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Poiseuille advection of chemical reaction fronts: Eikonal approximation
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An eikonal equation including fluid advection is derived from the cubic reaction-diffusion-advection
equation, and is used to investigate the speeds and shapes of chemical reaction fronts subject to
Poiseuille flow between parallel plates. Although the eikonal equation is usually regarded as valid
when the front thickness is small compared to the radius of curvature of the front and to the size of
the system, it is also found to be valid when the reaction front is thick with respect to the gap width.
This new regime of applicability of the eikonal equation is consistent with its derivation, which
requires only that the reaction front curvature and the fluid velocity vary negligibly across the front.
The front distortion and the front speed increase with increagirdefined as the ratio of the gap
half-width to the reaction front thickness. Analytical limits of the front distortion and front velocity
for small and largep are compared with general numerical results. 2@03 American Institute of
Physics. [DOI: 10.1063/1.1553752

I. INTRODUCTION lar to such surfaces, so the unit vector pointing normally

] ) ) ) away from such a surface toward the unreacted fluid is given
In a solution of iodate and arsenous acid, with arsenouBy

acid in stoichiometric excess, the iodide concentrati®n
=C(x,t)=[1"] evolves according to the reaction-diffusion- . VC
advection equatioh? =" vel

()

Equation(3) represents the local direction of propagation of
the chemical reaction front. The curvature of a surface of

B o _constant concentration, taken to be positive when the center
where C,=[103 ], denotes the initial iodate concentration, of curvature is in the unreacted fluid, is

Cs=—k,/k, is a ratio of rate constants, ang=k,[H"]2. R
The chemical reaction front serves to taRdrom its initial K=-V:-n. (4)
value C=0 far ahead of the front to the final vali&=C, A D0 .

point x(t) that remains on a surface of constant concen-

far_behmd the front. Surface_s of constant concentration det'ration as it travels with the front must satis§(x(t).t)
scribe the shape of the reaction front.

An advection-free eikonal equation =constant, whose total time derivative gives an evolution
q equation for the front,

aC
H+V-VC=DCVZC—aC(C—CZ)(C—Cg), (1)

Un:U0+DcK (2) dC JC dX

= + =0.
was derived by Tyson and KeerfewhereU, is the compo- at ot Tarve=o &)

nent of the front velocity normal to the surface of the front, .
U, is the speed of a flat front in the absence of advectign, Equations(3) anc_JI (5 allow us 1o express the normal com-
is the molecular diffusivity, an& is the curvature of the ponent of velocity of a surface of constant concentration,
front. In the present paper, we use Ef). to derive an eiko- Un=n-dx/dt, as
nal equation that includes advection, and use this equation to 1 9C
study the advection of chemical reaction fronts by Poiseuille Uﬁw R (6)
flow between parallel plates. The predicted front speeds and
distortions from the eikonal equation are compared with the At each point in the fluid, Eq¥3), (4), and(6), respec-
predictions of the reaction-diffusion-advection equation.  tively, determine the unit normal vector, the curvature, and
the normal velocity of the surface of constant concentration
which passes through that point. Accordingly, Eifj) be-
Il. GENERAL DERIVATION OF EIKONAL EQUATION comes

Surfaces of constant concentration define the reaction y =v, +D.
front, and move through the fluid as the reaction front propa-
gates. The gradient of the concentrati®tt;, is perpendicu- \yherev, =f-V is the normal component of the fluid veloc-
ity, n is the normal coordinate measured as positive in the
3Electronic mail: bob_spangler_jr@yahoo.com +n direction, a prime denotes the normal derivativey

c” C
K—E)—FaF(C—CZ)(C—CQ,), (7)
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=dlon, and C'=n-VC=—|VC| is always negative be- . oH
cause the concentration always decreases in the normal di- XX
rection. n= Tﬁ- (12)

7Z—

For a static fluid ¥,,=0), Eq.(7) admits a steady one- 1+
dimensional soluti

X

We can then use E@4), V,=n-V, andU,=n-z(dH/t) to

C .
2 ®) write Eq.(9) as

C(n)=

1+ekn
© oM [ JoH\Z 3] 4ax?
with planar surfaces of constant concentratiéh=0) that E:UO 1+ ENe * 2 1- a2 W

propagate in the fixed-n direction with velocityU,=U,,

where Uy=(aD/2)Y4C,—2C,) is the velocity of a flat 1 9?H

front in a static fluid. The associated decay constark is tDec— 02 2 (13
=(al2Dc)Y?C,. Heren=0 identifies the surface of con- 1+ —) X

stant concentratio@ = C,/2, midway between the initial and X

final concentration=0 (for n— +) andC=C, (for n Defining dimensionless variables accordingxte (a/2)x’,

— —), at the inflection point of the concentration profile, t=(a/2Ug)t’, and H(x,t)=(a/2)h(x’,t"), and then drop-
where C”"=0. As such,n=0 identifies the surface of con- ping the primes allows us to write the dimensionless form of
stant concentration at the center of the reaction front. Sincéhe eikonal equation as

C3/C,~—2x10"2, we can ignoreC; to easily obtain the

reaction front thicknesd=1/k=D/U,.2 @: 3 /1+ @ + E(l_xz)eJr i 1 ‘32_h
When the fluid velocityV,, and front curvatureK are at 12 2 7 dh\ % o2’

nonzero but can be considered to be independemt, &f. 1=1x

(8) satisfies Eq(7) with k= (a/2Dc)Y2C, as before, but the (14)

normal velocity now contains contributions from the curva-

. . wheree=WI/U, is the ratio of the average fluid velocity to
ture and the fluid velocity, © 0 9 Y

the front velocity andy is the ratio of the gap half-width to
U,=Uo+DcK+V,. (99  the front thickness. Equatiofi4), the focus of this paper,
describes the front evolution in the eikonal limit with Poi-
This is the desired eikonal equation augmented to includgeyille flow. The purpose of this paper is to compare the
fluid advection. Equatiof®) was inferred, but not derived, in predictions of Eq.(11) with those of the dimensionless

Ref. 4, and allows for curved reaction froritsith n varying  reaction-diffusion-advection equation for Poiseuille flow,
from point to point on the fronjs It applies when the front

' - ' i ' gc 3 gc 1[d*c d’c
thicknessd=D /U is small compare_d Wlth both the r_adlus Ll e1-x 2| T8 o100,
of curvature 1K and the scale of variations of the fluid ve- a2 az m\gx2 972
locity. As shown in the following, it also applies more gen- (15)

erally, as long a¥,, andK vary negligibly across the front,

as assumed at the beginning of this paragraph. wherec(x,t) is the concentration in units o, .

IV. NARROW GAP LIMIT 5—0

Ill. APPLICATION TO POISEUILLE FLOW Many useful limits of Eq(14) are accessible to analytic
. . ._methods. These limits are considered here, and are compared
Steady two-dimensional flow_bet\(veen para”e' no'Sl'pwith a numerical treatment described in Sec. VI. For these
plates aix=*a/2 assumes the Poiseuille veloCify limits, we consider solutions that propagate without chang-
ing shape at constant velocity,

oh
gt

2
[V(y,z,t)y+W(y,z,t)z], (10

V( t) 6( Lx
Xayvza = n _2
4 4 u (16)

whose average over the gépdirection is _
_ We assume that we can expandand h in powers of 5

V(y,z,t)=V(y,z,t)y+W(y,z,1)Z. (1)  according to

We specify+Z as the direction of propagation of a front U=Up+tuUg+up+---,

whosey —z profile is a straight line parallel to theaxis, and h=het he Rt -« - (17)

therefore considelK andV,, to be independent of. We also 0r TR ’

consider the simplest possible fluid flow, wkhandW being  whereug is independent of, u, is proportional ton, andu,

constant in time and uniform in space, so thiain Eq.(10) is proportional ton?.

retains only the parabolic Poiseuille dependencexoAc- To lowest orderorder 1),

cordingly denoting the position of the front a=H(x,t), 2 1 .

we can determine the unit normal vector pointing into the l ('9_h°> ) '?_h(’:
1+ 0. (18

unreacted fluid from n X ax?
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8 T T T T . . T can be checked analytically. First, we try to determine the
‘ linear » dependence of the front speed. The first-order com-
gy ponent of Eq.(14) is

D
-\_

u :i@ (24)
Yoo

oS
T
1

Integrating once and applying the boundary conditions to
solve for the constant of integration shows that the first-order
correction to the front speed is zero. Thus,

Dimensionless front velocity, v
N
1

0 UJ_:O.
We now consider the second-order expansion of the eikonal
equation,
-2
1/o6h\? 1(dh;\20%h; 1 9°hg o6
U=5|—| | —=| —=+—-—.
S R 2 2lox]  plax] ox® g g (20
0o 2 4 6 8 10 12 14 16 Inserting Eq.(23) into Eq. (22) gives
Ratio of gap half-width to the front thickness, 7 2 2
)" _[€m (x6—2x*+x?) (27)
FIG. 1. A comparison of the front velocities predicted by the full reaction- IX 2 ’
diffusion-advection equationsolid tracey the eikonal approximation )
(chain-dashed tracgsand the analytical limit of the eikonal equation valid Thus, EQ.(26) is
for small  (dashed traceswhere 7 is the ratio of the gap half-width to the 2
front thickness, fole=—4, —1, 1, and 4, where is the ratio of the average | €M 3e 8 1 7e 6 S€ 4
flow velocity to the reaction front speed. The=0 values for all three traces ux= o ) X"+ §+ 2 x*—| 1+ 2 X
are determined by the smajlimit.
1 €\ ] 14 -
+l s+ 5|+ ——.
2 2 e 28
The natural implication is that . L "
P Integrating once and satisfying the boundary condition at the
#*hg edge of the fron{as beforg shows that the velocity of the
—— =0=ho=Ax+B, (19 frontis
X
. . 1
where A and B are constants of integration. The boundary  u=1+e+|-——|(e7n)? (29)
conditions 105

hy| ~0 (20) Thus the front velocity nean=0 is quadratic inp. Equation
OIx==1 (29) is also consistent with our observations that the small-
imply that A=0. Thus the front assumes a flat zeroth-orderregion of the curves in Fig. 1 all have positive curvature, and

profile with hy=const. this curvature increases with increasilej Equation(29) is
In zeroth order, Eq(14) becomes represented by the dashed traces in Fig. 1.
) Since the zeroth-order height is a constant, any distortion
a3 a1 to the front profile must be described using at least the first-
Up=1+ze(1—x?)+ — —. (21) ) . .
2 n Ix>? order correction to the height. By taking the square root and

) . integrating Eq(27), we can express the correction to the flat
Integrating once yields front profile as

3 1 1 ¢oh 4 2
_1+D (22) 677(X X

= X — — X34 —
UpX X+26X 26X+77 X . hl(X)=7 )
By evaluating Eq(22) atx=1, then adding these equations, the profiles fore=1, 7=1, 4, 8, and 16 are shown in Fig. 2.
we find thatD =0 and that the zeroth-order front velocity is pefining the distortiorl” as the ratio of the front height to the

+ const. (30

Up=1+ €. (23  9ap width, we see that, for smaj
This small+ result agrees with the corresponding limit of the (€,7)= €7 (31)
reaction-diffusion-advection equatiérSince it is not pos- ' 16°

sible to obtain results f_o'”:O numerically, Eq(23) is used The distortions are plotted as a function »in Fig. 3.
to complete the numerical curves a0 in Fig. 1.

In addition to knowing the limiting value of the front
speed forp—0, the trend of the curve as is slightly in-
creased from zero is obtainable by linearizing the eikonal Also accessible to analytic methods is the asymptotic
equation. Thus, the numerical results in the smategime  behavior asyp—ce. It was found in Ref. 6 that, in this limit,

V. WIDE GAP LIMIT, p—o
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0 . T VI. NUMERICAL TREATMENT OF THE EIKONAL
EQUATION

Finite difference simulations were performed to explore
the eikonal approximation. The number of grid points used
was always greater than or equal toz1@he front was al-

()]
% lowed to evolve untiu approached a constant value, and the
a2 time step used was such that decreasing the interval did not
E -4 effect the steady-state value @fA comparison between the
- front speeds predicted by E@.4) (dotted tracesand the full
S5+ . . . . f . .
n=4 reaction-diffusion-advection equatid(solid traces predicted
6L ] by Eg.(1)—see Ref. 6 for computational detailsre shown
n=1 in Fig. 1 fore=—4, —1, 1, and 4. Also shown are analytical
-7 ; 0'5 (') 0'5 y results for small» [chain-dashed traces, EqR9)]. The

reaction-diffusion-advection equation and the eikonal equa-
cross-gap coordinate, x tion agree with each other for both large and smglland

with the small+ analytical results. The general agreement in
the mid-range is surprising and interpreted as an added bo-
nus. The two curves are nearly indistinguishable der—1
ande=1. The curves differ by 10% for the=4 case, and the

) curves differ by at most 20% for the=—4 case. Similar
there is a pronounced asymmetry between the shape and V&greement is shown in the plots of distortion versyor

locity of the_ front for supportive rov(§>0) in the d_irecFion various values of (Fig. 3). The values of and 5 used for

of propagation and adverse fldw<0) in the opposite direc-  he gistortion plots are the same as for the plots of the front
tion. In the limit of largey, regions of sharp curvature OCCUr gpeed. That the agreement is poorer for greater values of
atx==1 for e>0 and ax=0 for e<0, and the problem is fjo\y (expressed as the dimensionless variablés not sur-
rendered singular. Fortunately, the slope and curvature of thﬁrising, since greater flow leads to greater distortion, which

front both vanish ax=0 for >0, and ak=*1 fore<0in  |g54s to less favorable conditions for applying the eikonal
this limit. Evaluating Eq.(14) at these points accordingly equation(see Fig. 2 Also shown in the plots are the ana-

FIG. 2. Front profiles foe=1 and foryp=1, 4, 8, and 16. The distortion and
the curvature of the profile increases with increasing

gives the corresponding front speeds lytical limits for small 7.
lim u=1+3¢ (32
T VIl. SUMMARY
for e>0, and o
e_ The striking agreement between the results produced by
lim u=1 (33)  the full treatment and the eikonal treatment permits using the
Kt simpler model to predict experimental results, especially for
for e<0. A detailed discussion of the wide-gap results issmall-amplitude flows. Not only is the eikonal treatment
presented in Ref. 7. valid in the larges regime, it is valid in the smalk regime

and modestly valid in the midyregime. The difference be-
tween the eikonal equation results and advection-diffusion-
reaction results increases with the magnitude of the gap av-
eraged flow speed. This is expected, as a greater flow speed
produces more distortion in the shape of the reaction front,
and accordingly reduces the validity of the eikonal approxi-
mation.

The eikonal equation agrees with the reaction-diffusion-
advection equation for both small and largeAgreement for
large 7 is expected because the reaction front is thin com-
pared with all other length scales in this limit, and the eiko-
nal equation is known to be valid under these conditions. In
contrast, agreement for smajlis surprising because the ei-
konal equation does not generally serve as a reliable approxi-
mation to the reaction-diffusion-advection equation when the
reaction front thickness is comparable to or larger than other
length scales of the problem. Close examination of the as-
sumptions of our derivation and the boundary conditions al-
FIG. 3 Front profile distortiod”, defined as the ratio of the front heigh_t to Jows us to understand why the eikonal equation applies for
the width, vy for e==4, ~1, 1, and 4. The results from the full advection- small 7 in this case. Our derivation of the eikonal equation
diffusion-reaction equation are shown with the solid trace, from the eikonal .
equation with the chain-dashed trace, and from the smaltalytical curve (Sec. I) assumes only that the front curvature and the fluid
with the dashed trace. velocity vary negligibly across the front, in the direction nor-

front profile distortion, T

Ratio of gap half-width to the front thickness, 7
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