth class 

included streams with high baseflow (factor 7) and high predictability (factor 3).  In some 

cases these streams were intermittent (factor 1).  Class 6 consisted of big (factor 2), 

seasonal (factor 5), perennial streams (factor 1) with long flood durations (factor 4).  

Class 7 streams were generally small (factor 2), unpredictable (factor 3), perennial (factor 

1), and also had long flood duration (factor 4).  Class 8 streams were small (factor 2), 

flashy (factor 6) streams with intermittent flow (factor 1). 

Spatial structure was evident in some, but not all, streamflow classes (Figure 

2.1and2.7).  Sites in the first and the sixth classes occurred mostly in the Rocky 

Mountains and both were characterized by high seasonality.  These 2 classes differed 

mostly in their size.  The second streamflow class dominated the relatively dry landscape 

of North and South Dakota and the coastal regions of central and southern California.  

The third class occurred in Arizona, New Mexico, the plains east of the Rocky 

Mountains, and some arid parts of California.  The fourth class occurred mostly in the 
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Washington, Oregon, and northern California coastal ranges.  Streams belonging to the 

seventh class occurred most frequently in the interior plateaus of Utah and Nevada and 

the plains east of the Rocky Mountains.  Classes 5, 6 and 8 did not have an obvious 

regional structure. 

2.3.3. Relationships Between Flow Regime 

and Stream Temperature 

The backward stepwise multiple linear regression of stream temperature on flow 

regime factors indicated that stream temperature co-varied with several aspects of flow.  

Mean annual stream temperature varied most strongly and negatively with flow 

seasonality (factor 5, standardized regression coefficient (SRC) = -0.66) and less strongly 

and negatively with baseflow (factor 7, SRC = -0.26) (adjusted R
2
 = 0.40).  Mean 

summer temperature varied negatively with 5 flow factors (zero days, predictability, 

seasonality, flashiness, and baseflow) with seasonality showing the strongest single 

association (SRC = -0.22, -0.26, -0.77, -0.25, and -0.31, respectively, adjusted R
2
 = 0.56).  

Mean winter temperature was less strongly related to streamflow regime factors, but 

increased with increasing predictability (factor 3, SRC = 0.39) and decreased with both 

increasing flood duration (factor 4, SRC = -0.36) and seasonaility (factor 6, SRC = -0.39) 

(adjusted R
2
 = 0.37).  Flow regime classes showed similar associations with temperature.  

K = 4 to 8 classifications accounted for 42, 43, 44, 58, and 52% of the variation in mean 

annual temperature; 34, 39, 27, 52, and 44% of mean summer temperature; and 19, 27, 

25, 40, and 38% of mean winter temperature respectively. 
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2.3.4. Invertebrate Assemblage Structure 

Taxonomic richness varied from 13 to 44 taxa per sample across the 63 study 

streams (mean = 31).  Taxa composition also showed considerable variability among sites 

as illustrated by the flexible β cluster diagram (Figure 2.8).  For modeling purposes, we 

identified 6 groups (see dashed line in Figure 2.8) that represented a compromise between 

maximizing average within-group compositional similarity and the number of sites per 

group.  The indicator species identified (Table 2.2) show that these groups are 

taxonomically and ecologically distinct from one another.  For example, groups A and B 

consisted of taxa that require cool, fast-flowing water, whereas groups E and F included 

taxa more typical of warmer, slowing moving water. 

2.3.5. Contingency Table Analyses 

Invertebrate-defined classes (Figure 2.8) were non-randomly associated with flow 

regime classes for all classifications (Table 2.3, Chi-Square test P < 0.00004).  The 

probabilities in this table are quite discriminating implying that in many cases, a 

streamflow regime class is associated with a single macroinvertebrate group (probability 

close to 100% for that macroinvertebrate group and 0 for the rest). 

2.3.6. Associations Between Taxa Richness, 

Streamflow Regime, and Temperature 

When predicted by Random Forests models, taxonomic richness was only weakly 

(11-15% of variation) associated with flow, temperature or streamflow class, although 

these values were statistically higher than that of the null model (Table 2.4).  Seasonality 

of flow and the zero flow day factor were the most important flow regime predictors of 
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invertebrate richness in the RF models when flow predictors were used alone, and mean 

summer temperature was the most important temperature predictor (Figure 2.9 a and b).  

When flow and temperature factors were used together, summer temperature was the 

most important predictor followed by seasonality of flow, zero flow day factor, flow 

predictability, mean annual temperature, mean winter temperature, flow flashiness, flow 

magnitude, baseflow, and flood duration.  Conditional probability models for prediction 

of taxa richness based on 4, 5, and 7 classes accounted for slightly more (20 – 24%) of 

the variation.  However, models based on 6 and 8 classes accounted for less (~11%) of 

the variation in taxa richness. Overall the predictability of taxa richness by this approach 

was found to be generally poor (R
2
 values not > 0.24, Table 2.4). 

2.3.7. Associations Between Taxa Composition, 

Streamflow Regime, and Temperature 

All models predicting taxa composition performed substantially better than their 

respective null models as measured by both the 10
th

 percentile of O/E values and the 90
th

 

percentiles of BC values (Table 2.4).  Models incorporating both flow regime and 

temperature were best.  Streamflow variables alone performed better than the 3 

temperature variables alone in terms of O/E, but temperature alone performed better than 

flow variables alone in terms of BC.  RF predictions based on flow classes were generally 

slightly worse than those based on continuous flow variables.  The importance scores of 

flow factors in predicting taxa composition differed from those for predicting richness 

(Figure 2.7).  Variation in baseflow was most useful in predicting composition followed 

by flow seasonality, flood duration, flow magnitude, flow predictability, zero flow day 
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factor, and flashiness.  When flow and temperature predictors were combined, summer 

temperature was the most important variable followed by baseflow and mean annual 

temperature (Figure 2.9 f).  Mean winter temperature, flow magnitude, flood duration, 

flow seasonality, flow predictability, flow flashiness, zero flow dayfactor (in that 

decreasing order) were less important to RF predictions.  Predictions based on the 

conditional probability models were generally better than RF models based on only flow 

variables for both O/E and BC measures of precision.  

2.3.8. Evaluation of Flow Regime Classification 

for Distinguishing Taxonomic Composition 

Each of the K=4-8 streamflow regime classifications had similar, and weak, 

overall classification strengths with respect to invertebrate composition ( M = 0.066 to 

0.076, Figure 2.10) evaluated using the Sørensen index with presence-absence data [Van 

Sickle, 1997].  Different individual classes were more strongly associated with 

composition than other classes in all classifications.  For example, class 1 (seasonal and 

predictable streams) accounted for more variation in composition than other classes.  

Compositional similarity of sites within classes 4 (large flows), 5 (predictable with high 

base flow), and 6 (large, flashy streams with low zero days) was moderately greater than 

mean between-class similarity.  However, streamflow regime classes categorized by 

small streams (class 2, 7 and 8) and midsize -low seasonality streams (class 3) did not 

distinguish variation among sites in taxa composition.  
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2.4. Conclusions and Discussion 

2.4.1. The Challenge of Identifying and Characterizing 

Ecologically Relevant Streamflow Variables 

Although stream ecologists agree that flow regime is likely a primary determinant 

of the structure and function of natural stream ecosystems [Resh et al., 1988; Power et 

al., 1995], we still have difficulty quantifying which aspects of naturally occurring flow 

regimes most strongly affect stream ecosystems and predicting the biological 

consequences of altering these regimes, especially at a regional scale.  To increase 

explanatory and predictive power, we must resolve several issues related to the 

characterization or classification of streamflow.  A critical step is identifying the flow 

variables that are most useful in understanding ecological patterns and processes from the 

many variables available.  A second issue is how to most effectively summarize the 

information contained in different flow variables into axes of hydrologic variation.  This 

issue involves both the number and types of flow characteristics that are needed to 

adequately describe flow regimes, especially as perceived by biota.  We also need to 

understand how finely we need to resolve classifications of flow regime or if 

classification into flow types is useful at all.  Perhaps most importantly, we need to 

demonstrate that different aspects of flow variability are ecologically relevant and useful 

in either an explanatory or predictive capacity.  Finally, to be useful in a management 

context, we need to know if we can predict the specific types of flow regime that 

characterize ungauged streams. 
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2.4.2. Streamflow Record 

An ideal study design would have included long term streamflow records for all 

sites from the same period of record that extended to a common date of invertebrate 

sampling.  Such a design would remove the uncertainties involved in comparing 

streamflow regimes across sites with a) unequal streamflow records and b) different 

periods of record.  Comparing sites with records from different periods and different 

record lengths potentially confounds the effect of temporal variation in climate with 

spatial variation in climate.  However such ideal data is not available so we worked with 

available data evaluating to the extent possible the potential impact of non stationarities 

on the results.  We found that, the majority of sites we worked with had an unimpaired 

flow record between the years 1940 and 1988.  This commonality of period for most sites 

should limit the potential for confounding by climate non stationarities. 

2.4.3. Choice of Streamflow Variables and 

Their Effect on Classification 

The first step in this work involved the selection of a set of streamflow variables 

that were thought to influence the macroinvertebrate richness and composition of 

streams.  This choice influences the subsequent quantification and classification of flow 

regimes.  But it was not straightforward from previous studies which variables to select to 

explore general relationships between streamflow variables and stream 

macroinvertebrates, especially at a regional scale.  We selected variables based on 

insights from previous studies, discussions with colleagues, and our own experiences.  

Choice of the number of variables to use in a classification should also be based on our 
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ability to interpret the resulting classification.  For example, we could interpret 

differences among streams in terms of the 12 variables we chose, but we concluded it 

would be increasingly difficult to interpret and understand the physical characteristics of 

classifications based on more variables.  The small number of variables used in this study 

and the use of PCA considerably reduced redundancy among the variables, which helped 

with both physical and potential ecological interpretations. 

The use of varimax rotation in the PCA allowed us to associate PC factors with 

distinct aspects of the hydrologic regime and thereby enhance the physical interpretation 

of these factors.  A traditional approach to PC selection would have led to the use of only 

3 axes of streamflow variation and the use of only 77% of the information in the raw 

data.  Using the enhanced capability for physical interpretation given by varimax rotation 

we continued adding PC factors until all key aspects of the flow regime that we had 

identified were included, resulting in a factorization that identified 7 physically 

distinguishable characteristics that captured 98% of the variance in the original 

streamflow regime data (Table 2.1). 

2.4.4. Scaling Magnitude Related Streamflow 

Variables 

We also treated magnitude related streamflow variables differently than previous 

researchers.  Most prior work has characterized flow magnitude in terms of unit discharge 

by scaling discharge variables either by watershed area or mean flow [e.g., Poff, 1996; 

Monk et al., 2007].  Because of this standardization, previous classifications would 

potentially group small and large streams together.  Our use of unscaled magnitude 
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related variables resulted in a magnitude factor (factor 2) that discriminated between 

small and large streams, which we showed was related to variation in invertebrate 

assemblage composition.  For example, streams belonging to classes 1 or 6 are seasonal 

streams found along the Rocky Mountain range (Figure 2.7), but they differ in the 

quantity of water that is present in them.  Stream size, often measured as watershed area, 

is well known to be strongly associated with both variation in taxonomic composition and 

ecosystem processes [e.g., Vannote et al., 1980]. 

2.4.5. Flow Regime Classifications 

At the scale of the western USA, climate has a major influence on the spatial 

structure of streamflow regime classes (Figure 2.1and 2.7).  However, streams belonging 

to different classes were also often found in close proximity to each other.  Such close 

proximity of different stream types arose, in part, because magnitude was a factor in the 

classification.  This result implies that even though climate has a major influence on 

streamflow regimes, it will not be possible to identify geographically contiguous hydro-

regions (comparable to ecoregions) that are spatially discrete from one another.  Rather, 

stream segments will need to be individually characterized in recognition of the diversity 

of ecologically relevant flow regimes (or classes) that can occur within any climatic 

region. 

While there have been many previous studies that have developed classification 

of streamflow, the classification presented here differs in the choice of underlying 

variables and the inclusion of flow magnitude as a factor in classification.  The new 

classification was shown to have some degree of predictive capability for 
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macroinvertebrate assemblage composition.  This suggests that it has potential 

application in bioassessment and for identifying hydrologically similar watersheds to 

study, for example, the separate effects of hydrology and other factors on 

macroinvertebrate composition.  Since the variables upon which this classification is 

based are relatively general descriptors of the stream environment this classification may 

have applicability beyond macroinvertebrate composition, a question that warrants 

further investigation. 

2.4.6. Temperature and Streamflow 

Variables 

Temperature is an important variable that regulates the local and regional 

composition of macroinvertebrates [e.g., Sweeney and Vannote, 1981; Hawkins et al., 

1997].  Because temperature variables co-varied with some of the streamflow variables, it 

was difficult to differentiate the biological effects of one set of variables from the other.  

For example, the strong association between temperature and seasonality is probably 

caused by the seasonal pulse of cold water that enters streams in the spring and early 

summer associated with the melting of snow.  Although this co-variation confounds 

interpretation of the specific ecological importance of each variable, such co-variation 

implies that one type of variable might be used as a surrogate for the other type for 

predictive purposes (Figure 2.9).  However, in our analysis use of both hydrologic and 

temperature variables resulted in the best predictions of taxonomic composition, which 

implies some degree of independent response to both types of variables (Table 2.4).  In 

general, such joint consideration of streamflow and temperature regimes should provide a 
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more robust characterization of the stream environment than either alone [e.g., Harris et 

al., 2000] and thus allow more accurate predictions of the biological potential of different 

streams. 

2.4.7. Relationships Between Flow Regimes 

and Biota 

Primary goals of stream ecologists are to understand the independent and 

interactive affects of environmental factors on the structure and function of stream 

ecosystems [Allan and Castillo, 2007].  With such understanding, it should be possible to 

predict the biota expected to occur under different environmental conditions and hence 

assess the degree to which anthropogenic alteration in those environmental conditions 

will affect the ecological condition of streams [e.g., Hawkins, 2006].  Because the 

hydrologic regime is a fundamental component of stream habitat, it is imperative to 

understand how it affects both populations and communities of stream organisms.  

However, any analysis of biota-flow relationships assumes that we have adequately 

characterized real differences among streams in their hydrologic regimes. 

Our analyses assumed that the hydrological characterizations we developed were 

relevant to each stream’s biota at the time invertebrates were sampled.  Given that 

considerable gaps sometimes existed between the period of record and when 

invertebrates were sampled, there is some concern that macroinvertebrate richness and 

composition may be more due to recent short term events, rather than the predictor 

variables we are using.  For this reason we might expect relatively poor associations 

between our flow characterizations and the biota collected at a site.  This is one of many 
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sources of uncertainty in the analysis that may contribute to the remaining unexplained 

variability in the results.  The fact that we detected relationships between streamflow 

regime and biota in spite of year-to-year variation within streams in some aspects of flow 

(Table 2.4 and Figure 2.10) supported our underlying hypothesis that long-term flow 

patterns are part of the hydrologic template that influences what specific organisms can 

establish and persist in a specific stream.  However, further exploration of this issue may 

be warranted in the future as it has implications for the number and timing of 

macroinvertebrate sample collection in bioassessment. 

Our modeling focused on two aspects of stream invertebrate assemblages: overall 

richness and taxonomic composition.  Our results showed that overall taxa richness was 

not strongly associated with either flow regime or temperature in spite of the considerable 

variation that occurred in the number of invertebrate taxa found at our study streams 

(Taxa richness in Table 2.4).  We conclude that other factors may have been more 

important in regulating overall taxa richness in our study streams [cf., Vinson and 

Hawkins, 1998].  Furthermore, total richness is strongly influenced by the number of rare 

taxa at a site. In open ecosystems like streams in which downstream drift can deliver 

many taxa to a site that cannot persist, estimates of total richness may tell us little 

regarding important ecological differences among sites and the factors regulating those 

differences. We observed reasonably strong relationships between the taxonomic 

composition at a site and both flow regime and temperature (90th percentile BC values in 

Table 2.4, Figure 2.9), perhaps because we focused on those taxa most common 

(estimated probability of detection > 0.5) at each site.  This result was encouraging 
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because it has clear implications for both our understanding of the factors that regulate 

taxonomic composition in streams and our ability to assess the effects of landscape and 

waterway alteration on stream ecosystems.  Although associations do not necessarily 

imply causation, 2 factors (temperature and baseflow) stood out as being important in 

predicting taxonomic composition (90
th

 percentile BC values in Table 2.4, Figure 2.9).  

The role of temperature in structuring stream assemblages is well established, but we 

know less about which aspects of flow are critical in this regard.  Several previous studies 

have focused on the role of flooding in structuring stream assemblages [e.g., Boulton et 

al., 1992; Robinson et al., 2004], but our results imply that future studies might profit by 

focusing on how the mechanisms associated with variation in baseflow affect assemblage 

composition. 

Our modeling results are significant given that prediction of the taxa expected at a 

site is a critical component of bioassessment [e.g., Hawkins, 2006; Stoddard et al., 2006; 

Paulsen et al., 2008].  The accuracies of the models developed here are comparable with 

those in use in many bioassessment programs.  For example, the 10
th

 percentile of 

reference site O/E values derived from a western USA-wide model that Carlisle and 

Hawkins [2008] used to assess the condition of invertebrate assemblages at NAWQA 

sampling sites was 0.84 (i.e., any site with a value < 0.84 would be considered impaired).  

That model was based on data collected from 729 reference sites and used 9 predictor 

variables, several of which were probably surrogates for flow variables.  Use of direct 

estimates of 7 flow factors and 3 temperature variables produced a RF model of similar 

precision (10
th

 percentile of O/E values = 0.80), and use of flow variables or the best 
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classification alone resulted in only slightly less precise RF models (with 10
th

 percentile 

of O/E values of 0.73 and 0.70, respectively).  These values are also similar to the 10
th

 

percentile values reported for several other O/E indices [Hawkins, 2006].  The use of 

direct measures of both flow and temperature should not only improve model accuracy 

and predictions, but allow a more direct interpretation of the likely causes of biological 

impairment when it is observed.  For example, a low O/E value associated with a 

substantial difference between the expected and observed baseflow at a site implies that 

hydrologic alteration may be a cause of the observed biological impairment.  

Improvement of the models used for bioassessment will require that we be able to 

estimate both the hydrologic reference condition at ungauged sites [e.g., Sanborn and 

Bledsoe, 2006] in the same way that we estimated the expected thermal environment.  

The fact that use of both flow and temperature variables produced the best models of 

taxonomic composition is not surprising considering the frequent reference to these 

factors in the stream ecology literature [see Allan and Castillo, 2007].  It is unclear, 

however, that their separate effects can be cleanly distinguished from one another.  

Inferring that flow seasonality is important in structuring stream invertebrate assemblages 

from our results is especially suspect given its strong confounding with stream 

temperature.  These issues notwithstanding, the associations between stream biota, flow 

regime, and temperature that we documented here provide a solid empirical basis for 

justifying future studies designed to refine the characterization of both flow and thermal 

regimes in streams. 
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2.4.8. Classes Versus Continuous Variables 

In our analysis, we studied 2 types of streamflow regime characterizations: one 

based on the derived continuous streamflow regime factors and the other based on 

discrete hydrologic classifications.  Random Forests models with continuous streamflow 

factors appeared to be slightly better than models based on categorical variables in 

predicting the taxonomic compositions across the 63 NAWQA stations (RF under taxa 

composition in Table 2.4).  However, predictions based on direct conditional probabilities 

also performed relatively well (model type CP in Table 2.4) and the conditional 

probabilities were derived from classifications.  The better performance of the continuous 

factors is probably due to the fact that some information is always lost when we collapse 

continuous factors into categorical classes.  However, classifications are attractive to 

ecosystem managers because they are generally easier to communicate and implement.  

Our results showed that the use of flow regime classifications may not significantly 

compromise models when predicting taxonomic composition.  The use of hydrologic 

classes in models may be especially attractive if predicting hydrologic class turns out to 

be easier than predicting continuous values of the different aspects of the flow regime. 
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Table 2.1. Loadings for Varimax PC Factors from Box-Cox Transformed Streamflow Variables.  High Loadings are in 

Bold Font 

Factors 1 2 3 4 5 6 7 

BFI -0.299 0.006 -0.175 0.157 0.060 0.097 0.895 

DAYCV 0.045 -0.215 0.336 -0.125 -0.316 -0.210 -0.769 

QMEAN -0.091 0.928 -0.204 -0.017 0.152 0.141 0.207 

ZERODAYS 0.813 -0.235 0.174 0.012 -0.221 -0.162 -0.408 

Q1.67 -0.080 0.951 -0.120 -0.199 0.115 0.122 0.035 

FLDDUR 0.002 -0.181 0.040 0.967 0.043 0.005 0.171 

P 0.078 -0.144 0.930 0.014 0.181 -0.152 -0.203 

C 0.127 -0.268 0.822 0.060 -0.350 -0.139 -0.272 

M -0.157 0.225 -0.004 0.047 0.927 0.101 0.209 

minQ7  -0.200 0.672 -0.250 0.049 0.182 0.185 0.582 

maxQ7  -0.071 0.981 -0.084 -0.086 0.080 0.089 0.005 

R  -0.135 0.274 -0.238 0.005 0.119 0.885 0.226 

% variance explained by 

each factor 

7.3 29.4 15.8 8.6 10.5 8.3 18.2 

Interpretation  

Zero flow 

days 

 

Magnitude 

 

Predictability 

Flood 

duration 

 

Seasonality 

 

Flashiness 

 

Base 

flow 
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Table 2.2. Indicator Taxa for Each of the Macroinvertebrate-Defined Groups Identified from the Cluster Analysis (Figure 

2.8).  Taxa Within a Group are Ordered (Highest to Lowest) by their Indicator Values (Not Shown).  Indicator Taxa Were 

Identified Following Dufrêne And Legendre [1997] we Indentified those Taxa that are over Represented in a Class Relative io 

ihe other Classes. Letters In Parentheses Identify the Taxonomic Order to which Each Taxon Belongs: C = Coleoptera 

(Beetles), D = Diptera (True Flies), E = Ephemeroptera (Mayflies), L = Lepidoptera (Butterflies/Moths), P = Plecoptera 

(Stoneflies), And T = Trichoptera (Caddisflies).  Following the Standard Notation Genus are Italicized, but Family is not 

Group 

A B C D E F 

Micropsectra (D) Lepidostoma (T) Eukiefferiella (D) Psephenus (C) Dryopidae (C) Paratanytarsus (D) 

Zapada (P) Claassenia (P)  Pteronarcys (P) Hydropsyche (T) Dubiraphia (C) 

Chloroperlidae (P) Athericidae (D)  Glossosoma (T) Chimarra (T) Caenis (E) 

Rhyacophila (T) Drunella (E)  Microcylloepus (C)  Dicrotendipes (D) 

Arctopsyche (T) Deuterophlebia (D)  Rheocricotopus (D)  Saetheria (D) 

Brillia (D) Acentrella (E)  Protoptila (T)  Thienemannimyia (D) 

Heterlimnius (C) Hexatoma (D)  Pyralidae (L)   

Epeorus (E) Zaitzevia (C)  Rheotanytarsus (D)   

Cleptelmis (C)   Optioservus (C)   

Perlodidae (P)   Antocha (D)   

Hesperoperla (P)      

Baetis (E)      

Simuliidae (D)           
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Table 2.3. Probability That a Site Belongs to One of the Macroinvertebrate Group 

Given That Its Streamflow Regime Class Is Known.  N Is the Number of Sites in Each 

Streamflow Regime Class. Probabilities of Macronivertebrate Group Membership > 0.5 

Are Highlighted in Bold Font 

Streamflow 

Class 

Biotic classes  

N A B C D E F 

1 0.22 0.61 0.17 0.00 0.00 0.00 18 

2 0.00 0.00 0.11 0.00 0.22 0.67 9 

3 0.09 0.09 0.43 0.09 0.17 0.13 23 

4 0.38 0.23 0.15 0.15 0.00 0.08 13 

1 0.19 0.69 0.12 0.00 0.00 0.00 16 

2 0.00 0.00 0.11 0.00 0.22 0.67 9 

3 0.12 0.06 0.29 0.12 0.24 0.18 17 

4 0.36 0.21 0.21 0.14 0.00 0.07 14 

5 0.14 0.14 0.71 0.00 0.00 0.00 7 

1 0.17 0.75 0.08 0.00 0.00 0.00 12 

2 0.00 0.00 0.12 0.00 0.25 0.62 8 

3 0.11 0.00 0.33 0.00 0.22 0.33 9 

4 0.50 0.20 0.00 0.20 0.00 0.10 10 

5 0.33 0.00 0.67 0.00 0.00 0.00 3 

6 0.10 0.24 0.43 0.10 0.10 0.05 21 

1 0.18 0.73 0.09 0.00 0.00 0.00 11 

2 0.00 0.00 0.00 0.00 0.29 0.71 7 

3 0.00 0.00 0.12 0.00 0.50 0.38 8 

4 0.44 0.22 0.00 0.22 0.00 0.11 9 

5 0.33 0.00 0.67 0.00 0.00 0.00 3 

6 0.11 0.26 0.53 0.11 0.00 0.00 19 

7 0.33 0.17 0.33 0.00 0.00 0.17 6 

1 0.22 0.67 0.11 0.00 0.00 0.00 9 

2 0.00 0.00 0.00 0.00 0.00 1.00 4 

3 0.00 0.00 0.14 0.00 0.57 0.29 7 

4 0.38 0.25 0.00 0.25 0.00 0.12 8 

5 0.33 0.00 0.67 0.00 0.00 0.00 3 

6 0.10 0.38 0.43 0.10 0.00 0.00 21 

7 0.25 0.00 0.50 0.00 0.00 0.25 4 

8 0.29 0.00 0.14 0.00 0.29 0.29 7 
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Table 2.4. Performance of the Random Forests (RF) and Conditional Probability 

(CP) Models in Predicting Taxa Richness and Taxonomic Composition.  R
2
 Measures the 

Strength of Relationships between Taxa Richness and Streamflow and Temperature 

Predictors.  The 10
th

 Quantile of O/E Values and the 90
th

 Quantile of Bray-Curtis (BC) 

Values Measure How Well Streamflow and Temperature Predict Taxonomic 

Composition 

Model 

type 
Predictors 

Taxa 

richness 
Taxa composition 

   

R
2
 

10
th

 quantile of 

O/E 

90
th

 quantile of 

BC 

Null - 0.000 0.576 0.460 

RF 7 flow factors 0.142 0.725 0.418 

RF 7 flow factors 

+  

3 temperature 

variables 

 

0.148 

 

0.795 

 

0.344 

RF 3 temperature 

variables 

0.108 0.665 0.398 

RF 4 flow classes 0.145 0.638 0.449 

RF 5 flow classes 0.097 0.696 0.406 

RF 6 flow classes -0.044 0.669 0.460 

RF 7 flow classes 0.017 0.675 0.427 

RF 8 flow classes -0.028 0.678 0.412 

CP 4 flow classes 0.237 0.756 0.391 

CP 5 flow classes 0.223 0.753 0.389 

CP 6 flow classes 0.111 0.749 0.422 

CP  7 flow classes 0.198 0.755 0.390 

CP 8 flow classes 0.115 0.742 0.397 
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Figure 2.1. Location of 543 streamflow gauge sites used in this study.  511 sites are 

from the Hydro Climate Data Network (HCDN) with an additional 32 with benthic 

invertebrate data from Carlisle et al. [2009].  Numbers indicate regime class for K=4 

classification.  Sites with NAWQA benthic invertebrate samples are also indicated. 
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.  

Figure 2.2. Distribution of number of gauges used in flow variable calculations by 

year. 
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Figure 2.3. Distribution of length of records for 543 sites. 
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Figure 2.4. Box plots showing the distribution of varimax rotated PC factors across 

different flow regime classes for K=4 (the numbers on top of each plot represent the class 

number and the class size).
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Figure 2.5. Box plots showing the distribution of varimax rotated PC factors across different flow regime classes for K=8 (the 

numbers on top of each plot represent the class number and the class size).
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Figure 2.6. 5th, 50th, and 95th percentile of average monthly flows

closest to class centroids.  Map at center indicates the site nearest to the centroid of each flow regime class.
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Figure 2.7. Spatial distribution of sites within each flow regime classes for K=8. 
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Figure 2.8. Dendrogram produced by the hierarchical clustering showing 

dissimilarities between individual sites and groups of sites in invertebrate taxonomic 

composition.  The compositional distance between sites and groups of sites was scaled by 

Wishart's [1969] objective function expressed as the percentage of information 

remaining.



 

Figure 2.9. Variable-importance plots from Random Forests models for predicting 

taxa richness (a, b and c) and biotic class (d, e and f).  Flow predictors only (a, d); 

temperature predictors only (b, e); and both flow and temperature predictors (c, f).  

Predictor variables are ordered in the same sequence for both taxa richness and 

macroinvertebrate group to facilitate comparisons.  Mat = Mean Annual Temperature, 

MST = Mean Summer Temperature (Jun, Jul, Aug), MWT = Mean Winter Temperature 

(Dec, Jan, Feb) 
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Figure 2.10. Mean similarity dendrograms showing strengths of the different flow 

regime classifications in accounting for variation among sites in invertebrate assemblage 

composition (presence-absence).  M  is the mean classification strength of the classes 

within each classification and the length of dendrogram branches illustrates the relative 

classification strength of individual classes. 
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CHAPTER 3 

A TOOL FOR THE RAPID AUTOMATIC CHARACTERIZATION OF 

WATERSHEDS SPREAD OVER LARGE DIGITAL 

ELEVATION MODELS
1
 

Abstract 

Geographic Information System (GIS) methods for watershed and stream network 

delineation are based on the derivation of flow direction and flow accumulation from 

Digital Elevation Models (DEM), and the demarcation of watersheds upstream of 

specified outlet sites.  This method can be laborious when the number of watersheds to be 

delineated is large, as one has to fill sinks in DEMs, process flow direction and flow 

accumulation and calculate watershed properties for each outlet site.  Further, if the 

watershed outlet site location is not exactly on the digital representation of the stream, 

GIS based methods may result in the wrong watershed boundary.  Additionally, when the 

sites are spread over relatively large geographical area, DEMs and other raster datasets 

necessary for watershed delineation can be large and may not be handled well by the 

currently available watershed delineation tools.  This paper presents a tool developed 

from the functionality of ArcGIS and TauDEM that is specifically designed to delineate 

multiple watersheds spread over large raster data sets, and has capabilities to adjust the 

outlet site locations to the nearest streams based on the flow direction grid, if they are not 

already on the stream.  This tool can be used in a batch process to delineate many 

                                                           

1
 Coauthored by Kiran J. Chinnayakanahalli, David G. Tarboton, Ryan A. Hill, John R. 

Olson, and Charles P. Hawkins. 
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watersheds in one run.  This tool also provides options to delineate watersheds based on 

contributing area or a terrain curvature approach that better reflects variable 

geomorphology, and can objectively choose the appropriate threshold to delineate stream 

networks based on a stream drop test designed to identify the highest resolution stream 

network consistent with geomorphological scaling properties.  Additional capabilities of 

this program include the computation of geomorphic variables such as hypsometric curve 

indices, shape factors, stream network geomorphology attributes, and average watershed 

properties from input grids.  This tool is useful in deriving watersheds, stream networks 

and watershed attributes of importance to a variety of problems in hydrology, stream 

ecology and geomorphology. 

3.1. Introduction 

Watersheds are widely accepted as the basic functional unit for water resources 

management studies.  For example, various state agencies along with the U. S. 

Environmental Protection Agency regulate Total maximum Daily Loads (TMDL) based 

on watersheds [Tong and Chen, 2002].  Numerous studies have used watershed 

information to develop relationships between watershed characteristics and streamflow 

variables of interest [Vogel and Kroll, 1992; Vogel et al., 1999; Kroll et al., 2004; 

Sanborn and Bledsoe, 2006].  Further, regional studies need information about 

watersheds to estimate parameters of various rainfall-runoff models [Yadav et al., 2007; 

Zhang et al., 2008].  Ecological studies use watersheds as the basic unit for quantifying 

the effects of geomorphological, geological and hydrological characteristics on structure 

and function of aquatic ecosystems [Poff and Ward, 1990; Poff, 1996; Baeza Sanz and 
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Garcia del Jalon, 2005].  In many of these studies, watershed data is derived by applying 

the geographical boundary of the watershed to spatial data and then relating these 

watershed attributes to appropriate field measurements.  Additionally, many studies also 

require a representation of the stream network.  Auxiliary information such as elevation 

statistics, drainage density, etc. are then derived from or during the creation of the 

watershed boundary. 

The emphasis on watershed approaches to answer water resource related 

questions has led to increased demand for watershed delineations and information 

derived from them.  Furthermore, many watershed studies are now done at regional 

scales, requiring quick derivation of stream networks, watershed boundaries, and 

characteristics at a large number of locations, spread across large areas.  Increases in 

computational power, GIS capabilities and availability of spatial data have made it 

possible to derive both watersheds and their characteristics digitally.  The U.S. 

Geological Survey has developed a nationwide program called Streamstats [Ries et al., 

2008] for providing researchers with streamflow, physical and chemical characteristics at 

regional scale.  Streamstats is a web based program that can provide commonly used 

streamflow measures at gauged and ungagued sites; it can also delineate watersheds and 

provide other useful watershed attributes at a user specified location.  Nevertheless, 

delineating a large number of watersheds spread across large regions is still cumbersome 

due to the processing burden of working with large DEMs and due to steps in the process 

that require manual intervention such as precise positioning of outlets on digital streams.  
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Determining the relationships between field measured data and watershed 

attributes requires investigators to go through the cumbersome process of delineating 

watersheds upstream of each point where field data are collected.  Generally, coordinates 

are recorded at a sample site using a GPS instrument.  However, field site coordinates 

may not provide accurate watershed delineations because of human recording or 

instrument error, or differences between the actual and the modeled stream.  Delineating 

watersheds from grid based digital elevation models (DEMs) requires the creation of a 

grid model of the stream network, and the position of the outlet for the watershed should 

coincide exactly with the stream model.  When the two do not coincide due to error in the 

stream model or in the site’s coordinates, the resulting delineation will be incorrect 

(Figure 3.1).  Even when the outlets coincide with the modeled stream, they should be 

checked to see if they lie on the correct stream, since in cases where outlets are close to 

tributary junctions, outlets can be placed on the wrong stream, resulting in the wrong 

watershed being delineated due to the difference in surface flow paths [Jensen, 1991].  

The outlet can be manually repositioned to solve this problem.  For example, Streamstats 

requires that each outlet be manually selected from a GIS web based interface,  but this 

can be laborious when number of such outlets is large [Lindsay et al., 2008]. 

Another significant issue with delineating watersheds spread across broad 

geographical regions such as states or provinces is that the grid datasets may exceed the 

available computer memory, or may be too large for the available GIS algorithms.  

Although subsets of large grids can be created manually, this is a cumbersome approach 

to analyses at landscape scales. 
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This paper presents a tool called the Multi-Watershed Delineation (MWD) tool 

developed using ArcGIS and TauDEM (http://www.engineering.usu.edu/dtarb/taudem/) 

functionality to help quickly delineate watershed boundaries and derive watershed 

attributes for a large number of watersheds across broad geographical regions.  The 

MWD tool can also correct outlets that are not positioned exactly on the streams derived 

from the DEM.  It also derives watershed attributes that can aid in analyses involving 

watershed characteristics.  The MWD tool comes in two versions: 1) a standalone 

windows program with a graphical user interface (GUI) and 2) a command line 

executable program.  The first version can delineate watersheds within one large 

geographical region.  The second version can be used in batch processing to extend 

MWD tool’s capability to delineate watersheds within multiple regions.  The MWD tool 

software and support materials are available for download at 

http://hydrology.neng.usu.edu/mwdtool.  

3.2. Watershed Delineation from DEMs 

Although watersheds are easy to conceptualize and delineate on a paper map, GIS 

delineations are less labor intensive, more reproducible, and less dependent on subjective 

judgment [Djokic, 2000].  GIS based watershed delineation processes construct a 

watershed boundary for each outlet by identifying all the locations connected to the outlet 

via overland flow paths [Band, 1986].  However, before delineating watershed 

boundaries from DEMs, several processing steps must be completed.  These include pit 

filling, and the creation of flow direction and flow accumulation grids. 
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DEMs commonly contain local depressions called pits, which in most cases are 

artifacts from the DEM creation processes.  Pits are grid cells that are completely 

surrounded by higher elevation grid cells making it impossible for flow to drain from the 

pit to any of the neighboring cells.  This causes discontinuity in the routing of flow across 

the DEM.  Therefore pits are removed from the DEM by increasing the elevation within 

the pits to elevations just sufficient to make them drain into one of their neighboring 

cells.  This ensures proper surface flow routing across the DEM. 

The pit filled DEM can then be used to derive a flow direction grid.  A widely 

used flow direction algorithm, the D-8 method [Marks et al., 1984; O'Callaghan and 

Mark, 1984; Band, 1986; Jenson and Domingue, 1988] assigns a number to each cell 

indicating the direction of the flow leaving the cell.  This is in the direction of the steepest 

descent between the focal cell and its eight neighboring cells.  Once the flow directions 

are assigned, flow paths can be traversed to identify all the cells that contribute flow to 

any grid cell.  The total number of cells contributing flow to a focal cell multiplied by the 

grid cell area is the flow-contributing area for the focal cell.  Flow-contributing areas are 

then assembled into a flow accumulation grid.  A simple way to define a drainage 

network is to apply an area threshold to the flow accumulation grid.  Channels are 

mapped as those cells with contributing areas equal to or exceeding the threshold.  For a 

given location on this digitally mapped channel, a watershed can be mapped by simply 

assembling all of the upslope cells contributing flow at the location. 

Several studies have shown shortcomings in stream networks derived from grid 

based DEMs in terms of the accuracy of the network structures [Saunders and Maidment, 
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1995; Soille et al., 2003], stream length [Callow et al., 2007; Paz and Collischonn, 2007] 

and watershed area [Baker et al., 2006].  Many researchers have suggested a DEM 

reconditioning method commonly called “stream burning” [Mizgalewicz and Maidment, 

1996; Saunders and Maidment, 1996; Callow et al., 2007] to improve the accuracy of 

both stream network structures and watershed areas.  Stream burning integrates a vector 

representation of the stream network with the DEM during the process of pit filling.  

Stream burning improves the grid representation of the stream by trenching the DEM at 

known stream locations indicated by vector stream network data.  Stream burning should 

only be carried out when the vector stream network data is considered more accurate than 

the stream network obtained by the unconditioned DEM. 

For a given outlet, general steps to delineate a watershed are  a) obtain a DEM 

that encompasses the watershed being delineated and the vector stream network data for 

the region, b) remove pits from the DEM along with stream-burning, c) derive flow 

direction grid, d) derive flow accumulation grid, e) derive drainage network grid and f) 

make sure the outlet is exactly on the modeled stream of the drainage network grid, and 

g) delineate the watershed boundary for the given outlet. 

3.3. Data Preprocessing and Setup 

A regional scale DEM is typically used in the MWD tool to create watersheds 

(Figure 3.2).  In the example presented here, the DEM encompasses a large part of the 

state of Utah, US.  Note that a large geographical region does not necessarily mean a 

large DEM file size, because it depends on the dataset resolution.  This particular 
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example has 12187 × 17200 grid cells with cell size approximately 30 × 30 m.  Within 

the region, there are 136 site locations that require watersheds to be delineated. 

The MWD tool uses two types of hydrological boundaries called Large 

Hydrologic Unit (LHU) and Medium Hydrologic Unit (MHU).  The role of MHU within 

MWD tool will be explained more elaborately in the following section.  For now, it is 

sufficient to note that MHU consists of multiple polygonal regions, while LHU is a 

composite of these polygons (Figure 3.3).  In this paper, we used USGS 4-digit 

Hydrological Unit Code (HUC) polygons as LHU and the corresponding 8-digit HUC 

polygons as MHU.  Importantly, it was convenient and efficient for us to use 4-digit 

HUC regions for organizing our grid data across the western US.  This was also useful to 

set up the MWD tool to run in a batch mode. 

To delineate watersheds, the MWD tool requires intermediate grids that represent 

hydrologic characteristics of the landscape.  The creation of these grids is resource 

intensive but once created can be stored for delineating watersheds within the same 

region [Djokic, 2000], thus the MWD tool is time and resource efficient.  In this paper we 

will call the permanent raster datasets “hydrologic grids”.  The geographic data needed to 

create the hydrologic grids to run the standalone MWD tool include two shapefiles and a 

raster (Table 3.1).  The data other are obtained from various internet sources, primarily 

the USGS National Hydrologic Dataset (NHD) and National Elevation Dataset (NED).   

An outlet file is created from points the user wants to delineate, based either on 

field GPS coordinates or points chosen from a map.  For a given set of outlets requiring 

watershed delineation, we proceed by first identifying the 4-digit HUC they are contained 
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within, and develop the necessary DEM data.  For the example in Figure 3.2, we 

identified the 4-digit HUC (HUC 1602) which contains all the outlets and obtained the 

DEMs from National Elevation Dataset corresponding to this 4-digit HUC.  The NED 

source provides DEMs in rectangular areas that are, in most cases, much smaller than the 

4-digit HUCs.  For each 4-digit HUC, we merged numerous NED DEMs to generate a 

large DEM representing the 4-digit HUC, with a sufficient buffer area around the 4-digit 

HUC to ensure that all hydrologic boundaries are captured within the polygon boundary.  

The resulting DEM will be called a regional DEM.  From the regional DEM, we derive 

the required hydrologic grids from an ArcGIS Arc Macro Language (AML) script we 

developed.  The AML script combines several sequential commands from the ArcInfo 

GIS software package into a single process to create the hydrologic grids from the input 

data listed in Table 3.1 (Figure 3.4).  We created hydrologic grids for all 4-digit HUC 

regions within the western US (Figure 3.5).  This organization of data enables us to 

rapidly delineate multiple watersheds anywhere in the western US.  The GUI based 

MWD tool can handle only one LHU region at a time, but can be run in a batch mode that 

can delineate watersheds across multiple LHU regions in one processing step.  Batch 

mode delineation is explained later. 

3.4. How MWD Tool Works? 

When delineating multiple watersheds across a large geographic area, two 

technical challenges may arise that most delineation tools are not equipped to handle.  

Firstly, the coordinate of the outlet may not coincide with the digital representation of the 

stream.  This as mentioned earlier will lead to an error such as the incorrect watershed 
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boundary being delineated.  To solve this problem the MWD tool “rolls” an incorrectly 

placed outlet downhill until it contacts the stream channel with the help of the flow 

direction grid.  The watershed is then delineated from this new location.  The MWD tool 

first identifies if an outlet is not on the stream by comparing the outlet position with the 

stream network grid.  When the outlet is found not to be on the stream, the MWD tool 

uses the flow direction grid to move the outlet to the down slope grid cell based on the 

flow direction and continues to do so until the outlet is placed on the stream-network. 

In some cases, the user may not wish to move the outlets beyond a certain 

distance.  For example, when delineating an ephemeral stream, it is commonly observed 

that due to the lack of digital representation of such streams, the outlet will be very far 

from the nearest modeled stream.  In such cases, the outlet will be moved indefinitely 

until it encounters a stream which may often be the wrong stream.  It is better not to 

move the outlet at all and examine them more carefully.  This can be controlled in the 

MWD by inputting a maximum distance an outlet should be moved. 

Secondly, delineating watersheds across broad geographic areas requires grid 

datasets too large for the memory of most computers.  The MWD tool solves this 

problem by automatically clipping large hydrologic grids to a more manageable size with 

the use of MHU regions (Figure 3.6).  The underlying assumption is that the MHU 

completely contains the watershed being delineated.  This assumption is not always met 

and in such cases, the problem needs to be resolved by moving to coarser DEM and 

larger MHUs. 
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To ensure that the large hydrologic grids contain complete medium hydrologic 

units, we create the hydrologic grids from a series of medium hydrologic units merged to 

create a LHU.  Although in this study we used the USGS 8-digit HUCs for medium 

hydrologic units and 4-digit HUCs for large hydrologic units, either hydrologic units may 

be smaller or larger depending on user’s need.  The MWD tool uses a MHU to clip only 

the area required for delineation from each of the hydrologic grids (Figure 3.6).  During 

the clipping process, a buffer is added to the MHU to ensure that the polygon captures the 

hydrologic boundaries present in the landscape.  Each site within a medium hydrologic 

unit is then delineated automatically with the routines of the TauDEM program [Tarboton 

and Ames, 2001].  The MWD tool then moves to the next MHU and repeats the process 

until it delineates all of the sites within the LHU.  By sequentially processing the MHUs 

and the outlets within each MHU, the MWD tool provides an efficient way to derive 

multiple watersheds, their stream networks and associated topographic attributes. 

3.5. Steps in MWD Tool 

There are four executable steps in the GUI based MWD tool (Figure 3.7).  The 

first step creates the association between the outlets and the MHUs.  This is essential for 

the following steps and tells the grid cutting functions if a particular MHU has any outlets 

to be delineated, and if so, appropriate boundary coordinates are provided to do the 

clipping. 

The second step checks if the outlets are positioned on the modeled streams.  If 

not, this step repositions the outlet to lie on the modeled stream ( see the previous section 

for details).  This step also takes in as input the number of cells to move and if after 
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moving the input number of cells, the outlet is still not on the modeled stream, the outlet 

is not moved at all.  This is reflected in the output file created by this step. 

There is no computation involved in the third step.  It merely gives the user a 

choice to select a set of watershed variables to be calculated during the delineation 

process.  Some of the watershed attributes like shape factor take considerable resources 

and time and if the user does not require them, they can be bypassed.   

Watershed boundary and attributes are calculated in the fourth step.  This step 

also requires the user to select between two network delineation algorithms (contributing 

area threshold or curvature threshold) and whether to perform drop analysis [Tarboton 

and Ames, 2001] to objectively estimate the threshold for delineating stream networks.  

For each outlet, the successful run of MWD will create two files in the ESRI shapefile 

format [Environmental Systems Research Institute Inc., 1998]: a) watershed boundary 

and b) stream network. 

3.6. Watershed Variables 

The following watershed variables are calculated and saved in the polygon shapefile 

representing the boundary of the watershed. 

1. Watershed area (Area): Area of the watershed in the horizontal units of the DEM 

(e.g., m
2
). 

2. Elevation statistics: Minimum, maximum, mean and standard deviation of 

elevation within the watershed boundary calculated from the DEM.  Elevations 

are in the same vertical units as the DEM. 
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3. Elevation - relief ratio based on mean elevation (RRmean):  RRmean is described in 

Pike and Wilson [1971] as, 

( )

( )minmax

min

EE

EE
RR

mean

mean

−

−
=   (1) 

4. Hypsometric curve indices: A watershed’s hypsometric curve describes how 

elevation changes as one moves down through a watershed.  The curve is a plot of 

the percentage of area greater than each elevation value (Figure 3.8).  The MWD 

tool automatically determines the elevations for 15 increments of percent 

watershed area that can then be used to plot a hypsometric curve for each 

watershed.  The output fields are prefixed with “Hypso” and a numeric suffix is 

attached that describes the area percentile reported for that field.  For example, 

Hypso50 reports the elevation contour line above which 50% of the catchment 

area occurs.  The 15 percentage increments are 1, 3, 5, 10, 20, 30, 40, 50, 60, 70, 

80, 90, 95, 97 and 99. 

5. Elevation - relief ratio based on median elevation (RRmedian): The hypsometric 

values are also used to calculate the median dimensionless elevation - relief ratio 

(RRmedian): 
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( )minmax

min50
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EHypso
RR
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−

−
=  (2) 

6. Drainage density:  Drainage density, calculated as the length of channels per unit 

area, depends on the method used to derive the stream network.  MWD tool can 

delineate the stream network based on two methods based on a) the support area 
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threshold (described earlier) and b) the DEM curvature based threshold.  In the 

second method, upward curved grid cells are identified by following the 

procedure developed by Peuker and Douglas [1975].  The upward curved grid 

cells are then used as a weighting field in a weighted drainage area computation.  

A threshold on this weighted drainage area grid can then be used to define a 

drainage network. 

Using an arbitrary threshold in the above methods create an arbitrary 

stream network which may not satisfy the empirical network scaling laws 

[Horton, 1945; Schumm, 1956].  Therefore MWD also provides options, whereby 

the stream initiation thresholds can be objectively selected using the method of 

Tarboton and Ames [2001].  The threshold is selected by examining the 

geomorphologic properties of the resulting stream network across a range of 

thresholds.  Choosing too small of a threshold results in stream networks that 

violate empirical scaling laws for river networks.  We test on the constant stream 

drop property [Broscoe, 1959] and pick the stream network corresponding to the 

smallest threshold for which a t-test for the difference between means of first 

order stream drops and higher order stream drops shows no significant difference.  

This selects the highest resolution stream network consistent with empirical 

network scaling laws.  This approach also has a physical justification in terms of 

geomorphological landscape evolution [Tarboton, 1991, 1992].  This approach 

provides an automatic and objective approach to identify drainage density, a basic 

measure of the scale of the topography relevant for hydrology.  Horton [1932, 
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1945] indicated that drainage density is inversely proportional to hillslope length.  

The use of upward curved grid cells in this method gives it a degree of 

adaptability to variable drainage density within the DEM domain based on terrain 

texture quantified in terms of curvature. 

7. Shape factors:  Two metrics related to the shape of the watershed are calculated. 

a. Shape1: Is the ratio of the watershed area to the square of the longest 

distance to the outlet on the flow path (dimensionless). 

b. Shape2: Is the ratio of the watershed area to the square of the mean 

distance to the outlet (dimensionless).  Flow distance of each grid cell in 

the watershed to the outlet is calculated and then averaged to obtain the 

mean distance to the outlet. 

Small values for shape factors indicate elongated watersheds and larger values 

indicate circular watersheds.   

The second output, a line shapefile, represents the stream network.  This shapefile 

consists of a single line segment for each link of the delineated stream network.  A link is 

defined as “an unbroken section of channel between successive nodes (sources, junctions, 

or outlet)” [see Knighton, 1998].  The information contained in this file is identical to the 

stream network information from TauDEM’s functions.  It can be broadly classified into 

the following two categories, 

1. Network topology information: This can be used during network analysis to 

define connectivity relationships between the different links of the network. 



90 

 

2. Stream network variables: The following stream network characteristics are 

calculated for each link. 

a. Order: Strahler Stream Order. 

b. Magnitude: Shreve Magnitude of the link, defined as the number of upstream 

sources. 

c. Length: Length of the link. 

d. Drop: Drop in elevation from the start to the end of the link. 

e. Slope: Average slope of the link (computed as drop/length). 

f. Drainage area at the downstream end of the link. 

g. Drainage area at the upstream end of the link. 

h. Straight line distance from the start to the end of the link. 

i. Distance to the outlet from the downstream end of the link. 

j. Distance to the outlet from the upstream end of the link. 

k. Distance to the outlet from the midpoint of the link. 

3.7. Batch Processing 

The MWD tool is also built as a command line executable function that can be 

used in a batch mode to run multiple LHU regions at a time.  This allows watersheds to 

be automatically delineated at any extent, up to entire continents.  The batch-MWD 

program runs in steps similar to the GUI version, but has only three steps.  The third and 

fourth steps of GUI-MWD are combined into the third step of batch-MWD.  The batch-

MWD reads its input from a text file instead of from a user interface.  Figure 3.5 shows an 

example of the batch file setup to delineate watersheds (step 3) over all LHU regions in 
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the western US.  The points shown in Figure 3.5 are the streamflow gauges from the 

Hydro-Climatic Data Network database [Slack and Landwehr, 1992] for which we 

needed the watershed delineations.  There are 562 streamflow gauges in this dataset, used 

here to illustrate the application of the MWD tool to delineate watersheds spread across 

large geographical regions in batch mode.  It is also an example how USGS hydrological 

units can be used to organize data for efficient batch processing by the MWD tool.  In the 

first attempt, using approximately 30 m grid cell resolution, the program ran for nearly 

two days (Step 3) and created 441 watersheds.  The drainage area for the created 

watersheds ranged between 15 km
2
 and 12416 km

2
. 

Note that in Figure 3.5 some of the watersheds are larger than 4-digit HUCs and 

could not be delineated during the first run of the batch process.  To delineate these large 

watersheds, we ran the MWD tool on coarser DEMs (90m x 90m), utilizing 2-digit HUCs 

as LHUs and the corresponding 4-digit HUC polygons as MHUs. 

3.8. Conclusions and Discussion 

Both researchers and managers need to be able to measure watershed variables 

related to water chemistry, hydrology, geomorphology, and ecology across state or larger 

sized landscapes, to understand and predict how watersheds function at these large scales.  

However, users are faced with two major problems when trying to delineate multiple 

watersheds at these scales: 1) watershed outlets do not always coincide with the modeled 

stream and 2) data grids at these extents are too large for most computers.  The MWD 

tool was developed using ArcGIS and TauDEM functionality to address both these 

problems, delineating watershed boundaries while simultaneously deriving stream 
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networks and watershed attributes.  The MWD tool can reposition outlets that do not 

coincide with the modeled stream to the nearest stream by rolling them down the hill 

following the flow paths of the flow direction grid.  And, MWD tool resolves the 

problem of large DEMs by using hydrologic regions, to clip the DEMs and other grids to 

manageable size and automatically delineating watersheds for outlets within the clipped 

region.   

The MWD tool incorporates watershed delineation functionality from TauDEM 

GIS and preprocessing functionality from ArcGIS to provide a methodology for rapid 

delineation of multiple watersheds and extraction of watershed properties over large 

areas.  The MWD tool takes advantage of the fact that required processing such as pit 

filling, flow direction calculation etc, need not be repeated for watersheds within the 

same DEM.  It also relies on a coarse large-scale partitioning of the domain into regional 

watersheds, the USGS HUC watersheds.  Once the required inputs: DEM, pit filled 

DEM, flow direction grid, flow accumulation grid and stream network grid and shapefiles 

representing outlets and regional watersheds (MHU), are put together, MWD tool can 

easily delineate the watersheds contained within each MHU. 

Another advantage of the MWD tool is its ability to use the drop-analysis 

algorithm at a regional scale to objectively derive the stream network and its properties.  

This characteristic of the MWD tool should result in delineating stream networks that are 

better at representing the natural texture of the topography and hence generate attributes 

that are relatively better descriptors of the stream networks. 
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The MWD tool has two modes: 1) GUI based and 2) command line executable.  

The GUI based mode can be used interactively to delineate watersheds within a single 

large DEM, while the command executable mode can be used in a batch process to 

delineate watersheds in multiple large DEMs and regional watersheds. 

The MWD tool like any other software has some limitations.  Our method for 

repositioning the outlets not coinciding with the modeled streams by “rolling” down the 

flow direction grid to the stream will reposition the outlet on the wrong stream if the 

original point is on the wrong side of the drainage divide.  This may be a common 

occurrence for outlets near stream junctions.  An advanced method like the one suggested 

by Lindsay et al. [2008] could solve this problem, but it requires names of the outlet and 

the stream be matched.  This raises another issue, since many first order streams will not 

have stream names associated with them.  The assumption that the watershed being 

delineated is contained within the MHU can also potentially lead to the MWD tool failing 

to delineate a watershed.  Users interested in delineating larger rivers will find that even 

when using 8-digit HUCs with 1-2km buffers as MHUs, the MWD tool is unable to 

successfully delineate watersheds.  Our solution is to use the corresponding 4-digit HUC 

as MHU, and the 2-digit HUC as the LHU.  This will inevitably require that we use a 

coarser DEM to minimize the amount of memory needed for processing.  Our experience 

has shown that delineating watersheds with coarser DEMs results in only minor 

differences between watershed boundaries.  Large watersheds delineated this way have 

negligible (<5%) differences in watershed area when compared with watershed areas 

calculated with finer DEMs.  However, other watershed attributes, such as stream 
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delineation thresholds and associated drainage density might be more severely affected 

by using courser DEMs.  When delineating a large number of watersheds, we do not 

expect any single tool to solve all the problems and MWD tool is no exception, but it 

considerably reduces the effort involved in such endeavors. 

The MWD tool is specifically aimed at researchers who are working with regional 

scale issues and want information for hundreds of watersheds spread across large 

geographical regions.  Any such efforts require lots of data processing and management.  

We have presented here one way of organizing and analyzing such a huge dataset.  Such 

organization not only helps in efficient management of large grid datasets, but is also 

helpful in executing the MWD tool in a batch process.  We have shown how this tool 

allows us to delineate multiple watersheds across the western US, so we can begin to 

assess how different watershed attributes effect processes at the landscape scales where 

natural resource management occurs. 
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Table 3.1. Inputs Required to Create Hydrologic Grids for Use in the Multi-

Watershed Delineation Tool 

Inputs Purpose Type of File 

Large Hydrologic Unit Files Used to merge DEMs in the AML. Polygon Shapefile 

Stream Files (from NHD or 

other source) 

Used in stream burning. Line Shapefile 

Raw DEM (from NED or 

other source) 

Topographic data needed for creating 

other intermediate grids. 

Grid data 
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Figure 3.1. Effect of the site offset on watershed delineation. 
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Figure 3.2. A LHU region representing a typical dataset for MWD tool.  The region 

presented here is USGS HUC 1602 and covers sections of Idaho, Nevada and Utah. 
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Figure 3.3. Example of LHU and MHU.  In this example we have used 4-digit HUC 

numbered 1602 for representing LHU and the 8-digit HUCs within the LHU represent the 

MHU. 
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Figure 3.4. The input and output from ArcGIS AML.  AML script is executed for 

each LHU region of interest. 
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Figure 3.5. The 4 digit HUCs in the western US for which we created the grid data 

required to delineate watersheds.  The bold number re

and setup3.txt is the input file for the corresponding LHU.  The input file will also tell the 

MWD tool what step to run.

 

The 4 digit HUCs in the western US for which we created the grid data 

required to delineate watersheds.  The bold number represents the folder for each LHU 

and setup3.txt is the input file for the corresponding LHU.  The input file will also tell the 

MWD tool what step to run. 
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The 4 digit HUCs in the western US for which we created the grid data 

presents the folder for each LHU 

and setup3.txt is the input file for the corresponding LHU.  The input file will also tell the 



 

Figure 3.6. The MWD tool subdivides the landscape into smaller units wit

polygon boundaries for efficient processing.
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The MWD tool subdivides the landscape into smaller units with the use of 
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Figure 3.7. Different executable steps in the GUI-based MWD tool. 
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Figure 3.8.  a) The elements of watershed hypsometry.  Area A is total watershed 

area, Area A is 50% of total watershed area.  b) A Hypsometric curve. 
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CHAPTER 4 

PREDICTING NATURAL STREAMFLOW-REGIME CLASSES FROM 

WATERSHED ATTRIBUTES
1
 

Abstract 

Natural streamflow regime classifications are important for a variety of purposes, 

including bioassessment used in stream ecosystem management.  A significant challenge 

is the extrapolation of natural streamflow regime classes to ungauged watersheds.  In this 

paper, we used four popular statistical methods to develop models to predict streamflow 

regime class from watershed attributes.  The predictions were into streamflow regime 

classifications based on variables chosen because of their ecological importance and 

developed using K-means clustering for 541 stream gauge stations in the western U.S.  

Five classifications with the number of classes ranging from 4 to 8 were used.  Watershed 

attributes used as explanatory variables represented aspects of climate, geomorphology, 

geology and soil properties.  The statistical methods used were Linear Discriminant 

Analysis (LDA), Classification and Regression Trees (CART), Random Forests (RF) and 

Support Vector Machines (SVM).  For LDA, CART and SVM a 10 fold cross validation 

method was used to estimate their respective parameters to optimize their performance.  

A bootstrapping analysis was then carried out to quantify the prediction error.  The 

contingency table from the bootstrapping analysis between the actual and the predicted 

class was used to estimate the fraction of predictions that were correct, which is a 

measure of reliability of prediction of each class.  For classifications, with number of 

                                                 
1
 Coauthored by Kiran J. Chinnayakanahalli, David G. Tarboton, and Charles P. Hawkins. 
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classes K from 4 to 8, LDA, CART, RF and SVM had median prediction error ranging 

between 28-40, 30-47, 25-32 and 27-37%, respectively.  In terms of this measure of 

reliability, RF was best for predicting four of the classes, while LDA was best for two 

classes and CART and SVM were best for one class each.  Given the efforts required to 

optimize the models and their relative performance, RF which requires the least or no 

optimization is more desirable as a predictive method.  SVM with better predictor 

variable selection and model optimization could potentially perform as well as RF.  This 

work is targeted towards classification based bioassessment where predictions from these 

models can be compared with observed streamflow regime and the differences used as 

indicators of hydrologic alteration.  Further, biotic composition predicted based on 

streamflow regime class, and compared to the observed biotic composition may be used 

as a bioassessment tool for quantifying stream impairment. 

4.1. Introduction 

Streamflow and its patterns of variability have been considered important for 

maintenance of the ecological function, structure and composition of the riverine 

ecosystem [Resh et al., 1988; Power et al., 1995; Clausen and Biggs, 1997; Wood and 

Armitage, 2004; Sanz and del Jalon, 2005].  Estimation of a river's natural flow regime is 

frequently sought to serve as a reference point for management of river flows to sustain 

stream ecosystems [Richter et al., 1996, 2003; Poff, 1997; Bunn and Arthington, 2002; 

Snelder et al., 2009].  Natural flow regime classifications group streams into classes that 

are relatively homogeneous in terms of flow variability and such classifications are 

promoted as methods for defining units for management of river flows [Snelder et al., 
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2009].  Stream classification that is relevant to the biota of the stream is in demand for its 

particular use in bioassessment, monitoring and management of lotic ecosystems [Wiken, 

1986; Omernik, 1987; Snelder and Biggs, 2002].   

The relationship between streamflow regime and the structure and functioning of 

the stream biota has not been sufficiently quantified [Snelder and Biggs, 2002; Monk et 

al., 2006].  One way to examine the relationship between the biota and hydrology is to 

assess if the composition, structure and function of the stream biota are significantly 

different across natural streamflow regime classes.  However, relating ecological 

measures to streamflow regime is difficult because streamflow is not gauged at many 

locations of interest where biological samples have been collected.  Therefore there is a 

need to classify streamflow regime for ungauged watersheds, based upon watershed 

attributes. 

One approach to the prediction of streamflow regime for ungauged watersheds is 

to group streams into homogeneous classes, either based on geographical or hydrological 

characteristics, and then use regression to predict streamflow variables from watershed 

attributes.  A number of studies [Riggs, 1972, 1982; Jennings et al., 1993; Ries, 1997; 

Vogel et al., 1999; Ries and Friesz, 2000] have developed separate regressions for each 

region to predict streamflow variables.  Once all the variables representing the 

streamflow regime are estimated, streamflow regime class can be determined from the 

classification rules.  A second approach is to use statistical methods, like Linear 

Discriminant Analysis (LDA), to directly predict the streamflow regime class from 
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watershed attributes without going through classification as an intermediate step 

[Sanborn and Bledsoe, 2006]. 

Although a number of statistical methods have been developed that are potentially 

promising for use in predicting streamflow regime class [Breiman et al., 1984; Cortes 

and Vapnik, 1995; Vapnik, 1996; Breiman, 2001; Hastie et al., 2001], there is still 

uncertainty regarding which method is best given the available watershed attributes and 

streamflow regime classes we are interested in predicting.  There is a need to assess 

uncertainty and quantify the reliability of prediction models and identify watershed 

attributes that are effective discriminators for streamflow regime classes.   

The objective of this work was to develop statistical models to be able to predict 

the streamflow regime class of a watershed from watershed attributes.  In previous work 

we used 12 ecologically relevant streamflow variables, computed from the daily 

streamflow records at 541 sites in the western U.S., to categorize streamflow regime into 

from 4 to 8 streamflow regime classes (Chapter 2).  In this paper these streamflow regime 

classifications will be represented by the letter K.  For example K=4 refers to the 

streamflow regime classification that has 4 classes.  This paper extends our previous 

work by exploring the capability to predict the streamflow regime class directly from 

watershed attributes.  Four statistical methods of predicting streamflow regime class in 

ungauged watersheds were evaluated.  We also quantified the uncertainty in each method.  

Among the watershed attributes used, we identified the watershed attributes that were 

most discriminating of the streamflow regime classes.   
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Classification is the process of assigning an object to a class based on its attributes 

[Hastie et al., 2001].  Statistical classification is closely related to pattern recognition, 

machine learning, and data mining concepts [Zhao, 2000].  A classification problem may 

be framed in terms of a training dataset, T, consisting of data points (x1,y1), (x2,y2)..(xn,yn), 

where xi is an input vector of length p and yi ∈{k; k=1,2... K} the response or target 

variable indicating a specific discrete class.  Then, the objective of the classification 

method is to generate a decision rule which can predict the class labels k from a new 

input vector x.  In the context of this paper, xi represents the vector of watershed 

attributes or predictor variables for the i
th

 watershed and yi the corresponding streamflow 

regime class.  

In developing a classification model the prediction error defined as the percentage 

or fraction of cases the wrong class is obtained in a test data set is important for selecting 

among competing models [Hastie et al., 2001].  This applies to each of the four models 

that are detailed below where it is generally possible to fit training data better by using 

increasing model complexity.  Complexity here refers to the number of parameters or 

degrees of freedom defined by the structure of the model.  To ensure that a model is not 

overfit, the complexity parameter should be selected by minimizing the prediction error 

on independent test data using a method such as K-fold cross validation [Hastie et al., 

2001].   

In this paper four classification models that each take a different statistical 

approach to identifying the response class from input variables were evaluated for their 

ability to predict streamflow regime classes.  Linear Discriminant Analysis assumes that 
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the predictor variables are normally distributed within each class and then classification is 

by Bayes rule which selects the most probable class from the overlapping normal 

distributions [see Hastie et al., 2001].  Classification and regression trees (CART) use 

tree structured classification rules based on a sequence of binary (yes or no) questions to 

determine class from the predictor variables [Breiman et al., 1984].  Random Forests 

creates a number of classification trees by randomly sampling a fraction of the testing 

data and using CART, then assigning classes according to the class that receive the most 

votes among CART trees [Breiman, 2001].  Support Vector Machines (SVM) partition 

among classes using hyperplanes to serve as class boundaries within the space of the 

predictor variables.  The support vectors are the specific vectors of predictor variables 

active in constraining any partitioning hyperplane [Cortes and Vapnik, 1995; Vapnik, 

1996].  These methods span the range of statistical approaches available for 

classification.  They have been implemented in a number of statistical packages.  We 

used R implementations for each of them [R Development Core Team, 2007].   

4.2. Data  

Chapter 2 of this dissertation developed a set of streamflow classifications based 

on streamflow regime variables.  These used daily streamflow data from 541 Hydro 

Climatic Data Network-HCDN [Slack and Landwehr, 1992] sites across thirteen states in 

the western U.S. to estimate 12 ecologically relevant streamflow regime variables (Table 

4.1 and Figure 4.3).  Chapter 2 then used Principal Component Analysis to reduce the 

dimensionality of the 12 variable flow data to 7 factors that characterized statistically 

independent aspects of streamflow.  These factors were: 1) zero flow days, 2) magnitude, 
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3) predictability, 4) flood duration, 5) seasonality, 6) flashiness, and 7) baseflow.  These 

factors are linear combinations of normalized (Box-Cox) streamflow variables (Table 

4.2).  Chapter 2 used the K-means clustering algorithm based on these 7 factors to 

classify streams into K classes with K ranging from 4 to 8, resulting in a total of five 

classifications that were used as response variables in the statistical models. 

A wide ranging set of watershed attributes that might serve as predictor variables 

for streamflow regime class were identified.  These included climate variables averaged 

over the watershed, topographic and geomorphologic variables and geologic and soil 

variables.  These were assembled from nationally available data sources (Table 4.3).  

Digital Elevation Model (DEM) Data from the National Elevation Dataset (NED) 

and stream network data from the National Hydrography Dataset (NHD) were used to 

derive watershed boundaries and watershed geomorphic attributes for the 541 HCDN 

sites.  We used the Multi-Watershed Delineation tool-MWD (Chapter 3) which uses 

TauDEM [Tarboton and Ames, 2001] and ArcGIS to delineate watershed boundaries and 

derive watershed geomorphological attributes for sites spread across large geographical 

areas.  Climate, soil and geologic parameters were then aggregated for each delineated 

watershed.  Drainage density, the length of channels per unit area, is a basic measure of 

the scale of the topography relevant for hydrology that when based on a channel network 

extracted from a DEM is related to the method used to map stream initiation.  An 

objective procedure [Tarboton and Ames, 2001] was used to determine the stream 

initiation threshold used in the estimation of drainage density.   
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The boundaries of the gauge watersheds were used to sample climate attributes 

from the Parameter-elevation Regression on Independent Slopes Model (PRISM) dataset 

[Daly et al., 1994].  PRISM uses point measurements of climatic data and a digital 

elevation model to produce grid estimates of climatic variables like mean annual 

precipitation, mean monthly precipitation, mean monthly temperature etc, using 

regression based on elevation from nearby locations with similar slope and aspect.   

The watershed boundaries were also used to sample the soils attributes from the 

State Soil Geographic -STATSGO (http://www.ncgc.nrcs.usda.gov/products/datasets/ 

statsgo/) dataset.  The STATSGO dataset is generalized from detailed soil survey data 

and is designed for regional analysis over broad geographic areas.  The STATSGO data 

table links each location to corresponding soil attribute values.  This information was 

used to create a raster data set for each attribute which was then averaged over the 

watershed boundary to obtain the watershed mean for that attribute.  For some soil 

attributes such as available water capacity, bulk density etc, STATSGO provides high 

and low values.  These were also rasterized and averaged over the watershed boundary to 

obtain watershed mean high/low values of those attributes (e.g. AWCH_AVE, 

BDH_AVE etc in Table 4.3). 

The geologic attributes (Table 4.3) were sampled from a USGS-Generalized 

geologic map of the United States [Reed and Bush, 2001].  The USGS geological data 

was converted into grid format where each grid cell was categorized as one of the 

following geologic types: 1) Gneiss; 2) Granite; 3) Quarternary; 4) Sedimentary; and 5) 
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Volcanic.  Watershed boundaries were then used to compute the percentage of the above 

geologic types in each watershed.  

4.3. Classification Models 

4.3.1. Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) assumes normal distributions N(µk,∑) for 

each class k in the space of its input variables, x.  µk is the vector representing the centroid 

for each class k, and ∑ is the covariance matrix, assumed to be the same for all classes k.  

The LDA discriminant function is obtained by using Bayes theorem to evaluate the 

conditional probability of an input x belonging to class k.  Under the assumption of 

normal distributions with equal covariance the following linear discriminant function can 

be derived [Hastie et al., 2001],  
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where πk is the prior probability for class k.  Then, LDA predicts for input x, the class k 

which gives the maximum value for the discriminant function above.  µk,∑ and πk are 

estimated from training data as the mean of each class, pooled covariance across the 

classes and class membership proportions respectively.   

LDA requires selection of the set of variables that best discriminate the different 

classes from among the competing predictor variables.  Wilks-lambda [see Mardia et al., 

1979] was used in a forward-stepwise variable selection procedure to rank the predictor 

variables in order of their importance to discriminate the target classes.  Wilk’s lambda is 
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the ratio of within group variance to the total variance and a small value for Wilk’s 

lambda indicates good discrimination between groups.   

We used the lda function available with the MASS [Venables and Ripley, 2002] 

package for R software to develop LDA prediction models.  The predictor variables were 

first normalized by Box-Cox transformations.  We implemented a 10 fold cross 

validation approach to determine the optimum complexity of the LDA model in terms of 

the number of predictor variables used, denoted as pLDA.  K-fold cross validation 

involves splitting the data into K parts.  One part is withheld for testing while the 

remaining K-1 parts are used as a training data set.  The prediction error is estimated on 

the withheld data.  The procedure is repeated K times, at each step withholding one part, 

fitting the model on the other parts and estimating prediction error from the withheld part.  

Error from the withheld parts accumulated across the K steps quantifies the overall 

prediction error.  The cross validation was used to a) select the number of predictor 

variables, and b) select the most discriminative predictor variables.   

For a given classification of the streamflow regime (one of K= 4 to 8) and for a 

given training dataset in the cross validation, we used the R function for Wilks-lambda, 

greedy.wilks from the kLar library [Weihs et al., 2005] to rank the predictor variables in 

order of their discriminating importance.  Then starting from the first two predictor 

variables from the rank list, LDA models were constructed on the training set, and the 

model prediction error estimated from the test data.  For the same training dataset in the 

cross validation method, the process was repeated by including the next predictor 

variable from the ranked list and continued all the way up to 20 variables.  Once the 
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prediction error was estimated for varying LDA model complexity for a particular 

training dataset, the whole procedure was repeated for the remaining training and test 

datasets of the 10-fold cross validation.  The 10-fold cross validation was repeated five 

times to obtain stable results.  The number of predictor variables to be used for the final 

model, pLDA, was the one that gave on average the least prediction error across the five 

10-fold cross validation repeats.   

Since the ranking of the predictor variables can change with different training data 

sets used in the cross validation, it is necessary to select the set of variables that would on 

average be representative of the ranked lists.  We considered all 50 ranked lists from the 

five repeats of 10-fold cross validation and identified the top pLDA variables in each list.  

We then selected the pLDA variables that appeared most frequently in these shortened 

ranked lists.  By shortening the lists, we are looking at only the top pLDA variables and 

by choosing the most frequent ones, we have a set of variables that was on average 

representative of the ranked lists.   

4.3.2. Classification and Regression 

Trees 

 

Classification and regression trees (CART) use tree structured classification rules 

based on a sequence of binary (yes or no conditional) questions to determine class from 

the input vector (Figure 4.1).  CART does not require the variables to be continuous or 

have any specific distribution.  To start with, all data in T is considered to be at a node 

and the node is split into two nodes based on a threshold on one of the x predictor 

variables such that the resulting nodes are less impure.  Impurity is a measure of how 
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heterogeneous the nodes are and an ideal split would result in nodes that contain only one 

class (least impure).  The Gini index given by 
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where Pi is the proportion of class i observations in node m is used to estimate the 

impurity at a node m. 

The node that was split is called the parent node and the nodes resulting from the 

split are called child nodes.  The first node that contains the entire x from all the classes k 

is the most impure node.  At each node, CART considers all possible splits, n (n is the 

number of data points) in each predictor variable from the set of p-variables thus forming 

pn ×  possible splits. Each split is quantified by its goodness of split that is a measure of 

the decrease in impurity given by 
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where G(m), G(mL) and G(mR) are the impurity in the parent node, child left node and 

child right node respectively.  pL and pR are the proportion of data points going into left 

and right child nodes.  CART picks the split that result in the maximum G∆ .  Each child 

node then acts as a parent node for subsequent splitting which is continued until 

partitioning of the child node no longer decreases the impurity significantly.  Once 

splitting is terminated, the CART algorithm assigns each resulting terminal nodes to a 

class based on the majority class membership.  A new data vector x can then be parsed 

through the tree based on the splitting rules to determine its classification according to the 
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label of its terminal node.  The complexity for CART is defined by the size of the tree 

and the optimal size of the tree can be determined by K-fold cross validation.   

We used the Tree- package [Ripley, 2007] in the R software to develop CART 

models.  We optimized the size of the tree by a 10-fold cross validation method using the 

function cv.tree within the Tree package.  For each set of streamflow regime classes, the 

10-fold cross validation exercise was carried out for different sizes of the tree and the 

optimum size of the tree for the final model was then determined as the one that gives the 

least average prediction error. 

4.3.3. Random Forests  

The Random Forests (RF) method [Breiman, 2001] creates a number of 

classification trees by randomly sampling a fraction of the testing data and using CART 

to develop a classification tree.  The resulting ensemble of trees is called a random forest.  

A new input vector x is classified by each individual tree in the forest.  The classification 

by each tree is taken as a vote for a class.  The RF method then classifies the new input 

vector as belonging to the class that received the most votes. 

Three important considerations in applying RF are, a) from the training set 

containing n objects, s objects are sampled with replacement to build each tree, b) among 

p-predictor variables, m (<<p) variables are randomly sampled, and the best split among 

them is found as in CART and used to split the node and c) each tree is grown until the 

minimum specified size of the terminal node is reached.  The reduction in dimensionality 

at each split from (b), enables the use of a large number of predictor variables overall, 

which can be problematic in some methods.  The number of trees to be grown (ntree), 
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and number of predictor variables used at each split (m) are generally user specified.  The 

minimum terminal node size is generally taken as one, growing each tree to its fullest 

extent [Breiman, 2001].  According to Breiman [2001], Random Forest testing error 

converges to a limit as the number of trees in the forest becomes large.  

The RF model estimates prediction error based on the input vectors not used in 

tree construction, eliminating the need for K-fold cross validation.  An advantage of RF is 

that it does not over fit the data as long as there are enough training data points and many 

trees can be grown without compromising the computational speed.  

We used the randomForest package [Liaw and Wiener, 2002] in the R software to 

develop RF prediction models.  Unlike in the above methods, RF does not have a 

complexity parameter and hence 10 –fold cross validation procedure was not used.  To be 

consistent with the above methods, we had the RF model sample 90% of the data without 

replacement to grow each tree within the forest.  This is different from the standard RF 

method which samples with replacement.  The default values for parameters ntree, m and 

minimum terminal node size in the R randomForest package were used 

In classification mode, RF models estimate the importance of predictor variables 

by the Gini index score, a measure of the impurity of nodes [Breiman, 2001].  The mean 

decrease in Gini index for a watershed attribute is a measure of reduction in impurity 

resulting from splits on the watershed attribute.  It is summed over all splits and averaged 

over the number of trees in a RF model. The mean decrease in Gini index is used to 

assess their relative importance of watershed attributes in discriminating the streamflow 
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regime classes.  RF models were developed with the entire dataset for assessing the 

importance of variables. 

4.3.4. Support Vector Machines 

The Support Vector Machines (SVM) model developed by Vapnik and others 

[Cortes and Vapnik, 1995; Vapnik, 1996] was originally developed for binary 

classification ( i.e yi ∈{-1, 1 } ) and is based on finding a hyperplane (Figure 4.2) that 

separates the two classes and maximizes the distance from the plane to the closest data 

point from either class [Vapnik, 1996].  The separating hyperplane is of the form

}0)(:{ 0 =+= ββ
T

xxfx , where β ={ β1, β2,.. βp }is a vector normal to the hyperplane.  

For two classes that can be linearly separated (Figure 4.2 a) we can find a hyperplane 

with the biggest margin between the training points by 
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From linear algebra, it can be shown that ( ) βββ 0+
T

i
x  is the signed distance 

from the hyperplane.  The condition in Equation 4 ensures that each data point is at least 

a distance C distance from the hyperplane and β and β0 are chosen to maximize C.  The 

constraint in (4) can be stated in an equivalent form as 
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For any β and β0 satisfying the above condition, any positively scaled multiple 

also fulfills the conditions, so we can arbitrarily set ║β║=1/C.  With this, maximizing C 
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is equivalent to minimizing ║β║or since ║β║ is positive to minimizing 
2
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mathematical convenience.  The optimization problem then becomes 
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which is a quadratic programming (quadratic criterion with linear inequality constraints) 

problem that can be solved using the standard Lagrange multipliers approach [e.g. Hastie 

et al., 2001] to obtain sample estimates β̂  and 0β̂ that optimally separates the input data. 

The optimal hyperplane produced by the function 0
ˆˆ)(ˆ ββ +=

T
xxf is then used 

for classifying new observations, x, as 

[ ])(ˆ)(ˆ xfsignxG =  (7) 

For overlapping classes, SVM still maximizes C, but allows some points to be on 

the wrong side of the margin by introducing the slack variables ξ = { ξ1, ….. ξn}.  The 

constraint in Equation 4 can be modified to 
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The value ξi is the proportional amount of C, by which the prediction can be on 

the wrong side of the margin (Figure 4.2 b) and ξi = 0 for points on and on the right side 

of the margin.  As in Equation 6 we recast the optimization problem as a quadratic 

problem involving the maximization of 
2

2

1
β .  Incorporating a penalty for data points on 

the incorrect side of the margin, the problem becomes 
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where γ is a parameter that controls the relative weight given to the penalty part of the 

objective.  As before, this is solved using standard Lagrange multiplier methods. 

Whereas the separable case resulted in a classification using no parameter, the 

result for the overlapping case depends on the parameter γ.  This was optimized using K-

fold cross validation.  The classification rule for a new observation is given by Equation 7 

as before. 

This support vector classifier still defines linear boundaries between classes, but 

as with other linear methods, we can modify it to suit the non-linear case by using basis 

expansions.  Once the basis functions hm(x), m=1,..M are decided, the procedure is the 

same as described above but now we would use the transformed features h(xi) = 

(h1(xi)….hM(xi)), i = 1..n. to produce the nonlinear separating function 

0
ˆˆ)()(ˆ ββ +=

T
xhxf .  The classifier is [ ])(ˆ)(ˆ xfsignxG =  as before.  It has been shown 

that when the Support Vector classifiers are modified to use basis functions, the solution 

involves h(x) only through inner products [e.g. Cristianini and Shawe-Taylor, 2000; 

Hastie et al., 2001].  That means we do not need to specify the actual transformation h(x) 

at all, but only require kernel function )'(),()',( xhxhxxKr = that gives the inner 

products in the transformed space.  The optimal separating hyperplane is then given by 
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where αi is the Lagrange multiplier associated with the data point i and corresponding 

observed class yi.  This equation only involves the data on the incorrect side and along the 

margin (support vectors) since the Lagrange multipliers, αi, are zero for non-constraining 

data points. 

One of the popular choices for kernel functions is the radial basis [Hsu et al., 

2009] given by 

( )2
'exp)',( xxxxKr −−= κ  (11) 

where κ is the kernel parameter.  We used this kernel in our models because it is known 

to perform relatively better than other kernels in most cases [ e.g. Hastie et al., 2001; Hsu 

et al., 2009].  Parameters κ and γ are tuning parameters that are optimized by K-fold cross 

validation.  

SVM can be extended for multiple classes by what is called the “one-against-one” 

approach, in which k(k-1)/2 classifiers are constructed using each combination of pairs of 

classes and then using a voting strategy to select the ultimate class by counting votes 

from each binary classification [Friedman, 1996; Kressel, 1999].  An arbitrary rule is 

used to classify the rare cases where two classes have the same number of votes. 

We used the svm function in the e1701 package [Dimitriadou et al., 2008] within 

the R software for developing our SVM models.  The radial basis function was used for 

the kernel option.  For each streamflow regime categorization, we used all predictor 

variables.  We first scaled the predictor variables according to Hsu et al. [2009] to range 

between -1 and 1.  The tuning parameters, γ and κ were then determined by the grid 

search method based on 10 fold cross validation method [Hsu et al., 2009].  The ten-fold 
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cross validation process was carried out for pairs of (γ, κ) and the one with the best 

prediction error was picked.  Like Hsu et al. [2009], we used exponentially growing 

sequence of γ = 2
-5

,2
-3

,….,2
15

 and κ = 2
-15

,2
-13

,…..,2
3 

for our grid search.  The best pairs 

of (γ, κ) determined for each set of streamflow regime classes define the final SVM 

models.  Hsu et al. [2009] suggested a second grid search in the vicinity of the optimized 

parameters from the first to fine tune the parameters.  When we tried this, we found that 

the results were not stable and hence retained the optimized values of the parameters 

from the first grid search. 

Unlike the other methods used in this study, the R package used for SVM does 

not provide any measures or tools to interpret the affects of watershed attributes.  This is 

also partly due to the structure of SVM models which does not render itself well for 

interpretations. 

4.3.5. Uncertainty Estimation and 

Model Comparison 

 

A bootstrapping analysis was carried out to compare the relative performance of 

the models.  Bootstrapping also provided a common basis for model inter-comparison.  

Once the optimal model for each method was specified, in terms of complexity and input 

variables, the original data was randomly sampled without replacement to form training 

(90% of the data) and testing data.  The bootstrapping analysis used 500 runs for each 

model (Figure 4.4).  At each run, the data was randomly split into training and testing sets 

with 481 and 60 data points respectively.  Note that this bootstrap estimation of 
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uncertainty is additional to the 10-fold cross validation or bootstrapping included as part 

of the optimization of each model. 

The construction of models on the training data consisted of estimating a) LDA 

parameters of the discriminant function, b) the splitting rules for CART and c) the SVM 

coefficients based on the support vectors.  No parameters are required in application of 

the RF model.  The models were then used on the test data to estimate a prediction error.  

Each bootstrap run results in a contingency table between the actual and the predicted 

classes.  The average contingency table from all 500 runs was used to estimate the 

conditional probability of the observed class given the predicted class.  This conditional 

probability was used as a measure of reliability of a model to predict a specific class. 

Each of the bootstrap run contingency tables results can be used to obtain a 

estimate of the overall prediction error in terms of the fraction of sites misclassified.  We 

thus have 500 estimates of this error from which it is also possible to obtain a distribution 

of prediction error for each model.  The results report percentiles (5%, 50%, and 95%) of 

the overall prediction errors from each model estimated from these 500 runs.  These 

measures of the distribution of prediction error provide a way to assess the relative 

performance of the models. 

4.3.6. Relationship Between Watershed 

Attributes and Streamflow Regime Classes 

 

For a given set of streamflow regime classes, K, the empirical distributions of 

watershed attributes were examined to estimate the separation between distributions 

among classes.  The separation between distributions was quantified using the 
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Kolmogorov-Smirnov measure, D, where D is the maximum difference between the 

empirical watershed attribute distributions from two different streamflow regime classes.  

A high value of D is indicative of the discriminatory power of the attribute to distinguish 

between two classes.  The most discriminatory watershed attributes for each pair of 

streamflow regime classes was then identified based on their D measure.  The D measure 

helped identify which variables serve as discriminators between classes and where there 

are classes for which there are no strong discriminating variables, suggesting the need to 

search for additional variables that discriminate these classes. 

4.4. Results 

4.4.1. Linear Discriminant Analysis 

The average prediction error from 10-fold cross validation was found to generally 

level off after a certain number of variables for most classes, indicating a point of 

diminishing returns with added complexity (Figure 4.5).  From this analysis, we decided 

to use 5 predictor variables for K=4 and 10 predictor variables for classifications K=5 to 

8. 

The specific predictor variables for these LDA models were then identified based 

on their frequency of occurrence in the top pLDA positions in the 50 lists generated in the 

variable selection step (Table 4.4).  The list is ranked according to decreasing frequency.   

The results show that only watershed mean temperature (TMEAN_WS) appeared 

in all the five models, while ELEV_WS, XWD_WS and SQ_KM appeared in four, and 

precipjul, BDH_AVE and OMH_AVE appeared in three models.  There is some 
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indication of the particular classes these watershed attributes might be discriminating, but 

we cannot readily quantify such performance.  For example, watershed area becomes 

relatively more important for K≥6 possibly because watershed area is a surrogate for flow 

magnitude and class 6 is dominated by high flow magnitude streams.  Similarly, we 

suspect that ELEV_WS, XWD_WS are surrogates for class 1 streams (seasonal streams) 

and possibly for class 4 streams (big streams).  We also suspect that the appearance of 

soils/geology attributes mostly for K≥5 is distinguishing class 5 streams (base flow 

dominated) from other classes. 

4.4.2. Classification and Regression 

Trees  

Similar to LDA we see that prediction error reaches a plateau of diminishing 

returns at between 4 and 10 terminal CART nodes (Figure 4.6).  Ten terminal nodes were 

selected as the optimum size for each streamflow regime categorization.  CART models 

were then developed using the entire dataset with the optimized tree size.  The variables 

that CART identifies (Table 4.5) provide information on the quantities most able to 

discriminate streamflow classes.  Fewer than 10 variables appears in each of these models 

because the same variable may be used for multiple splits in CART.  XWD_WS and 

ELEV_WS appeared in all the five models, TMEAN_WS and Rdryness appeared in four, 

precipnov and SQ_KM appeared in three of the models.  The variables precipjan and 

precipnov were highly correlated (correlation coefficient = 0.94) and one of them were 

used in each one of the classifications, suggesting that some measure of winter 

precipitation was used by CART in all the models.  As for LDA, watershed area became 



129 

 

relatively more discriminative for K= 6, 7, and 8 which we suspect is distinguishing class 

6.  We examined the tree structures for varying datasets (during the bootstrapping 

analysis) and observed that attributes towards the terminal nodes changed but most trees 

usually used the watershed attributes mentioned above.  

4.4.3. Random Forests 

Similar to the previous methods, XWD_WS, precipnov, ELEV_WS and 

TMEAN_WS were relatively more important than other variables in all models (Figure 

4.7).  As for the other methods, the area attribute, SQ_KM, is relatively more important 

for K=6 to 8.  There are diminishing returns in terms of variable performance in 

discriminating between classes lower in the importance plot (Figure 4.7).  Most of the 

soil/geology attributes are near the bottom of the lists, indicating that they were not used 

very frequently by the RF models.  

4.4.4. Support Vector Machines 

The optimal SVM tuning parameters γ estimated from the 10-fold cross validation 

method for K= 4 to 8 were 32, 128, 32, 32 and 32, while the corresponding κ value was 

estimated to be 2
-10

, 2
-10

, 2
-10

, 2
-4

 and 2
-8

 respectively.  SVM models use all the watershed 

attributes and these parameters do not assist in identifying discriminating attributes.  

4.4.5. Uncertainty Estimation 

Examining the fractions of predictions that were correct for each class from each 

model (Table 4.6) indicates  that for K=4, the RF model was the most reliable predictor 

of classes 1, 3 and 4, while the LDA model was the most reliable predictor of class 2.  
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Percentiles (5%, 50%, and 95%) from the distribution of overall prediction error across 

the 500 bootstrap runs indicate for K=4 that overall RF has the least prediction error (50
th

 

percentile or median error = 25%).  For all models, the fraction of predictions that were 

correct was smallest for class 3.  56% of RF predictions for class 3 were correct.  This is 

the highest correct prediction fraction for class 3 when K=4.  

For K=8, the RF model was the most reliable predictor for classes 1, 3, 6 and 8.  

The LDA model was most reliable for classes 2 and 7; CART for class 4; and SVM for 

class 5.  Again, RF had the least prediction error for all percentiles (median error, 32%) 

making it a slightly better prediction method. 

For K=8, class 5 (BFI dominated streams), was not predicted well by any of the 

methods.  For this class SVM was relatively more reliable (21% correct predictions), 

while the other models were ineffective in predicting this class.  Further, in K=8, we 

found that 53% of LDA prediction as class 5 were actually from class 4; 98% of RF 

predictions were class 7 and 51% of SVM predictions were class 7.  

Overall for K=8, classes 1, 2, and 4 were relatively well predicted by all the 

methods.  Classes 3, 6, 7 and 8 contribute the most towards the overall prediction error 

with misclassification of these classes making up 61%, 66%, 68%, and 65% of total 

prediction error for LDA, CART, RF, and SVM, respectively. 

Overall the results indicate that it is generally possible to predict these natural 

streamflow regime classes from geographically derived watershed attributes with about 

70% accuracy.  The median error for LDA, CART, RF and SVM classifications into K= 
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4 to 8 streamflow regime classes ranged between 28-40, 30-47, 25-31 and 27-37% 

respectively.  The RF model was slightly better than the other models. 

4.4.6. Identifying Watershed Attributes That Are 

Discriminators of Streamflow Regime Classes 

The top 5 discriminators for each class pair was indentified based on their 

Kolmogorov-Smirnov statistic, D (Table 4.7).  Classes 1 and 2, seasonal streams and 

small predictable intermittent streams respectively, have the highest difference (max D = 

0.97), while classes 7 and 8, small predictable streams and small flashy streams 

respectively, are least distinguishable (max D= 0.42).  The capability for variables to 

discriminate between classes is also reflected in the separation of, and overlap between 

their cumulative distributions (Figure 4.8).  Aggregating the results in (Table 4.7) for 

K=8, the average D from the top 5 discriminators was 0.79, 0.84, 0.68, 0.83, 0.68, 0.71, 

0.635 and 0.622 for classes 1 to 8 respectively.  These average values support the 

prediction model results where classes 1, 2, 4 were relatively better predicted (have 

relatively higher D values and hence well discriminated) while classes 3, 5, 7 and 8 were 

more difficult to predict. 

4.5. Conclusions and Discussion 

The results indicate an improvement over previously reported values for 

predicting streamflow regime classes [Jowett and Duncan, 1990; Detenbeck et al., 2005; 

Beechie et al., 2006; Snelder et al., 2009].  Improvement may be due to the classification 

being different and a more comprehensive suite of predictive variables and statistical 
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methods being used.  The fact that flow magnitude is a factor in the classifcation may 

make prediction easier. 

The predictability of a specific class is a function of a) the model’s capability to 

describe the relationship between streamflow regime classes and watershed-attributes, b) 

availability of a good surrogate measure for discriminating the hydrologic characteristics 

of classes and c) the proportion of data points in the class. 

4.5.1. Statistical Models 

We found that relatively good results were obtained from all four statistical 

methods we evaluated, despite them having varying capability to handle linear and non-

linear relationships.  LDA requires  assumptions of normality of predictor variables and 

equivalence of class covariance matrices.  The fact that LDA performed comparably to 

the other methods (see Table 4.6) indicates that transformations of predictor variables to 

normal were sufficient.  LDA provided information about the discriminatory power of the 

watershed attributes used in the model through the variable selection process.  However, 

the process of LDA implementation was the most tedious among the four models used in 

this work.  CART is an attractive method because of its easy implementation and 

interpretation.  It can also handle both categorical and continuous predictor variables.  

However our examination of the trees resulting from multiple runs during the 

bootstrapping to optimize complexity indicated structural variability in the lower level 

splits.  Also it was the worst (albeit only slightly so) among the models compared in 

terms of prediction error (Table 4.6).  RF extends the mechanism of CART, but by using 

an internal bagging procedure similar to bootstrapping is designed to automatically 
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minimize the over-fitting.  RF quantifies the importance of watershed attributes which 

gives it some capability to help understand the interactions between watershed attributes 

and flow regime classes.  Implementing RF required the least amount of effort and 

overall RF had the best general performance (albeit only slightly so) in terms of 

prediction error (Table 4.6).  SVM is still subject to ongoing research and lacks good 

variable selection tools.  In our SVM implementation we used all watershed attributes 

and a simple grid based search for selecting the model parameters.  We found that SVM 

comes close in performance to the RF model (Table 4.6) and was the only model that 

could predict class 5 with any reliability albeit low.  This suggests that with better 

variable and parameter selection methods, SVM may potentially perform as well as or 

better than RF.  However, with SVM, it is difficult to understand the interaction between 

watershed attributes and streamflow regime classes because of the complicated kernel 

transformations that occur within the SVM model. 

Though RF was overall a better prediction method, we still suggest that other 

models be used in addition to RF because RF was not the most reliable predictor for all 

the classes (Table 4.6).  We expect that combining information from different models can 

potentially improve overall prediction. 

 4.5.2. Class specific Predictions 

It was evident in examining class specific prediction error (Table 4.6) that some 

classes are better predicted than others.  The pattern was generally consistent across 

models indicating that this was in most cases due to the class rather that one of the 

models discriminating capability.  This implies that some classes are poorly predicted 
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mainly due to the absence of good watershed attributes that can discern hydrological 

differences among the classes, and not the method of prediction.  This is also indicated by 

low Kolmogorov Smirnov (D) statistics and overlaps of the distributions of 

discriminating variables for the classes that are relatively poorly predicted (Table 4.7, 

Figure 4.8).   

However in certain cases there were model specific differences.  The most notable 

is for class 5 (in K=8) where all models except SVM failed completely in its prediction, 

while SVM performed better, albeit still poorly.  Much of this is due to the small sample 

size of class 5.  Other small sample size classes (class 3, 7, 8) also had lower correct 

predictions, but the better model in these cases was RF.  The difficulties due to small 

sample size of class 5 suggests attempting to include more class 5 type streams in future 

analyses. 

4.5.3. Watershed Attributes 

The models and measures of watershed attribute discriminating capability tended 

to consistently identify a similar set of watershed attributes (TMEAN_WS, XWD_WS, 

ELEV_WS, SQ_KM, and monthly precipitation through precipnov, precpjan or 

precipjul).  These attributes appeared in multiple models as well as having high D value 

for more than one pair of streamflow regime classes.  

Classes 1, 2, and 4 have a relatively high measure of D, while class 5 made up of 

baseflow dominated streams has relatively small values of D (Table 4.7 and Figure 4.8) 

indicating the presence of attributes that can discern classes 1, 2, and 4, but a lack of 

attributes that discern class 5 and to some extent classes 7 and 8.  Class 7 and class 8 
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were least separated from each other (smallest D value among the pair of classes).  The 

main difference between these two classes is the flashiness represented by the number of 

flow reversals.  This hydrologic characteristic does not appear to have a good surrogate 

among the watershed attributes used in this study and hence class 7 and 8 were often 

misclassified as one another.  Class 3 had a similar problem and was not well 

distinguished from 7 or 8. 

We suggest that overall and class specific prediction can be improved not so 

much by using another method but by developing or identifying better watershed 

attributes that can distinguish the hydrological characteristics between the streamflow 

regime classes. 

Identifying better discriminators is especially significant for baseflow dominated 

streams (class 5) because of their importance for biota.  Further, better discriminators for 

small unpredictable streams (class 7) and small flashy streams (class 8), should 

significantly increase the performances of the models. 
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Table 4.1. Variables Used for Streamflow Regime Classification from Daily Mean Streamflow Data 

 

 

  

Streamflow variables Description 

BFI Average across all years of the ratios of the annual lowest daily flow to the annual average 

flow expressed as a percentage. 

DAYCV Coefficient of variation of daily mean streamflow. 

Qmean Mean daily discharge. 

Q1.67 Daily flow with a 1.67 year recurrence interval.  See Poff [1996] 

ZERODAYS Average number of days each year with zero discharge. 

FLDDUR Flood duration calculated as the average number of days per year when flow equals or 

exceeds Q1.67.   

P Colwell’s [1974] predictability. 

C Colwell’s [1974] constancy. 

M Colwell’s [1974] contingency. 

7Qmin Average of annual minimum 7 day mean streamflow.   

7Qmax Average of annual maximum 7 day mean streamflow.   

R  Average number of flow reversals per year.  Flow-reversals are defined from the daily mean 

streamflow as days when the trend (increasing or decreasing) from the previous day is 

reversed. 
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Table 4.2. Loadings for the Varimax Rotated PC Factors from Normalized (Box-Cox) Streamflow Variables.  High Loadings are 

in Bold Font 

Factors 1 2 3 4 5 6 7 

BFI -0.299 0.006 -0.175 0.157 0.060 0.097 0.895 

DAYCV 0.045 -0.215 0.336 -0.125 -0.316 -0.210 -0.769 

QMEAN -0.091 0.928 -0.204 -0.017 0.152 0.141 0.207 

ZERODAYS 0.813 -0.235 0.174 0.012 -0.221 -0.162 -0.408 

Q1.67 -0.080 0.951 -0.120 -0.199 0.115 0.122 0.035 

FLDDUR 0.002 -0.181 0.040 0.967 0.043 0.005 0.171 

P 0.078 -0.144 0.930 0.014 0.181 -0.152 -0.203 

C 0.127 -0.268 0.822 0.060 -0.350 -0.139 -0.272 

M -0.157 0.225 -0.004 0.047 0.927 0.101 0.209 

minQ7  -0.200 0.672 -0.250 0.049 0.182 0.185 0.582 

maxQ7  -0.071 0.981 -0.084 -0.086 0.080 0.089 0.005 

R  -0.135 0.274 -0.238 0.005 0.119 0.885 0.226 

Descriptive 

characterization 

 

Zero flow 

days 

 

Magnitude 

 

Predictability 

Flood 

duration 

 

Seasonality 

 

Flashiness 

 

Baseflow 
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Table 4.3. Watershed Attributes Used in the Statistical Models to Predict the Flow Regime Class 
Metric Description Unit Source 

XWD_WS Watershed average of the annual mean of the PRISM mean monthly number of days with 

measurable precipitation. 

DAYS PRISM 

TMIN_WS Watershed average of the coldest month's PRISM mean monthly air temperature  
o
C PRISM 

TMAX_WS Watershed average of the warmest month's PRISM mean monthly air temperature  
o
C PRISM 

TMEAN_WS Watershed average of the annual mean of the PRISM mean monthly air temperature  
o
C PRISM 

MINP_WS Watershed average of the driest month's PRISM mean monthly precipitation  mm PRISM 

MAXP_WS Watershed average of the wettest month's PRISM mean monthly precipitation  mm PRISM 

MINWD_WS Watershed average of the number of wet days in the month with fewest wet days from the PRISM 

mean monthly number of days with measurable precipitation  

days PRISM 

MAXWD_WS Watershed average of the number of wet days in the month with most wet days from  the PRISM 

mean monthly number of days with measurable precipitation 

days PRISM 

MEANP_WS Watershed average of the annual mean of the PRISM mean monthly precipitation mm PRISM 

RH_WS Watershed average of the annual mean of the PRISM mean monthly relative humidity % PRISM 

SD_TMIN_WS Standard deviation across each watershed of the coldest month's PRISM mean monthly air 

temperature.. SD_MIN_WS measures thermal heterogeneity within a watershed during the coldest 

period of the year. 

o
C PRISM 

SD_TMAX_WS Standard deviation across each watershed of the warmest month's PRISM mean monthly air 

temperature . SD_MAX_WS measures thermal heterogeneity within a watershed during the hottest 

period of the year. 

o
C PRISM 

LST32_AVE Watershed average of the mean day of year (1-365) of the last freeze derived from the PRISM data. day  

PETbar Watershed average mean annual potential evapotranspiration mm [Vörösmarty 

et al., 1998] 

Rdryness Climate dryness index [see Woods, 2003], the ratio of PETbar to MEANP_WS -  

deltaE Seasonal amplitude of potential evapotransipiration [see Woods, 2003] - Derived from 

[Vörösmarty 

et al., 1998] 

deltaP Seasonal amplitude of rainfall [see Woods, 2003] - Derived from 

PRISM 

Seasonality Climate seasonality index, |deltaP-deltaE. Rdryness| [see Woods, 2003]   

precipJan Watershed average mean January precipitation mm PRISM 

precipmay Watershed average mean May precipitation mm PRISM 

precipjul Watershed average mean July precipitation mm PRISM 

precipsep Watershed average mean September precipitation mm PRISM 

precipnov Watershed average mean November precipitation mm PRISM 
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Table 4.3. Continued 
SQ_KM Watershed area Km

2
 derived from 

NED 

ELEV_WS Mean watershed elevation Meter derived from 

NED 

ELEV_MIN Minimum elevation in the watershed derived from the National Elevation Dataset and watershed 

boundaries. 

Meter derived from 

NED 

ELEV_MAX Maximum elevation in the watershed derived from the National Elevation Dataset and watershed 

boundaries 

Meter derived from 

NED 

ELEV_STD Standard deviation of elevation (meters) across the watershed 

 

Meter derived from 

NED 

SHAPE1 Ratio of the watershed area to the square of the longest distance to the outlet on the flow path - derived from 

NED 

MeanSlp Watershed average topographic slope  derived from 

NED 

StdSlp Watershed standard deviation of topographic slope  derived from 

NED 

DDEN Drainage density (see Knighton [1998]) in meters of stream per square meter of watershed 

determined from the stream network as created from drop analysis [Tarboton and Ames, 2001] 

per 

Meter 

derived from 

NED 

RRMEDIAN Dimensionless elevation - relief ratio (from Pike and Wilson [1971]), calculated as (ELEV_MED-

ELEV_MIN)/(ELEV_MAX-ELEV_MIN) where ELEV_MED is the median elevation within a 

watershed 

- derived from 

NED 

GNEISS % of gneiss geology in the watershed derived from a simplified version of Reed & Bush (2001) - 

Generalized Geologic Map of the Conterminous United States. 

%  

VOLCANIC % of volcanic geology in the watershed derived from a simplified version of Reed & Bush (2001) - 

Generalized Geologic Map of the Conterminous United States. 

%   

SDMNTRY  % of sedimentary geology in the watershed derived from a simplified version of Reed & Bush 

(2001) - Generalized Geologic Map of the Conterminous United States. 

%  

GRANITIC % of granite geology in the watershed derived from a simplified version of Reed & Bush (2001) - 

Generalized Geologic Map of the Conterminous United States. 

%  

AWCH_AVE Watershed mean high values of available water capacity of soils  fraction STATSGO 

BDH__AVE Watershed mean high values of soil bulk density g/cm3 STATSGO 

KFCT_AVE Watershed mean soil erodibility factor   - STATSGO 

OMH_AVE Watershed mean high value of soil organic matter content  % by 

weight 

STATSGO 

PRMH_AVE Watershed mean high values of soil permeability inches/hr STATSGO 
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Table 4.3. Continued 
WTDH_AVE Watershed mean high values of seasonally high water table.  STATSGO reports the high and low 

values for “seasonally high water table”.  This is the watershed mean of high values. 

Feet STATSGO 

RDH_AVE Watershed mean high values of depth to bedrock cm STATSGO 
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Table 4.4. Watershed Attributes Selected from Five Repetition of 10-Fold Cross 

Validation for LDA Models and Ranked Based on Their Frequency in the Top pLda 

Positions.  

K=4 5 6 7 8 

ELEV_WS ELEV_WS ELEV_WS SQ_KM SQ_KM 

TMEAN_WS TMEAN_WS GRANITIC precipsep TMEAN_WS 

XWD_WS ELEV_STD SQ_KM TMEAN_WS precipsep 

BDH_AVE RDH_AVE TMEAN_WS precipjul SD_TMAX_WS 

precipjul XWD_WS precipsep deltaE deltaP 

 PRMH_AVE SD_TMAX_WS SDMNTRY precipnov 

 StdSlp SDMNTRY OMH_AVE XWD_WS 

 SQ_KM BDH_AVE ELEV_WS MAXP_WS 

 BDH_AVE XWD_WS GRANITIC GRANITIC 

 precipjul OMH_AVE precipnov OMH_AVE 
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Table 4.5. Watershed Attributes for Optimized CART Models 

K=4 5 6 7 8 

XWD_WS XWD_WS ELEV_WS ELEV_WS ELEV_WS 

ELEV_WS ELEV_WS Rdryness XWD_WS XWD_WS 

precipnov Rdryness TMEAN_WS TMEAN_WS SQ_KM 

TMEAN_WS TMEAN_WS XWD_WS SQ_KM MEANP_WS 

 TMIN_WS SQ_KM precipjan Precipjan 

 BDH_AVE precipnov Rdryness Rdryness 

 precipmay deltaE   

 precipnov    
 

  



147 

 

Table 4.6. Prediction Error and Model Reliability Quantified by the Fraction of 

Correct Predictions of a Class 

K  

Number 
of 

points 
in class 

Fraction of predictions that were 
correct 

LDA CART RF SVM 

4 

Classes 

1 160 0.701 0.756 0.771 0.759 

2 140 0.803 0.758 0.760 0.746 

3 113 0.504 0.470 0.562 0.553 

4 128 0.821 0.781 0.856 0.833 

Percentile 
Prediction 
Error 

5   20.00 20.00 16.67 18.33 

50   28.33 30.00 25.00 26.67 

90  36.67 41.67 33.33 35.00 

8 

Classes 

1 94 0.691 0.555 0.721 0.647 

2 97 0.829 0.730 0.789 0.815 

3 32 0.270 0.129 0.523 0.515 

4 94 0.787 0.860 0.778 0.809 

5 14 0.000 0.000 0.022 0.215 

6 101 0.605 0.428 0.627 0.529 

7 60 0.477 0.227 0.468 0.383 

8 49 0.354 0.183 0.403 0.386 

Percentile 
Prediction 

Error 

5   30.00 36.67 21.67 26.67 

50   40.00 46.67 31.67 36.67 

90   48.33 58.33 40.00 46.67 
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Table 4.7. Kolmogorov-Smirnov Statistic (D) Based Top 5 Discriminators for Each Pair of Streamflow Regime Classes for K=8. 

 2 3 4 5 6 7 8 

1 

MINP_WS 0.97 XWD_WS 0.82 TMIN_WS 0.90 TMEAN_WS 0.68 SQ_KM 0.70 TMEAN_WS 0.64 TMEAN_WS 0.79 

TMAX_WS 0.97 LST32AVE 0.81 ELEV_WS 0.86 LST32AVE 0.64 TMEAN_WS 0.51 TMIN_WS 0.62 MINP_WS 0.77 

LST32AVE 0.96 deltaP 0.80 precipnov 0.86 TMIN_WS 0.62 TMAX_WS 0.44 MINP_WS 0.60 TMAX_WS 0.75 

XWD_WS 0.93 TMEAN_WS 0.80 LST32AVE 0.84 AWCH_AVE 0.60 DDEN 0.43 precipmay 0.59 LST32AVE 0.72 

deltaP 0.90 TMAX_WS 0.79 TMEAN_WS 0.84 MeanSlp 0.54 ELEV_STD 0.42 XWD_WS 0.58 TMIN_WS 0.65 

2 

    AWCH_AVE 0.65 MAXWD_WS 0.94 LST32AVE 0.91 LST32AVE 0.86 ELEV_WS 0.80 ELEV_WS 0.72 

   ELEV_STD 0.49 XWD_WS 0.94 SDMNTRY 0.81 ELEV_WS 0.84 AWCH_AVE 0.73 SD_TMAX_WS 0.67 

   MeanSlp 0.49 Rdryness 0.93 ELEV_WS 0.77 TMAX_WS 0.81 TMAX_WS 0.68 SDMNTRY 0.61 

   MAXWD_WS 0.49 precipnov 0.91 XWD_WS 0.75 SD_TMAX_WS 0.79 LST32AVE 0.68 MeanSlp 0.60 

   deltaE 0.48 MEANP_WS 0.85 MINP_WS 0.74 MINP_WS 0.78 SD_TMAX_WS 0.66 ELEV_STD 0.59 

3 

        XWD_WS 0.84 LST32AVE 0.75 LST32AVE 0.71 LST32AVE 0.53 deltaE 0.47 

     MAXWD_WS 0.84 XWD_WS 0.66 TMAX_WS 0.63 TMAX_WS 0.52 MINP_WS 0.45 

     Rdryness 0.82 SDMNTRY 0.63 XWD_WS 0.61 TMEAN_WS 0.49 TMEAN_WS 0.44 

     MEANP_WS 0.77 TMEAN_WS 0.63 TMEAN_WS 0.61 MINP_WS 0.49 LST32AVE 0.40 

        precipnov 0.76 MINP_WS 0.61 deltaE 0.59 precipmay 0.46 SD_TMAX_WS 0.40 

4 

            LST32AVE 0.68 precipnov 0.82 precipnov 0.78 Rdryness 0.82 

       TMIN_WS 0.67 ELEV_WS 0.80 Rdryness 0.77 MAXWD_WS 0.79 

       precipnov 0.67 MEANP_WS 0.77 RH_WS 0.77 precipnov 0.77 

       RH_WS 0.64 TMIN_WS 0.76 ELEV_WS 0.77 MEANP_WS 0.77 

            MeanSlp 0.63 LST32AVE 0.74 MAXWD_WS 0.75 XWD_WS 0.71 

5 

                SQ_KM 0.59 AWCH_AVE 0.58 RDH_AVE 0.55 

         AWCH_AVE 0.53 MeanSlp 0.53 SDMNTRY 0.48 

         SD_TMAX_WS 0.53 StdSlp 0.53 Sseasonality 0.47 

         TMEAN_WS 0.50 VOLCANIC 0.47 Rdryness 0.47 

                GRANITIC 0.49 SQ_KM 0.44 MINP_WS 0.45 

6 

                    SQ_KM 0.70 TMEAN_WS 0.59 

           XWD_WS 0.43 LST32AVE 0.52 

           WTDH_AVE 0.41 MINP_WS 0.49 

           DDEN 0.41 TMAX_WS 0.46 

                    RH_WS 0.38 deltaP 0.46 
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Table 4.7. Continued 

7 

                        TMAX_WS 0.42 

             AWCH_AVE 0.39 

             SHAPE1 0.36 

             LST32AVE 0.35 

                        SQ_KM 0.35 

 



 

 

Figure 4.1. An example 

sequence of binary rules operating on the input vector 

j
th

 attribute, where j=1..p.

 
ample of CART's tree structured classification approach 

sequence of binary rules operating on the input vector split the data into classe

.  

150 

tree structured classification approach where a 

the data into classes.  x(j) is the 
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Figure 4.2. An example demonstrating SVM algorithm for two classes (y∈{-1,1}) and 

x ∈ R
2
.  ξ*

i =C ξi is the amount by which the points are on the wrong side of the margin.  

x(j) is the j
th

 attribute, where j=1..p.  
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Figure 4.3. Stream gauge sites and their K=8 flow regime class.  1. Seasonal streams 

2. Smaller predictable intermittent streams with low baseflow.  3. Mid-size perennial streams with low 

seasonality.  4. Big streams with low predictability.  5.  Baseflow dominated streams.  6. Big seasonal 

streams.  7. Small unpredictable streams.  8. Small flashy streams. 
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Figure 4.4. Flow chart describing the 10 fold cross validation and the uncertainty 

estimation from the four methods. 
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Figure 4.5. Average prediction error from Linear Discriminant Analysis K=4 to K=8 

streamflow regime class predictions from five repeats of 10 -fold cross validation.  
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Figure 4.6. Average prediction error from CART K=4 to K=8 streamflow regime 

class predictions from 10 -fold cross validation. 
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Figure 4.7. Variable importance plot from RF models.



157 

 

 
Figure 4.8. Distribution of the best discriminator for each pair of streamflow regime 

classes.  The pair of numbers following the name of the watershed attribute refer to the 

classes and the second class is plotted in red. Watershed attributes are standardized. 
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CHAPTER 5 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

This dissertation has considered the characterization of streamflow regimes for 

the purpose of understanding the relationship between hydrology and stream biota in 

terms of richness and composition.  For a comprehensive treatment of such a purpose, it 

is essential to be able to predict streamflow regimes at ungauged sites and estimate the 

uncertainty associated with such predictions.  It is also important to be able to efficiently 

derive watershed attributes used in this prediction.  Chapters 2 through 4 present the main 

results of this dissertation.  In this chapter I summarize important conclusions from these 

chapters and suggest directions and opportunities for future research. 

5.1. Summary and Conclusions 

The major objectives of this dissertation were to 1) classify streamflow regimes in 

the western US based on ecologically relevant streamflow variables, 2) quantify how 

strongly invertebrate taxa richness and composition were associated with variation in 

flow regime and stream temperatures, 3) develop a GIS based tool to delineate multiple 

watersheds and derive watershed attributes, 4) predict streamflow regime classes at 

ungauged sites from watershed attributes using different statistical approaches and assess 

their performances, 5) quantify the uncertainties associated with each of the prediction 

methods, and 6) identify key watershed attributes that are important in predicting the 

streamflow regime classes. 

In paper 1 (Chapter 2), we identified and evaluated 12 ecologically relevant 

streamflow regime variables at 543 gauged watersheds from the USGS Hydro Climatic 



159 

 

 

Data Network dataset.  Principal Component Analysis was used to reduce the dimension 

from 12 to seven statistically orthogonal streamflow regime factors that represent the 

following aspects of streamflow regime: 1) zero flow days, 2) magnitude, 3) 

predictability, 4) flood duration, 5) seasonality, 6) flashiness, and 7) baseflow.  These 

factors were then used in K-means clustering to develop classifications consisting of 4 to 

8 streamflow regime classes.  We used invertebrate data from 63 gauged sites to test 

biota-flow regime and biota-temperature relationships.  The test was carried out by first 

grouping the 63 sites into six biotic classes based on their taxonomic composition and 

taxa richness and then the probability of a biotic class was predicted by Random Forest 

models with flow characterizations and temperature as predictors. 

From this analysis, we found that models predicting taxonomic composition from 

streamflow regime and temperature performed substantially better than null models.   

Models just using streamflow regime were still better than null models and the best 

prediction was achieved when both streamflow and temperature were used as predictors.  

However, we found only weak to moderate association between streamflow regime and 

taxa richness.  For the data used, we identified baseflow index to be most directly 

associated with the invertebrate biotic composition. 

Classification based approaches are preferred by ecosystem mangers because they 

are generally easier to communicate and implement.  From the conditional probabilities 

based on streamflow regime classifications, we were able to predict biotic class 

membership as well as Random Forest models based on continuous variables.  This result 

suggests that a simple biotic class prediction based on classification of streamflow regime 
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groups is possible and can be used to predict taxonomic compositions from the 

streamflow regime classifications. 

One of the main sources of uncertainty in comparing streamflow regimes of two 

or more watersheds arises from the streamflow record used in the characterization.  In an 

ideal scenario, we would prefer to have natural streamflow records for all watersheds to 

be from the same period and extending up to the date of biological sampling.  Due to 

imperfect data having varying periods of record, there is a possibility that climate 

variability influences the streamflow regime characterization.  This needs to be 

considered when watershed management plans based on such characterizations are 

formulated. 

As for many regional-scale studies examining the effects of environmental factors 

on stream ecosystems [Poff and Ward, 1990; Poff, 1996; Baeza Sanz and Garcia del 

Jalon, 2005], the basic spatial unit in this dissertation is a watershed.  In this dissertation 

watershed data was obtained by first delineating a watershed boundary and related stream 

network from DEMs and then applying the geographical boundary of the watershed to 

spatial data that characterizes climate and soil/geology to obtain statistical measures such 

as mean, standard deviation etc for each watershed.  This was done in Chapter 3.  The 

resulting watershed attribute data was then used in Chapter 4 in models for predicting the 

streamflow regime classes at ungauged locations. 

The emphasis on watershed approaches to address water resources related 

questions has led to increased demand for watershed delineations and information 

derived from them.  Furthermore, many of these studies are done at regional scales, 

where quick derivation of stream networks, watershed boundaries, and characteristics at a 
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large number of locations, spread across large areas is desired. Delineating a large 

number of watersheds spread across large regions is a challenge because, firstly, the 

coordinate of the outlet may not coincide with the digital representation of the stream.  

When only few watersheds are delineated, this is not a major problem, but when 

hundreds of watersheds are being delineated, this can become cumbersome.  Secondly, 

delineating watersheds across broad geographic areas requires grid datasets that are may 

tax the memory of available computers.   

Chapter 3 presents a Multi-watershed delineation (MWD) tool developed using 

ArcGIS and TauDEM functionality to enhance the capability for delineating multiple 

watersheds over large areas.  The MWD tool is designed to quickly create watershed 

boundaries and derive other geomorphological attributes of the watershed for a large 

number of watersheds across broad geographical regions.  

Delineating watersheds requires various DEM derived grids that represent the 

hydrologic characteristics of the landscape.   They are: 1) pit filled elevation grid, 2) flow 

direction grid, 3) flow accumulation grid, and 4) digital stream grid (to identify the 

correctness of the outlet position).  The creation of these grids is resource intensive but 

once created can be reused for delineating watersheds with the same region [Djokic, 

2000].  The MWD tool uses this idea and preprocesses all the required grids before the 

actual delineation.   

To solve the problem of the imprecise position of the outlet, the MWD tool moves 

an outlet that is not on a digitally delineated stream downhill by following the flow 

direction grid until it comes into contact with the stream.  The watershed is then 

delineated for this new position of the outlet. The MWD tool solves the problem of 
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memory required for large grids by automatically clipping large hydrologic grids to the 

size of regional watersheds called Medium Hydrologic Units (MHU) that are a more 

manageable size.  The MHU may be created from regional scale USGS hydrologic units 

such as 8 digit HUCs.  The MWD tool uses the MHU to clip only the area required for 

delineation from the necessary hydrologic grids.  During the clipping process, a buffer is 

added to the MHU to ensure that the polygon captures the hydrologic boundary present in 

the landscape.  Each site within a MHU is then delineated by using the common routines 

available within TauDEM program [Tarboton and Ames, 2001]. 

The MWD tool comes in two versions; 1) Graphical User Interface (GUI) 

standalone program and 2) command line executable.  The GUI version is user friendly 

but can handle only one grid set at a time. In most of our cases, this grid set encompassed 

only a few 8 digit HUCs.  The command line version can be used in a batch process to 

delineate multiple grid sets.  In one of our runs, we ran the command line version in a 

batch process for almost two days to delineate 441 watersheds and their 

geomorphological attributes (drainage area: 15 to 12416 km
2
).  We used a DEM with 

approximately 30 m grid cell resolution and the resulting watersheds were spread across 

13 states of the western US.  The watershed boundaries created by this tool were later 

used to estimate different statistics from other spatial datasets (climate, soils and 

geology).  These watershed attributes were then used in statistical models for predicting 

streamflow regime classes. 

In paper 3 (Chapter 4), we used four popular statistical classification models; 1) 

Linear discriminant methods, LDA [see Hastie et al., 2001], 2) Classification and 

Regression Trees, CART [Breiman et al., 1984], 3) Random Forests, RF [Breiman, 
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2001], and 4) Support Vector Machines, SVM [see Vapnik, 1998] to predict the 

streamflow regime classes of chapter 2 at ungauged sites from watershed attributes.  We 

used 541 of the sites used in paper 1 (Chapter 2) for this study.  Two of the sites used in 

paper 1 were excluded as they were considered as outliers in one or more watershed 

attributes.  Excluded watersheds had elevation related statistics that were high compared 

to the others and their removal resulted in better Box-Cox transformations for those 

attributes and satisfied the LDA assumptions better.  These watersheds we suppose would 

not have affected other methods, as they are known to handle outliers better. 

We used a 10 fold cross validation method with LDA, CART and SVM to 

optimize relevant model parameters.  In the case of LDA, the 10 fold cross validation 

method was repeated 5 times to get a stable estimate of the number of parameters 

required to minimize the prediction error.  The 10 fold cross validation step was also used 

in selecting the specific watershed attributes that were most important for LDA models.  

The 10 fold cross validation method was used to optimize the tree size in CART and, the 

cost and slack parameters in SVM.  RF effectively represents a cross-validation extension 

of CART and does not require any additional cross-validation for optimization or 

selection of watershed attributes. 

Optimized models were then used in a bootstrapping method for assessing the 

uncertainties in model predictions.  For each of the 500 runs in the bootstrapping step, we 

randomly divided the data into a training set (481 data points) and testing set (60 data 

points) and developed each of the four models using the training set, then predicted the 

streamflow regime classes of the test dataset.  The distribution of the classification error 

from 500 runs was used to compare the performance of the models.  The average 
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contingency table between the predicted and the actual classes from all 500 runs was used 

to estimate the conditional probability that the predicted class was correct.  This was used 

as a measure of reliability of a model to predict a specific class.   

For a given set of streamflow regime classes, K, the empirical distributions of 

watershed attributes were examined. The power of a watershed attribute to distinguish 

between two classes was quantified by the separation between distributions using the 

Kolmogorov-Smirnov measure, D.   

We found that classes 1, 2, and 4 were relatively well predicted, class 6 was 

moderately well predicted and classes 3, 5, 7, and 8 were poorly predicted.  This behavior 

consistent across the different models suggests that some classes are poorly predicted due 

to the absence of watershed attributes that could discern the hydrological differences 

between the classes.  For example, classes 1, 2, and 4 have relatively high measure of D 

for the attributes that are most discriminating between them, while class 5 made up of 

baseflow dominated streams has relatively small values of D for its most discriminating 

attributes with other classes.  Another aspect contributing to the poor prediction of class 5 

is its size.  In the 8 class categorization (K=8), class 5 had only 14 sites and this makes it 

difficult for the statistical models to predict it.  Class 7 and class 8 were least separated 

from each other (smallest D value among the pair of classes). The main difference 

between these two classes is the flashiness represented by the number of reversals on the 

daily streamflow.  This hydrologic characteristic is apparently not related to the 

watershed attributes used in this study and hence class 7 and 8 were often misclassified as 

one another.  Class 3 had similar problem and was not well distinguished from classes 7 

or 8. 
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The median error for LDA, CART, RF and SVM classifications into K=4 to 8 

streamflow regime classes from watershed attributes ranged between 28-40, 30-47, 25-

31, and 27-37%, respectively.  This suggests that predictions of class for ungauged basins 

is possible with about 70% accuracy, and that the RF model was slightly more reliable 

than the other models.  Scrutiny of the results revealed that RF was the most reliable in 

predicting four classes (1, 3, 6, and 8) while LDA was reliable for two (classes 2 and 7). 

CART and SVM were most reliable for one class each, classes 4 and 5, respectively. 

When the underlying assumptions of LDA are met and a robust variable selection 

is employed, LDA generally can perform very well.  But LDA is not very well suited for 

modeling non-linear relationships and the implementation was the most tedious among 

the methods used in this study.  CART on the other hand can handle non-linear 

relationships very well and the interpretation is most intuitive, but it is very sensitive to 

the data used to develop the model.  Hence CART had a somewhat larger prediction 

error.  Distributions of prediction error support the finding based on the median that RF 

performs slightly better than the other models with a better overall accuracy.  Even 

though with RF it is not as easy as CART to understand the relationship between 

streamflow regime classes and watershed attributes, some degree of interpretability is 

offered by the variable importance plots.  Also, the fact that RF required the least amount 

of effort in terms of its implementation makes it an attractive method.  Nevertheless, 

there still appears to be merit in using multiple methods because RF was not always the 

most reliable method when class specific prediction was considered. 

SVM is still subject to ongoing research with relatively few studies in hydrology 

and ecology.  SVM as implemented here performed almost as well as RF and was the 
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only model that could predict class 5 with any reliability albeit low.  It is possible that 

with good variable selection and better optimization methods, SVM can predict as well as 

or better than RF.  However, with SVM it is very difficult to interpret the relationship 

between streamflow regime classes and the watershed attributes because of the 

complicated kernel transformations that occur within the SVM model. 

5.2. Recommendations 

From a broader perspective this dissertation has attempted to develop the 

foundation needed in regional stream ecological studies to understand the effects of 

environmental components on the structure and function of stream ecosystems.  As a 

result there are a number of avenues that can be foreseen for carrying ahead this research. 

Foremost among the needs to carry on this research would be to procure 

additional biological data at gauged sites.  This would enable a better research design for 

studies relating ecology and streamflow regimes as it would avoid the uncertainties 

involved in predicting the streamflow regime. 

The paradigm of natural streamflow regime [Richter et al., 1996; Poff et al., 

1997] posits that the magnitude, frequency, duration, timing, and rate-of-change of 

streamflow are important components of flow regime that directly influence the 

ecological processes and patterns [Poff et al., 2006].  However there is no uniformity in 

the use of specific streamflow regime variables to represent these components and the 

choice of streamflow variables affects the characterization and its ability to partition the 

naturally occurring biota.  We argue here that the choice should be based on the 

ecological questions being addressed and may require iteration on variable selection to 

identify the best set of streamflow regime variables.   



167 

 

 

This dissertation provides a framework for testing different streamflow regime 

variables for their ability to describe biotic variation.  For example, in our analysis we 

found that the average number of reversals had a weak relationship with both taxa 

richness and biotic class.  For the next iteration, number of reversals can be replaced or 

excluded to refine the streamflow regime characterization before testing against 

taxonomic richness and composition.  The process of iteratively selecting the variables 

can be repeated to arrive at a streamflow regime characterization with maximum power 

for describing biotic variation.  The variables identified in such a process may also 

provide information on the specific streamflow variables that are most important for the 

biota.   

Some of the aspects of streamflow regime that we are interested in examining 

further  within the above framework are: (1) timing variables – Colwell’s seasonality that 

was used as a timing variable used is only representative of the average timing of the 

seasonal cycle and it might be beneficial to use specific timing variables for peak and low 

flows, (2) low flow duration variables - similar to the flood duration, and (3) scaled high 

flow variables – this is to test variables that quantify the relative magnitude of high flows 

similar to the way base flow index quantifies the relative magnitude of low flows.  These 

variables according to us could possibly increase the ecological relevance of the 

streamflow regime characterization.  

In the previous section the possibility of climatic variations affecting the 

streamflow regime characterization was briefly mentioned.  One approach to address this 

issue is to use hydrologic models [e.g. Wigmosta et al., 1994; Beven et al., 1995] to 

generate streamflow regimes for observed and forecast climate scenarios.  Though 
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challenging to implement at large scales for multiple sites, detailed hydrologic models are 

increasingly gaining prominence for studying the effects of climatic variations on 

regional hydrology and can also provide opportunities for studying the effects of climate 

change on stream ecology. 

The MWD tool described in Chapter 3 is able to delineate multiple watersheds 

spread across large geographical regions based on the assumption that the watershed 

being delineated is contained within the MHU which is generally an 8 digit HUC.  To 

meet this assumption, when delineating watersheds larger than an 8 digit HUC we have 

to use a 4 digit HUCs as MHUs and 2 digit HUC as LHU (larger regional watersheds).  

Moving from 4 digit HUCs to 2 digit HUCs also means a coarser DEM (commonly 90m 

DEM) for delineating watersheds and its attributes.  The use of coarser DEM is not 

always desirable and may need a better solution.  The underlying watershed delineation 

functions of the MWD tool are directly from TauDEM and the TauDEM capabilities 

have recently been enhanced to handle big DEMs via parallel programming [Wallis et al., 

2009a, 2009b].  Using the improved functionalities of TauDEM within the MWD concept 

could greatly improve the ability to handle very large DEMs without compromising the 

DEM resolution. 

In Chapter 4, four popular statistical methods were used to predict only 

classifications, the discrete characterization, even though seven continuous factors were 

also used to relate the streamflow regime to taxa richness and composition.  Statistical 

models can be developed for predicting continuous streamflow regime variables to 

complete the overall characterization of the streamflow regime at ungauged sites.  Three 
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of the four methods (CART, RF and SVM) used in this study can be implemented for 

continuous variables without any major modifications to complete this task. 

The SVM as mentioned earlier is a subject of active research within the machine 

learning and data mining community.  The R library used to implement the SVM has a 

weak grid-search based optimization method to select model parameters and does not 

have any type of variable selection procedure.  The SVM if updated with a better 

optimization and variable selection method can potentially improve the capability of 

predicting steamflow regime characterizations. 

The pattern of prediction across classes was consistent across the different 

models.  For example, class 5 was poorly predicted, while class 1, 2 and 4 were relatively 

better predicted by all the methods.  This pattern implies that some classes are poorly 

predicted mainly due to the absence of good watershed attributes that can discern the 

hydrological differences among the classes and not the method of prediction.  This view 

is further supported by the range of model capabilities used in this study.  It is imperative 

to identifying better discriminators in order to increase the prediction performances of the 

model.  Better discriminators for class 5 (base flow dominated streams), class 7 (small 

unpredictable streams) and class 8 (small flashy streams) are needed to increase the 

correct prediction percentage. 

The key objective of paper 3 (Chapter 4) was to predict the streamflow regime 

classes at ungauged sites.  Chapter 4 developed these capabilities using only gauged sites.  

The natural progression of this research then would be to predict the streamflow regime 

at the actual ungauged sites where we have the biology data and test the associations 

between biology and streamflow regime at these ungauged sites, similar to the methods in 
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Chapter 2.  Such a study should assess the possible implications of uncertainties 

emanating from the streamflow regime prediction models. 

This dissertation lays the ground work necessary to evaluate the ecological health 

of streams as it relates to hydrology.  It provides the tools and knowledge base for 

assessing the overall affects of environmental factors on the structure and function of 

stream ecosystems.  The streamflow characterizations created in this dissertation make up 

one piece of the puzzle needed to answer the questions asked in the original proposal 

funded by the EPA: 

(1) can sequential application of classifications based on different types of 

watershed attributes provide insight regarding the stressors affecting aquatic 

ecosystem? 

(2) can a watershed classification derived from a multivariate analysis of the joint 

variation in different types of watershed attributes achieve greater effectiveness in 

partitioning biotic variation among watersheds than classifications based on single 

factors? 

Carrying forward this research to answer the above questions is vital to meet the 

goals of the Clean Water Act mentioned in Chapter 1 and is of great interest to the 

watershed science community involved in developing sustainable water management 

policies and practices. 
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Appendix A 

This appendix provides information about the USGS streamflow gauge sites and 

the period of record used to estimate the 12 streamflow regime variables in Chapter 2.  It 

also provides a map of these sites along with their watershed boundaries.  The sites in the 

map (Figure A.1) are labeled to refer the first column of Table A.1. 

 

Table A.1. Streamflow Site Information.  The Index Column is Used to Label the 

Sites in Figure A.1 
Inde

x 

Site name USGS 

code 

Drainage 

Area, 

Sq. km 

NAWQA 

Site 
Periods used 

1 HIDDEN ISLAND COULEE NR 

HANSBO 

5098700 97  1962-1988 

2 CYPRESS CREEK NR SARLES, ND 5098800 182  1962-1988 

3 PEMBINA RIVER AT WALHALLA, 

ND 

5099600 8576 Yes 1940-1988 

4 PEMBINA RIVER AT NECHE, ND 5100000 8730  1932-1988 

5 WINTERING RIVER NR 

KARLSRUHE, 

5120500 1805  1938-1988 

6 WILLOW CREEK NR WILLOW 

CITY, N 

5123400 2970  1957-1988 

7 BOUNDARY CREEK NR LANDA, 

ND 

5123900 589  1958-1981 

8 VERMEJO RIVER NEAR 

DAWSON, NM 

7203000 771  1916-1917,1920-

1920,1928-1988 

9 PONIL CREEK NEAR CIMARRON, 

N. 

7207500 438  1917-1918,1920-

1924,1951-1988 

10 RAYADO CREEK AT SAUBLE 

RANCH N 

7208500 166  1917-1918,1931-

1988 

11 CANADIAN R NR TAYLOR 

SPRINGS, 

7211500 7296  1940-1958,1965-

1988 

12 MORA RIVER NEAR 

GOLONDRINAS N. 

7216500 684  1916-1920,1927-

1986 

13 COYOTE CREEK NEAR 

GOLONDRINAS, 

7218000 550  1930-1988 

14 MORA RIVER NR SHOEMAKER N 

MEX. 

7221000 2811  1920-1924,1928-

1988 

15 CONCHAS RIVER AT 

VARIADERO, N. 

7222500 1275  1937-1988 

16 SWIFTCURRENT CREEK AT 

MANY GLA 

5014500 80  1918-1919,1959-

1988 

17 WILD RICE RIVER NR RUTLAND, 

ND 

5051600 1398  1960-1969,1971-

1982 
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18 WILD RICE RIVER NR 

ABERCROMBIE 

5053000 5325  1933-1988 

19 SHEYENNE RIVER ABOVE 

HARVEY, N 

5054500 1085  1956-1988 

20 SHEYENNE RIVER NR 

WARWICK, ND 

5056000 5299 Yes 1950-1988 

21 MAUVAIS COULEE NR CANDO, 

ND 

5056100 991  1957-1982 

22 EDMORE COULEE NR EDMORE, 

ND 

5056200 978  1958-1982 

23 SHEYENNE RIVER NR 

COOPERSTOWN, 

5057000 16563  1946-1988 

24 BALDHILL CREEK NR DAZEY, 

ND 

5057200 1769  1957-1988 

25 MAPLE RIVER NR HOPE, ND 5059600 52  1965-1982 

26 MAPLE RIVER NR ENDERLIN, ND 5059700 2158 Yes 1957-1988 

27 RUSH RIVER AT AMENIA, ND 5060500 297  1947-1988 

28 BEAVER CREEK NR FINLEY, ND 5064900 410  1965-1986 

29 GOOSE RIVER AT HILLSBORO, 

ND 

5066500 3080 Yes 1936-1988 

30 MIDDLE BRANCH FOREST RIVER 

NR 

5083600 122  1961-1988 

31 FOREST RIVER NR FORDVILLE, 

ND 

5084000 1167 Yes 1941-1988 

32 LITTLE MINNESOTA RIVER 

NEAR PE 

5290000 1121  1940-1981 

33 WHETSTONE RIVER NEAR BIG 

STONE 

5291000 1019  1932-1986 

34 BEAR CREEK AB RESERVOIR NR 

IRW 

13032000 197  1954-1971 

35 BLACKFOOT RIVER AB 

RESERVOIR N 

13063000 896  1915-1915,1968-

1982 

36 PORTNEUF RIVER AT TOPAZ ID 13073000 1459 Yes 1914-1915,1920-

1988 

37 MARSH CREEK NR MCCAMMON 

ID 

13075000 904  1955-1988 

38 GEORGE CREEK NEAR YOST 

UTAH 

13077700 20  1960-1988 

39 GOOSE CREEK AB TRAPPER 

CREEK N 

13082500 1620  1912-1916,1920-

1988 

40 ROCK CREEK NR ROCK CREEK 

ID 

13092000 205  1911-1912,1945-

1974 

41 BEAVER CREEK AT SPENCER ID 13113000 307  1941-1941,1969-

1981,1987-1988 

42 N FK BIG LOST RIVER AT WILD 

HO 

13120000 292  1945-1988 

43 BIG LOST RIVER AT HOWELL 

RANCH 

13120500 1152 Yes 1905-1905,1949-

1988 

44 BIG WOOD RIVER NR KETCHUM 

ID 

13135500 351  1949-1971 
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45 COMBINATION BIG WOOD 

R/SLOUGH 

13139510 1638  1916-1987 

46 LITTLE WOOD RIVER AB HIGH 

FIVE 

13147900 635 Yes 1959-1974,1980-

1981,1983-1988 

47 BRUNEAU RIVER AT ROWLAND 

NV 

13161500 978  1914-1918,1967-

1988 

48 EF JARBIDGE RIVER NR THREE 

CRE 

13162500 217  1929-1932,1954-

1971 

49 EF BRUNEAU RIVER NR HOT 

SPRING 

13167500 1587  1911-1914,1950-

1971 

50 BRUNEAU RIVER NR HOT 

SPRING ID 

13168500 6733  1910-1914,1944-

1988 

51 BIG JACKS CREEK NR BRUNEAU 

ID 

13169500 648  1940-1949,1966-

1988 

52 JORDON CREEK AB LONE TREE 

CR N 

13178000 1126  1946-1952,1956-

1971 

53 BOISE RIVER NR TWIN SPRINGS 

ID 

13185000 2125  1912-1988 

54 SF BOISE RIVER NR 

FEATHERVILLE 

13186000 1626  1946-1988 

55 MORES CREEK AB ROBIE CREEK 

NR 

13200000 1021  1951-1988 

56 ROBIE CREEK NR ARROWROCK 

DAM I 

13200500 40  1951-1971 

57 MALHEUR RIVER NEAR 

DREWSEY,ORE 

13214000 2330  1927-1988 

58 SF PAYETTE RIVER AT LOWMAN 

ID 

13235000 1167  1942-1988 

59 LAKE FORK PAYETTE RIVER AB 

JUM 

13240000 125  1946-1988 

60 BIG WILLOW CREEK NR 

EMMETT ID 

13250600 121  1963-1982 

61 WEISER RIVER AT TAMARACK 

ID 

13251500 93  1937-1971,1975-

1975 

62 PINE CREEK NR CAMBRIDGE ID 13260000 138  1939-1962 

63 LITTLE WEISER RIVER NR 

INDIAN 

13261000 210  1925-1927,1939-

1971 

64 MANN CREEK NR WEISER ID 13267000 143  1912-1913,1938-

1961 

65 VALLEY CREEK AT STANLEY ID 13295000 376  1912-1913,1922-

1971 

66 SALMON RIVER BL VALLEY 

CREEK A 

13295500 1283  1926-1960 

67 YANKEE FORK SALMON RIVER 

NR CL 

13296000 499  1922-1948 

68 SALMON RIVER BL YANKEE 

FORK NR 

13296500 2053  1922-1971,1977-

1988 

69 SALMON RIVER NR CHALLIS ID 13298500 4608  1929-1971 

70 CHALLIS CREEK NR CHALLIS ID 13299000 218  1944-1962 

71 SALMON RIVER AT SALMON ID 13302500 9626  1913-1916,1920-

1988 
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72 LEMHI RIVER NR LEMHI ID 13305000 2291  1956-1963,1968-

1988 

73 PANTHER CREEK NR SHOUP ID 13306500 1354  1945-1977 

74 SALMON RIVER NR SHOUP ID 13307000 16051  1945-1981 

75 MF SALMON RIVER NR 

CAPEHORN ID 

13308500 353  1929-1971 

76 BEAR VALLEY CREEK NR CAPE 

HORN 

13309000 468  1929-1960 

77 S FK SALMON RIVER NR KNOX 

ID 

13310500 236  1929-1960 

78 EF OF SF SALMON RIVER AT 

STIBN 

13311000 50  1929-1941,1983-

1988 

79 JOHNSON CREEK AT YELLOW 

PINE I 

13313000 543  1929-1988 

80 LITTLE SALMON RIVER AT 

RIGGINS 

13316500 1475  1952-1954,1957-

1988 

81 SALMON RIVER AT WHITE BIRD 

ID 

13317000 34688  1911-1917,1920-

1988 

82 GRANDE RONDE R AT LA 

GRANDE, O 

13319000 1736  1904-1912,1914-

1915,1919-1923, 

1926-1988 

83 MINAM RIVER AT MINAM,OREG. 13331500 614  1913-1913,1966-

1988 

84 ASOTIN CR BLW KEARNEY 

GULCH NR 

13334700 435  1960-1982 

85 SELWAY RIVER NR LOWELL ID 13336500 4890  1930-1988 

86 LOCHSA RIVER NR LOWELL ID 13337000 3021  1911-1912,1930-

1988 

87 S FK CLEARWATER RIVER NR 

ELK C 

13337500 668  1945-1974 

88 S FK CLEARWATER RIVER NR 

GRANG 

13338000 2214  1912-1916,1924-

1963 

89 S FK CLEARWATER RIVER AT 

STITE 

13338500 2944  1965-1988 

90 CLEARWATER RIVER AT 

KAMIAH ID 

13339000 12416  1911-1965 

91 CLEARWATER RIVER AT 

OROFINO ID 

13340000 14285  1931-1938,1965-

1988 

92 N FK CLEARWATER RIVER AT 

BUNGA 

13340500 2550  1945-1969 

93 N FK CLEARWATER RIVER NR 

CANYO 

13340600 3482  1968-1988 

94 CLEARWATER RIVER AT 

SPALDING, 

13342500 24499  1911-1913,1926-

1971 

95 PALOUSE RIVER NR POTLATCH, 

ID. 

13345000 812  1916-1919,1968-

1988 

96 SOUTH FORK PALOUSE RIVER 

AT PU 

13348000 338  1935-1942,1961-

1981 

97 RUBY RIVER ABOVE RESERVOIR 

NEA 

6019500 1377  1939-1988 
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98 MADISON RIVER NEAR WEST 

YELLOW 

6037500 1075  1914-1917,1919-

1921,1923-

1973,1984-1986 

99 GALLATIN RIVER NEAR 

GALLATIN G 

6043500 2112  1890-1894,1931-

1969,1972-

1981,1985-1988 

100 PRICKLY PEAR CREEK NEAR 

CLANCY 

6061500 492  1909-1916,1922-

1933,1946-

1953,1955-

1969,1979-1988 

101 SHEEP CREEK NEAR WHITE 

SULPHUR 

6077000 110  1942-1972 

102 NORTH FORK SUN RIVER NEAR 

AUGU 

6078500 660  1912-1912,1946-

1968 

103 BELT CREEK NEAR MONARCH, 

MT. 

6090500 942  1952-1982 

104 NORTH FORK MUSSELSHELL 

RIVER N 

6115500 80  1941-1976 

105 BIG DRY CREEK NEAR VAN 

NORMAN, 

6131000 6538  1940-1947,1950-

1968,1971-

1972,1974-1988 

106 ROCK CREEK BELOW HORSE 

CREEK, 

6169500 840  1979-1988 

107 REDWATER RIVER AT CIRCLE 

MT 

6177500 1400  1932-1932,1936-

1936,1938-

1971,1975-1988 

108 YELLOWSTONE RIVER AT 

YELLOWSTO 

6186500 2575  1927-1982,1984-

1986 

109 TOWER CREEK AT TOWER 

FALLS,YNP 

6187500 129  1924-1943 

110 LAMAR RIVER NR TOWER 

FALLS RAN 

6188000 1690  1924-1969 

111 GARDNER RIVER NEAR 

MAMMOTH YNP 

6191000 517  1939-1972,1985-

1988 

112 YELLOWSTONE RIVER AT 

CORWIN SP 

6191500 6715 Yes 1890-1893,1911-

1988 

113 YELLOWSTONE RIVER NEAR 

LIVINGS 

6192500 9091 Yes 1898-1905,1929-

1932,1938-1988 

114 CLARKS FORK YELLOWSTONE 

RIVER 

6207500 2954  1922-1988 

115 ROCK CREEK NEAR RED LODGE, 

MT. 

6209500 317  1935-1982,1986-

1986 

116 YELLOWSTONE RIVER AT 

BILLINGS 

6214500 30195 Yes 1929-1988 

117 WIND RIVER NEAR DUBOIS, 

WYO. 

6218500 594  1946-1988 

118 DINWOODY CREEK ABOVE 

LAKES, NE 

6221400 226  1958-1978 

119 CROW C NR TIPPERARY WYO 6222700 77  1963-1988 

120 BULL LAKE C AB BULL LAKE 

WYO 

6224000 479  1942-1953,1967-

1988 
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121 LITTLE POPO AGIE RIVER NEAR 

LA 

6233000 320  1947-1971 

122 GOOSEBERRY CREEK AT 

DICKIE, WY 

6265800 243  1958-1978 

123 NOWOOD R NR TENSLEEP, WY 6270000 2056  1939-1943,1951-

1955,1973-1988 

124 TENSLEEP CREEK NEAR 

TENSLEEP, 

6271000 632  1911-1912,1915-

1924,1944-1971 

125 MEDICINE LODGE CREEK NEAR 

HYAT 

6273000 222  1944-1971,1973 

126 SHELL CREEK ABOVE SHELL 

CREEK 

6278300 59  1957-1988 

127 SOUTH FORK SHOSHONE RIVER 

NEAR 

6280300 760  1957-1958,1960-

1988 

128 BEAUVAIS CREEK NEAR ST. 

XAVIER 

6288200 256  1968-1977 

129 LITTLE BIGHORN RIVER AT 

STATE 

6289000 494  1940-1988 

130 SOUTH TONGUE RIVER NEAR 

DAYTON 

6297000 218  1946-1971 

131 TONGUE RIVER NR DAYTON 

WYO 

6298000 522 Yes 1920-1927,1929-

1929,1941-1988 

132 WOLF CREEK AT WOLF,WYO. 6299500 97  1946-1971 

133 NORTH FORK POWDER RIVER 

NEAR H 

6311000 63  1947-1988 

134 CLEAR CREEK NEAR BUFFALO, 

WYO. 

6318500 307  1918-1927,1939-

1987 

135 LITTLE MUDDY RIVER BL COW 

CREE 

6331000 2240  1955-1983 

136 BEAR DEN CREEK NR 

MANDAREE, ND 

6332515 189  1967-1988 

137 LITTLE MISSOURI R AT CAMP 

CROO 

6334500 5043  1904-1906,1957-

1988 

138 LITTLE MISSOURI RIVER AT 

MARMA 

6335500 11878  1939-1988 

139 LITTLE MISSOURI RIVER NR 

WATFO 

6337000 21274  1935-1988 

140 KNIFE RIVER AT MANNING, ND 6339100 525  1968-1988 

141 KNIFE RIVER NR GOLDEN 

VALLEY, 

6339500 3149  1944-1988 

142 KNIFE RIVER AT HAZEN, ND 6340500 5734  1938-1988 

143 GREEN RIVER NR NEW HRADEC, 

ND 

6344600 389  1965-1988 

144 APPLE CREEK NR MENOKEN, ND 6349500 4301  1946-1988 

145 CANNONBALL RIVER AT 

REGENT, ND 

6350000 1485  1951-1988 

146 CEDAR CREEK NR HAYNES, ND 6352000 1416  1951-1988 

147 CEDAR CREEK NR RALEIGH, ND 6353000 4480  1963-1988 

148 CANNONBALL RIVER AT 

BREIEN, ND 

6354000 10496  1935-1988 
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149 BEAVER CREEK AT LINTON, ND 6354500 1836  1950-1988 

150 SOUTH FORK GRAND R NEAR 

CASH S 

6356500 3456  1947-1988 

151 MOREAU R NEAR FAITH SD 6359500 6810  1944-1988 

152 CHEYENNE R AT EDGEMONT SD 6395000 18286  1947-1988 

153 CASTLE CR ABOVE DEERFIELD 

RES 

6409000 203  1949-1988 

154 ELK CR NEAR ELM SPRINGS SD 6425500 1382  1950-1988 

155 BELLE FOURCHE RIVER BELOW 

MOOR 

6426500 4206  1944-1970,1976-

1983,1986-1987 

156 SPEARFISH CR AT SPEARFISH SD 6431500 430  1947-1988 

157 BAD R NEAR FORT PIERRE SD 6441500 7954  1929-1988 

158 LITTLE WHITE R NEAR 

ROSEBUD SD 

6449500 2611  1944-1988 

159 WHITE R NEAR OACOMA SD 6452000 26112  1929-1988 

160 KEYA PAHA R AT WEWELA SD 6464500 2739  1939-1940,1948-

1988 

161 JAMES RIVER NR MANFRED, ND 6467600 648  1958-1982,1986-

1988 

162 JAMES RIVER NR GRACE CITY, 

ND 

6468170 2714  1969-1988 

163 MAPLE R AT ND-SD STATE LINE 6471200 1833  1957-1988 

164 SAND CR NEAR ALPENA SD 6476500 668  1951-1988 

165 JAMES R NEAR SCOTLAND SD 6478500 52872  1929-1988 

166 WEST FORK VERMILLION R 

NEAR PA 

6478690 965  1962-1988 

167 VERMILLION R NEAR 

WAKONDA SD 

6479000 5555  1946-1983 

168 BIG SIOUX RIVER NEAR 

BROOKINGS 

6480000 9979  1954-1988 

169 SKUNK CR AT SIOUX FALLS SD 6481500 1592  1949-1988 

170 NORTH PLATTE RIVER NEAR 

NORTHG 

6620000 3663  1916-1988 

171 NORTH BRUSH CREEK NEAR 

SARATOG 

6622700 96  1961-1988 

172 ENCAMPMENT RIV AB HOG 

PARK CR 

6623800 186  1965-1988 

173 N PLATTE R AB SEMINOE RES 

NR S 

6630000 10680  1940-1988 

174 ROCK CR AB KING CANYON 

CANAL, 

6632400 161  1966-1988 

175 MEDICINE BOW R AB SEMINOE 

RESE 

6635000 5942  1940-1988 

176 ROCK CREEK ABOVE ROCK 

CREEK RE 

6637750 24  1963-1988 

177 LARAMIE RIVER NEAR JELM, 

WYO. 

6658500 753  1905-1905,1912-

1971 

178 BEAR CREEK AT MORRISON, CO. 6710500 420  1901-1901,1920-

1988 
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179 MIDDLE BOULDER CREEK AT 

NEDERL 

6725500 93  1908-1910,1912-

1988 

180 HALFMOON CREEK NEAR 

MALTA, CO. 

7083000 60  1947-1988 

181 GRAPE CREEK NEAR 

WESTCLIFFE, C 

7095000 819  1926-1927,1931-

1961,1963-1988 

182 SAN JOAQUIN R AT MILLER 

CROSSI 

11226500 637  1922-1928,1952-

1988 

183 BEAR CR NR LAKE T.A.EDISON 

CAL 

11230500 134  1922-1988 

184 PITMAN C BL TAMARACK 

CREEK CAL 

11237500 59  1929-1988 

185 CANTUA CREEK NR CANTUA 

CREEK C 

11253310 119  1967-1988 

186 MERCED R AT HAPPY ISLES 

BRIDGE 

11264500 463 Yes 1916-1988 

187 MERCED RIVER AT POHONO 

BRIDGE 

11266500 822 Yes 1917-1988 

188 ORESTIMBA CREEK NR 

NEWMAN CALI 

11274500 343  1933-1988 

189 SF TUOLUMNE RIVER NR 

OAKLAND R 

11281000 223  1924-1988 

190 MIDDLE TUOLUMNE R AT 

OAKLAND R 

11282000 188  1917-1988 

191 CLAVEY RIVER NEAR BUCK 

MEADOWS 

11283500 369  1960-1983,1987-

1988 

192 CLARK FORK STANISLAUS 

RIVER NE 

11292500 173  1951-1988 

193 NF STANISLAUS R BL SILVER 

CREE 

11293500 71  1953-1987 

194 HIGHLAND C BL SPICER 

MEADOWS R 

11294000 116  1953-1988 

195 COLE C NR SALT SPRINGS DAM 

CAL 

11315000 54  1928-1942,1944-

1988 

196 FOREST CREEK NEAR 

WILSEYVILLE, 

11316800 53  1961-1988 

197 SACRAMENTO RIVER AT DELTA 

CALI 

11342000 1088  1945-1988 

198 HAT CREEK NEAR HAT CREEK 

CALIF 

11355500 415  1927-1929,1931-

1988 

199 MCCLOUD RIVER NR MCCLOUD 

CALIF 

11367500 916  1932-1988 

200 MCCLOUD RIVER AB SHASTA 

LAKE C 

11368000 1546  1946-1965 

201 CLEAR CREEK AT FRENCH 

GULCH, C 

11371000 294  1951-1988 

202 CLEAR CREEK NR IGO CALIF 11372000 584  1941-1962 

203 ELDER CREEK NEAR PASKENTA 

CALI 

11379500 237  1949-1988 

204 MILL C NR LOS MOLINOS CALIF 11381500 335  1929-1988 

205 THOMES C AT PASKENTA CALIF 11382000 520  1921-1988 
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206 DEER CREEK NEAR VINA CALIF 11383500 532 Yes 1912-1915,1921-

1988 

207 BIG CHICO CREEK NEAR CHICO 

CAL 

11384000 185  1931-1986 

208 BUTT C AB ALM-BUT C TU NR 

PRAT 

11400000 177  1937-1964 

209 INDIAN CREEK NR CRESCENT 

MILLS 

11401500 1892  1907-1909,1912-

1917,1931-1988 

210 SPANISH CREEK ABOVE 

BLACKHAWK 

11402000 471  1934-1988 

211 SPANISH C AT KEDDIE CALIF 11402500 497  1912-1933 

212 EAST BRANCH OF NF FEATHER 

R NR 

11403000 2624  1951-1961,1969-

1982 

213 OREGON CREEK AT 

CAMPTONVILLE, 

11409300 59  1968-1988 

214 NORTH YUBA RIVER BELOW 

GOODYEA 

11413000 640  1931-1937,1939-

1988 

215 LATIR CREEK NEAR CERRO, N. 

MEX 

8263000 27  1946-1970 

216 RED RIVER AT MOUTH, NEAR 

QUEST 

8267000 486  1952-1978 

217 RIO HONDO NEAR VALDEZ, N. 

MEX. 

8267500 93  1935-1988 

218 RIO PUEBLO DE TAOS NEAR 

TAOS, 

8269000 170  1915-1915,1941-

1951,1964-1988 

219 RIO LUCERO NEAR ARROYO 

SECO, N 

8271000 42  1914-1915,1935-

1951,1964-1988 

220 RIO GRANDE DEL RANCHO 

NEAR TAL 

8275500 212  1953-1982,1986-

1988 

221 RIO CHIQUITO NEAR TALPA, N. 

ME 

8275600 95  1958-1980 

222 RIO GRANDE BELOW TAOS 

JUNCTION 

8276500 24832 Yes 1926-1988 

223 EMBUDO CREEK AT DIXON, NM 8279000 781 Yes 1924-1925,1928-

1929,1931-

1955,1963-1988 

224 RIO CHAMA AT PARK VIEW, N. 

MEX 

8283500 1037  1914-1915,1931-

1955 

225 EL RITO NEAR EL RITO, N. MEX. 8288000 129  1932-1950 

226 RIO OJO CALIENTE AT LA 

MADERA, 

8289000 1073  1933-1988 

227 SANTA CRUZ RIVER NEAR 

CUNDIYO, 

8291000 220  1933-1988 

228 JEMEZ RIVER NR JEMEZ,NM 8324000 1203  1937-1940,1950-

1950,1954-1988 

229 RIO MORA NEAR TERRERO, NM 8377900 136  1964-1988 

230 PECOS R NR PECOS, NM 8378500 484  1920-1920,1924-

1924,1931-1988 

231 GALLINAS CREEK NEAR 

MONTEZUMA, 

8380500 215  1927-1988 
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232 RIO RUIDOSO AT HOLLYWOOD, 

N. M 

8387000 307  1954-1988 

233 BLACK RIVER ABOVE MALAGA, 

N. M 

8405500 878  1948-1988 

234 DELAWARE RIVER NR RED 

BLUFF, N 

8408500 1764  1938-1988 

235 CRYSTAL RIVER AB 

AVALANCHE C, 

9081600 428  1956-1988 

236 TAYLOR RIVER AT ALMONT, CO. 9110000 1221  1911-1936 

237 EAST RIVER AT ALMONT CO. 9112500 740  1911-1922,1935-

1988 

238 TOMICHI CREEK AT SARGENTS, 

CO. 

9115500 381  1917-1922,1938-

1972 

239 TOMICHI CREEK AT GUNNISON, 

CO. 

9119000 2716  1938-1988 

240 LAKE FORK AT GATEVIEW, CO. 9124500 855  1938-1988 

241 CURECANTI CREEK NEAR 

SAPINERO, 

9125000 90  1946-1972 

242 SMITH FORK NEAR CRAWFORD, 

CO. 

9128500 110  1936-1988 

243 NORTH FORK GUNNISON RIVER 

NEAR 

9132500 1347  1934-1960 

244 LEROUX CREEK NEAR 

CEDAREDGE, C 

9134500 88  1937-1956,1961-

1969 

245 UNCOMPAHGRE RIVER NEAR 

RIDGWAY 

9146200 381 Yes 1959-1988 

246 UNCOMPAHGRE RIVER AT 

COLONA, C 

9147500 1147  1913-1985 

247 DOLORES RIVER BELOW RICO, 

CO. 

9165000 269  1952-1988 

248 DISAPPOINTMENT CREEK NEAR 

DOVE 

9168100 376  1958-1986 

249 COLORADO RIVER NEAR CISCO 

UTAH 

9180500 61696  1914-1914,1916-

1917,1923-1937 

250 GREEN RIVER AT WARREN 

BRIDGE, 

9188500 1198  1932-1988 

251 PINE CREEK ABOVE FREMONT 

LAKE, 

9196500 194  1955-1988 

252 POLE CREEK BELOW LITTLE 

HALF M 

9198500 224  1939-1971 

253 FALL CREEK NEAR PINEDALE 

WYO 

9199500 95  1939-1971 

254 EAST FORK RIVER NEAR BIG 

SANDY 

9203000 203  1939-1988 

255 NORTH PINEY CREEK NEAR 

MASON, 

9205500 148  1916-1916,1932-

1971 

256 FONTENELLE CR NR 

HERSCHLER RAN 

9210500 389  1952-1988 

257 BIG SANDY R AT LECKIE 

RANCH, N 

9212500 241  1940-1971 

258 EAST FORK OF SMITH FORK NR 

ROB 

9220000 136  1940-1971 
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259 HAMS FORK BELOW POLE 

CREEK, NE 

9223000 328  1953-1988 

260 YAMPA RIVER AT STEAMBOAT 

SPRIN 

9239500 1546  1905-1906,1911-

1987 

261 ELK RIVER AT CLARK, CO. 9241000 553  1911-1916,1918-

1918,1920-

1920,1932-1988 

262 ELKHEAD CREEK NEAR 

ELKHEAD, CO 

9245000 164  1954-1988 

263 MILK CREEK NEAR 

THORNBURGH, CO 

9250000 166  1953-1986 

264 YAMPA RIVER NEAR MAYBELL, 

CO. 

9251000 8730  1917-1987 

265 SAVERY CREEK NEAR SAVERY, 

WY 

9256000 845  1942-1946,1948-

1971,1986-1988 

266 ROCK CREEK NEAR HANNA, 

UTAH 

9278500 312  1950-1969,1975-

1988 

267 WHITEROCKS RIVER NEAR 

WHITEROC 

9299500 289  1910-1910,1919-

1920,1930-1988 

268 WHITE RIVER NEAR MEEKER, 

CO. 

9304500 1933  1902-1906,1910-

1988 

269 FISH CREEK ABOVE RESERVOIR 

NEA 

9310500 154  1939-1988 

270 GREEN RIVER AT GREEN RIVER, 

UT 

9315000 114793  1895-1899,1906-

1962 

271 MUDDY CREEK NEAR EMERY, 

UTAH 

9330500 269  1911-1913,1950-

1988 

272 VALLECITO CREEK NEAR 

BAYFIELD, 

9352900 185  1963-1988 

273 ANIMAS RIVER AT DURANGO, 

CO. 

9361500 1772  1898-1898,1900-

1900,1913-

1925,1928-1988 

274 ANIMAS RIVER AT 

FARMINGTON, NM 

9364500 3482  1914-1914,1920-

1925,1931-1988 

275 COTTONWOOD WASH NR 

BLANDING UT 

9378700 525  1965-1987 

276 SAN JUAN RIVER NEAR BLUFF, 

UTA 

9379500 58880  1916-1916,1928-

1928,1930-1940 

277 LITTLE COLORADO R ABV 

LYMAN LA 

9384000 1897  1941-1988 

278 LITTLE COLORADO RIVER NEAR 

CAM 

9402000 67835  1948-1988 

279 BRIGHT ANGEL CREEK NEAR 

GRAND 

9403000 259  1924-1973 

280 EAST FORK VIRGIN RIVER NR 

GLEN 

9404450 190  1967-1988 

281 SANTA CLARA RIVER NR PINE 

VALL 

9408400 48  1960-1988 

282 VIRGIN RIVER AT LITTLEFIELD, 

A 

9415000 13030  1930-1988 

283 LEE CANYON NR CHARLESTON 

PARK, 

9419610 24  1964-1988 
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284 GILA RIVER NEAR GILA, NM 9430500 4772  1929-1988 

285 MOGOLLON CREEK NEAR CLIFF, 

NM 

9430600 177  1968-1988 

286 GILA RIVER NEAR REDROCK, 

NM 

9431500 7242  1931-1955,1963-

1988 

287 TULAROSA RIVER ABOVE 

ARAGON, N 

9442692 241  1967-1988 

288 SAN FRANCISCO RIVER AT 

CLIFTON 

9444500 7081  1914-1915,1917-

1917,1928-

1933,1936-1988 

289 SAN PEDRO RIVER AT 

CHARLESTON, 

9471000 3121 Yes 1905-1905,1913-

1926,1929-

1933,1936-1988 

290 SANTA CRUZ RIVER NEAR 

LOCHIEL, 

9480000 210  1950-1988 

291 SALT RIVER NEAR ROOSEVELT, 

ARI 

9498500 11023 Yes 1914-1988 

292 WET BOTTOM CREEK NR 

CHILDS, AR 

9508300 93  1968-1988 

293 VERDE RIVER BLW TANGLE CR 

AB H 

9508500 15017 Yes 1946-1988 

294 SULPHUR CREEK ABV 

RESERVOIR NR 

10015700 164  1958-1988 

295 SMITHS FORK NEAR BORDER, 

WY 

10032000 422  1943-1988 

296 CUB RIVER NEAR PRESTON, 

IDAHO 

10093000 81  1941-1952,1956-

1986 

297 BLACKSMITH FORK AB U.P.&L. 

CO, 

10113500 673  1915-1917,1919-

1988 

298 WEBER RIVER NEAR OAKLEY, 

UTAH 

10128500 415 Yes 1905-1988 

299 CHALK CREEK AT COALVILLE 

UTAH 

10131000 640  1928-1988 

300 NORTH FORK PROVO RIVER 

NEAR KA 

10153800 62  1964-1988 

301 RED BUTTE CREEK AT FT. 

DOUGLAS 

10172200 19 Yes 1964-1988 

302 VERNON CREEK NEAR VERNON, 

UTAH 

10172700 64  1959-1988 

303 TROUT CR NR CALLAO UTAH 10172870 21  1960-1988 

304 SEVIER RIVER AT HATCH UTAH 10174500 870  1915-1928,1940-

1988 

305 SALINA CREEK NEAR EMERY 

UTAH 

10205030 133  1964-1988 

306 OAK CREEK NR. FAIRVIEW, 

UTAH 

10208500 30  1965-1988 

307 BEAVER RIV NR BEAVER UTAH 10234500 233  1915-1988 

308 STEPTOE C NR ELY, NV 10244950 28  1967-1988 

309 S TWIN R NR ROUND 

MOUNTAIN, NV 

10249300 51  1966-1988 

310 CHIATOVICH C NR DYER, NV 10249900 95  1961-1982 
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311 BORREGO PALM C NR BORREGO 

SPRI 

10255810 56  1951-1988 

312 TAHQUITZ CR NR PALM 

SPRINGS CA 

10258000 41  1948-1982,1984-

1988 

313 PALM CANYON CREEK NR PALM 

SPRI 

10258500 238  1931-1941,1948-

1988 

314 ANDREAS CREEK NEAR PALM 

SPRING 

10259000 22  1949-1988 

315 BIG ROCK CREEK NEAR 

VALYERMO,C 

10263500 59  1924-1988 

316 W WALKER R BL L WALKER R 

NR CO 

10296000 461  1939-1988 

317 W WALKER R NR COLEVILLE, 

CA 

10296500 640  1910-1910,1916-

1937,1958-1988 

318 WALKER R NR WABUSKA, NV 10301500 6656  1904-1904,1921-

1923,1926-

1935,1940-

1941,1943-

1943,1945-1988 

319 E F CARSON R BL 

MARKLEEVILLE C 

10308200 707  1961-1988 

320 W F CARSON R AT WOODFORDS, 

CA 

10310000 167  1939-1988 

321 CARSON R NR FORT 

CHURCHILL, NV 

10312000 3333 Yes 1913-1923,1925-

1927,1929-

1932,1934-1988 

322 LAMOILLE C NR LAMOILLE, NV 10316500 64  1916-1922,1944-

1988 

323 HUMBOLDT R AT PALISADE, NV 10322500 12826  1903-1906,1912-

1912,1914-1988 

324 REESE R NR IONE, NV 10325500 136  1952-1980 

325 MARTIN C NR PARADISE 

VALLEY, N 

10329500 440  1922-1988 

326 BLACKWOOD CREEK NR TAHOE 

CITY 

10336660 29  1961-1988 

327 TROUT CREEK NR TAHOE 

VALLEY CA 

10336780 94  1961-1988 

328 SAGEHEN CREEK NR TRUCKEE 

CALIF 

10343500 27  1954-1988 

329 MC DERMITT C NR MC DERMITT, 

NV 

10352500 576  1949-1984,1986-

1988 

330 QUINN R NR MC DERMITT, NV 10353500 2816  1949-1982,1985-

1985 

331 DEEP CREEK ABOVE 

ADEL,OREG. 

10371500 637  1923-1923,1933-

1988 

332 CHEWAUCAN RIVER NEAR 

PAISLEY,O 

10384000 704  1925-1988 

333 SILVIES RIVER NEAR 

BURNS,OREG. 

10393500 2391  1904-1905,1910-

1912,1918-

1920,1923-1988 
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334 DONNER UND BLITZEN RIVER 

NR FR 

10396000 512  1912-1913,1915-

1916,1918-

1921,1939-1988 

335 SANTA YSABEL CREEK NEAR 

RAMONA 

11025500 287  1913-1922,1944-

1953 

336 TEMECULA CREEK NEAR 

AGUANGA, C 

11042400 335  1958-1988 

337 CITY C NR HIGHLAND CA.+ 

CANALS 

11055801 50  1925-1988 

338 EAST TWIN CREEK NEAR 

ARROWHEAD 

11058500 23  1921-1988 

339 LONE PINE CREEK NR 

KEENBROOK C 

11063500 39  1921-1938,1950-

1988 

340 SANTIAGO C A MODJESKA CA 11075800 33  1962-1988 

341 ARROYO SECO NR PASADENA 

CALIF 

11098000 41  1914-1915,1917-

1988 

342 SESPE CREEK NR WHEELER 

SPRINGS 

11111500 127  1948-1988 

343 SESPE C + FILLMORE IRR CO CA 

N 

11113001 643  1940-1985 

344 COYOTE CREEK NEAR OAK 

VIEW, CA 

11117600 34  1959-1988 

345 SANTA ANA CREEK NEAR OAK 

VIEW 

11117800 23  1959-1988 

346 SANTA CRUZ CR NR SANTA 

YNEZ CA 

11124500 189  1942-1988 

347 SALSIPUEDES CR NR LOMPOC 

CA 

11132500 121  1942-1988 

348 SISQUOC RIVER NEAR SISQUOC, 

CA 

11138500 719  1944-1988 

349 LOPEZ C NR ARROYO GRANDE 

CA 

11141280 54  1968-1988 

350 BIG SUR RIVER NR BIG SUR 

CALIF 

11143000 119  1951-1988 

351 SANTA RITA C NR TEMPLETON 

CALI 

11147070 47  1962-1988 

352 SAN ANTONIO RIVER NEAR 

LOCKWOO 

11149900 556  1966-1988 

353 SAN LORENZO C BL 

BITTERWATER C 

11151300 596  1959-1988 

354 ARROYO SECO NEAR SOLEDAD, 

CAL. 

11152000 625  1902-1988 

355 EL TORO CREEK NR SPRECKELS, 

CA 

11152540 82  1962-1988 

356 SOQUEL CR AT SOQUEL CALIF 11160000 103  1952-1988 

357 SAN LORENZO RIVER NEAR 

BOULDER 

11160020 16  1969-1988 

358 ZAYANTE CREEK AT ZAYANTE 

CALIF 

11160300 28  1958-1988 

359 SAN LORENZO R AT BIG TREES 

CAL 

11160500 271  1937-1988 
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360 PESCADERO CREEK NEAR 

PESCADERO 

11162500 118  1952-1988 

361 ARROYO VALLE BL LANG CN 

NR LIV 

11176400 333  1964-1988 

362 SAN RAMON CREEK AT SAN 

RAMON, 

11182500 15  1953-1988 

363 COMBINED FLOW OF KERN R 

AND KE 

11186001 2166  1912-1988 

364 KERN RIVER AT KERNVILLE 

CALIF 

11187000 2583 Yes 1906-1912,1954-

1988 

365 SF KERN R NR ONYX CALIF 11189500 1357  1912-1913,1920-

1925,1930-

1942,1947-1988 

366 DEER CREEK NEAR FOUNTAIN 

SPRIN 

11200800 213  1969-1988 

367 NF OF MF TULE R NR 

SPRINGVILLE 

11202001 101  1941-1988 

368 MF KAWEAH R NR POTWISHA 

CAMP C 

11206501 261  1950-1988 

369 MARBLE FK KAWEAH AT 

POTWISHA C 

11208001 132  1951-1988 

370 KAWEAH RIVER AT THREE 

RIVERS C 

11209900 1070  1959-1988 

371 SOUTH FORK KAWEAH RIVER 

AT THR 

11210100 222  1959-1988 

372 KAWEAH R NR THREE RIVERS 

CALIF 

11210500 1329  1904-1961 

373 KINGS RIVER AB NF NR 

TRIMMER C 

11213500 2437  1927-1928,1932-

1982 

374 NF KINGS R NR CLIFF CAMP 

CALIF 

11215000 463  1922-1957 

375 MILL CREEK NEAR PIEDRA 

CALIF 

11221700 325  1958-1988 

376 KINGS R AT PIEDRA CALIF 11222000 4334  1896-1951 

377 LOS GATOS CREEK AB NUNEZ 

CANYO 

11224500 245  1946-1988 

378 SOUTH YUBA RIVER NEAR 

CISCO, C 

11414000 133  1943-1988 

379 NF AMERICAN R AT NORTH 

FORK DA 

11427000 876  1942-1988 

380 DUNCAN CREEK NR FRENCH 

MEADOWS 

11427700 25  1961-1988 

381 PILOT CREEK ABOVE STUMPY 

MEADO 

11431800 30  1961-1988 

382 S.F. SILVER CREEK NEAR ICE 

HOU 

11441500 70  1925-1959 

383 KELSEY CREEK NEAR 

KELSEYVILLE, 

11449500 94  1947-1988 

384 NF CACHE C AT HOUGH SPRING 

NEA 

11451100 154  1972-1988 

385 NAPA RIVER NEAR ST. HELENA 

CAL 

11456000 208  1930-1932,1940-

1988 
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386 RUSSIAN RIVER NEAR UKIAH, 

CALI 

11461000 256  1912-1913,1953-

1988 

387 DRY CREEK NR GEYSERVILLE 

CALIF 

11465200 415  1960-1983 

388 NAVARRO RIVER NEAR 

NAVARRO, CA 

11468000 776  1951-1988 

389 NOYO RIVER NR FORT BRAGG 

CALIF 

11468500 271  1952-1988 

390 MATTOLE RIVER NR PETROLIA 

CALI 

11469000 614  1912-1913,1951-

1988 

391 OUTLET CREEK NR LONGVALE, 

CA. 

11472200 412  1957-1988 

392 MIDDLE FORK EEL R NR DOS 

RIOS 

11473900 1907  1966-1988 

393 ELDER CREEK NEAR 

BRANSCOMB CAL 

11475560 17  1968-1988 

394 SF EEL RIVER AT LEGGETT 

CALIF 

11475800 635  1966-1988 

395 SF EEL RIVER NR MIRANDA 

CALIF 

11476500 1375  1940-1988 

396 BULL CREEK NEAR WEOTT, 

CALIF. 

11476600 72  1961-1988 

397 EEL RIVER AT SCOTIA CALIF 11477000 7969  1911-1914,1917-

1988 

398 VAN DUZEN RIVER NR 

BRIDGEVILLE 

11478500 568  1951-1988 

399 LITTLE R NR TRINIDAD CALIF 11481200 104  1956-1988 

400 REDWOOD C NR BLUE LAKE 

CALIF 

11481500 173  1954-1958,1973-

1988 

401 REDWOOD CREEK AT ORICK 

CALIF 

11482500 709  1912-1913,1954-

1988 

402 SPRAGUE RIVER NEAR 

BEATTY,OREG 

11497500 1313  1954-1988 

403 SPRAGUE RIVER NEAR 

CHILOQUIN,O 

11501000 4045  1922-1988 

404 SCOTT RIVER NEAR FORT 

JONES, C 

11519500 1672  1942-1988 

405 INDIAN CREEK NEAR HAPPY 

CAMP, 

11521500 307  1958-1988 

406 SALMON RIVER AT SOMES BAR 

CALI 

11522500 1923  1912-1915,1928-

1988 

407 TRINITY R AB COFFEE C NR 

TRINI 

11523200 381  1958-1988 

408 TRINITY RIVER AT LEWISTON 

CALI 

11525500 1841  1912-1960 

409 S F TRINITY RIVER BL 

HYAMPOM, 

11528700 1956  1966-1988 

410 TRINITY R AT HOOPA CALIF 11530000 7304  1912-1913,1917-

1918,1932-1960 

411 SMITH RIVER NEAR CRESCENT 

CITY 

11532500 1559  1932-1988 
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412 DUNGENESS RIVER NEAR 

SEQUIM, W 

12048000 399  1924-1930,1938-

1988 

413 DUCKABUSH RIVER NEAR 

BRINNON, 

12054000 170  1939-1988 

414 NF SKOKOMISH R BLW STRCSE 

RPDS 

12056500 146 Yes 1925-1988 

415 SKYKOMISH RIVER NEAR GOLD 

BAR, 

12134500 1370  1929-1988 

416 SNOQUALMIE RIVER NEAR 

SNOQUALM 

12144500 960  1903-1903,1927-

1927,1959-1988 

417 SAUK R ABV WHITECHUCK R NR 

DAR 

12186000 389  1918-1920,1922-

1922,1929-1988 

418 SAUK RIVER NEAR SAUK, 

WASH. 

12189500 1828  1929-1988 

419 FISHER RIVER NEAR LIBBY, MT. 12302055 2145  1968-1988 

420 FLOWER CREEK NEAR LIBBY, 

MT. 

12303100 28  1961-1988 

421 YAAK RIVER NEAR TROY, MT. 12304500 1961  1957-1988 

422 BOULDER CREEK NR LEONIA ID 12305500 143  1929-1971,1974-

1977 

423 MISSION CREEK NEAR 

COPELAND, I 

12316800 59  1959-1981 

424 BOUNDARY CREEK NR 

PORTHILL ID 

12321500 248  1931-1988 

425 BOULDER CREEK AT MAXVILLE, 

MT. 

12330000 183  1940-1988 

426 MIDDLE FORK ROCK CREEK 

NEAR PH 

12332000 315  1938-1988 

427 CLARK FORK AT ST. REGIS, MT. 12354500 27415 Yes 1912-1923,1929-

1988 

428 MIDDLE FORK FLATHEAD 

RIVER NEA 

12358500 2888  1940-1988 

429 S F FLATHEAD R AB TWIN C, NR 

H 

12359800 2970  1965-1982 

430 SWAN RIVER NEAR BIGFORK, 

MT. 

12370000 1718  1923-1988 

431 PROSPECT CREEK AT 

THOMPSON FAL 

12390700 466  1957-1988 

432 PACK RIVER NR COLBURN ID 12392300 317  1959-1982 

433 PRIEST R @ OUTLET OF PRIEST 

LK 

12393500 1464  1914-1918,1920-

1948 

434 COLVILLE RIVER AT KETTLE 

FALLS 

12409000 2578  1924-1931,1933-

1988 

435 COEUR D'ALENE R AB 

SHOSHONE CK 

12411000 858 Yes 1951-1988 

436 COEUR D'ALENE RIVER AT 

ENAVILL 

12413000 2291 Yes 1940-1988 

437 COEUR D'ALENE RIVER NR 

CATALDO 

12413500 3123  1912-1912,1921-

1972,1987-1988 

438 ST. JOE RIVER AT CALDER, ID 12414500 2637  1912-1912,1921-

1988 
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Table A.1. Continued 
439 ST. MARIES RIVER NEAR SANTA 

ID 

12414900 704  1966-1988 

440 ST MARIES RIVER AT LOTUS ID 12415000 1119  1921-1966 

441 HAYDEN CK BELOW N FK, NR 

HAYDE 

12416000 56  1949-1953,1959-

1959,1966-1988 

442 HANGMAN CREEK AT SPOKANE, 

WASH 

12424000 1764  1949-1977,1979-

1988 

443 LITTLE SPOKANE RIVER AT ELK, 

W 

12427000 294  1949-1971 

444 LITTLE SPOKANE RIVER AT 

DARTFO 

12431000 1702  1930-1932,1948-

1988 

445 ANDREWS CREEK NEAR 

MAZAMA, WAS 

12447390 57  1969-1988 

446 METHOW RIVER AT TWISP, WA 12449500 3331  1920-1929,1934-

1962 

447 STEHEKIN RIVER AT STEHEKIN, 

WA 

12451000 822  1912-1915,1928-

1988 

448 ENTIAT RIVER NEAR 

ARDENVOIR, W 

12452800 520  1958-1988 

449 WHITE RIVER NEAR PLAIN, 

WASH. 

12454000 384  1955-1983 

450 WENATCHEE RIVER BELOW 

WENATCHE 

12455000 699  1933-1958 

451 WENATCHEE RIVER AT PLAIN, 

WASH 

12457000 1513  1911-1929,1932-

1979 

452 ICICLE CREEK ABV SNOW CR NR 

LE 

12458000 494  1937-1971 

453 WENATCHEE RIVER AT 

PESHASTIN, 

12459000 2560  1930-1988 

454 WENATCHEE RIVER AT 

MONITOR, WA 

12462500 3331  1963-1988 

455 CRAB CREEK AT IRBY, WASH. 12465000 2668  1943-1988 

456 WILSON CREEK AT WILSON 

CREEK, 

12465500 1093  1952-1957,1959-

1971,1973-1973 

457 AMERICAN RIVER NEAR NILE, 

WASH 

12488500 202  1940-1988 

458 NORTH FORK AHTANUM CREEK 

NEAR 

12500500 176  1911-1915,1932-

1978 

459 PACIFIC CREEK AT MORAN, WY 13011500 433  1945-1975,1979-

1988 

460 BUFFALO FORK ABOVE LAVA 

CREEK 

13011900 827  1966-1988 

461 CACHE CREEK NEAR JACKSON 

WY 

13018300 27  1963-1988 

462 GREYS RIVER AB RESERVOIR, 

NR A 

13023000 1147  1938-1938,1954-

1988 

463 PALOUSE RIVER BELOW SOUTH 

FORK 

13349210 2038  1964-1972,1976-

1988 

464 PALOUSE RIVER AT HOOPER, 

WASH. 

13351000 6400 Yes 1898-1899,1901-

1906,1909-

1911,1914-

1915,1952-1988 
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Table A.1. Continued 
465 S.F. WALLA WALLA RIVER NEAR 

MI 

14010000 161  1908-1909,1911-

1917,1932-1988 

466 UMATILLA RIVER AB 

MEACHAM CR N 

14020000 335  1934-1988 

467 WILLOW CREEK AT HEPPNER, 

OREG. 

14034500 248  1952-1982 

468 CAMAS CREEK NEAR UKIAH, 

OREG. 

14042500 310  1915-1917,1922-

1923,1942-1988 

469 M FK JOHN DAY R AT RITTER, 

ORE 

14044000 1318  1930-1988 

470 JOHN DAY RIVER AT SERVICE 

CREE 

14046500 13030  1930-1988 

471 JOHN DAY R AT MCDONALD 

FERRY,O 

14048000 19405  1906-1988 

472 CROOKED R NR PRINEVILLE, 

OREG. 

14080500 6912  1942-1959 

473 WHITE RIVER BELOW TYGH 

VALLEY, 

14101500 1068  1918-1988 

474 KLICKITAT RIVER NEAR PITT, 

WAS 

14113000 3320  1910-1911,1929-

1988 

475 SANDY RIVER NEAR MARMOT, 

OREG. 

14137000 671  1912-1915,1917-

1918,1920-1988 

476 FALL CR. NEAR LOWELL, OREG. 14150300 302  1964-1988 

477 ROW RIVER ABOVE PITCHER 

CREEK 

14154500 540  1936-1988 

478 MCKENZIE R AT MCKENZIE 

BRIDGE, 

14159000 891  1911-1962 

479 NO SANTIAM R BL BOULDER CR 

NR 

14178000 553  1908-1909,1929-

1988 

480 BREITENBUSH RIVER ABV 

FRENCH C 

14179000 276  1933-1987 

481 SOUTH SANTIAM RIVER BELOW 

CASC 

14185000 445  1936-1988 

482 QUARTZVILLE CREEK NEAR 

CASCADI 

14185900 254  1964-1964,1966-

1988 

483 THOMAS CREEK NEAR 

SCIO,OREG. 

14188800 279  1963-1987 

484 LUCKIAMUTE RIVER NEAR 

SUVER, O 

14190500 614  1906-1911,1941-

1988 

485 WILLAMETTE RIVER AT 

SALEM,OREG 

14191000 18637  1910-1916,1924-

1941 

486 WILLAMINA CREEK NEAR 

WILLAMINA 

14193000 166  1935-1988 

487 MOLALLA R AB PC NR WILHOIT, 

OR 

14198500 248  1936-1988 

488 PUDDING RIVER NEAR MOUNT 

ANGEL 

14201000 522 Yes 1940-1965 

489 CLACKAMAS RIVER AT BIG 

BOTTOM, 

14208000 348  1921-1970 

490 EAST FORK LEWIS RIVER NEAR 

HEI 

14222500 320  1930-1985,1987-

1988 
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Table A.1. Continued 
491 CISPUS RIVER NEAR RANDLE, 

WASH 

14232500 822  1930-1988 

492 COWLITZ RIVER NR RANDLE, 

WASH. 

14233400 2637  1968-1988 

493 COWEMAN RIVER NEAR KELSO, 

WASH 

14245000 305  1951-1979 

494 YOUNGS RIVER NEAR ASTORIA, 

ORE 

14251500 103  1928-1958 

495 NEHALEM RIVER NEAR FOSS, 

OREG. 

14301000 1708  1940-1988 

496 WILSON RIVER NEAR 

TILLAMOOK, O 

14301500 412  1915-1915,1932-

1988 

497 NESTUCCA R NR BEAVER OREG 14303600 461  1965-1988 

498 FIVE RIVERS NR FISHER, OREG. 14306400 292  1961-1963,1968-

1988 

499 ALSEA RIVER NEAR 

TIDEWATER, OR 

14306500 855  1940-1988 

500 SIUSLAW R NR MAPLETON, 

OREG. 

14307620 1505  1968-1988 

501 JACKSON CREEK NEAR TILLER, 

ORE 

14307700 389  1956-1986 

502 SOUTH UMPQUA RIVER AT 

TILLER, 

14308000 1149  1911-1911,1940-

1988 

503 STEAMBOAT CREEK NEAR 

GLIDE,ORE 

14316700 581  1957-1988 

504 LITTLE RIVER AT PEEL, OREG. 14318000 453  1955-1988 

505 SOUTH FORK COQUILLE RIVER 

AT P 

14325000 433  1917-1926,1930-

1988 

506 ROGUE RIVER ABOVE 

PROSPECT, OR 

14328000 799  1909-1910,1924-

1988 

507 ELK CREEK NEAR TRAIL, OREG. 14338000 330  1947-1988 

508 APPLEGATE RIVER NEAR 

COPPER, O 

14362000 576  1939-1979 

509 ILLINOIS RIVER AT KERBY, 

OREG. 

14377000 932  1927-1961 

510 ILLINOIS RIVER NEAR KERBY, 

ORE 

14377100 973  1962-1988 

511 CHETCO RIVER NR BROOKINGS, 

ORE 

14400000 694  1970-1988 

512 Clarks Fork Yellowstone River 6208500 5176 Yes 1922-2003 

513 L POWDER RIVER AB DRY C NR 

WES 

6324970 3167 Yes 1973-2003 

514 Powder River near Locate MT 6326500 33454 Yes 1939-2003 

515 CACHE LA POUDRE R A MO OF 

CN, 

6752000 2701 Yes 1901-2003 

516 SAGUACHE CREEK NEAR 

SAGUACHE, 

8227000 1523 Yes 1911-2003 

517 RITO DE LOS FRIJOLES IN 

BANDEL 

8313350 45 Yes 1984-1996 

518 COLORADO R BELOW BAKER 

GULCH, 

9010500 164 Yes 1954-2003 
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Table A.1. Continued 
519 DRY FORK AT UPPER STATION, 

NEA 

9095300 249 Yes 1996-2003 

520 EAST RIVER BL CEMENT CREEK 

NR 

9112200 609 Yes 1964-2003 

521 WEST CLEAR CREEK NEAR 

CAMP VER 

9505800 617 Yes 1965-2003 

522 BEAR RIVER NEAR UTAH-

WYOMING S 

10011500 440 Yes 1943-2003 

523 TRUCKEE R A FARAD CA 10346000 2386 Yes 1910-2003 

524 ST. JOE RIVER AT RED IVES 

RANG 

12413875 274 Yes 1998-2003 

525 St. Regis River near St. Regis 12354000 776 Yes 1911-2003 

526 Bitterroot River near Missoula 12352500 7204 Yes 1901-2003 

527 TOPPENISH CREEK NEAR FORT 

SIMC 

12506000 312 Yes 1910-2003 

528 SATUS CR BELOW DRY CR NEAR 

TOP 

12508500 1114 Yes 1914-2003 

529 SNAKE RIVER AB JACKSON 

LAKE AT 

13010065 1244 Yes 1984-2003 

530 SPRING CREEK AT SHEEPSKIN 

RD N 

13075983 46 Yes 1981-2003 

531 MEDICINE LODGE CREEK NR 

SMALL 

13116500 691 Yes 1922-2003 

532 HENRYS FORK NR REXBURG ID 13056500 7475 Yes 1910-2003 

533 FALLS RIVER NR SQUIRREL ID 13047500 855 Yes 1905-2003 

534 SALT RIVER AB RESERVOIR NR 

ETN 

13027500 2122 Yes 1954-2003 

535 LITTLE GRANITE CREEK AT 

MOUTH 

13019438 54 Yes 1982-1992 

536 LITTLE ABIQUA CREEK NEAR 

SCOTT 

14200400 25 Yes 1994-2003 

537 TAYLOR CREEK NEAR SELLECK, 

WAS 

12117000 44 Yes 1946-2002 

538 NEWAUKUM CREEK NEAR 

BLACK DIAM 

12108500 70 Yes 1945-2002 

539 GREEN RIVER ABV TWIN CAMP 

CREE 

12103380 42 Yes 1993-1999 

540 KINGS R BL NF NR TRIMMER CA 11218500 3436 Yes 1963-1993 

541 COSUMNES R A MICHIGAN BAR 

CA 

11335000 1372 Yes 1908-2003 

542 CAJON C BL LONE PINE C NR 

KEEN 

11063510 145 Yes 1972-2003 

543 CUCAMONGA C NR UPLAND CA 11073470 25 Yes 1930-1975 
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Figure A.1. Map of streamflow sites and their watersheds.  The sites labels refer the 

first column in Table A.1. 
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Appendix B 

This appendix describes the backward stepwise multiple regression models 

developed by Ryan A. Hill and Charles P. Hawkins (personal communication, 2008) for 

predicting mean annual temperature (MAT), mean winter temperature (MWT) and mean 

summer temperature (MST) of streams in western US.  The predictor variables of these 

models are given in Table B.1 and Table B.2 gives the model statistics.  The common 

predictor variables between the temperature models and the models predicting the 

streamflow regime class are described in Chapter 4.  The rest of the variables are 

described in Table B.3.  Table B.4 lists the sites used in developing these regressions.  

These are shown in the map in Figure B.1 labeled to refer the first column of Table B.4. 

 

Table B.1. The Predictor Variables and their Coefficients Used in the Temperature 

Models 

MAT MWT MST 

Variable Coefficient Variable Coefficient Variable Coefficient 

CONSTANT 21.462 CONSTANT 3.220 CONSTANT 8.173 

BDH_AVE 1.888 GRANITIC -0.014 BDH_AVE 4.905 

ELEV_MEAN 0.000 TMIN_PT 0.020 LATITUDE -0.210 

HYDR_AVE 8.585 TMEAN_WS 0.044 LOGRCHSLP -0.748 

LATITUDE -0.267 PRMH_AVE 0.226 LOGSQ_KM 0.683 

LOGSQ_KM 0.554 WTDH_WS -0.466 LST32F_AVE -0.028 

LST32F_AVE -0.015 LOGSQ_KM 0.162 PRMH_AVE -0.049 

LOGMAXP_PT -0.994     RDH_AVE 0.029 

OMH_AVE -0.240     SHAPE1 -6.863 

SHAPE1 -3.076     TMAX_WS 0.040 

TMEAN_PT 0.031         
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Table B.2. Model Statistics for Backward Stepwise Multiple Regression Models of Temperature Variables 

MAT MWT MST 

RMSE (
O
C) 0.97 1.73 2.14 

Adj. R
2
 0.86 0.74 0.73 

 

 

Table B.3. Watershed Attributes That Were Used in the Temperature Model but Not Described in Chapter 4 
Metric Description Unit Source 

TMEAN_PT  Annual mean of the PRISM mean monthly air temperature at the outlet. mm PRISM 

TMIN_PT Coldest month's PRISM mean monthly air temperature at the outlet. mm PRISM 

LOGMAXP_PT Log10 of the wettest month's PRISM mean monthly precipitation at the outlet.  PRISM 

HYDR_AVE Ratio of minimum of mean monthly flows on record to the mean of the maximum monthly 

flows, calculated as a watershed average. 

- Derived from 

USGS 

streamflow 

LOGSQ_KM Log10 of the watershed drainage area   

LOGRCHSLP Log10 of channel reach slope as measured by  National 

Hydrography 

Dataset 

(NHDPlus) 

LATITUDE Latitude of the gauge Deceimal 

degree 
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Table B.4. Temperature Site Information.  The Index Column is Used to Label the 

Sites in Figiure B.1 
Index Site name USGS code Drainage area, 

Sq. Km 

1 BREITENBUSH 14179000 273 

2 KALAMA RIVER 14223600 522 

3 CALIFORNIA G 7081800 29 

4 WINBERRY CRE 14150800 113 

5 FALL CREEK B 14151000 481 

6 BLUE CR ABV 12433542 16 

7 PICEANCE CRE 9306007 460 

8 PICEANCE CRE 9306042 653 

9 PICEANCE C B 9306045 663 

10 PICEANCE CRE 9306061 802 

11 PICEANCE CRE 9306200 1312 

12 PICEANCE CRE 9306222 1692 

13 BLUE CR NR M 12433561 48 

14 M F WILLAMET 14145500 1018 

15 S FK ROGUE R 14334700 634 

16 QUINN R NR M 10353500 2848 

17 MARTIS C A H 10339250 13 

18 BIG HOLE RIV 6024580 4153 

19 CEDAR RIVER 12117500 331 

20 CEDAR RIVER 12119000 440 

21 LOST CREEK N 14158980 199 

22 MIDDLE FORK 14361590 131 

23 ELK CREEK NE 14337800 204 

24 RALSTON CREE 6719725 96 

25 NAPA RIVER N 11456000 213 

26 ELWHA RIVER 12045500 695 

27 ELK CREEK BE 14337830 268 

28 MIDDLE FORK 12141300 401 

29 RALSTON CREE 6719740 111 

30 BIRCH CR NR 13116970 62 

31 SALT CREEK N 9179200 82 

32 SNAKE RIVER 13010200 1299 

33 BUMPING RIVE 12488000 192 

34 ELK CREEK NE 14338000 337 

35 SAN LORENZO 11160500 276 

36 CARBERRY CRE 14361700 180 

37 YELLOWSTONE 6187550 3518 

38 YELLOWSTONE 6186500 2606 

39 YAKIMA RIVER 12474500 142 

40 WILLOW CREEK 13058000 1659 

41 MARTIS C NR 10339400 103 

42 PAULINA CREE 14063300 45 

43 KACHESS RIVE 12476000 164 

44 HORSE CREEK 14159100 362 
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Table B.4. Continued 
45 ROGUE RIVER 14335075 1784 

46 SIMILKAMEEN 12442500 9100 

47 YANKEE FORK 13296000 485 

48 APPLEGATE RI 14362000 577 

49 APPLEGATE RI 14366000 1252 

50 APPLEGATE RI 14369500 1810 

51 GARDNER RIVE 6191000 512 

52 EAST BOULDER 6197800 101 

53 E FK SALMON 13297453 487 

54 BLACKS FORK 9224700 7721 

55 CALAVERAS R 11308600 468 

56 ARKANSAS RIV 7081200 252 

57 LITTLE SNAKE 9260000 10478 

58 BEAR CREEK A 13032000 203 

59 SF SNOQUALMI 12143400 113 

60 NORTH FORK Q 12039300 191 

61 MALHEUR RIVE 13216350 6292 

62 NO SANTIAM R 14178000 558 

63 NORTH SANTIA 14181500 1171 

64 NORTH SANTIA 14183000 1696 

65 NORTH SANTIA 14184100 1892 

66 SANTIAM R AT 14189000 4608 

67 N F FLATHEAD 12355500 4026 

68 ARKANSAS RIV 7083710 615 

69 SPOKANE RIVE 12433000 16002 

70 COWLITZ RIVE 14233400 2653 

71 CHAMOKANE CR 12433200 447 

72 S FK BOISE R 13186000 1660 

73 MIDDLE FORK 7124050 130 

74 MCKENZIE R A 14159000 903 

75 MF WILLAMETT 14148000 2409 

76 MIDDLE FORK 14150000 2605 

77 MF WILLAMETT 14152000 3491 

78 BIG BUTTE CR 14337500 641 

79 TAYLOR ARROY 7126325 126 

80 SKAGIT RIVER 12179000 3325 

81 YAMPA RIVER 9260050 20461 

82 SKAGIT RIVER 12181000 3604 

83 STANISLAUS R 11299997 2536 

84 STANISLAUS R 11303000 2862 

85 FISHER RIVER 12302055 2173 

86 CACHE LA POU 6752260 2968 

87 CLARK FORK N 12323800 1285 

88 S. UMPQUA RI 14312260 4567 

89 MERCED R NR 11272500 3277 

90 MCKENZIE RIV 14159800 1940 

91 MCKENZIE RIV 14162400 2208 
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Table B.4. Continued 
92 MCKENZIE R N 14162500 2401 

93 MCKENZIE RIV 14163900 2793 

94 ROGUE RIVER 14337600 2435 

95 OKANOGAN RIV 12445000 11997 

96 FOUNTAIN CR 7105530 1069 

97 FOUNTAIN CRE 7105800 1314 

98 FOUNTAIN CRE 7106000 1768 

99 ROGUE RIVER 14338100 2819 

100 ROGUE R AT D 14339000 3151 

101 WEBER RIVER 10141000 5308 

102 FOUNTAIN CRE 7106300 2198 

103 FOUNTAIN CRE 7106500 2400 

104 ARKANSAS RIV 7087200 1676 

105 N UMPQUA RIV 14317500 2302 

106 NORTH UMPQUA 14319500 3515 

107 TRUCKEE R A 10346000 2417 

108 TRUCKEE R AT 10348000 2746 

109 TRUCKEE R NR 10348200 2785 

110 TRUCKEE R AT 10350000 3700 

111 TRUCKEE R AB 10350390 4044 

112 TRUCKEE R BL 10350400 4120 

113 TRUCKEE R RT 10350405 4120 

114 TRUCKEE R AT 10350500 4146 

115 TRUCKEE R NR 10351700 4692 

116 TUOLUMNE R A 11290000 4950 

117 WILLAMETTE R 14166000 8904 

118 WILLAMETTE R 14171750 11604 

119 JOHN DAY R A 14048000 19801 

120 PURGATOIRE R 7124200 1308 

121 SALMON RIVER 13293800 786 

122 SALT RIVER A 13027500 2221 

123 SKAGIT RIVER 12199000 7830 

124 SKAGIT RIVER 12200500 8029 

125 ARKANSAS RIV 7091200 2730 

126 SATUS CR AT 12508621 1490 

127 BOISE RIVER 13213000 10124 

128 UMPQUA RIVER 14321000 9433 

129 ROGUE RIVER 14359000 5312 

130 VAN BREMER A 7126200 456 

131 TONGUE RIVER 6308500 13979 

132 S F TRINITY 11528700 1979 

133 ROGUE R AT G 14361500 6364 

134 BIRCH CR AT 13116980 672 

135 WILLAMETTE R 14191000 18832 

136 RUBY RIVER N 6023000 2520 

137 GREEN RIVER 9234500 39153 

138 YELLOWSTONE 6191500 6804 
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Table B.4. Continued 
139 ROGUE RIVER 14370400 8561 

140 ROGUE RIVER 14372250 9971 

141 ROGUE RIVER 14372300 10198 

142 FEATHER R A 11407000 9381 

143 TETON RIVER 13055000 2271 

144 CLARK FORK A 12324200 2595 

145 WILLAMETTE R 14211720 28936 

146 DOLORES RIVE 9169500 5257 

147 OWYHEE RIVER 13184000 28693 

148 WHITE RIVER 9304200 1662 

149 WHITE RIVER 9304600 2096 

150 DOLORES RIVE 9171070 5570 

151 DOLORES RIVE 9171100 5573 

152 WHITE RIVER 9304800 2655 

153 WHITE RIVER 9306395 9219 

154 WHITE RIVER 9306500 10109 

155 WHITE RIVER 9306600 10170 

156 WHITE R BLW 9306700 10453 

157 WHITE RIVER 9306900 12933 

158 OWENS R BL T 10277400 7773 

159 BIG HOLE RIV 6025500 6409 

160 SAN JUAN RIV 9368000 33271 

161 YAKIMA RIVER 12508990 13887 

162 YAKIMA RIVER 12510500 14544 

163 PEND OREILLE 12398600 9590 

164 CLARK FORK A 12324680 4600 

165 YELLOWSTONE 6192500 9226 

166 BIG HOLE RIV 6026400 7134 

167 HORSE CREEK 7123675 3656 

168 GUNNISON RIV 9152500 20452 

169 BELT CREEK N 6090500 918 

170 CLARKS FORK 6208800 5470 

171 MADISON RIVE 6041000 5730 

172 VIRGIN RIVER 9408135 3638 

173 HUMBOLDT R N 10321000 11239 

174 RIO GRANDE N 8251500 19393 

175 ARKANSAS RIV 7094500 6373 

176 JORDAN RIVER 10171000 9036 

177 VIRGIN RIVER 9408150 3954 

178 SOUTH PLATTE 6711565 8783 

179 GALLATIN RIV 6052500 4630 

180 BELT CREEK N 6090610 2069 

181 SOUTH PLATTE 6720500 12347 

182 SAN JUAN RIV 9379500 59578 

183 S F FLATHEAD 12359800 3001 

184 ARKANSAS RIV 7097000 10244 

185 SAN JOAQUIN 11260815 53256 
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Table B.4. Continued 
186 SAN JOAQUIN 11261500 54137 

187 PURGATOIRE R 7126300 4998 

188 FLATHEAD RIV 12363000 11524 

189 FLATHEAD RIV 12372000 18332 

190 SAN JOAQUIN 11274570 63059 

191 COLORADO RIV 9070500 11378 

192 CLARK FORK N 12331900 6864 

193 SNAKE RIVER 13032500 13455 

194 CLARK FORK A 12334550 9496 

195 COLORADO RIV 9071100 11618 

196 COLORADO RIV 9071750 11750 

197 SAN JOAQUIN 11290500 69057 

198 PURGATOIRE R 7126485 7184 

199 ROARING FORK 9085000 3762 

200 POWDER RIVER 6326500 33907 

201 POWDER RIVER 6326520 34733 

202 SAN JOAQUIN 11303500 72207 

203 SEVIER RIVER 10224000 15371 

204 SOUTH PLATTE 6764000 59143 

205 PURGATOIRE R 7128500 8946 

206 SNAKE RIVER 13037500 14818 

207 CLARK FORK A 12340500 15587 

208 ARKANSAS RIV 7099400 11948 

209 CLARK FORK B 12353000 23346 

210 ARKANSAS RIV 7099970 12254 

211 CLARK FORK A 12353650 26447 

212 CLARK FORK N 12354700 27997 

213 GREEN RIVER 9315000 105289 

214 YELLOWSTONE 6214500 30610 

215 ARKANSAS RIV 7109500 16193 

216 KLAMATH RIVE 11523000 31072 

217 COLORADO RIV 9085100 15577 

218 RIO GRANDE A 8313000 36145 

219 BELLE FOURCH 6437000 15017 

220 JEFFERSON RI 6036650 24759 

221 COLORADO RIV 9095500 20686 

222 SACRAMENTO R 11390500 39736 

223 COLORADO RIV 9163530 46742 

224 COLORADO RIV 9163500 46250 

225 SACRAMENTO R 11447650 63854 

226 DESCHUTES RI 14092500 20861 

227 DESCHUTES RI 14103000 27783 

228 MISSOURI RIV 6054500 38008 

229 BIGHORN RIVE 6294700 59181 

230 ARKANSAS RIV 7124000 37082 

231 YELLOWSTONE 6309000 125021 

232 MISSOURI RIV 6090800 63117 
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Table B.4. Continued 
233 YELLOWSTONE 6329500 179003 

234 MISSOURI RIV 6109500 87765 

235 SNAKE RIVER 13077000 56656 

236 SNAKE R NR M 13081500 62949 

237 MISSOURI RIV 6177000 212274 

238 ARKANSAS R N 7137500 64611 

239 PECOS RIVER 8405200 54455 

240 PECOS RIVER 8407000 59991 

241 SNAKE RIVER 13154500 92931 

242 SNAKE RIVER 13213100 152557 

243 SNAKE RIVER 13269000 178362 

244 CHANNEL A NE 5056410 5095 

245 SHEYENNE RIV 5059000 24080 

246 SHEYENNE RIV 5059400 24161 

247 SOURIS RIVER 5114000 21198 

248 SOURIS RIVER 5116000 22547 

249 SOURIS RIVER 5120000 27680 

250 GIBBON RIVER 6037000 296 

251 MADISON RIVE 6037500 1126 

252 HIGHWOOD CRE 6090720 315 

253 EAST FORK PO 6179000 1834 

254 BEAR DEN CRE 6332515 191 

255 WHITE R NEAR 6452000 25852 

256 JAMES RIVER 6470500 11008 

257 JAMES RIVER 6470830 13296 

258 MUD LAKE NR 6470985 14190 

259 JAMES R AT C 6471000 18700 

260 JAMES R AT A 6473000 25218 

261 CANADIAN RIV 6619400 114 

262 CANADIAN RIV 6619450 408 

263 EF ARKANSAS 7079300 129 

264 HALFMOON CRE 7083000 61 

265 CHACUACO CRE 7126470 1086 

266 COLORADO RIV 9034500 2135 

267 MUDDY CREEK 9041500 749 

268 EAST MIDDLE 9092850 57 

269 EAST FORK PA 9092970 53 

270 PARACHUTE CR 9093000 364 

271 PARACHUTE CR 9093500 510 

272 ROAN CREEK N 9095000 834 

273 LEWIS WASH N 9106200 15 

274 LEACH CREEK 9152650 38 

275 ADOBE CREEK 9152900 40 

276 BIG SALT WAS 9153270 367 

277 REED WASH NE 9153300 74 

278 WEST SALT CR 9153400 435 

279 EAST SALT CR 9163310 509 
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Table B.4. Continued 
280 MACK WASH NE 9163340 41 

281 SALT CREEK N 9163490 1130 

282 PINE CREEK A 9196500 196 

283 BIG SANDY RI 9215550 2929 

284 BIG SANDY RI 9216050 4491 

285 SALT WELLS C 9216565 90 

286 MIDDLE CREEK 9243700 61 

287 FOIDEL CREEK 9243800 22 

288 FOIDEL CREEK 9243900 45 

289 SAGE CREEK A 9244415 11 

290 WATERING TRO 9244460 11 

291 HUBBERSON GU 9244464 21 

292 GOOD SPRING 9250400 104 

293 WILSON CREEK 9250507 52 

294 TAYLOR CREEK 9250510 19 

295 WILSON CREEK 9250600 71 

296 JUBB CREEK N 9250610 20 

297 MORGAN GULCH 9250700 69 

298 YAMPA RIVER 9251000 8759 

299 STEWART GULC 9306022 155 

300 WILLOW CREEK 9306058 125 

301 BLACK SULPHU 9306175 267 

302 CORRAL GULCH 9306235 22 

303 CORRAL GULCH 9306242 82 

304 CORRAL GULCH 9306244 98 

305 YELLOW CREEK 9306255 679 

306 EVACUATION C 9306410 261 

307 EVACUATION C 9306420 674 

308 EVACUATION C 9306430 738 

309 MANCOS RIVER 9370800 783 

310 MANCOS RIVER 9370820 829 

311 HARTMAN DRAW 9371400 87 

312 MCELMO CREEK 9371500 598 

313 MCELMO CREEK 9371520 606 

314 RED BUTTE CR 10172200 19 

315 BEAVER RIV A 10237000 792 

316 SOUTH TWIN R 10249300 50 

317 ALAMO R AT D 10254670 2978 

318 NEW R AT INT 10254970 1471 

319 MOJAVE R A L 10261500 1356 

320 BIG ROCK CRE 10263500 59 

321 LEVIATHAN C 10308783 11 

322 LEVIATHAN C 10308790 21 

323 BRYANT C BL 10308794 56 

324 BRYANT C NR 10308800 83 

325 MARYS RIVER 10313400 183 

326 GENERAL C NR 10336645 20 
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Table B.4. Continued 
327 WARD CREEK N 10336670 6 

328 WARD CREEK T 10336672 4 

329 WARD CREEK A 10336676 25 

330 DONNER UND B 10396000 532 

331 ARROYO TRABU 11047300 140 

332 SAN DIEGO CR 11048500 105 

333 LOS ANGELES 11103000 2144 

334 LA RIV A WIL 11103010 2145 

335 SANTA CLARA 11108500 1669 

336 PIRU C NR PI 11110000 1112 

337 SESPE CREEK 11111500 129 

338 SESPE CREEK 11113000 650 

339 SANTA PAULA 11113500 103 

340 SATICOY DIV 11113900 1 

341 JALAMA C NR 11120600 53 

342 CANADA HONDA 11120900 30 

343 SALSIPUEDES 11132500 122 

344 ARROYO VALLE 11176600 577 

345 BIG C BL HUN 11237000 185 

346 FRESNO R NR 11257500 337 

347 CHOWCHILLA R 11258980 521 

348 SALT SLOUGH 11261100 800 

349 MUD SLOUGH N 11262900 96 

350 MERCED R A H 11264500 470 

351 ORESTIMBA CR 11274538 393 

352 MOKELUMNE R 11325500 1724 

353 MF COTTONWOO 11374400 633 

354 COTTONWOOD C 11375810 1025 

355 STONY CREEK 11387000 1551 

356 MF FEATHER R 11392500 1776 

357 WB FEATHER R 11405300 291 

358 YUBA RIVER N 11421000 3460 

359 SF AMERICAN 11439500 499 

360 SF AMERICAN 11445500 1743 

361 AMERICAN R A 11446500 4922 

362 EF RUSSIAN R 11461500 189 

363 EF RUSSIAN R 11462000 271 

364 BIG SULPHUR 11463200 221 

365 RUSSIAN R NR 11464000 2050 

366 NAVARRO R NR 11468000 786 

367 EEL R AB DOS 11472500 1825 

368 MF EEL R AB 11472800 528 

369 SOUTH FORK E 11475500 114 

370 REDWOOD C NR 11481500 175 

371 REDWOOD C AT 11482200 479 

372 REDWOOD C A 11482500 103 

373 GRASS VALLEY 11525600 80 
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Table B.4. Continued 
374 TRINITY RIVE 11525655 2100 

375 SMITH R NR C 11532500 1588 

376 WYNOOCHEE RI 12037400 465 

377 NF SKOKOMISH 12056500 147 

378 N.F. SKOKOMI 12059500 303 

379 SOUTH FORK S 12060500 198 

380 SKOKOMISH RI 12061500 593 

381 NISQUALLY RI 12082500 359 

382 NISQUALLY RI 12086500 773 

383 GREEN RIVER 12113000 1073 

384 N.F. SNOQUAL 12142000 166 

385 TANK CR NR L 12197040 5 

386 MINKLER CR N 12197110 14 

387 BLACK CREEK 12197680 3 

388 WISEMAN CR N 12197700 9 

389 TOBACCO RIVE 12301300 1085 

390 YAAK RIVER N 12304500 2043 

391 ROCK CREEK N 12334510 2304 

392 FISH CREEK B 12353450 628 

393 ST. REGIS RI 12354000 788 

394 STILLWATER R 12365000 1441 

395 SWIFT CREEK 12365800 201 

396 WHITEFISH RI 12366000 444 

397 THOMPSON RIV 12389500 1648 

398 BULL RIVER N 12391550 366 

399 BIG CR AB E 12414350 101 

400 OKANOGAN RIV 12439500 1469 

401 SULPHUR CR W 12508850 435 

402 FALLS RIVER 13047500 845 

403 BOISE RIVER 13185000 2153 

404 MORES CREEK 13200000 1029 

405 PAYETTE RIVE 13238000 3079 

406 PAYETTE RIVE 13247500 5744 

407 MIDDLE FORK 13257000 221 

408 REDFISH LAKE 13293900 111 

409 MEADOW CREEK 13318050 97 

410 MEADOW CREEK 13318060 128 

411 MINAM RIVER 13331500 619 

412 GEDNEY CREEK 13336300 125 

413 WHITESAND CR 13336620 641 

414 CROOKED FORK 13336630 438 

415 N FK CLEARWA 13340600 3355 

416 TWENTY ONE R 13342200 17 

417 WHITE RIVER 14101500 1070 

418 BULL RUN R N 14138850 125 

419 FIR CREEK NE 14138870 13 

420 NO FK BULL R 14138900 21 
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Table B.4. Continued 
421 SOUTH FORK B 14139800 40 

422 MIDDLE FORK 14144800 669 

423 HILLS CR AB 14144900 137 

424 FALL CR. NEA 14150300 19 

425 COAST FORK W 14152500 188 

426 S FK MCKENZI 14159200 407 

427 SOUTH FORK M 14159500 538 

428 BLUE R BL TI 14161100 118 

429 LOOKOUT C NR 14161500 62 

430 BLUE R AT BL 14162200 228 

431 CALAPOOIA R 14172000 268 

432 CALAPOOIA RI 14173500 958 

433 LITTLE NORTH 14182500 287 

434 SOUTH SANTIA 14185000 458 

435 MIDDLE SANTI 14185800 268 

436 QUARTZVILLE 14185900 256 

437 SOUTH SANTIA 14187200 1443 

438 SOUTH SANTIA 14187500 1645 

439 THOMAS CREEK 14188850 25 

440 SOUTH SANTIA 14188900 2693 

441 TUALATIN RIV 14202500 126 

442 TUALATIN RIV 14207500 1830 

443 TILTON R ABV 14236200 360 

444 GREEN R ABV 14240800 320 

445 N.F. TOUTLE 14241100 736 

446 NEHALEM RIVE 14301000 1744 

447 NESTUCCA R N 14303600 471 

448 BIG ROCK CRE 14304850 17 

449 SILETZ RIVER 14305500 526 

450 ALSEA RIVER 14306500 857 

451 SIUSLAW R NR 14307620 1528 

452 S. UMPQUA RI 14308600 1666 

453 ROGUE RIVER 14330000 986 

454 WEST BRANCH 14337870 40 

455 ELLIOTT CREE 14361600 146 
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Figure B.1. Spatial distribution of temperature sites indexed according to the first 

column in Table B.4
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