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Poiseuille flow between parallel plates advects chemical reaction fronts, distorting them and alter-
ing their propagation velocities. Analytical solutions of the cubic reaction-diffusion-advection equa-
tion resolve the chemical concentration for narrow gaps, wide gaps, and small-amplitude flow.
Numerical solutions supply a general description for fluid flow in the direction of propagation of the
chemical reaction front, and for flow in the opposite direction. Empirical relations for the velocity
agree with numerical solutions to within a few percent, and agree exactly with the analytical limits.
Applications to nonlinear fingering are discussed. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2358954�

Chemical waves generally alter the mass densities of the
aqueous solutions through which they propagate. These
density changes can lead to buoyancy-driven convection.
When bounded by parallel no-slip plates, such convection
has a local velocity profile which peaks at the gap center
and is zero at the walls. Such nonuniform “Poiseuille”
flow distorts chemical reaction fronts and alters their ve-
locities of propagation. The purpose of the study is to
investigate these effects using the Navier-Stokes equa-
tions and the cubic reaction-diffusion-advection equation
pertinent to the iodate-arsenous acid reaction. In contrast
with previous assumptions, the propagation velocity is
found to exceed the sum of the velocity of a planar front
in a static fluid and the average flow velocity. Velocity
results preclude the need for the reaction-diffusion-
advection equation in future studies of nonlinear
fingering.

I. INTRODUCTION

Nonuniform fluid flow alters the shapes and propagation
velocities of chemical reaction fronts through the reaction-
diffusion-advection equation1–6

�C

�t
+ V · �C = DC�2C − F�C� . �1�

From right to left, the terms in Eq. �1� give the chemical
reaction rate F�C�, the molecular diffusion rate, the rate of
advection by the fluid flow, and the resulting rate of change
in the local chemical concentration C�x , t�. The advection
term alters the propagation velocity of chemical reaction
fronts and distorts them when the fluid velocity V�x , t� is
nonuniform.

The Navier-Stokes equations demand that two-
dimensional �2D� flow between parallel no-slip plates at x
= ±a /2 �a “Hele-Shaw” cell� assume the quadratic Poiseuille
velocity profile7

V�x,y,z,t� =
3

2
�1 −

4x2

a2 �V̄�y,z,t� , �2�

with gap average velocity V̄, with peak velocity �3/2�V̄
�reached at the gap center x=0�, and with x̂ · V̄=0. To sim-
plify calculations for small gaps and small-amplitude flows,

V is often replaced by V̄ and the x dependence of C is
ignored in Eq. �1�.2,3,8 These approximations, which are not
made herein, imply a local front velocity U=U0+W that
equals the sum of the velocity U0 of a planar front propagat-

ing through a static fluid and the component W= p̂ · V̄ of the
average fluid velocity in the direction p̂ of propagation of the
front in the y−z plane.

For simplicity, we consider the iodate-arsenous acid re-
action with the cubic reaction rate1–3

F�C� = �C�C − C2��C − C3� , �3�

which conveniently admits a closed-form solution to Eq. �1�
with propagation velocity U0= ��DC /2�1/2C2�0.03 mm/s.1

The iodate-arsenous acid reaction produces its own catalyst,
whose molecular diffusion into the unreacted fluid limits this
velocity. The autocatalyst concentration C increases mono-
tonically from its initial value of zero far ahead of the propa-
gating front to its final value C2 far behind, and increases
steeply in a narrow region of thickness L0=DC /U0

�0.07 mm, called the reaction front, where much of the
chemical reaction takes place. The constant � governs the
overall reaction rate and C3 is a small negative ratio of rate
constants.

Iodate-arsenous acid fronts convert an unreacted fluid
mixture into a less-dense reacted fluid mixture, and are there-
fore potentially unstable to buoyancy-driven convection
when the reaction proceeds upward. Indeed, flat fronts as-
cending in vertical slabs bounded by parallel vertical no-slip
plates are unstable to buoyancy-driven convection above a
critical gap width.2,3,9–15 For these studies, the Navier-Stokes
equations are used in conjunction with the reaction-
diffusion-advection equation to determine the flow resulting
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from the mass density gradients associated with the chemical
reactions. Since small-amplitude flows near the onset of con-
vection do not significantly distort the reaction front, calcu-

lations of the onset of convection which replace V by V̄ and
that ignore the x dependence of C are justified.2,3 However,
finite-amplitude flows above the onset of convection distort
ascending reaction fronts and alter their velocities of propa-
gation. These effects may be important in experiments on
nonlinear fingering.11 Although experiments on ascending re-
action fronts may require buoyancy-driven three-dimensional
�3D� modifications of the Poiseuille profile for wide gaps,
descending reaction fronts in wide gaps require no such
modifications.12 Thus, experiments on the response of de-
scending iodate-arsenous acid fronts to imposed Poiseuille
flow in a Hele-Shaw cell would be valuable because they
would isolate the effects of the Poiseuille flow from
buoyancy-driven modifications.

When L0�a, Eqs. �1� and �3� reduce to the eikonal
equation16–18

Un = U0 + DCK + Vn �4�

governing the normal component of velocity Un of a curved
advected surface of constant concentration, where Vn= n̂ ·V
is the normal component of fluid velocity, n̂ is the unit nor-
mal vector pointing into the unreacted fluid, and K=−� · n̂ is
the curvature, which is positive when the center of curvature
is in the unreacted fluid. In Ref. 18, we show that Eq. �4�,
normally considered to be valid only when the front thick-
ness is small compared to the gap width, is also valid in the
opposite limit. A midgap cusp in the reaction front that we
predicted earlier for wide-gap adverse flows8 was subse-
quently observed experimentally.19

In this paper, we present numerical and analytical calcu-
lations of concentration profiles and front shapes and con-
struct empirical expressions for the front velocity that match
our numerical calculations. These empirical expressions pre-
clude the need to include the full reaction-diffusion-
advection equation in future investigations of nonlinear fin-
gering. In particular, we present detailed analytical solutions
for U in a 2D slot defined by −a /2�x�a /2 and −� �z
��, with no y dependence ��C /�y=0� and steady Poiseuille

flow in the p̂= ẑ direction with V̄=Wẑ and W=const �see
Table I�. Equation �2� accordingly reduces to

V�x� =
3

2
�1 −

4x2

a2 �Wẑ . �5�

We consider the small-amplitude limit �Sec. III�, the narrow-
gap limit �Sec. IV�, and the wide-gap limit �Sec. V�, and
solve the general problem numerically �Sec. VI�. We also
construct an empirical closed-form solution �Sec. VII� for U
that agrees exactly with all analytical limits, and which re-
produces all numerical results to within a few percent.

We restrict spatial gradients in the front height to the
direction perpendicular to the confining plates at x= ±a /2,
and accordingly denote the height of the front surface by z
=H�x , t�. Here we do not consider spatial variations in the

front height in the horizontal �y� direction parallel to the
plates, but expect our results to be applicable in this case.
Accordingly,

n̂ =
ẑ − x̂ � H/�x

�1 + ��H/�x�2�1/2 �6�

and Un= n̂ · ẑ�H /�t allow us to recast Eq. �4� as a partial
differential equation for H�x , t�:

�H

�t
= U0�1 + � �H

�x
�2	1/2

+
3

2
W�1 −

4x2

a2 �
+ DC�1 + � �H

�x
�2	−1�2H

�x2 . �7�

Other related studies include the nonlinear interactions
of chemical reactions and viscous fingering in porous
media,20 the effective diffusivity for Poiseuille flow in the
absence of chemical reactions,21 oscillatory hydrodynamic
flow for reaction fronts driven by surface tension
gradients,22,23 Oregonator model simulations including sur-
face tension and hydrodynamics,24 the Rayleigh-Taylor insta-
bility of miscible fluids in a Hele-Shaw cell,25 and the recent
observation of buoyant plumes.26 Acidic chlorite-
tetrathionate reaction fronts have a quartic reaction rate and

TABLE I. Fundamental variables used in this paper.

a Gap width
C�x ,z , t� Catalyst concentration
C2 Final catalyst concentration �long after passage

of the chemical front�
C3 Small negative ratio of rate constants
c�x ,z , t�=C�x ,z , t� /C2 Dimensionless catalyst concentration
DC Catalyst molecular diffusivity
H�x , t� Front height, z=H�x , t�
h�x , t� Dimensionless front height, z=h�x , t�
K�x , t�=−� · n̂ Front curvature
L0=DC /U0 Reaction front thickness
n̂�x , t� Unit vector normal to the front pointing into the

unreacted fluid
p̂= ẑ Unit vector in the direction of front propagation
Pe=Wa /2DC=�� Peclet number
t Time
u=U /U0 Dimensionless front velocity
U Front velocity
U0 Front velocity for a planar front in a static fluid
Un�x , t�= n̂ · ẑ�H /�t Component of the local front velocity normal

to the front

W= p̂ · V̄ Gap-averaged Poiseuille velocity in the direction
of propagation

V�x� Poiseuille velocity profile

V̄ Gap-averaged Poiseuille velocity

Vn= n̂ ·V Normal component of Poiseuille velocity
x Cross gap Cartesian coordinate
z Cartesian coordinate in the direction of front

propagation
� Reaction rate constant
�=W /U0 Dimensionless average Poiseuille velocity in the

propagation direction
�=a /2L0 Ratio of gap half width to front thickness
�=��z−ut� Comoving dimensionless coordinate
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convert an unreacted fluid mixture into a more-dense reacted
mixture, and are therefore potentially unstable to buoyancy-
driven convection when the reaction proceeds downward.4,5

Our future investigations may include detailed analysis of
this reaction.

II. DIMENSIONLESS EQUATIONS

It is convenient to define dimensionless variables ac-
cording to x= �a /2�x�, z= �a /2�z�, t= �a /2U0�t�, and
C�x ,z , t�=C2c�x� ,z� , t��. Substituting Eq. �2� into Eq. �1� and
dropping the primes yields

�c

�t
+

3

2
��1 − x2�

�c

�z
=

1

�
� �2c

�x2 +
�2c

�z2� + 2�c2�1 − c� , �8�

where �=W /U0 is the dimensionless component of the aver-
age Poiseuille velocity in the direction of propagation of the
front, and �=a /2L0 is the ratio of the gap half width to the
front thickness. Accordingly, the product of � and � gives the
Peclet number Pe=��=Wa /2DC, a measure of the impor-
tance of advection relative to diffusion.20 Since C3 /C2�−2
�10−3,1,27 C3 plays an insignificant role in Eq. �1�, and we
ignore it. Equation �8� governs the evolution of the dimen-
sionless autocatalyst concentration c�x ,z , t� in the x−z plane
perpendicular to the plates. For propagation in the +z direc-
tion, we require c→0 as z→ +� and c→1 as z→−�. We
also require impermeable plates by setting �c /�x=0 at x
= ±1. Constant-concentration front profiles hc�x� aptly de-
scribe the shapes of moving surfaces of constant concentra-
tion c, which satisfy z=hc�x�+ut.

Soliton solutions of Eq. �8� propagating without chang-
ing shape at a constant, uniform dimensionless velocity u
�measured in units of U0� in the +z direction must have z and
t dependences that occur only in the combination z−ut. Em-
ploying a comoving coordinate �=��z−ut�, the associated
concentration c�x ,�� satisfies

1

�2

�2c

�x2 +
�2c

��2 + �u −
3

2
��1 − x2�	 �c

��
+ 2c2�1 − c� = 0, �9�

with the boundary conditions

c�x,+ � � = 0, �10�

c�x,− � � = 1, �11�

�c

�x
�±1,�� = 0. �12�

Defining dimensionless variables according to x
= �a /2�x�, t= �a /2U0�t�, and H�x , t�= �a /2�h�x� , t�� allows us
to write the dimensionless form of the eikonal equation,
Eq. �7�, as

�h

�t
= �1 + � �h

�x
�2	1/2

+
3

2
��1 − x2�

+ �−1�1 + � �h

�x
�2	−1�2h

�x2 , �13�

where we have once again dropped the primes on the dimen-
sionless independent variables, and where z=h�x , t� defines

the dimensionless time-dependent position of the front.
For soliton solutions that propagate at a constant, uni-

form dimensionless velocity u=�h /�t �measured in units of
U0� in the +z direction, Eq. �13� reduces to the ordinary
differential equation

u = �1 + �h��2�1/2 + 3
2��1 − x2� + �−1�1 + �h��2�−1h�, �14�

where the time-dependent front position z=h�x�+ut involves
the dimensionless front profile h�x�. Impermeable boundaries
demand that h��±1�=0. Equations �13� and �14� apply in the
limit of large �.

In the sections that follow, Eqs. �8�–�14� serve as the
basis for a variety of approaches to the problem of Poiseuille
advection of chemical reaction fronts.

III. SMALL-AMPLITUDE FLOW LIMIT; �\0

When ��1, the Poiseuille flow velocity is small com-
pared with the velocity of propagation of the reaction front.
To seek soliton solutions of Eqs. �9�–�12� for such small-
amplitude Poiseuille flow, we expand in powers of � accord-
ing to

c = c0 + c1 + ¯ , �15�

u = u0 + u1 + ¯ , �16�

with � of order unity. To zeroth order, Eqs. �9�–�12� require

1

�2

�2c0

�x2 +
�2c0

��2 + u0
�c0

��
+ 2c0

2�1 − c0� = 0, �17�

c0�x , + � �=0, c0�x ,−� �=1, and �c0�±1,�� /�x=0. These are
satisfied by u0=1 and

c0��� =
1

1 + e� , �18�

the celebrated soliton solution for a flat front propagating
with speed U0 �in conventional units� through a static fluid.1

For this solution, the value �=0 identifies the surface of con-
stant concentration c=1/2. This concentration is midway be-
tween the initial and final concentrations c=0 �at �→�� and
c=1 �at �→−��, and accordingly defines the middle of the
reaction front, where the chemical reaction is 50% complete.

To first order, Eqs. �9�–�12� require

1

�2

�2c1

�x2 +
�2c1

��2 + u0
�c1

��
+ 2c0�2 − 3c0�c1

= �3

2
��1 − x2� − u1	 �c0

��
, �19�

c1�x , ± � �=0, and �c1�±1,�� /�x=0. The inhomogeneity on
the right-hand side of Eq. �19� suggests a solution of the
form

c1�x,�� = − �h�x�
�c0

��
, �20�

which satisfies the boundary conditions as long as h��±1�
=0. Substituting this form into Eq. �19�, integrating once
with respect to �, and applying Eq. �17� leaves
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h� = �u1 − 3
2���1 − x2� . �21�

Integrating with respect to x and applying h��±1�=0 gives
u1=� and

h�x� =
��

8
�1 − x2�2, �22�

where we have chosen h�±1�=0.
Combining the results above, we obtain the concentra-

tion

c�x,z,t� =
1

1 + e��z−ut−h�x�� , �23�

and speed

u = 1 + � �24�

of an advected reaction front that propagates without change
of shape, valid through first order in the advection strength �.
Since z=h�x�+ut gives the position of a surface of constant
concentration c=1/2, h�x� is just the front profile associated
with the soliton eikonal equation, Eq. �14�.

IV. NARROW-GAP LIMIT; �\0

It is also useful to explore soliton solutions of Eqs.
�9�–�12� for ��1, that is, when the gap width is small com-
pared with the thickness of the reaction front. Expanding
now in even powers of �, we write

c = c�0� + c�2� + ¯ , �25�

u = u�0� + u�2� + ¯ , �26�

with � of order unity.
To order �−2, Eq. �9� gives

1

�2

�2c�0�

�x2 = 0. �27�

Integrating once with respect to x and applying
�c�0��±1,�� /�x=0 �Eq. �12�� reveals that c�0� is independent
of x.

To order �0, Eq. �9� gives

−
1

�2

�2c�2�

�x2 =
�2c�0�

��2 + �u�0� −
3

2
��1 − x2�	 �c�0�

��

+ 2c�0�2�1 − c�0�� . �28�

Integrating once with respect to x gives

−
1

�2

�c�2�

�x
= � �2c�0�

��2 + �u�0� −
3

2
� +

1

2
�x2� �c�0�

��

+ 2c�0�2�1 − c�0��	x + A��� . �29�

Applying �c�2��±1,�� /�x=0 �Eq. �12�� gives A���=0 and re-
quires

�2c�0�

��2 + �u�0� − ��
�c�0�

��
+ 2c�0�2�1 − c�0�� = 0. �30�

This equation has a soliton solution

c�0� =
1

1 + e� , �31�

u�0� = 1 + � , �32�

which satisfies the remaining boundary conditions, and
which is valid for small � and finite �. This result is identical
to Eq. �24�, which is valid instead for finite � and small �.
This agreement is consistent with the fact that the �→0 and
the �→0 limits both correspond to weak flows with small
Peclet numbers Pe=��.

Integrating Eq. �29� with respect to x gives

c�2��x,�� = − ��h�x� + B����
�c�0�

��
, �33�

where h�x� is the front profile given by Eq. �22�, and where
the second term is an integration “constant” with respect to x,
and involves a nonzero undetermined function B���. To de-
termine B��� requires the order-�2 solution of Eq. �9�, which
has thus far eluded our analytical skill.

Combining the results above, we obtain the concentra-
tion

c�x,z,t� =
1

1 + e��z−ut−h�x�−B���� , �34�

valid through second order in �. Apart from an additive func-
tion of �=��z−ut� in the exponential, this result agrees with
Eq. �23�. Accordingly, the concentration profile h�x� at fixed
� is valid both through second order in � and through first
order in �.

V. WIDE-GAP LIMIT; �\�

Equations �9�–�12� are intractable for �→�, that is, for
gaps that are wide compared with the front thickness. Fortu-
nately, useful analytical results can be obtained in this limit
from Eq. �14�, the eikonal equation. The �→� limit of Eq.
�14� is singular because the coefficient of the highest-order
derivative vanishes in this limit. Ignoring the second-order
curvature term gives a first-order equation

u = �1 + �h��2�1/2 + 3
2��1 − x2� , �35�

which is valid except where h� is of order �. The profile h�x�
for a front that propagates steadily without change of shape
must be even about x=0 because the Poiseuille flow is even.
We can therefore focus on the interval 0�x�1, with the
boundary conditions h��0�=h��1�=0. Only one of these con-
ditions can be satisfied by choosing the eigenvalue u in Eq.
�35�, with the sign of � determining which one. To satisfy the
other condition at the “singular” boundary requires the cur-
vature term in Eq. �14�, as will be seen.

Equation �35�, a first-order ordinary differential equa-
tion, cannot generally satisfy the two boundary conditions
h��0�=h��1�=0. This is the standard conundrum encountered
in singular boundary problems.28 In such problems, the co-
efficient of the highest-order derivative vanishes in the limit
of interest, thereby reducing the order of the differential
equation by at least one, and reducing the number of bound-
ary conditions that can be satisfied generally. In our case, the
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coefficient of the h��x� term in Eq. �14� vanishes in the limit
�→�, reducing this equation to a first-order equation, Eq.
�35�. In this limit, the solution of Eq. �35� is called the
lowest-order “outer” solution in singular perturbation
theory28 and is valid everywhere except at one of the bound-
aries, called the singular boundary, where h��x� is of order �.
For �	0, the singular boundary is x= ±1 and for ��0, the
singular boundary is x=0.

Singular perturbation theory can be used to find analyti-
cal solutions near singular boundaries, called “inner” solu-
tions, which can be matched with the outer solutions to pro-
vide complete solutions in the singular limit.28 Our
numerical solutions for large but finite � anticipate the be-
havior at the singular boundaries as �→�. In Fig. 3 of Ref.
8, the curvature h��x� near x= ±1 clearly increases with in-
creasing �, anticipating the infinite curvature associated with
the singular limit. In Fig. 4 of Ref. 8, the curvature near x
=0 behaves similarly. Thus, our two independent approaches
to the singular problem, numerical solution of Eq. �9� and
analytical solution of Eq. �14�, yield solutions that comple-
ment and agree with each other.

A. Poiseuille flow in the direction
of the chemical reaction; �>0

For �	0, the uniformity of u in Eq. �35� demands that

h�
 increase as x increases from 0 to 1. Accordingly, Eq. �35�
can satisfy only the boundary condition h��0�=0, which re-
quires

u = 1 + 3
2� . �36�

Inserting this result into Eq. �35� and integrating gives the
outer solution

h�x� = D −
�

2
� 4

3�
+ x2�3/2

, �37�

valid everywhere except inside a thin boundary layer at the
singular boundary at x=1. The thickness of this layer is of
order 1 /�, as will be shown below.

The inner solution hs�x� that is valid near this singular
boundary obeys

d2hs

dx2 =
3

2
�� , �38�

obtained by setting h=hs and hs�=0 in Eq. �14� and by insert-
ing Eq. �36�. Integrating once and requiring hs��1�=0 yields

dhs

dx
=

3

2
���x − 1� . �39�

Integrating again and choosing hs�1�=0 gives

hs�x� =
3��

4
�1 − x�2. �40�

We now match the solutions given by Eqs. �37� and �49�
by seeking the values of D and x=1−
 for which h�x�
=hs�x� and h��x�=hs��x�. Expanding in powers of �−1 accord-
ing to

D = D0 + �−1D1 + ¯ , �41�


 = 
0 + �−1
1 + ¯ �42�

gives

D =
��3

2
�1 −

3

2��
� , �43�


 =
�

�
�44�

through first order, where we define

� = �1 +
4

3�
�1/2

�45�

for convenience. Equation �44� ensures that the boundary-
layer thickness 
 becomes small in the wide-gap limit �
→�.

In summary, for �→� and �	0, advected chemical re-
action fronts propagate in the +z direction with velocity

u = 1 +
3

2
� , �46�

with the “outer” profile

h�x� =
�

2
��3 − � 4

3�
+ x2�3/2	 −

3��2

4�
�47�

for 
x
�� /�, and with the “inner” profile

h�x� =
3��

4
�1 − 
x
�2 �48�

for the singular boundary layer � /�� 
x
�1, where � is
given by Eq. �45�. Accordingly, front curvature is appre-
ciable only at the thin boundary layer, where it ensures the
satisfaction of the boundary condition h��±1�=0.

B. Poiseuille flow in the direction
opposite the chemical reaction; �<0

For ��0, the uniformity of u in Eq. �35� demands that

h�
 decrease with increasing x. Accordingly, Eq. �35� can
satisfy only the boundary condition h��1�=0, which requires

u = 1. �49�

Inserting this result into Eq. �35� leads to an integral

h�x� = −
3
�

2
�


x


1

�1 − x2�1/2�1 +
4

3
�

− x2�1/2

dx , �50�

which is challenging for general �, but which is easily evalu-
ated numerically. The integral is nevertheless elementary for

�
→0, giving

h�x� =
�3
�


2
�
x
�1 − x2�1/2 + sin−1
x
 − �/2� , �51�

and for 
�
→�, giving

h�x� =

�

2

�3
x
 − 
x
3 − 2� , �52�

where −1�x�1 and h�1�=0 in both cases. These solutions
are valid except inside a thin boundary layer at the cusp
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singularity at x=0. The thickness of this layer is of order
1 /�. The singular solution very near this cusp may be found
and matched using the procedure outlined above for �	0, if
needed.

VI. NUMERICAL SIMULATIONS

To explore results for intermediate � and finite �, we
perform finite-difference simulations of Eq. �8� on a rectan-
gular computational domain defined by −1�x�1 and 0
�z�b, which is divided into a grid with lattice spacing x
in the x and z directions. To accurately represent a domain
that is unbounded in the ±z directions by a computational
domain that is finite, and to avoid the need to recenter the
front on the computational domain when the front ap-
proaches the upper computational boundary, periodic bound-
ary conditions are employed to equate values of c at the z
=0 and the z=b boundaries, and a moving physical boundary
is defined at zb=z0+b /2, where z0 is the current location of
the center of the front. We set c=0 at z=zb to simulate the
boundary at z= +�, and set c=1 at z=zb+x to simulate the
boundary at z=−�. The front repeatedly traverses the com-
putational domain, with z0 following the front as it moves
and with zb=z0+b /2 located half the domain width ahead of
the front. Setting b=2r+h1/2�1�−h1/2�0� ensures a decay dis-
tance r ahead of the front for the concentration to decay to
zero and a distance r behind the front for the concentration to
approach unity. Equation �23� indicates that the approach to
these values is exponential, with an exponential decay dis-
tance of �−1. Accordingly, we find that r=10/� provides an
adequate description, and that using r=20/� yields correc-
tions that alter the front velocity by less than 0.1%. A lattice
spacing of x=0.125/� and a time step of t=0.04x /u
were found to supply similar accuracy. To ensure that
�c /�x=0 at x= ±1, the value of c�±1,z , t� is chosen so that a
parabolic fit to c�±1�x ,z , t� and c�±1�2x ,z , t� reaches
its minimum at x= ±1, for each value of z.

Our finite-difference form of Eq. �8� employs a forward
difference for the time derivative and a central difference for
the first spatial derivative, thereby allowing the lattice values
of the concentration at each time step to be obtained explic-
itly from the previous values. As the concentration profile
relaxes to its asymptotic form starting from the initial condi-
tion �23�, successive estimates of the front velocity are found
by computing the average velocity of the front as it propa-
gates vertically a distance equal to the gap width �a vertical
distance of 2 in dimensionless units�. The front is considered
to have relaxed to its asymptotic form when the absolute
value of the difference between successive velocity estimates
is less than 0.001. This process is found to converge espe-
cially rapidly for large �, although larger � demands larger
lattice sizes to adequately resolve the front. The practical
limits on the range of our numerical calculations, 1��
�16, are set by slow convergence for �→0 and by large
lattices for �→�.

VII. RESULTS AND CONCLUSIONS

Figure 1 shows constant-concentration front profiles z
=hc�x� obtained numerically for �=2 �a� and �=8 �b� for

supportive Poiseuille flow with �=2. For this figure, the fluid
flow is in the +z direction, the direction that the chemical
reaction front would propagate through a static fluid. Larger
� implies a thinner front �more closely spaced contours� rela-
tive to the gap width, a diminished role of lateral molecular
diffusion, and greater front distortion �difference between the
vertical and horizontal extents of a single contour�. The as-
sociated increased front surface area allows the reaction to
consume more fluid, and leads to a higher front propagation
velocity. The high curvatures and front thickening near the
x= ±1 boundaries for �=8 anticipate the singular behavior at
these boundaries for �→�. Compared with Fig. 3 of Ref. 8,
Fig. 1 shows enough detail in the concentration profiles to
reveal this front thickening, which results from the high posi-
tive curvature and correspondingly high catalyst concentra-
tions near x= ±1, advancing the c=0.1 profile relative to the
other profiles and thereby thickening the front.

Figure 2 shows constant-concentration front profiles z
=hc�x� obtained numerically for �=2 �a� and �=8 �b� for
adverse Poiseuille flow with �=−2. For this figure, the flow
is in the −z direction, the direction opposite the direction that
the chemical reaction front would propagate through a static
fluid. Again, larger � implies a thinner front and greater front
distortion. In contrast with Fig. 1, however, the high curva-
tures and front thickening occur near x=0 for �=8, antici-
pating the midgap singularity for �→�. Midgap front thick-
ening occurs because high curvatures in the leading c=0.1
and c=0.2 profiles imply increased midgap catalyst concen-
trations, which advance these profiles in the +z direction and
reduce their curvatures. Adverse Poiseuille flow dominates
over the chemical reaction for �=2, driving the front in the
direction of the flow. The chemical reaction dominates for
�=8, overwhelming the flow and allowing the front to

FIG. 1. Dimensionless constant-concentration front profiles z=hc�x� for an
autocatalytic reaction front confined between parallel plates vs the dimen-
sionless cross-gap coordinate x, for concentrations c=0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, and 0.9. The concentrations c=0 and c=1 are respectively
achieved far ahead of the front, in the unreacted fluid at z→�, and far
behind the front, in the fully reacted fluid at z→−�. The front is advected
and distorted by supportive Poiseuille flow with dimensionless gap-averaged
velocity �=2 in the same direction as the chemical reaction �+z�. Shown are
profiles for gap half width to front thickness ratios �=2 �a� and �=8 �b�,
with front velocities u=3.14 and 3.70, respectively.

043106-6 Boyd F. Edwards Chaos 16, 043106 �2006�

Downloaded 12 Oct 2011 to 129.123.124.160. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



propagate in the direction that it would have propagated
through a static fluid, albeit at a much reduced velocity. See
Fig. 4 of Ref. 8 for traces for other values of �, including
�→�.

The dimensionless front velocity reduces to u=1+� in
both the �→0 and �→0 limits. Accordingly, the same value
of the front velocity applies for both small gaps and small-
amplitude flows. In the singular �→� limit, the slope of u
vs � is discontinuous at �=0; u=1 for ��0 and u=1
+3� /2 for �	0. This slope is continuous for all finite �. To
examine the detailed � dependence of our general numerical
results for u, we define velocity corrections f�� ,�� and
g�� ,�� by

u = 1 + � +
�

2
f��,�� �53�

for �	0, and

u = 1 + � − �g��,�� �54�

for ��0. To reflect the correct asymptotic behaviors of u for
�→0, �→0, and �→�, these corrections must satisfy

f�0,�� = f��,0� = g�0,�� = g��,0� = 0 �55�

and

f�� ,�� = g�� ,�� = 1. �56�

The data points �circles, squares, diamonds, crosses, and
pluses� in Figs. 3 and 4 give our numerical results for these
corrections, for 
� 
 =0.5, 1, 2, 4, and 8, respectively. The
convergence of these results to the asymptotic results given
by Eqs. �55� and �56� numerically verifies the analytical lim-
its on u, which are summarized at the beginning of this para-
graph. Evidently, u increases monotonically with increasing
� at fixed �, and larger values of 
�
 have faster approaches to

the �→� results. Thus, for increasing gap width, maximum
front velocities are achieved more quickly for large-
amplitude Poiseuille flows than for small-amplitude flows.

For the purpose of supporting future investigations of
nonlinear fronts, we have constructed the empirical functions

f��,�� =
1 + f1e−f2/�

��1 + f1�4 + �f3��−4�1/4 , �57�

with f1=5.7�−0.28, f2=4.6�−0.50, and f3=0.023�0.59, and

g��,�� =
2

1 + eg1�−0.8 , �58�

with g1=7.5 
�
−0.34. These functions �solid traces in Figs. 3
and 4� agree with our numerical data to within a few percent
over the entire computed range.

Our results are applicable to investigations of nonlinear
fronts propagating upward through gaps exceeding the gap

FIG. 2. Front profiles z=hc�x� similar to Fig. 1, except that the Poiseuille
flow is in the adverse −z direction, with dimensionless gap-averaged veloc-
ity �=−2. Again shown are profiles for �=2 �a� and �=8 �b�, but now with
front velocities u=−0.869 and 0.020, respectively. For �=2, the flow over-
whelms the front, and carries it in the direction opposite its natural direction
of propagation. For �=8, significant front distortion increases the overall
fluid consumption rate, and thereby allows the front to propagate in its
natural direction of propagation, which is opposite to the flow.

FIG. 3. Front velocity correction f�� ,��=2�u−1−�� /� vs � for �=0.5, 1, 2,
4, and 8. Data points are from the numerical simulations, and solid traces are
given by Eq. �57�, an empirical fit to the data.

FIG. 4. Front velocity correction g�� ,��=1+ �1−u� /� vs � for �=−0.5, −1,
−2, −4, and −8. Data points are from the numerical simulations, and solid
traces are given by Eq. �58�, an empirical fit to the data.
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threshold for the onset of convection.2,3,9–12 These fronts are
unstable, and quickly assume complicated fingered shapes in
the y−z plane, for which the direction p̂ of propagation and

the component W= p̂ · V̄ of the average fluid velocity in this
direction vary from point to point along the front. For the
purpose of investigating such fronts, the effects of front
thickness and distortion in the x−z plane might best be ig-
nored in favor of the larger scale motion in the y−z plane.
Such neglect is justified as long as the length scale L of the
motion in the y−z plane is large compared with the gap width
a and with the front thickness L0. Under these conditions, the
front, though evolving with time in the y−z plane, can be
considered to be quasisteady in the sense that the relationship
between the local front velocity and the local flow velocity
obeys the steady-state relations given by Eqs. �53�–�58� at all
times. Although a time a /U0 is actually required for the local
front velocity to respond to changes in the local flow veloc-
ity, this time is small compared with the time L /U0 required
for changes in the large-scale structure of the y−z profile of
the front. Under these quasisteady conditions, the unit vector
n̂ normal to the front at midgap �x=0� coincides with the
direction p̂ of propagation of the front because the front is
even about x=0.

The fluid velocity V may be replaced by its gap average

V̄ and the x dependence of C may be ignored in Eq. �1�2,3

when f�� ,�� and g�� ,�� are small. Under these conditions,
inserting Eqs. �53� and �54� into the local front velocity U
=U0u gives U=U0+W. For problems involving both sup-
portive and adverse Poiseuille flows of comparable ampli-
tudes, the supportive flows will lead to corrections to U
=U0+W for any finite � and �, since �f�� ,�� /��	0 as �
→0. According to Eqs. �53� and �57�, such corrections are of
approximate relative order �f /2�0.01�1.6� for small �
=a /2L0 and �=W /U0. For the typical values a=0.5 mm,
L0=0.07 mm, and U0=0.03 mm/s,9 gap-averaged flow ve-
locities of at most 
W
=0.02 mm/s result in corrections of at
most 2%.

When the departures from U=U0+W are not negligible,
calculations may simply employ Eqs. �53�–�58� to compute
the local front velocity U=uU0 based on the local dimen-
sionless flow velocity �=W /U0 at each point along the front.
This procedure avoids the need to resolve the reaction front
across the gap during complicated computations.

There is a need to evaluate the role of departures from
Poiseuille flow, which may become important for wide gaps
and ascending fronts, for which fluid buoyancy drives the
convective instability. There may also be small departures
from Poiseuille flow for descending fronts, since distortion
of the front raises the overall gravitational potential energy.
Evaluations of such departures might be initiated either theo-
retically or experimentally.

Experiments for gravitationally stable fronts �descending
iodate-arsenous acid fronts, or ascending chlorite-
tetrathionate fronts� might be valuable, since departures from

Poiseuille flow are expected to be small. Such experiments
would help to evaluate the theory presented here, and might
be particularly simple to carry out, especially when the nar-
row slab geometry is replaced by a cylindrical geometry.
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