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Poiseuille advection of chemical reaction fronts: Eikonal approximation
Robert S. Spanglera) and Boyd F. Edwards
Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315

~Received 4 November 2002; accepted 24 December 2002!

An eikonal equation including fluid advection is derived from the cubic reaction-diffusion-advection
equation, and is used to investigate the speeds and shapes of chemical reaction fronts subject to
Poiseuille flow between parallel plates. Although the eikonal equation is usually regarded as valid
when the front thickness is small compared to the radius of curvature of the front and to the size of
the system, it is also found to be valid when the reaction front is thick with respect to the gap width.
This new regime of applicability of the eikonal equation is consistent with its derivation, which
requires only that the reaction front curvature and the fluid velocity vary negligibly across the front.
The front distortion and the front speed increase with increasingh, defined as the ratio of the gap
half-width to the reaction front thickness. Analytical limits of the front distortion and front velocity
for small and largeh are compared with general numerical results. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1553752#
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I. INTRODUCTION

In a solution of iodate and arsenous acid, with arsen
acid in stoichiometric excess, the iodide concentrationC
5C(x,t)5@ I2# evolves according to the reaction-diffusio
advection equation,1,2

]C

]t
1V"“C5DC¹2C2aC~C2C2!~C2C3!, ~1!

whereC25@ IO3
2#0 denotes the initial iodate concentratio

C352ka /kb is a ratio of rate constants, anda5kb@H1#2.
The chemical reaction front serves to takeC from its initial
valueC50 far ahead of the front to the final valueC5C2

far behind the front. Surfaces of constant concentration
scribe the shape of the reaction front.

An advection-free eikonal equation

Un5U01DCK ~2!

was derived by Tyson and Keener,3 whereUn is the compo-
nent of the front velocity normal to the surface of the fro
U0 is the speed of a flat front in the absence of advection,DC

is the molecular diffusivity, andK is the curvature of the
front. In the present paper, we use Eq.~1! to derive an eiko-
nal equation that includes advection, and use this equatio
study the advection of chemical reaction fronts by Poiseu
flow between parallel plates. The predicted front speeds
distortions from the eikonal equation are compared with
predictions of the reaction-diffusion-advection equation.

II. GENERAL DERIVATION OF EIKONAL EQUATION

Surfaces of constant concentration define the reac
front, and move through the fluid as the reaction front pro
gates. The gradient of the concentration,“C, is perpendicu-
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lar to such surfaces, so the unit vector pointing norma
away from such a surface toward the unreacted fluid is gi
by

n̂52
“C

u“Cu
. ~3!

Equation~3! represents the local direction of propagation
the chemical reaction front. The curvature of a surface
constant concentration, taken to be positive when the ce
of curvature is in the unreacted fluid, is

K52“"n̂. ~4!

A point x(t) that remains on a surface of constant conc
tration as it travels with the front must satisfyC(x(t),t)
5constant, whose total time derivative gives an evolut
equation for the front,

dC

dt
5

]C

]t
1

dx

dt
"“C50. ~5!

Equations~3! and ~5! allow us to express the normal com
ponent of velocity of a surface of constant concentrati
Un5n̂"dx/dt, as

Un5
1

u“Cu
]C

]t
. ~6!

At each point in the fluid, Eqs.~3!, ~4!, and~6!, respec-
tively, determine the unit normal vector, the curvature, a
the normal velocity of the surface of constant concentrat
which passes through that point. Accordingly, Eq.~1! be-
comes

Un5Vn1DCS K2
C9

C8D1a
C

C8
~C2C2!~C2C3!, ~7!

whereVn5n̂"V is the normal component of the fluid veloc
ity, n is the normal coordinate measured as positive in
1n̂ direction, a prime denotes the normal derivativen̂"“
1 © 2003 American Institute of Physics
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5]/]n, and C85n̂"“C52u“Cu is always negative be
cause the concentration always decreases in the norma
rection.

For a static fluid (Vn50), Eq. ~7! admits a steady one
dimensional solution1

C~n!5
C2

11ekn
~8!

with planar surfaces of constant concentration (K50) that
propagate in the fixed1n̂ direction with velocityUn5U0 ,
where U05(aDC/2)1/2(C222C3) is the velocity of a flat
front in a static fluid. The associated decay constant ik
5(a/2DC)1/2C2 . Here n50 identifies the surface of con
stant concentrationC5C2/2, midway between the initial and
final concentrationsC50 ~for n→1`) and C5C2 ~for n
→2`), at the inflection point of the concentration profil
whereC950. As such,n50 identifies the surface of con
stant concentration at the center of the reaction front. Si
C3 /C2'2231023, we can ignoreC3 to easily obtain the
reaction front thicknessd51/k5DC /U0 .2

When the fluid velocityVn and front curvatureK are
nonzero but can be considered to be independent ofn, Eq.
~8! satisfies Eq.~7! with k5(a/2DC)1/2C2 as before, but the
normal velocity now contains contributions from the curv
ture and the fluid velocity,

Un5U01DCK1Vn. ~9!

This is the desired eikonal equation augmented to incl
fluid advection. Equation~9! was inferred, but not derived, in
Ref. 4, and allows for curved reaction fronts~with n̂ varying
from point to point on the fronts!. It applies when the front
thicknessd5DC /U0 is small compared with both the radiu
of curvature 1/K and the scale of variations of the fluid ve
locity. As shown in the following, it also applies more ge
erally, as long asVn andK vary negligibly across the front
as assumed at the beginning of this paragraph.

III. APPLICATION TO POISEUILLE FLOW

Steady two-dimensional flow between parallel no-s
plates atx56a/2 assumes the Poiseuille velocity5,6

V~x,y,z,t !56S 1

4

x2

a2D @V~y,z,t !ŷ1W~y,z,t !ẑ#, ~10!

whose average over the gap~x direction! is

V̄~y,z,t !5V~y,z,t !ŷ1W~y,z,t !ẑ. ~11!

We specify1 ẑ as the direction of propagation of a fron
whosey2z profile is a straight line parallel to they-axis, and
therefore considerK andVn to be independent ofy. We also
consider the simplest possible fluid flow, withV andW being
constant in time and uniform in space, so thatV in Eq. ~10!
retains only the parabolic Poiseuille dependence onx. Ac-
cordingly denoting the position of the front byz5H(x,t),
we can determine the unit normal vector pointing into t
unreacted fluid from
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n̂5

ẑ2 x̂
]H

]x

F11S ]H

]x D 2G1/2. ~12!

We can then use Eq.~4!, Vn5n̂"V, andUn5n̂"ẑ(]H/]t) to
write Eq. ~9! as

]H

]t
5U0A11S ]H

]x D 2

1
3

2 S 12
4x2

a2 D W

1DC

1

11S ]H

]x D 2

]2H

]x2
. ~13!

Defining dimensionless variables according tox5(a/2)x8,
t5(a/2U0)t8, and H(x,t)5(a/2)h(x8,t8), and then drop-
ping the primes allows us to write the dimensionless form
the eikonal equation as

]h

]t
5A11S ]h

]xD 2

1
3

2
~12x2!e1

1

h

1

12S ]h

]xD 2

]2h

]x2
,

~14!

wheree5W/U0 is the ratio of the average fluid velocity t
the front velocity andh is the ratio of the gap half-width to
the front thickness. Equation~14!, the focus of this paper
describes the front evolution in the eikonal limit with Po
seuille flow. The purpose of this paper is to compare
predictions of Eq.~11! with those of the dimensionles
reaction-diffusion-advection equation for Poiseuille flow,

]c

]t
1

3

2
e~12x2!

]c

]z
2

1

h S ]2c

]x2
1

]2c

]z2D 12hc2~12c!,

~15!

wherec(x,t) is the concentration in units ofC2 .

IV. NARROW GAP LIMIT h\0

Many useful limits of Eq.~14! are accessible to analyti
methods. These limits are considered here, and are comp
with a numerical treatment described in Sec. VI. For the
limits, we consider solutions that propagate without cha
ing shape at constant velocity,

u5
]h

]t
. ~16!

We assume that we can expandu and h in powers of h
according to

u5u01u11u21•••,
~17!

h5h01h11h21•••,

whereu0 is independent ofh, u1 is proportional toh, andu2

is proportional toh2.
To lowest order~orderh21),

1

h S 11S ]h0

]x D 2D 21 ]2h0

]x2
50. ~18!
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The natural implication is that

]2h0

]x2
50⇒h05Ax1B, ~19!

where A and B are constants of integration. The bounda
conditions

h08ux56150 ~20!

imply that A50. Thus the front assumes a flat zeroth-ord
profile with h05const.

In zeroth order, Eq.~14! becomes

u0511
3

2
e~12x2!1

1

h

]2h1

]x2
. ~21!

Integrating once yields

u0x5x1
3

2
ex2

1

2
ex31

1

h

]h1

]x
1D. ~22!

By evaluating Eq.~22! at x51, then adding these equation
we find thatD50 and that the zeroth-order front velocity

u0511e. ~23!

This small-h result agrees with the corresponding limit of th
reaction-diffusion-advection equation.6 Since it is not pos-
sible to obtain results forh50 numerically, Eq.~23! is used
to complete the numerical curves ath50 in Fig. 1.

In addition to knowing the limiting value of the fron
speed forh→0, the trend of the curve ash is slightly in-
creased from zero is obtainable by linearizing the eiko
equation. Thus, the numerical results in the small-h regime

FIG. 1. A comparison of the front velocities predicted by the full reactio
diffusion-advection equation~solid traces!, the eikonal approximation
~chain-dashed traces!, and the analytical limit of the eikonal equation val
for smallh ~dashed traces!, whereh is the ratio of the gap half-width to the
front thickness, fore524, 21, 1, and 4, wheree is the ratio of the average
flow velocity to the reaction front speed. Theh50 values for all three traces
are determined by the small-h limit.
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can be checked analytically. First, we try to determine
linear h dependence of the front speed. The first-order co
ponent of Eq.~14! is

u15
1

h

]2h2

]x2
. ~24!

Integrating once and applying the boundary conditions
solve for the constant of integration shows that the first-or
correction to the front speed is zero. Thus,

u150.

We now consider the second-order expansion of the eiko
equation,

u25
1

2 S ]h1

]x D 2

2
1

h S ]h1

]x D 2 ]2h1

]x2 1
1

h

]2h3

]x2
. ~26!

Inserting Eq.~23! into Eq. ~22! gives

S ]h1

]x D 2

5S eh

2 D 2

~x622x41x2!. ~27!

Thus, Eq.~26! is

u25S eh

2 D 2F S 2
3e

2 D x81S 1

2
1

7e

2 D x62S 11
5e

2 D x4

1S 1

2
1

e

2D x2G1
1

h

]2h

]x2
. ~28!

Integrating once and satisfying the boundary condition at
edge of the front~as before! shows that the velocity of the
front is

u511e1S 1

105D ~eh!2. ~29!

Thus the front velocity nearh50 is quadratic inh. Equation
~29! is also consistent with our observations that the smah
region of the curves in Fig. 1 all have positive curvature, a
this curvature increases with increasingueu. Equation~29! is
represented by the dashed traces in Fig. 1.

Since the zeroth-order height is a constant, any distor
to the front profile must be described using at least the fi
order correction to the height. By taking the square root a
integrating Eq.~27!, we can express the correction to the fl
front profile as

h1~x!5
eh

2 S x4

4
2

x2

2 D1const. ~30!

the profiles fore51, h51, 4, 8, and 16 are shown in Fig. 2
Defining the distortionG as the ratio of the front height to th
gap width, we see that, for smallh,

G~e,h!5
eh

16
. ~31!

The distortions are plotted as a function ofh in Fig. 3.

V. WIDE GAP LIMIT, h\`

Also accessible to analytic methods is the asympto
behavior ash→`. It was found in Ref. 6 that, in this limit,

-
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there is a pronounced asymmetry between the shape an
locity of the front for supportive flow~e.0! in the direction
of propagation and adverse flow~e,0! in the opposite direc-
tion. In the limit of largeh, regions of sharp curvature occu
at x561 for e.0 and atx50 for e,0, and the problem is
rendered singular. Fortunately, the slope and curvature o
front both vanish atx50 for e.0, and atx561 for «,0 in
this limit. Evaluating Eq.~14! at these points accordingl
gives the corresponding front speeds

lim
h→`

u511 3
2e ~32!

for e.0, and

lim
h→`

u51 ~33!

for e,0. A detailed discussion of the wide-gap results
presented in Ref. 7.

FIG. 2. Front profiles fore51 and forh51, 4, 8, and 16. The distortion an
the curvature of the profile increases with increasingh.

FIG. 3. Front profile distortionG, defined as the ratio of the front height t
the width, vsh for e524, 21, 1, and 4. The results from the full advection
diffusion-reaction equation are shown with the solid trace, from the eiko
equation with the chain-dashed trace, and from the small-h analytical curve
with the dashed trace.
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VI. NUMERICAL TREATMENT OF THE EIKONAL
EQUATION

Finite difference simulations were performed to explo
the eikonal approximation. The number of grid points us
was always greater than or equal to 16h. The front was al-
lowed to evolve untilu approached a constant value, and t
time step used was such that decreasing the interval did
effect the steady-state value ofu. A comparison between the
front speeds predicted by Eq.~14! ~dotted traces! and the full
reaction-diffusion-advection equation6 ~solid traces predicted
by Eq. ~1!—see Ref. 6 for computational details! are shown
in Fig. 1 for e524, 21, 1, and 4. Also shown are analytica
results for smallh @chain-dashed traces, Eq.~29!#. The
reaction-diffusion-advection equation and the eikonal eq
tion agree with each other for both large and smallh, and
with the small-h analytical results. The general agreement
the mid-range is surprising and interpreted as an added
nus. The two curves are nearly indistinguishable fore521
ande51. The curves differ by 10% for thee54 case, and the
curves differ by at most 20% for thee524 case. Similar
agreement is shown in the plots of distortion versush for
various values ofe ~Fig. 3!. The values ofe andh used for
the distortion plots are the same as for the plots of the fr
speed. That the agreement is poorer for greater value
flow ~expressed as the dimensionless variablee! is not sur-
prising, since greater flow leads to greater distortion, wh
leads to less favorable conditions for applying the eiko
equation~see Fig. 2!. Also shown in the plots are the ana
lytical limits for small h.

VII. SUMMARY

The striking agreement between the results produced
the full treatment and the eikonal treatment permits using
simpler model to predict experimental results, especially
small-amplitude flows. Not only is the eikonal treatme
valid in the large-h regime, it is valid in the small-h regime
and modestly valid in the mid-h regime. The difference be
tween the eikonal equation results and advection-diffusi
reaction results increases with the magnitude of the gap
eraged flow speed. This is expected, as a greater flow s
produces more distortion in the shape of the reaction fro
and accordingly reduces the validity of the eikonal appro
mation.

The eikonal equation agrees with the reaction-diffusio
advection equation for both small and largeh. Agreement for
large h is expected because the reaction front is thin co
pared with all other length scales in this limit, and the eik
nal equation is known to be valid under these conditions
contrast, agreement for smallh is surprising because the e
konal equation does not generally serve as a reliable appr
mation to the reaction-diffusion-advection equation when
reaction front thickness is comparable to or larger than ot
length scales of the problem. Close examination of the
sumptions of our derivation and the boundary conditions
lows us to understand why the eikonal equation applies
small h in this case. Our derivation of the eikonal equati
~Sec. II! assumes only that the front curvature and the fl
velocity vary negligibly across the front, in the direction no

l
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mal to the front. The boundary conditions demand that
front surface be normal to the bounding surfaces atx561.
When the reaction front is thick compared to the gap wi
~small h!, lateral molecular diffusion of the catalyst speci
reduces the distortion of the front, so that front surfaces
constant concentration are all approximately planar~see Fig.
2!. Since the steady Poiseuille fluid velocity does not va
with the propagation directionz, and since the front norma
direction coincides approximately with the direction
propagation for smallh owing to the reduced distortion, th
limit of small h satisfies the required condition that the flu
velocity and the front curvature vary negligibly across t
front. Since this condition also applies for steady fro
propagation in a cylinder, we expect the eikonal approxim
tion to also apply in this geometry for smallh. These calcu-
lations are under way.
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