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ABSTRACT

The flood magnitude for a given frequency or return period is
estimated by fitting a probability distribution to the historical
annual flood series. The log-Pearson type III1 distribution has been
selected by the Water Resources Council for general use by the federal
government, but practitioners should examine an annual flood series
and use alternative distributions where they will produce better esti-
mates. Empirical goodness of fit is one criterion for choosing a dis-
tribution, but the reasonableness of the assumptions theoretically as-
sociated with the form of the distribution should also be considered.

In theory, extreme-value distributions are particularly appli-
cable to flow series composed of the largest flow from each year of
record. The Fisher-Tippett extreme-value function, commonly called
the Gumbel distribution, has been widely used for flood frequency
analysis, but it was found empirically inferior to the log-Pearson
type III distribution by the Water Resources Council. The Gumbel
is, however, only one of three alternative extreme-value functions,
and these have not been systematically investigated for applicability.

All three are examined herein, and plotting tests are provided
for making a selection. The generally most appropriate was found to
be not the Gumbel distribution, which assumes neither an upper nor a
lower bound to the possible flood flows, but rather a form adding a
third parameter as an upper bound to the flood flow. The existence of
such an upper bound seems reasonable hydrologically, and a maximum
likelihood fit of this distribution to 14 stations around the world
with over 50 years of record compares favorably with that with the
log-Pearson type III distribution. More efficient parameter estil-
mating techniques are, however, needed.

The plotting tests for many series were found to exhibit a break
between two linear portions suggesting that the recorded flows may in
fact be drawn from two or more populations. The form of a distribution
of a series drawn as a mixture from two populations is shown theoreti-
cally to be multiplicative with respect to the two functions (rather
than having the more commonly used additive form). A five parameter
distribution was applied to 11 long-term sequences shown by the
plotting test to originate from nonhomogeneous sources. The fit was
generally excellent.
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INTRODUCTION

The central relationship for flood
control and floodplain management planning is
that between peak flow and return period.
The relationship is established by selecting
an appropriate distribution to represent the
population of. peak flows, one from each year
of record (the annual flood series), and
estimating parameters for that distribution
that best fit the recorded data.

The primary criterion used to select an
appropriate distribution has been goodness-
of-fit as measured empirically. Accordingly,
the parameters of several distributions are
estimated from the same data set. Some
goodness-of-fit criterion is then used to
choose the best-fitting distribution (e.g.,
Bobee and Robitaille 1977). The log Pearson
type III distribution was selected for
general use on federal water resources
studies (U.S. Water Resources Council 1976,
Appendix 14) on this basis.

The Monte Carlo experiment described in
the next section illustrates that serious
estimating errors may arise if the distri-
bution 1s selected solely on the basis of
goodness of fit. The magnitudes of these
errors clearly demonstrate that empirical fit

alone does not provide an adequate basis for
selecting a distribution. Theory provides
supplemental information. The annual flood
event 1s the maximum or extreme value of all
the events occurring during the year;
therefore, extreme value theory would seem to
provide a reasonable theoretical base to
explore and is examined here. Although
extreme value distributions have been used in
hydrology, no systematic examination of
the theory to determine the most appropriate
form is reported in the literature.

The first section of this report pre-
sents the problem encountered when empirical
fit alone is used to select a "best" distri-
bution. The second section deals with
application of extreme value theory to stream
flows which have homogeneous sources. The
results clearly demonstrate the usefulness of
extreme value theory. The third section
extends extreme value theory to the case in
which the events in the annual series are
random variables from two different popula-
tions (e.g., thunderstorm and cyclonic
events). The fourth section describes how
one goes about the mechanics of applying
these results in flood frequency analysis.






EMPIRICAL FIT

The problem encountered when empirical
fit is the sole criterion used to select a
"best" distribution to describe a population
increases as one uses the distribution to
estimate the frequency of rarer events. It
is sometimes suggested that no distri-
bution is perfect; therefore, several may do
an adequate job, and certainly the ''best'" fit
will be close. This argument may be valid
when the distributions are used to estimate
probabilities or return periods for frequent-
ly occurring events. However, when estimates
are needed for extreme or rare events,
serious errors can result from use of a
distribution selected on the basis of empiri-
cal fit because the probabilities of rare
events are computed from the tails of a
distribution, whereas empirical fit is
dominated by the body of the data set. The
following Monte Carlo experiment was perform-
ed to provide some idea of the magnitude of
the problem.

Twenty random samples, each containing
25 values, were generated from a Weibull

population with cumulative distribution
function

1- exp[—(x/30)b] x20
F(x) =

0 x < 0

The gamma distribution is considered close to
the Weibull (Hager, Bain, and Antle 1971) and
is a likely alternative for fitting such
data. Both gamma and Weibull distributions
were fit to the data sets. The method of
White (1969) was used to estimate Weibull
parameters, and the method of moments (Lind-
gren 1976) was used for the gamma distribu-
tion. Let Fy(x) and Fg(x) denote the Weibull
and gamma distribution functions respectively
with parameter values estimated from data.

Goodness of fit is based upon the
empirical distribution

0 < x

(1)

Fs(x) = i/n x(i) < x < X(i+1) i=1,2,...,1n

1

< X

*(n)
(1)

where x(1), x(%), ..., X(n) are the ordered
data values. wWo common criteria were used
to judge the fit. The sum of squared devia-
tions, i.e.,

_ 2
SS = E(Fw(x(i)) - Fs(x(i)))

for the Weibull fit or
55 = B(RG(x(4y) - FS(x(i)))z

for the gamma fit. The second measure is a
Kolomogorov type (denoted K) where

K ZIFw(x(i))—FS(x(i))|

or

K = ZIFG(x(i)) - Fs(x(i))|

for the Weibull or gamma distributions
respectively.

According to the first measure of fit
(SS), three times out of the 20 runs the
gamma exhibited the better fit. In eight out
of the 20 runs, the second measure (K) showed
the gamma as having the better fit. This
frequency of misclassification demonstrates a
real possibility of selecting the wrong
distribution with real data.

The log-Pearson type III distribution
is the most widely used for flood frequency
analysis. It has been chosen from among
several candidate distributions by first
estimating the parameters of each distribu-
tion for each of a large number of gaged
records (Benson 1968). Then a goodness-of-fit
criterion which emphasizes selected flood
flows from 2 to 100 years (U.S. Water Re-
sources Council 1976, Appendix 14) was used
to select the best overall fit. Although
selection of the log-Pearson type 1II is
based upon fit in the right tail, estimation
of parameters for each distribution is by
standard methods which emphasizes fit in the
body of the data. In certain cases, the fit
in the right tail is poor. Even if the fit
is good, blind application of a distribution
selected on the basis of empirical fit can
lead to serious error. The magnitude of this
error is illustrated in the following ex-
ample. The 99th percentile was computed from
both the Weibull and gamma estimated distri-
bution for each of the 20 data sets. The
results are summarized in Table 1. In every
case the gamma distributed percentile
exceeded the true value and the Weibull
estimated value. The average Weibull esti-
mate also exceeds the true value, however the
amount is within the expected sampling



variation for the mean of 20 samples.
Considerable overestimation bias is exhibited
by the gamma distribution. This bias can be
serious because overestimation can lead to a
design that is too large or an estimate of
the probability of failure of existing
structures that is too large. Obviously,
factors besides empirical fit need to be
considered in selecting a distribution to fit
a data set.

Table 1. Ninety-ninth percentile averages.
True Gamma Weibull

Data Set Value Estimate Estimate

All 20 runs 38.70 42.24 39.71

3 runs with 38.70 42.58 40.04

Gamma best

by SS

8 runs with 38.70 42.81 40.27

Gamma best
by K




FEXTREME VALUE APPLICATION - HOMOGENEQUS DATA

Given the need to supplement empirical
fit with theoretical considerations, the
purpose of this section is to evaluate
extreme value theory as a tool in identifying
a distribution for annual floods. It should
be understood that in all likelihood no
single distribution is correct for all flood
series. For example, river basins with
large carry-over storage or streams which
flow only intermittently may violate the
assumptions of extreme value theory. In the
first case, flood peaks depend on flows in
the previous year; and in the second, a data
set with large numbers of zero flows is not
really an extreme value situation.

However, if the theory can be shown
to apply in more normal situations, the
hypotheses of the theory are sufficiently
general to expect it to be widely applicable.
In this section a theoretical distribution
is selected by matching physical character-
istics of stream flow with the mathematical
characteristics of the various extreme value
forms. Applicability is examined by trying
to fit the data for selected stations
with long periods of record from around the
world (Table 2) used in the study of Bobee
and Robitaille (1977). (See Appendix H.) The
same measures of goodness-of-fit is used in
order to compare these results with those ob-
tained from the distribution of their study.

Extreme Value Distributions

Before proceeding, some basic elements
of extreme value theory need to be reviewed.
Extreme value random variables are defined as
follows. Let x3, x2, ..., xp be a sample
of independent, identically distributed,
continuous random variables. Let

Z = max(xl,xz, ceey xn) I )

and

Y. = mln(xl,xz,

ves xn) .. . . . (3)

Extreme value theory is concerned with the
asymptotic distribution of sequences (Zp -
bp)/an and (Yn - bn')/an' as n = 1,2,..., .
The norming values ap, bp, an', bn' are
dictated by the theory. The interesting
result of the theory is that if an asymptotic
distribution exists, there are only three
types for Z, and three types for Yn. The
mathematical characteristics for the random
variables x] which determine the resulting
distribution tor Zp and Yp are given by
Gnedenko (1943). These results are difficult
to use because the distribution function must
be known. A less mathematical but more
workable approach is suggested here.

Table 2. Selected stations exhibiting homogeneous sources.
Station Country River Location 2;:;?1&5 Record Missing Years Yszzzrgf
bB24 Mali Senegal Bakel 218,000 1903-1966 64
HE60 USA Susquehanna Harrisburg, PA 62,400 1891-1967 1906,1922,1927 70
1935,1938,1951
1B06 India Krishna Vijayawada 251,355 1901-1960 60
BF40 Czech. Decin Elbe 51,104 1851-1968 1857,1863,1866,1873 108
1874,1879,1884,1898
1918,1921
BE38 Germany Hofkirchen Danube 47,495 1901-1968 68
BF19 Norway Gloma Langnes 40,170 1902-1968 1964 66
CF25 USSR Neman Smalininkai 81,200 1812-1969 1944,1945,1946 155
mEL9 Canada Hope Fraser 203,000 1912-1970 59
JE792 Canada Headingley Assinibione 162,000 1914-1970 57
IF00 Canada Medicine Hat S.Saskatchewan 58,400 1913-1970 58
KF62 Canada Saskatoon S.Saskatchewan 139,500 1912-1970 59
KF53 Canada Prince Albert N.Saskatchewan 119,500 59
hE88a  Canada Amos Hurricana 3,680 1915-1969 1932,1933 53
JF50a  Canada Slave Falls Winnipeg 126,000 1908-1970 1909,1911-1912,1917 50

Power Plant

1922-1926,1931,1934
1939-1942,1949,1958
1961,1962,1964,1965
1967




Since flood frequency analysis deals
with maximum flows, only the distribution
of Z, 1s considered. The three possible
distributions of Zn are (Gnedenko 1943),

F)(x) = exp {—exp— (x%b)} —e<x<e, e20. . . (4)

0 x<b

b\ 2 .. . (5

exp {— (?) } x2b, ¢>0, a>0
a R €))

exp {— (B;_x) } x<b, ¢>0, a>0

Qualitative characteristics of these distri-
butions are discussed in the next section.
The assumption of independence of the x7p,
X2, ..., Xn random variables 1is violated
in many applications. However, Watson
(1952) has shown that independence is not a
necessary assumption. If the randomized
sequence of xj's satisfies the assumptlion
for all n, the theory holds.

Fz(x)=

Fa(x) =

The advantage of the theory is that once
an extreme value situation 1is recognized one
can legitimately confine the search for best
fit to three extreme value distributions.
The mathematical characteristics of the three
distributions are very different, thus it is
relatively easy to determine the correct one
for a given set of data. A graphical proce-
dure is given below for use in identifying
which of the extreme value distributions
should be used with a given set of data.

Determining Extreme Value Type

Distributions (4), (5), and (6) have
some easily observed characteristics. The
function F3(x) is limited to some maximum
value b (i.e., F3(x) = 1 for x > b), thus
random variables which have an upper limit
have extreme value form F3(x). The converse
of this statement is not necessarily true,
however, and variables which are not limited
may also have this form (Gnedenko 1943).

The form F2(x) is referred to as a
"Cauchy type'" because the extreme values for
the Cauchy distribution follow distribution
(5). Cauchy type distributions are "heavy
tailed" and seldom occur in nature. Thus,
distribution (5) bhas limited usefulness
compared with the other two types. There is,
however, reference to its use in Gumbel
(1954). The form Fj(x) is the one most
widely used and generally the only one
explained in textbooks.

Three simple plots constitute the
easiest method of determining which extreme
value distribution is appropriate. Let
X(1), x(2), ey x(n% represent the ordered
extrteme value data ftor the observed maxi-
mums .

For any random variable, the expected

value of its distribution function evaluated
at the ith order statistic is i/(n+l) where
the sample size is n (i.e., E(F(X(i))) =
i/(n+1)) (Lindgren 1976). Define E; =
i/(n+l). Note that from Equation 4

1n (-1n Fl(x(i))) = - x(i)/c+b/c R 2

Note that the relationship in Equation 7 is
linear in x(j Substituting Ej for F(x(i))
in Equation 7 and plotting X(j) vs. In E—ln
F(Xﬁi)) identifies data from a population
with ‘distribution function Fi(x). 1f
Equation 4 is appropriate the plot will be a
straight line as illustrated in Figure 1. If
the data are from any other distribution, the
plot will not be a straight line.

The plot which identifies data from an
Fo(x) population is similar. From Equation
5 it follows that

1n (~1n FZ(X - aln (x~-b)+a lnc . . (8)

@) =

Thus if data are from a population with
distribution Fy(x), the plot of In(x(i) -
b) vs. In (-lIn E;) will be a straight line
with negative slope as illustrated in Figure
2. The parameter b must be estimated before
the plot can be made. Estimation of parame-
ters is considered later.

The third plot which identifies F3(x)
is motivated from Equation 6 in the same
manner, i.e., the plot of 1ln (b - X(i)) vs.
In (-1n Ej) is a straight line with positive
slope as illustrated in Figure 3

As discussed by Bobee and Robitaille
(1977), the physical limitations of meteoro-
logical phenomena and basin characteristics
which control river flow suggest that flows
are bounded by an upper limit. Thus it seems
that the most logical distribution for the
statistical description of flood peaks is
F3(x). Figure 4 verifies this choice for
the Kymijoki River in Finland. It 1s very
evident from a glance that the data are
linear in this case. In less obvious cases,
standard analysis techniques can be used to
test for linearity (the existence of higher
order polynomial effects).

In order to interpret the plot for
F3(x), it is useful to examine the shape of
this plot if the data were to originate from
a Pearson or log Pearson type III distri-
bution. Relative to these distributions, if
floods are bounded above,the general shape of
In (b - x(i)) plotted against 1ln (-1n Ej)
is a curve, concave as viewed from the left.
If floods are bounded below, the plot will
appear as a curve convex as viewed from the
left. Note that for this plot an upper bound
is estimated as if the distribution were
F3(x) even though it is not.
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Figure 4. Verification for the Kymijoki River in Finland.



It 1s interesting to note that in the
work of Bobee and Robitaille (1977), both the
Pearson type III and log Pearson type III
distributions introduce an apparent inconsis-
tency. In some cases an upper bound for
annual floods is appropriate and in others a
lower bound is used. The Pearson and log
Pearson distributions are not even consistent
for a given data set. In some cases the
Pearson distribution calls for an upper bound
while the log Pearson calls for a lower
bound. It seems that if an upper bound is
valid due to meteorological and geographical
limitations, it would be valid for all
systems. The switch in boundedness is due to
the inability of the Pearson and log Pearson
type III distributions to accommodate both
positive and negative skewness for a given
bound (upper or lower).

Estimation of Parameters

Although the concept of limiting flood
is reasonable, its magnitude is difficult to
estimate from geographical considerations.
It was found, however, that the flow esti-
mated for a given frequency is very insen-
sitive to the value chosen for b as long as
it is relatively large. Therefore, ordinary
maximum likelihood estimates of all of the
parameters were used.

The distribution F3(x) is a transformed
Weibull, i.e., if the F3(x) is transformed
by y = -x the distribution of y is Weibull
with the same parameters as F3(x) (b 1is
negative). Therefore a program available
for maximum likelihood (ML) estimation of
Weibull parameters (Harter and Moore 1965)
was used (Appendix G). This program and
other procedures described later in the
report requires that the data be ordered. A
FORTRAN program for this purpose is found in
Appendix A.

Some difficulties were experienced in
applying ML methods. In general, the computer
program was expensive to run and, in addi-
tion, required several passes to find ac-
ceptable scale factors and initial values.
The resulting estimates were highly dependent
on these values even when the convergence
criterion for the computation was met. In
some cases, a better fit was obtained using a
less stringent convergence measure. These
problems motivated additional research not
directly connected with this project.

This research resulted in a computation-
ally more efficient method of estimation
developed for all extreme value distributions
(Kwan 1979). This method of estimation does
not depend upon sensitive convergence cri-
teria. These results were obtained too
late to be incorporated into the comparisons
made in this report. It is felt that improve-
ment in the goodness-of-fit statistics for
some of the streams reported in the next
section could be obtained using the new
method of estimation.

Goodness-of-fit Comparisons

The result of fitting F3(x) to the
same data used by Bobee and Robitaille (1977)
(Table 2) to evaluate the Pearson and log
Pearson type III distributions is given 1in
this section. Maximum likelihood estimation
(with its accompanying difficulties) was
used. The same goodness-of-fit statistics
used by Bobee and Robitaille (1977) are used
herein. These statistics are derived from
three formulas for expected probabilities of
order statistics referred to as the Hazen,
Chegodayev, and Weibull formulas. A detailed
description of the goodness-of-fit computa-
tions 1is given in Bobee and Robitaille
(1977). Briefly the measures are based upon
the relative deviations,

q(T) = _Qﬂ)D(_TfD(T)_ * 100

where D(T) represents the empirical (data
value) for recurrence interval T, and Q(T)
represents the value estimated from the
fitted distribution. The recurrence intervals
T =2, 5, 10, 20, 50, and 100 were used. The
average absolute deviation (i.e., %|q(T)|/L)
is given in Table 3, and the average of the
quadratic deviations (i.e., %£q(T)2/L) is
given in Table 4. FORTRAN programs for
these computations are found in Appendices D,
E, and F. The goodness-of-fit values for
the log Pearson type III distribution and
for the distribution and method of fitting
judged best by Bobee and Robitaille (1977)
(Pearson type III) are also tabulated in
Tables 3 and 4 for comparative purposes.

It is impossible to interpret the
information on Tables 3 and 4 without viewing
plots of these data sets. The plots are
shown in Figures 5-18.

It can be seen that Figures 5, 10, and
17 (for stations bB24, jF50a, and BFI19
respectively) have linear plots indicating an
F3(x) distribution. The goodness-of-fit
statistics tabulated in Tables 3 and 4
bear out this choice as the fit for F3(x)
is best for the data at these three stations.
The "S" shape of the plots in Figures 7, 8,
11, 12, 13 and 18 indicate that neither
F3(x), Pearson type III nor log Pearson
type IIIl distributions are appropriate.
These plots underscore their importance in
fitting data. Whenever several distributions
are fit to given data, one will always have
a "best" fit. However, none of those tried
may be appropriate. The plots identify
these cases.

One physical explanation for a situation
in which the data do not plot as a straight
line is that they may not come from a single
homogeneous source. The effect of non-
homogeneous sources is investigated in the
remaining sections of this report. The very
good fits in association with the plots
clearly establish extreme value theory as a
viable tool for describing annual flood
events.



Tabhle 3. Mean of the absolute relative deviations.

Pearson Type III log Pearson Type III ) F3(x)
Station - '
B c? w? H c W H c W

bB24 1.4 1.7 2.1 1.8 1.7 2.1 1.6 © 1.4 1.6
hE60 3.6 4.0 4.9 3.7 3.5 4.3 7.5 5.4 5.4
IBO6 3.4 2.9 3.4 3.3 3.8 4.7 7.4 7.4 8.3
BF40 3.6 4.2 4.2 3.8 4.7 4.8 7.7 7.8 8.4
BE38 3.1 2.9 2.4 2.5 2.4 2.4 2.7 2.1 3.9
BF19 3.5 4.0 4.0 3.5 4.1 4.1 3.4 3.9 4.0
CF25 2.8 2.9 3.3 3.3 3.3 3.6 7.4 6.1 6.5
mE19 2.7 2.2 3.4 2.5 2.1 3.3 3.4 2.8 3.8
jE792 7.6 5.8 6.1 6.2 5.1 4.8 6.4 6.3 6.8
iF00 2.9 4.1 5.9 4.2 5.9 7.7 15.8 17.1 15.5
kF62 4.8 4.5 4.5 4.8 5.8 5.8 10.4 11.3 11.3
kF53 6.6 4.6 6.8 6.6 4.8 8.5 13.7 11.2 14.5
hE88a 1.4 1.8 2.8 1.7 . 2.5 3.5 1.8 2.3 2.5
jF50a 4.4 3.6 4.4 3.8 3.4 4.2 4.2 4.4 5.4

a

H = Hazen Formula

C = Chegodayev Formula
W = Weibull Formula
Table 4. Mean of the quadratic deviations.
Pearson Type IIL log Pearson Type III F,(x)
3
Station
u® c? w? H C W H c W

bB24 2.9 4.1 9.4 4.3 5.1 11.2 5.0 3.4 4.6
hE60 13.4 17.6 32.3 18.9 20.8 41.3 101.0 56.9 56.9
IBO6 20.4 21.2 28.2 24.0 32.1 43.6 87.7 95.8 121.1
BF40 18.0 21.9 23.7 21.9 27.7 30.9 75.7 80.1 91.4
BE38 16.2 10.2 7.0 11.0 7.1 8.7 9.6 8.1 20.9
BF19 14.5 17.7 19.7 15.7 19.6 22.2 14.0 17.2 19.3
CF25 14.2 15.2 16.0 17.6 18.4 20.1 95.1 72.45 77.2
mE19 10.7 6.6 20.7 10.6 5.8 22.7 14.2 10.7 19.8
jE792 81.4 47.8 49.5 47.6 33.1 33.7 59.4 63.6 72.9
iF00 11.4 19.2 40.9 29.2 45.1 72.8 297.0 351.0 228.9
kF62 23.9 20.7 21.7 26.0 34.5 35.8 122.7 157.2 163.6
kF53 81.3 41.3 82.0 55.6 26.8 122.8 312.0 192.4 380.4
hE88a 2.6 4.5 11.5 4.4 7.6 16.5 4.2 6.9 8.2
jF50a 31.7 13.8 21.7 21.7 13.3 22.2 22.7 24.1 37.1

a

H Hazen Formula

Chegodayev Formula
Weibull Formula
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Figure 5. Station bB24--Mali River.
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Figure 6. Station HE60--Susquehanna River.
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Station IF00--Medicine Hat River.
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Figure 17. Station hE88a--Ames River.
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EXTREME VALUE APPLICATION-NONHOMOGENEOUS DATA

Sometimes, the breaks in the slopes of
the lines in plots like Figures 5 through 18
are because the data come from more than one
distribution. This section of this report
explores the theoretical aspects of fitting
distributions to such nonhomogeneous flood
data. A method of estimating the parameters
of the new extreme value forms is given and
the fit evaluated for several streams ex-
hibiting nonhomogeneous sources. Identifica-
tion of nonhomogeneous data by graphical
methods is suggested.

Mixture Distributions in Hydrology

Prior to the observations of Ashkanasy
and Weeks (1975), Potter (1958) noted the
mixture of random variables in the statisti-
cal distribution of floods. He used the
standard mixed distribution for the case of
two components,

F(x) = P1G1(x) + P2G2(x) (9)

where Gj(x), i 1,2 are the distribution
functions of the first and second components
of the mixture respectively. The parameters
Pij, i = 1,2 are such that P; >0, i =1,2
and Pj1+P2 l. Estimation of the parameters
in Equation 9 is very difficult because Pj
and Py must be estimated in addition to all
of the parameters of both Gj(x) and G2(x).
Additional work by Hawkins (1972, 1974)
documents other problems associated with
fitting such mixed distributions.

Canfield and Borgman (1975) used
reliability theory to provide a much more
adequate approximating distribution. Their
results have direct application to choosing a
distribution of annual peak flows in hy-
drology in that they provide a theoretical
foundation which gives primary consideration
to the shape of the right tails (high flow
side) of the distributions involved. Speci-
fically, they showed the distribution of the
extreme in a sequence of mixture random
variables to be

P1 P2
F(x) = F (x) © Fp, (x) (10)
where the components Fj(x) and Fi'(x) are
extreme value distributions (4), (5), or (6).

Note that the parameters P| and P2 can be
absorbed by reparameterization so that
Equation 10 can be rewritten,

F(x) = F, (0)F,, (x) . (11D
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thereby reducing the number of parameters in
the distribution. Because of its theoretical

basis, a distribution of this form should
have the correct tail characteristics. Note
that the tail shape in Equation 9 is a

weighted average of the tails of Gj(x) and
G2(x), whereas the shape of Equation 11 is
a product of the tails of Fj(x) and Fi'(x).
Even if two extreme value distributions are
used in Equation 9, the tail shape is not
necessarily correct.

Estimation of Parameters

The usefulness of the distributions
described in the previous section depends
upon 1) the availability of techniques

for estimating parameter values and 2) a
theoretical justification of the distribu-
tions. Theoretical justification depends on
the applicability of extreme value theory as
discussed above. A graphical method of
determining the best parametric form of
Equation 11 and of estimating the parameters
is given in this section.

Graphs should always be used as a part
of data analysis for annual floods. They are
the easiest method for selecting from among
the three extreme value types as discussed
previously, and in addition they easily
identify nonhomogeneous sources. Application
of homogeneous distributions to nonhomoge-
neous river data can lead to serious blun-
ders. The graphs should be plotted and
reviewed to make sure that this is not
happening.

In most applications, as discussed
previously, the third extreme value distri-
bution applies, thus the form of Fj(x) and
Fjt'(x) in Equation 11 is the same for both
i and i'. However, the parameter values will
be different for Fj(x) and Fi'(x). Thus,
the graphical method used in the previous
discussion on homogeneous data applies here.
Correct parametric forms are identified as
straight lines as noted previously. For
nonhomogeneous data, two or more straight
lines are found.

The data used for this part of the
research were those obtained from Bobee
and Robitaille and identified by them as
being nonhomogeneous. (See Appendix H.)
Graphs of the annual flood peaks for eleven
of the rivers, plotted as illustrated by
Figure 3, are shown in Figures 19 to 29. As
before, F3(x) is used for Fi(x) and Fji'(x)
(i.e., i =1" = 3).
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1 x>b
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The bound parameter b was taken to be the
same for both components. Numerically, b is
the most difficult of the three parameters to
estimate and the one to which the distribu-
tion is least sensitive.

F(x) =

A least squares estimation technique
reported in Canfield and Borgman (1975) was
improved and used to estimate the parameters
of Equation 12. Let h¢jy, i = 1,2, ..., n
be the ith order statistic of n annual
maximum flood flows. Estimates of the
parameters in Equation 12 are taken to be
those values which minimize,

h

- _ 2
w-izl [E@n F(h(i))) in (F(h(i)))]wi .. (13

where Wj is a weight factor such that

var (1n F(h,..\))
W, = (1)
i var (1n F(h(i)))

(14)

and E(.) is the expected value operator.
The variance of ln F(h(i)) is defined by

zZ, = var (1n F(h ))) = E[1n F(h

“ 1@’
2
- E(1n F(h(i)))] P ¢ 1))

The values of E(ln F(h(i))) and var (ln
F(h(i))) are nonparametric and may be
computed using numerical integration by the
trapezoid rule.

E [1n F(h(i))]

1
n! i-1
= —(i-l)!(n—i)!f 1nF(h(i)) [F(h(i))]
[o]

n-i
«[1—F(h(i))] dF (h ) (16)

2
E[{E[1n F(h(i))]— In F(hy )} ]

2 2
E[{ln F(b:y)} 1- {E[1n F(h(i)>]}

1
a! 2 i-1
=——(i_l)!(n_i)!f [1n F(h(i))] [F(h(i))]

(o]

[1-F(h,, ) 1" Larn

(1)’ @’

1
n! i-1
-{(i—l)!(n—l)!f n F(hyy) [Flhgy)]
o

2
n-i
[1-F(h ;)] dF(h(i))}

Lindgren (1976), page 218, gives the density
function of the ith order statistic and, page
113, the expectation of a function of a
random variable. For convenience let,

EL, = E [1n F(h(i))]
ELsQ; = B[(E[1n F(n;))]- In F(h(i))}z]

Yi=b_h(i)

a' = (a;,0,) = (a,a')

8" = (8;,6,) =(ia ! )
c

1
"
From this information, Equation 13 can be
rewritten as

n otl Otz 2
- W
U] ﬁl{m3+eﬂi +62Yi } i
& o) 2
= ¢ {/W, EL,+96,Y, M. +0.Y, VW, }
i-1 i i 171 i 2°1i i

a7

A FORTRAN program for computation of ELj
and ELSQj are found in Appendix B. Esti-
mation of a, a', ¢ and ¢’ is accomplished
by estimating a and 6 and then solving for a,

a', ¢ and c' respectively.

In order to minimize Equation 17,
appropriate partial derivatives of V¢ are
evaluated and set equal to zero.

n a, n 2a n o+

BN - r weEL ‘48, I WY +o, £z wy, L 2
891 i=1 i 4 1 i=1 ivi 2i=1 i'i
= 0 .. ... . . (18)
n a n o, +o n 20
%eﬂ= IOWELY, 2+e1 L inil 2+92 IOWY, 2
2 i=1 i=1 i=1
= 0 (19)
n o n a.+a
¥ -y wELY ‘inv.+e, £ Wy, ! Zinvy,
Ja. i7id i S A § i
1 i=1 i=1
n 2ch1
+06, I WY, Iny, =0 N @10}
1. 1°i i
i=1
n a n oL+
%“‘—= L WELY, 2 1n Y 40, L WY, 172 40 ¥,
% i=1 i=1
n 20L2
+9, I WY InY, =0 (21)
2 i i
i=1
Solving Equation 18 for ) yields,
n o n 20¢1
- I W,EL,Y -0 I WY,
177101 1 i'i
o o _d=1 i=1 (22)
2 n 0,1+0L2 ) °
r WY
- ii

16



Substituting for ©5 in Equation 19 and
solving for ©7 gives

n o n 2012

6, = ( L W,EL.Y, )( I WY, )

1 . 17174 . 171
i=1 i=1

2
n a n u,+o n o, +o
1
- ( L W,EL.Y, 2) ( % ini 1 3 ( z ini 2)
i=1 * *7 i=1 i=1

n Zal n 2a2
_ (12 WY, )(E LAS ) L. .. (23)

i=] * i=l

The result of Equation 23 is substituted into
Equation 22 to yield equations for both 83
and 07 which involve the parameters @]
and @) as the only unknowns. These equations
are substituted for 6] and 62 in Equations
20 and 21 giving two equations in two un-
knowns ... aj and a2. This system of
equations can be solved numerically using the
IMSL (1977) library subroutine ZSYSTM. Given
this solution as a, the estimate 6 of 8 is
computed from Equations 21 and 23. Initial
values of a] and ®) are required in ZSYSTM.
These are obtained as the slopes of the lines
observed in the graph (e.g. see Figures 19
through 28). Appendix C contains FORTRAN
programs for these estimates.

A Burroughs 6700 computer was used to
solve for 3. Since the Burroughs or any
other computer system is finite, a scaling
factor was found to be a computational
necessity, i.e., Equation 17 becomes

n %1 (Yi) !
v = 121 {/ﬁ; EL;+ (sf) 6, \F ./W:

a, Y, i) 2
+ (sf) ez(i) /w—} N 1)

For convenience 6] and 02 are redefined
so that Equation 24 may be written

AL B T R A T 17 % \sf " S
(25)
a
* i .
where 6, = (sf) “eoy, i=1,2.

For 8 of the 11 data sets used in this
study, an adequate scale factor was the
difference between the specified maximum
flood and the first order statistic or
smallest of the maximum yearly floods:

sf = b - h(l) e ¢4

The other three data sets required manipula-
tion of the scale factor to insure that no
numbers got too large or too close to zero
for the computer to handle. Of course,
larger and more powerful computer facilities
would lessen the importance of the scale
factor.

The rivers for which data were obtained
are shown in Table 5. Estimates of the
parameters for each river are shown in Tables
6 and 7. It was found that the value of ¥ in
Equation 25 was very insensitive to b for
large values of b. Therefore in order to
conserve computer time, b was estimated by
using a few passes to arrive at an "approxi-
mate" estimate. This procedutre could be
automated so that no hand preparation is
necessary and slightly better estimates could
be obtained. However, very little improve-
ment is expected.

Goodness-of-fit Nonhomogeneous Data

The same goodness-of-fit statistics as
described previously and used by Bobee and
Robitaille were used for these data. Since
the data (empirical) values of river flows
for the selected return periods were not
available for these rivers in Bobee and
Robitaille's (1977) work, they are shown here
in Tables 8, 9, and 10.

Table 5. Selected stations exhibiting nonhomogeneity in source.

Drainage Years
No. Station Country River Location Area, Record Missing Years of
Km? Record
1 hE1833 Canada Saguenay Isle~Maligne 73,000 1913~1970 58
2 aB36 Mali Niger Dire 340,000 1924-1968 43
3 aB72 Mali Niger Koulikoro 120,000 1907-1968 62
4 aE85 USA Penobscot W. Enfield 17,090 1902-1967 1913,1928,1944 60
1951,1960,1964
5 CG60 Finland Kymijoki Pernoo 36,535 1900-1968 69
6 cG81 Finland Vuoksi Imatra 61,280 1847-1968 122
7 BF42 Poland Oder Gozdowice 109,365 1901-1968 1945 67
8 CF28 Sweden Vanerngota Vanesborg 46,830 1807-1968 162
9 DF09 USSR Neva Novosaratovka 281,000 1859-1969 1942 90
10 JE9955 Canada Assiniboine Brandon 92,000 1902-1970 65
11 JE791 Canada Red Emerson 104,000 1913-1970 58
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The associated river heights (Q(T)) as
estimated by Equation 12 using the respective
parameters in Table 6 are shown in Table 10.
The goodness-of-fit statistics are tabulated
in Table 12.

instructive to view the plots
of these rivers. Shown in Figures 19 to 29
are the plots for each river. The Cy
axis 1is 1ln(b-X(j)) and the CL axis is
In(-1n(i/ (n+l)). The maximum likelihood
estimated value of b has been used.

It is

The Saguenay River (Figure 19) manifests
a straight line plot and may have nearly
homogeneous sources, although the two largest
floods could be from another source. The
Niger River, location Dire (Figure 20)
and location Koulikoro (Figure 21), exhibits
two sharply different components. The
Penobscot River (Figure 22) appears to have
homogeneous sources with close to a straight
line plot. Figure 23 does not exhibit a
clear indication of two sources, although
there seems a tendency toward two straight

lines. Its estimated parameters indicate
likewise, a = 2.30 and a' = 2.30 with ¢ =
388.32 an c¢' = 410.86--very close to identi-

cal components. The Vuoksi River (Figure 24)

Table 6. Maximum flood flow b (in m3/S), scale
factor sf, and parameters estimated
from Equation 25.
No. b sf ay a, 61 92
1 25000 22630 16.33 8.67 4.26 0.001
2 3000 1053 3.53 719.68 3.74 0.52
3 21000 17354 14.05 14.05 0.14 6.06
4 18000 17179 0.91 27.57 0.005 2.92
5 700 562 2.30 2.30 2.34 2.06
6 2500 2167 14.55 2398.16 9.82 4.90
7 6000 5293 22.89 6.69 2.06 1.40
8 1300 1047 6.55 6.59 0.25 11.32
9 6000 4000 4.89 6.46 0.02 8.56
10 670 347.9 8.98 1.03 0.013 0.14
11 3100 1200 9.31 0.87 5.6 E-4 0.04
Table 7. Parameter estimates of a, a', ¢, and
¢' for each station.
No. b a a' c c'
1 25000 16.33 8.67 20706.33 49696.00
2 3000 3.53 7.19 724.52 1053.96
3 21000 14.05 14.05 19932.25 15265.06
4 18000 0.91 27.57 5605113.20 16523.166
5 700 2.30 2.30 388.32 410.86
6 2500 14,55 2989.16 1852.06 2165.81
7 6000 22.89 6.69 5128.49 5033.41
8 1300 6.55 6.59 1297.56 724,48
9 6000 4.89 6.46 8904.89 2869.71
10 670 8.98 1.03 563.86 2303.15
11 3100 9.31 0.87 2683.34 49293.56
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Data values D(T) (inrn3/S) as inter-

Table 8.
polated between adjacent observa-
tions by the Chegodayev method.
T in Years
No. 2 5 10 20 50 100
1 4655 6125 6766 7811 9166 a
2 2335 2562 2641 2664 2677 a
3 6250 7066 7670 9065 9590 a
4 1738 2342 2342 3124 3929 a
5 454 545 578 614 648 a
6 703 794 881 933 1139 1157
7 1350 1875 2418 2759 3474 a
8 627 726 773 809 927 945
9 3300 3762 4000 4118 4500 4560
10 154 252 423 509 622 a
11 540 836 1283 1532 2300 a

aBeyond the range of the data.

Data values D(T) (in1n3/S) as inter-

Table 9.
polated between adjacent observa-
tions by the Hazen method.
T in Years
No. 2 5 10 20 50 100
1 4655 6111 6761 7714 9128 9244
2 2335 2561 2640 2661 2677 a
3 6250 7041 7649 8964 9552 9676
4 1738 2339 2650 3081 3777 4251
5 454 545 577 614 646 655
6 703 794 880 931 1138 1153
7 1350 1867 2412 2700 3401 3655
8 627 726 733 806 927 937
9 3300 3750 4000 4100 4500 4540
10 154 251 422 498 613 644
11 540 835 1253 1518 2149 2607

aBeyond the range of the data.

Table 10. Data values D(T)(inn@/S) as inter-
polated between adjacent observa-
tions by the Weibull method.

T in Years

No. 2 5 10 20 50 1UJ
1 4655 6170 6775 7987 9224 a
2 2335 2563 2643 2670 a a
3 6250 7103 7701 9216 9648 a
4 1738 2346 2673 3188 4156 a
5 454 546 579 615 652 a
6 703 794 881 935 1142 1164
7 1350 1888 2426 2848 3583 a
8 627 727 773 814 927 973
9 3300 3780 4000 4145 4500 4589

10 154 255 425 524 636 a

11 540 841 1310 1567 2528 a

aBeyond the range of the data.



has two or possibly three nonhomogeneous
sources. The Oder River (Figure 25) has two
components, however the definition is not
sharp. The Vanerngota River (Figure 26) has
well defined components and the Neva River
(Figure 27) appears to be homogeneous. The
Assiniboine River (Figure 28) and the
Red River (Figure 29) have sharply defined

components.

The goodness-of-fit for the first ten

River is not as good although it does fit
well the Weibull method of observed flood
discharges. Perhaps the largest maximum
yearly flood is an outlier (see Figure 29) as
it is much larger than any other flood on
record. Alternatively, it might be the only
observation from a particular source popula-
tion. It is impossible to achieve a good
estimate of the parameters of a population
with only one observation.

stations 1s excellent. The fit for the Red Table 12. Goodness-of-fit statistics.
Table 11. Computed flood flows Q(T) (in m%S)
for selected return periods. Mean of the Mean of the
Absolute Quadratic
T in Years Deviations Deviations
No. 2 5 10 20 50 100 No. Hazen Chegodayev Weibull Hazen Chegodayev Weibull
1 4754 6112 6961 7740 8699 9382 1 1.9 2.2 2.9 6.3 7.9 11.0
2 2347 2526 2617 2688 2760 2803 2 1.4 1.4 0.9 2.7 2.7 1.0
3 6153 7303 8015 8664 9455 10015 3 3.0 3.0 3.3 10.6 11.1 13.4
4 1699 2364 2796 3212 3779 4278 4 2.3 3.0 3.5 9.2 11.0 22.0
5 448 546 589 619 646 660 5 0.9 0.9 0.9 1.2 1.2 1.2
6 694 829 913 990 1084 1150 6 3.4 3.5 3.6 16.1 16.0 16.0
7 1351 1988 2407 2772 3192 3470 7 3.4 3.0 3.9 18.8 20.5 31.0
8 617 725 787 840 901 941 8 1.8 1.8 2.1 5.3 4.7 5.8
9 3290 3727 3976 4190 4433 4594 9 1.1 1.0 0.8 1.6 1.2 1.0
10 151 262 413 542 618 644 10 3.1 3.1 2.8 17.9 13.6 7.8
11 552 902 1174 1622 2546 2852 11 8.6 7.1 4.8 97.9 57.9 35.8
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FLOOD FREQUENCY ANALYSIS PROCEDURE

The following steps are offered as
guidelines for flood frequency analysis
based on extreme-value theory as presented
in this report.

1. Select a value for b in the order
of two or three times the magnitude of the
largest flood of record and plot the data in
the form of Figure 3.

2. If the plot in Step 1 is linear,
estimate parameters a, b, and c (Equation 6)
and apply the results for estimating flood
frequency.

CONCLUSIONS

The original objective of this research
was to develop and evaluate an extension of
extreme value theory for application to
estimating flood frequency relationships for
river flows drawn from nonhomogeneous popu-
lations. Before doing so, applications to
homogeneous data were considered, and a
functional form that limits flows to a
maximum value was found preferable to the
widely used Gumbel form. A relationship was
then derived for fitting data mixing two
distributions. The goodness-of-fit statistics
indicate excellent fit for these mixture
distributions (except when one of the sources
has very few observed values).

however,
should

The mixture distribution,

has five parameters and therefore

23

3. If the plot in Step 1 is curved,
some other distribution is probably more
applicable, and alternatives should be
cons idered.

4, If the plot in Step 1 exhibits a
break, estimate parameters a, a', b, ¢, and
c' (Equation 12). This is done by sub-
stituting Equations 22 and 23 in Equations 20
and 21 and solving for ¢} and @), estimating
81 and 92 from Equations 22 and 23, usin
these four values to estimate a, a', c, an

c'. Computer programming lists are presented.

be capable of fitting a wide variety of
data sets. The real justification for its
application lies in its basis in extreme
value theory. It was demonstrated that
extreme-value distributions provide excellent
fit for many river systems. The method of
estimation (maximum likelihood) had some
inherent difficulties which may have produced
some of the poor fits. More efficient
estimation methods are now available and
should be tested.

Finally,
apply to all river systems.
over storage may, for example,
hypothesis of the theory. However,
results of this study indicate that
theory does apply to many systems.

extreme-value theory may not
A large carry-
violate the
the
the
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Appendix A
Program ORDER

THIS PROGRAM READS THE YEARLY MAXIMUM FLOOD DATA CF A RIVER,
ORDERS THIS DATA INTO ASCENDING ORDER, AND THEN STORES THE
DATA ON DISK FOR FUTURE ANALYSIS. NECESSARY INPUT IS THE
NUMBER OF YEARS OF THE RECORD AND THE ACTUAL DATA, M IS THE
NUMBER OF YEARS OF DATA RECORD, X IS AN ARRAY FOR THE DATA
ITSELF,

1(KIND=DISK,TITLE="SAGUENAY/DATA")

DIMENSION X(200)
M, THE NUMBER OF YEARS OF DATA IS READ,

READ(S5,/)M

THE DATA 1S READ FREE FORMAT AND STORED IN ARRAY X,
READ(S,/)(X(1),I=1,M)

THE DATA IS. ORDERED IN ASCENDING URDER, THUS x(1) IS THE
SMALLEST AND X(M) IS THE LARGEST MAXIMUM YEARLY FLOOD.
NESTED=M

L=NESTED=1

Do 20 J=1,L

NESTED=NESTED~1

D0 20 1=1,NESTED

IF(X(I)=X(I+1))20,20,30 D

SAVE=X(I)

X(1)=X(I+1)

X(I+1)=SAVE

CONTINUE

WRITE(6,100)M

FORMAT(1X,' THE NUMBER OF YEARS OF RECORD=',115,/////)
WRITE(6,200)

FORMAT(1X,' THE ORDERED MAXIMUM YEARLY FLOODS',///)
WRITE(1,102)(X(I),I=1,M)

WRITE(6,120)(X(I),I=1,M)

FORMAT(1X,S5F10.1,7)

FORMAT (1Xx,F12.2)

ORDERED DATA IS SAVED ON DISK.

LOCK 1

STOP

END
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Appendix B
Program INTEGRATE

THIS PROGRAM CALCULATFS THE EL(I), ELSA(I)s» AND w(I) BY
NUMERICAL INTEGRATION wITW THE TRAPEZOID RULE, ™, THF
NUMBER OF YEARS OF DATA, IS THE OnLY REQUIRED INPUT,

C IS THE STEP SIZ¢,

2(KIND=DISK, TITLE="SAGUENAY/ZEL")

3(KIND=DISK, TITLE="SAGUENAY/W")

10

IMPLICIT DOUBLE PRECISJON (A=H,0=7)
DIMENSION EL(200),ELSQ(200),w(200)
csp,01

M, THE NUMBER OF YEARS OF DATA,
READ(S,/)M

1s READ,

D=M
WRITE(6,110) 15

FORMAT(1X, 16X, "ELCI)*,25%, "ELSQCI) ', 25X, "W (1), ///)
DO 1 I=1,M

tEL(1)=0,

ELSQ(I)=0,

IF(1.EQ0,1)G0 TO 20

GO 70 13 1
T1A=DLOG(F1)

TLIASGE(DLOG(FL))ax2,

T2A2F 1xe(I=1) 200
T3A=(1,=F1)*w(Ma]) ¢
ASTIAXT2A*T3A

ASU=TIASQaT2AXT3A

GO TU 14

A0,

ASG=0,

F2sC

T1B=DLOG(F2)

T1IBSQ=(DLOG(F2) )2,

T2B=F2%*(I~1)

7382(1,=F2)xx(Mal)

B=TiBxT28xT38

BSQUeTIUSQ*T2H+TAB

ELCI)=(A+B)aC/2,

ELSH(I)=C(ASQ+BSQ)*C/2,

60 TU 10

F1=Cc/4,

FezC

Go 10 1t

100

AzB

ASQ=HSQ

Fe=sFe+C

IF(F2.,67,1)6G0 TN 15
Ti1e=DLOG(FR2)
TIBSY=(DLOG(F2))+=%2,
T2B=F2%xx(I=})
T38=(1,«F2)*x(Me])
B=T1hxT2B«T3R
BSQ=TIBSQxT2hxT38
EL(T)SEL(I)+(a¢s)wr/2, .
ELSG(I)=ELSA(I)I+(L5Q+RS5Q)I=xC/2,

GO TO 10
FLUI)SFL(I)*D

ELSW(TI)SELSA(I)wD

W{I)=ELSQ(l)=(EL(I)) w2,

W(I)=1./w(])

WRITE(6,100)EL(]1),FLS9(1),% (1)
FORMAT(1X,3F30,12)

OzDx (M=) /1

CUNTINUE

WRITE(2,200) (EL(I),1=1,M)
NHITE(B,?OO)(W(I)'I:"H)

FORMAT(1X,F40,15)

THE ELCI) AND w(I) ARE STORED ON DISK FOR FUTURE
LOCK 2

LOCK 3

510P

END

USF.
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Appendix C
Program FLOOD

THIS PROGRAM FINDS ESTIMATES FOR THE PARAMETERS ALPHA(1),
ALPHA(2), THETA(1), AND THETA(2)

QEQUIRED INPUT INCLUDES M, THE NUMBER nF
YEARS UF THE DATA RECORD, BB, THE MAXIMUM POSSIBLE FLOOD
HEIGHT, AND CC, THE SCALt FACLTOR. THE OROFRED FLOOD LATA,
THE ELC(1), AND THE Z(1) ARE READ INTQO ARRAYS X, EL, AND W
RESPECTIVELY (THF W(l) ARE COUMPUTED AND ST0RED IN AKRAY W
DURING EXECUTIUN), THE MINIMIZATION PROCFSS 1S ACHIEVED WITH
A SUSROUTINE FROM THE IMSi (1977) LIBRARY CALLED ZSYSTM

THIS SURROUTINE REQUIRES AN EXTERNAL FUNCTICGN (F),
TWO CONVERGENCE CRITERIA (EPS AND NSIG), THE NUMBER OF
UNKNUWNS (N), THE MAXIMUM NUMBER OF ITERATIONS OF THE
EXTERNAL FUNCTION F (ITMAY), A WURK AREA OF COMPHTER
STORAGE (WA), AN ARPAY FOR PASSING PARAMETFKS (PaP, wHICH
1S NOT USED IN THIS STUDY), AN EKROR MESSAGE VARIABLE (IER),
ANC STARTING VALUES FOR THE ALPHAS, THE STARTING VALUES
FOR ALPHA(1) AND ALPHA(2) AREL COMPUTED FPOM THE 0RDERED
DATA. OQUTPUT CONSISTS OF ALHPA(1), ALPHA(2), THFTA(L),
THETA(2), I1TMAX, AND I1ER, THE ERROR MESSAGE. IER=z0N MEANS
THERE ARE NO EFRORS AND MINIMIZATION WAS (UMPLETED TO THE
ACCURACY SPECIFIED BY THt CONVERGENCE CRITEFTS,
FOR MORE DETAILED INFORMATION ON THE SUBKOUTINE zSYSTEM,
SEE THE IHSL (1977) LIERARY,
J(KIND=DISK,TITLE="(878073)SAGUENAY/DATA")
2(KIND=DISK,TITLE="(878073)SAGUENAY/EL"™)
3(KIND=DISK,TITLE="(AT708NT3)SAGUENAY/W")

EXTERNAL F

DIMENSION ALPHA(2),WA(20),PAR(2)sXREG(200),YREG(200)
COMMON M,BB,CCrX(200),r(200),EL(200),THETA(2) Y (200)
FPS=1,0f=0

NSIGSS

N=2

ITMAX=100

[ERr=0

Me~THE WUMBER OF YEARS OF DATA, BRe=THE MAXIMUM POSSIHBLE FLOOD
HEIGHT, AND CC==THE SCALE FACTOR ARE READ,

KEAD(S, /)M

READ(S,/)BB,CC

THE ORDERED UATA, THE ELC(I), AND THE Z(J) ARE RFAD INTO ARRAYS
X, EL, AND W RESPECTIVFLY,

KREAD(1,101)(X(I),1=1,M)

FORMAT(1Xx,F12,2)

READ(2,200) (EL(1),1=1,M)

READ(3,200)(W(T)slx1,M)

FORMAT(1X,F40,15)

THE wW(l) ARE CALCULATED,

Do 23 I=y,M

W(I)EW(I) /W (M)

CONTINUE

STARTING VALUES ARE DETERMINED FOKR ALPHA(L) AND ALPHA(2),
suMx1ze,

sSuMy1=0,

sumMxyt=o,

SuMXXien,

DO 15 I=1,4

XREG(J)=ALOG(BB«X(T1))

YREG(I)=ALOG(«ALOG(I/(M41,)))
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SUMX1=SUMX1+XREG(I)

SUMY1RSUMY1+YREG(])

SUMXY1=SUMXY I +XREG(I)*xYREGR(I)

SUMXX1SSUMXXI ¢ XPEG(I) **2

CONTINUE

X1BAR=SUMX1/4,

Y1BAR=SUMY1 /4,
ALPHA(1)=(SUMXY 1=l aX1BAR*YIBAR)/ (SUMXX 1=l *X]1BAR*®+2)
suMxesn,

SumMy2=z0,

suyMxyYesg,

sSuMxXxe=o,

DU 16 J=zM=3,M

XKkFG(J)=ALUG(Bb=X(J))

YREG(J)=ALUG(=ALDG(J/(M+1,)))

SUMX2=SUMX2+xXREG(J)

SUMY2=SUMY2+YREG(J)

SUMXY2=SUMXY24XREG(JI*YREG(J)

SUMXX2=SUMXX2+XREG(J)**2

CONTINUE

X2BAR=SUMX2/4,

y2RAK=SUMY2/4,

ALPHA(2)= (SUMXY2=d #X2bAR®Y2BAR)/ (SUMXK2=4 ,XxX2BAR®*2)
WRITE(¢&,50)M,BR,CC

FORMAT(1X,'THE WUNMBFR OF YEARS OF THE DATA RECORD=',115,//,
®1X, ' THE MAXIMUM POSSIBLE FLOOD KEIGHT=',115,//,1%,

x 'THE SCALE FACTOP=',11S5,/7/)

WRITE(6,60)ALPHA(Y),,ALPHA(2)

FORMAY(1X, ' THE STAPTING VALUES AKRE',/,1X,'ALPHA(1)=",F15,5,
* SX,'ALPHA(2)=",F15,5.,/7//77)

2SYySTM IS CALLED TO MINIMIZE EQUATION (20) AND OuTPUT THE
FSTIMATED PARAMETERS,

CALL 2SYSTM(F,EPS,NSIG,N,ALPHA, ITHAX,*A,PAR,IEKR)
WRITE(6,70)ITM8X,IER

FORMAT(1X, *NUMBER OF ITERATIUNS OF EXTERNAL FUNCTIONZ',TS,
% /71X, 'ERROR MLSSAGE=',15,////7)

WRITE(6,80)

FURMAY(1X,'PARAMETER ESTIMATES ARE',//)
WRITE(6,90)ALPHA(1) ,ALPHA(2),THETA(1),THETA(2)

FORMAT(1X, 'ALPHA(1)="',F20,10,5%, 'ALPHA(2)=",F29.10,//,1X»
* 'THETAC1)=!,F20,10,5X, ' THETAL2)=!,F20,10)

sTopP

END

R AR R

10

FUNCTION F(ALPHA,KK,PAR)

THIS FUNCTION EVALUATES THE TWO EQUATIONS IN TWO UNKNOWNS,
DIMENSION wWEL (200),WLX(200),WELX(200),2LPHA(2),PAR(2)
COMMON M, RBB,CC,X(200),w(200),EL(200),THETA(2),Y¥(2¢0)

VO 10 I=1,M

WELCI)=W(I)*EL(I)

Y(I)s(BB=X(1))/CC

KLXC(I)=W(I)*aLOG(Y (1))

WELXC(I)=WLX(I)*EL(T)

2322, %ALPHA(1) 72022, «ALPHA(2) JASSALPRA(1)+ALPHA(2)
2120.32220,3Y120,JY250,5Y330, Y450 JY530,;Y620,3YT=0,1YE=0,
Bl1z0,;B2=0,383=0,)B4=0,)R5=0,

DU 20 I=1,M .

Yal=Y(I)x+ALPHA(L)

YA2=Y(I)wwALFHA(2)
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YAZ=Y(1)wnAd
YAU=Y(1)xxAd
YAS=Y (1) «xAS
Z1z71=WEL (1)*YAL
- 22=22=wEL(1)wYAR

Yizylew(1)e»YA}
y2sy2¢w(l)ryYay
Y3zY3¢W(I)*YAS
Y4zYUeWELX(T)xYAL
YS2YS+MLX(T)*YAS
YosYo+WLX(I)rYAS
Y7zYT+WELX(I)aYA2

20 YB=YB+WLX(T1)aYAY
THI=(Z14Y2=229Y3)/(Y1*xY2~Y3*Y3)
TH1=ABS(THY)
TH2=(Z2)«THIxY1) /Y3
TH2=ABS(THZ)
ALPHA(1)=ABS(ALPRA(1))
ALPHA(2)=ABS(ALPHA(2))
GO T0 (55,56),KK

sS Fay4+TH)xYS+THI*YS
THETA(1)=THY
THETA(2)=TH2
KETURN

Se FYT7+THI#Yb4THRAYE
YHETA(1)=THI
THETA(R)=TH?
KETURN
END

#########################################################################
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Appendix D
Program PFHTS

1 C- THIS PROGRAM IS AN INTERACTIVE (TERMINAL) PROGRAM.

2 C- GIVEN A DISTRIBUTION FUNCTICN F(X) OF THE FORM OF

3C- EQUATION (8> OF CHAPTER 2 WHERE C AND C” HAVE BEEN

4 C- REPARAMETERIZED AS THETAC(1)> AND THETA(2) AS IN

5 C- EQUATION (20) OF CHAPTER 3, FOR ANY X (FLOOD HEICGHT)><
5 C- F(X)> THE PROBABILITY THAT ANY POSSIBLE FLOGD IS

7 C- LESS THAN OR EQUAL TO X IS EVALUATED. THKHUS THE

& C- SELECTED RETURN PERIODS OR RECURRANCE INTERVALS

9 C- CAN BE FOUND BY FINDING SOME X (TO THE NEAREST

10 C- INTEGER) WHICH YFILDS THE DESIRED F(X) PROBABILITY.
11 C- REQUIRED AS INPUT ARE BB--THE MAXIMUM POSSIBLE

B C- FLOOD HEIGHT, CC--THE SCALE FACTOR, ALPHA(l), ALPHA(2),
13 C- THETAC1), AND THETA(2)--THE PARAMETERS OF THE

14 C- PARTICULAR DISTRIBUTION FUNCTION F(X), AND X--THE

15 C- FLOOD HEIGHT FOR WHICH F(X) IS DESIRED. F({(X) MAY
16 C- BE FOUND FOR AS MANY X VALUES AS REQUIRED.

17 C- VHEN FINISHED SIMPLY ENTER ?END AND A NEV

18 C- F(X) MAY BE EXAMINED OR ONE MAY LOG OFF THE

19 C- COMPUTER AS DESIRED.

100 DIMENSION ALPHA(2),THETA(2)

150 VWRITE(5,160)

160 160 FORMAT( 1X,” ENTER BB AND CC™)

200 READ(S5,/)BB,CC

250 WRITE(6,170)

260 170 FORMAT( 1X, "ENTER ALPHA(1) AND ALPHA(29",/)
300 READ(S,/) (ALPHA(I)>,I=1,2)>

350 WRITEC(6,180)

3%0 180 FORMAT( 1X,” ENTER THETAC1)> AND THETA(2)>",?)
400 READ(S,/)(THETA(I),I=1,2)

450 | VRITE(6,190,END=99)

469 190 FORMATC 1X,” ENTER X",/)

530 READ(5,/,END=99)X

600 Y=(BB-X)>/CC

700 F=EXP(-THETAC1)#Y##Al PHAC1)-THETA(2)%¥Y: *ALPHA(2))
8 00 VRITE(6,100)F

859 100 FORMAT(IX, " F(X)=",F20.15,/)

900 GO TO 1

1000 99 STOP

1108 END
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Appendix E
Program EPROB

TH1S PROGRAM CALCULATES THF EXPECTED PRURABILITY OF A
MAXIMUM YEAKRLY FLUOD REING GREATER THAN OR FQUAL TO A GIVEN
HEIGHT USING THE OBRSERVED DATA RECORD, THESE PROSARILITVIES
ARE ESTIMATED USING THE THREE FORMULAE

== HAZEN, CHEGODAYEV, AND wEIBULL., THE DESIRED RECURRANCE
INTEKVALS OR RETURN PEFIODS ARE FOUND BY LINEAR INTER=
PULATION BETWEEN THE Twn OBSERVED FLOOD HEIGHTS wHNSE
EXPECTED PROBABILITIES BRACKET THE DFSIRED PROBARILITY,
REQUIKED INPUT IS THE NUMBFR OF YEARS UF THE DATA RECORD
AND THE DATA ITSFLF, M 1S THE NUMBER OF YEARS OF DATa AND
X IS AN ARRAY FOR THE FLULOD KECORD,

1(KINDSDISK, TITLER"SAGUENAY/DATAM)

DIMENSION X(200),HAZPR(200),CHEGPR(200),wEIEPR(200)
M, THE NUMBER OF YFARS OF DATA, IS READ,
READ(5,/)M

THE FLOOD DATA IS READ INTQ ARRAY x FROM DISkK,
READ(1,108)(X(1),I=1,")

FORMAT(1X,F12,2)

EXPECTED PROBABILITIES AKE CALCULAYTED, HAZPK, CHEGPR,
AND WEISBPR ARE ARPAYS FOP THE PPORARILITIES FOUND USING THE
HAZEN, CHEGODAYEV, AND WEIBULL FORMULAF RESPFCTIVELY.
1TEST=M/2,=1,

DO 105 I=ITEST.M

HAZPR(I)=((M=I¢],)=0,5)/M
CHEGPFR(I13=((Mwl4]1,3)=0,3)/(hi+0,4)
WEIBPR(I)=(MeI#1,)/(M41,)

CONTINUE

WRITE(6,200)

FGRMAT(1X,! EXFECTED PROHABILITIESY,////7)

WRITE (6,99) «

FORMAT ($x,5X, "DATAY,32x," MAZFN',25x, 'CHEGODAYEV',19x,"' WEIBULL')
WRITE(6,100) (X(1),HAZPR(1),CHEGPR(I), WELBPR(]),1=]TEST,M)
FORMAT(1X,F12,2,18X,3F30,16)

$TOP

END
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Appendix F
Program DEVIATION

THIS PROGRAM COMPUTES THE MEAN OF THE ABSOLUTE RFELATIVE DEVI=-
ATIONS AND THE MEAN QUADRATIC DEVIATION BETWEEN A GIVEN

DAYA SET AND ITS PREDICTING DISTRIBUTIUOM FUNCTION FOR A
SELECTED SET OF RETURN pRERIODS AS DESCKIBED IN CHAPTER 4.
HAZEN, CHEGODAYEV, AND wEIBULL ARE TREATED AS DIFFERENT
METHUDS, REQUIRED INPUT INCLUDES TH, TC, AND TW, THE NUMRER
OF SELECTED RECUPRANCE INYERVALS FOR THF HAZEN, CHFEGODAYEY,
AND wEIBULL METHODS RESPECTIVELY. THE PREDICIED FLOOD HEJGHTS
UF THE ESTIMATED DISTRIBUTION FUNCTION ARE OBTAINED FROM

THE INTERACTIVE PROGRAM PFHTS AND ARE INPUT AS ARPAY PF,

THE EXPECTED FLOOD HEJGHTS FUR THE SELECTED RETURN PEFIOQDS
ARE FOUND USING THE PRUGPAM PROB AND LINEAR INTERPOLATION

AND ARE INPUT AS ARRAYS EFH, EFCs AND EFw FOR THE HAZEN,
CHEGUDAYFYV AND wWEIBUIL METHODS RESPECTIVELY,

DIMENS]ION EFH(lO):EFC(10),EFW(10),PF(lO),H(lO)cC(lO):h(lOJpPR(10)
PRE1)Z,5;PR(2)=,R}PR{3)I=,9jPR(4)S,/955PR(5)=,985PR(6)=,99

c TH, 1Cs AND TW, THE NUMBER OF RETURN PERIODS, AFE READ.
READ(S,/)TH, TCo TW

c THE PREDICTED FLOOD KEIGHTS ARE READ INTU ARRAY PF,
READ(S,/) (PF(1);1I=1,6)

C THE EXPECTED FLOND HEIGLHTS ARE READ INTD ARRAYS EFH, EFCy

C AND EFW RESPECTIVELY,

READ(5,/) (EFH(I),I=1,TH)
READ(S,/) (EFC(I),1=1,TC)
READ(S,/) (EFW(I),T=1,Th)
WRITE(6,10)

10 FORMAT( 1X,' PROBABILITY',2X," PRFDICTED HEIGHT ' ,5X, *HAZENT ,BX,
* ' CHEGODAYEV!,6X,' WEIRHULL'4/)
WPITE(b,?Q)(PR(IJ,PF(I)pEFH(I)r[FC(IJrEFW(l)OI=106)
0 FORMAT( IX,F10,2,8X,FB,2,8X,FR,2¢,8X,FB,.2,8%,F8,.2)
MEAN ABSOLUTE AND MEAN QUADPATIC DLVIAYTONS ARE COMPUTED
FOR EACH METHOD EMPLOYING THREE DO LOOPS USING EQUATIONS (23)
AND (24) OF CHAPTER 4, THE SMALLER THE DEVIATIONS THE BETTER
THE F1T7,
DIFFH=0,}DIFFC=0, ;DIFFW=0,}DHS=0,}3DCS=0,3DrS=0,
Do 1 Ist,TH
H(T1)ZABS((PF(I)=EFR(I))/EFH(I)*1V0,)
DIFFH=DIFFH+H(1)
DHS=DHS+H(T)*xH(])
1 CONTINUE
po 2 I=1,7C
C(I)=ABS((PF(I)=EFC(I))/ZEFC(1)*100,)
DIFFC=DIFFC+C(I)
DCS=LCS+C(I)2C(])
2 CONTINUE
DO 3 I=1,TH
N(IJ=ASS([Pﬁ(I)-EFw(I))/EFw(l)*lOO.)
DIFFw=DIFFWewW(]I)
DWS=DWS+W({I)®r(])
3 CONTINUE
ADIFFHSDIFFH/TH
ADIFFC=DIFFC/TC
ADIFFARSDIFFW/TH
ADHS=DHS/TH
ADCS=DCS/TC
ADWSEDWS/TW
WRITE(6,100) ADIFFM,ADIFFC,ADIFFN
100 FORMAT(////¢"' MEAN OF THE ABSOLUTE PELATIVE DEVIATIONS'Y,///,10X,
' HAZEN! ,F20,2 ¢/, SXi! CHEGODAYEV"FZO.Z v/ RXp! wEIBULL 'y
* F20,2 ,//77)
WRITE(6,200) ADHS,ADCS,ADWS
200 FORMAT( 5X ,' MEAN QUAURATIC DEVIATION',///, 10X,' HAZEN',
* F20.2 ,/, 6X, 'CHEGODAYEV',F20,2 ,/, 9X,'wEYbULL',F20.2 )
STOP
END

[z NN Na N,V
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Appendix G
Program MAXIMUM LIKELIHOOD

DOUBLE PRFCISICN T(100), THETA(SS0),EK(550),x(561,Y(55)s8SL)SLK,ELNY
1,R,ANG,F1,2RK,C(850),3K

INPLT
NBRSOMPLF ST2FE (EFFORE CENSCRINGI NEINC CR LESE A4S DIMENSICNELD
SS1x0 TF SCALE PARAMFTER TRETA TS KACWM
SSUZY! TF SCALE PARAMETER TRETA 7S TC FE ESTIMATFD
§5220 JF SKAPF PARAMETFR K IS KNCuh
“§8581 IF CRAPE FARAMETE~ x T§ Tn 9F ESTIVATEL
SS320 1F 1 0CAYICN PARAMETEFR C I8 KANCWA
§5321 JF [QCATICN PARANFTIER € 15 TC BF ESTIMATECL
T(1)aleTk CRCFR SYATISTIC CF SAVFLE (I31,N)

(SUASTITI TE ELANK CARCS FCR LNKMNOWN CENSORFC CESERVATICMS)
MasNLMBEK NF CESERVATIONS REMAINTAG AFTER CENSCRIMNG NeM FRCM ABCVE
CC1ISsINTTYA| FSTINATE (NH KNOWN VALLE) CF C
THETAC1{)RTNITIAL FSTIMATE (OF KNOCwh vaLLE) CF THETA
EX(1)BINTTTAL ESTIMATF (CF KNCun vBLUE) (F «

MRINUMBER CF CEBSERVATICAS CENSCRED FRCM EELCw, NCRMALLY 0 INTTTALL
oOUTRYUTY

NpSS1,852,533,M,CC1), TRETA(L),Fu(1),MRmeEAVE 28 FCR INPLT
C(JYsESTIVATE AFTEK Jat ITERATICONS (OF KAEWN VALULF) £F ¢
TRETACIIZESTIVATF AFTER Jal ITERATICNS (CR KANCWA VALLE) CF THETA
FK(J)s FSTTIMATE AFTFE Jwl ITERATIONS (CKR KANCWN VALUE) CF

(MAXTvUM vALLE CF J 48§ BRESEMTLY CIMENSICNEL IS €50)

FLENATURA! LCGARITHNM OF LTKELIRQCE FOR C(J), TRETACJ),ER(J)
REFERENCE
HARTER,H, LFEK BKT NOOKF, BLRERT W,y MAXTMLF @[ TWRELIKCCT FETT=

MATION CF ThF FPARAMFTERS CF GAMMA AN[C WETHLLL FCFLLATICNS

FRCM CNFPLETE AN FROM CENSORER SAMPLES, TECFNCMETRICS,

7 (1968), s¥Gebuy, FFRRATA,§ (1967}, 15%

IF(N) 66,86:77
ENaN

TF(V) el,ed, 12
EMev

FLNMZN,

EMRgMR

MRPEMR 41

NMENOMy

PO 34 TaNv,n

Elal
ELNMafELNMeELCE(
TF(#vR) 66,35,70
DO 78 1=i,MK

El=z]
FLNVEELNVLTLCE(ETY
pe 30 Jg=1,550

IFCJ=1) 66,25,37

Jisjel

§Ksq,

SL=n, B

T0 & TsMRE,V
SK2SK+(T(1)aC(JJ))*sEK(JJ)
1F(881)7,7,8
THETA(JYSTRETA(JI)

60 Y0 9

IF(MR) 66,19,20 o -
THETA(S T ( (§K+ (ERaENY* (TIMISTTII) J##EK(JJIII/EN)2d (], /EK(JI))
G0 TC 9

X(1)=THETA(JII)

LSSm0 )
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noe 21 LGI'SS
LLsL=1
LPml +1
X(LP)=x (L)
IRKE((T(MRE)=C(JJY) /X (LIIRREK(J))
Y(L)awEK{JJ) 4 (ENeFVME) /X CLY4EK(III #SK/X (L) an (ERK(JJ)41,)¢FR(JI)
L CENmEMY R (T(MYaCLJJIIRAFK(JI)/XCLI#*(ER(JIIH1, ) eEMRREK(JIJ)+ZRKn
2DEXP(=ZRKY/(X(L)*(1,»CEXP(«ZRK)))
IF(Y(L)) «3,7%,54
53 LS=l S=1
IF (LS+L) 58,5%,%8
S4 LS=| 8¢+1
1F (LS=L) %8,%4,58
58 X(LF)® S+x(l)
G0 10 61
Sé X(LPYZEL ,Sax(L)
GA TC &)
SR IFCY(L)*yeLL)) €0,73,89
g9 LisbL=1
GO T0 S8
60 X(LPIRX (LYY CL)* (X (L)X (LLI)/ZCY(LLI=Y(L))
Téy TF(RABS (X (LPI=X(L))el, Eed) 73,73,21
21 CONTINLF
73 THRETACIISX(LP)
EXK(JIBEK (D)
0 IF(882) 12.,12,11
q CO 17 TekRp,»
7 SLaSL+nICocTeTYeC(I0Y)
X(1vmEK ()Y
LS=n
L0 5t |L=1,86
SLkz0,
DO 18 [=sMEP,M
i8 'SLK:SLY+(rLCG(T(T)-trJJUT-PLOrrTHgTA(J)J)*rT(I)-C(JJJJiaX(L)
{LeLat
LPzl sy
X(LPYwx(L)
ZRKS(CT(MRFIC (I ) /THETA(JI ) wax (L)
Y(L)SCEMaFMRYN (1, /X (L)eDLOGUTHETACI)))#SLuSLK/ TRETA(J)wa
-I(L]%(EN'FW)*!ULUG(THETACJ))-
¢CLOGET(M)=ClII)) )& (T(MY=C(JJ) I waX (L)Y
PTHETA(J)wa X (L)SENR«ZRK$ (DL CG(ZRK)/X(L)I*CEXF(s2FRK)/
301, =DEXP(S2RRY)
TFCY(LY) u3,52,44
43 LS=LS=1
CTRILS¥LY aryat, U
qa LS3L 8+
TF(LS=L) u7,46,47
48 XCLPYE,S*X(Ly
GO T0 S0
46 x(Lp)at S+x (L)

60 TG“SU T ‘“‘ o
q7 IFCYLLI*Y(LL)) 49,52,48
qe Llal L=t

G0 TOUY )
49 XCLPYSX (LY 4y (L)a(X (L)X (LL))/ZCYCLL)™ VCL))

50 IF (DABS(x(LF)-x(L))-l E-H) 52.%2 51
St CONTINGE T T T
52 EK(J)sX(LF)

12 c(d)=eC(Jd
62 IF(883) 2%,25,14

14 IF(L,=FKCJY) 16,78,78
78 IF(581+4582) 57,S7,16
16  x(1)=C(J)

LS=0

D0 23 L=1,5%
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Sxkizn,
SR=q,
N0 18 JsMRP,V
SK1ZSK1+(T(TymX(L))**(EK(J)=1,)
15 SRISR41 ,+(T(I)exX(L))
Ll=l =l
LP= +1
x(LP)=sX(L)
IRKS(CT(MRFIwX(L)I/THETA(J) ) neFKk(])
Y(L)l(l.-FK(J))*SP+FK(J)t(SK1o(EN-Er)‘(T(N)-!(L))‘i(EK(J)-!.))
L/THETA(J) s 46K (J)mFMEaFK(J)#2ZRKSREXP (=ZRK)/((T(MRPIex (L)) * (1,
1DEXP (=2PkY))
TFEY (L)) 18,24,40
319 LSsLS~1
IFCLS*L) 70,41,70
a0 LSzl §+1 R
TF(LS=L)Y 70,4g,70
41 x(LP)=3 Sy (L)
60 10 22
e XCLP)B Sex(L)¢,5+T(1)
G0 10 22
70 TFCY(LI*Y(LLY) T2,24,71
" LLzslL=1
GG 10 70
72 XCLPYSXY(LY+Y(L)*(x(L)eX(LL
22 IF(NABS(X(LF)=X(L))wl,Eud)
23 CONTINLF
24 C(I=X(LP)Y
GO 10 as
57 C(J)sT(1)
2s 1F(MR) 66,138,689
318 pe 63 1=1,w
TF(C(JY+) FedaT(T1)) 6R,067,67
67 MRIMR 4+
63 cl1ye¥ (1)
&8 IF(MR) 66,69,
() SK=0,
sLen,
LO 36 I=sMPP,V
SKESK+(T(T)eC(J))A*FK(J)
16 SLeSL+RLER (T (IY=C00))Y
2RKZ((T(MEF)aC (J))/THETA(J) ) wwEK(])
FL=:LNN¢(;u-;wﬁ)i(DLCG(FK(J))-EK(])iDLOG(TbETA(J)))6(EK(J)°1.)‘SL’
t(S“v(EN-EN)t(T(P)-C(J))ttEK(J))/(TFETA(J)ﬁ*EK(J))4EVH:ELDG(1.-CEXF
2(=ZRK))
[F(Je3) 3n,27,27
27 TF(CARS(Cty)wC{JI) Il Fel) 28,28,10
20 TF (DABS(TFET2(J)eTHETA(JI))=q Fed) 26,28, %¢C
29 IF(DAES(EK(J)-EK(JJ))-1.E-U)loo,loo.Sﬁ
10 CONTTINUE
64 PRINT /,! NC YIELOD POINT!
RETURN
100 RaEK(J)
ANGETMETA ()
RETLRN
66 §TOP

EAD
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Appendix H

Data Used in Analysis

COUNTRY RIVER 1.OCATION
SENEGAL SENEGAL BAKEL
1580 o 2Y50 ZE50 2890
G140 3326 3400 348G 3560 2360
3500 3600 3760 377C 3640 4180
3200 300 4355 4400 4520 4620
4850 4970 5070 3330 5330
3450 545G 5450 0 5590
6310 G4i¢ G840 7000
360 600 9070 9940
COUNTRY RIVER LOCATION
U.8.4 SUSHUEHANNG  HARRIAEURA,
4390 S0i0 50.7 9040 5{006 5150
BOBU BiiB  B23¢  B4B0 5500 BSI3
ER50 5853 6910 6940 6990 7050
7079 7140 7150 738G 7500 7500
7EAE 7BBG 7R20 78706 7837 Bloo 8180
8330 8410 B4LO  B44s  BB7C  B7Z0 BS20
G G700 8170 2175 9400 9571 10100 10700
L0730 10817 14100 11400 11800 11700 11780 115CO
L7000 12706 13705 14000 17400 21000
STATION COUNTRY RIVER LOCATION
IBCB INDIA KRISHNA VIJAYAWADA
§315 10017 10204 10212 10360 10458
10495 f0B13 10793 10813 (0878 10882 10916
1122 11374 11500 12081 123393 123606 12912
13068 13113 13260 13465 13528 13582 13GB6
14132 14220 14242 14503 1452¢ 15396 15514
15813 15872 18009 15380 18524 16782 17372
17808 1797¢ 18311 1BBBH 19879 20970 23501
25902 Z6B73 27073 29768
STATION COUNTRY RIVER LOCATION
BEAG CZECHOSLOVAK 1A ELBE DECIN
543 587 5483 610 726 1038 1048 1058
11§z 1117 {138 1138 1149 1160 ii86 1172
1175 1181 1iBi 1188 1205 1207 1234 1248
12685 1283 1269 1270 1282 1283 1300 1312
1317 1350 1354 13680 1372 1396 1429 1454
1452 1474 1492 1458 1522 1527 1546 1561
1563 1565 1873 1B0I 1610 1618 1B43 1702
1717 1742 1768 1845 1848 1853 1B74 1915
1830 1930 1940 2038 2040 2040 2083 2109.
2124 2146 2158 2250 2284 2301 2373 2379
2383 2400 2410 2515 2540 2565 2600 2626
2643 2866 2725 2B15 2850 2876 2937 2937
2840 2975 3100 3172 3343 3800 3770 3779
4058 4143 4450 4822

40

STATION COUNTRY RIVER LOCATION
BE3B GERMANY DANUBE HOFKIRCHE
947 956 1080 1oEn 1100 1iZ0 123G
1250 1250 1280 1260 i3iQ 1310 1326
1340 13506 13B0 1400 1440 1450 1460
1460 1480 (940 5B IEOD iB4Q 1750
1730 1760 1e00  1BIO 1810 1830 1880
1880 1800 1520 1830 198G 2020 2040
2050 2070 21506 2170 2180 2246 2316
2380 2400 2450 2540 2800 ZBS0 2780
2816 2830 3000  38BC
STATION COUNTRY RIVER LOCATION
BF19 NORWAY GLOMA LANGNES
1157 1287 1351 1358 1413 i504 1 1518
1532 1557  i156&  i58¢ 143 16830 1 1707
1734 1738 177¢% 1783 iBt7  1BZZ ¢ 1872
1878  191¢ 185168 1953 2031 20650 2 21006
2106 2133 2168 2172 2180 2195 2 2240
2235 2256 2258 2260  Z2BB 2288 2 2318
2312 2321 2348 2378 2363 380 X 2390
2515 2582 28@F 2715 2850 2877 3 32z«
3429 3543
STATION COUNTRY RIVER LOCATION
CF235 USSR NEMAN SMAL ININKAL
B1G 870 80 1050 1100 1:50 1150 200
124G 1250 130G 1350 1400 1400 1400 1400
1450 1500 1550 1550 1600 1BO0  iBOO 165G
1850 1700 1700 1700 1700 1700 1752 1730
1750  1BGG  1BOO T 1BOO  iBO0 1830 1830 1800
1960 1850 1950 1856 1§50 1§50 2000 Z0GO
2000 2000 2100 2160 2100 ZID0 210G 2160
2100 2100 2i00 2100 2100 2200 200 2200
2300 2300 2300 2300 2300 2300 2300 2300
2400 2400 2400 2400 2400 2500 2500 2500
2500 2500 2BG0 2800 2800 ZB00 2600  2GUO
27060 2760 2700 27060 2700 Z700 D700 2709
2700 2800 2800 2800 2800 2800 290D 2500
3000 3000 3000 3060 3000 2000 3000 3000
3100 3100 3100 3100 3200 3200 3200 3200
3200 3200 3300 3400 3400 3400 3400 3400
3500 3500 380G 3600 3600 3700 3700 3807
3960 3900 4100 4200 4300 4300 4300 4600
4600 4700 4800 4900 5200 5600 5800 6200
6200 BBOO  GBOO
STATION COUNTRY RIVER LOCATION
mE18 CANADA FRASER HOPE
5130 5810 BO0CO0 BOBO 6830 7080 7220 7220
7420 7480 7580 7620 7700 7820 7820 7820
7840 7900 B8040 8040 BO4D  BIE0  BZ2i0 8330
8470 8500 8500 8520 BOMSO 8580  BB7C 8670
8720 B884C 8980 B0i0 9060 926G 9280 9350
9520 8540 9850 9830 9770 §770 9916 9897C
10300 10300 10500 10600 10800 10BOO 11100 11300
11800 12300 15200
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STATION COUNTRY RIVER LOCATION STATION COUNTRY RIVER LOCATION

LE792 ANADA ASSINIBOINE HEADINGLEY HE1833 CANADA SAGUENAY ISLE-MAL IGNE
24 51 B2 55 gz 114 116 2370 2380 2410 2730 2830 3400 3510 3800
128 138 146 146 152 174 iBS 3650 3770 3820 3850 3850. 3860 4050 4050
202 204 206 218 2i5 217 7222 4080 4110 4190 4180 4250 4420 4420 4420
230 723 236 248 264 268 275 4350 4530 4530 4590 4640 4670 4670 4870
281 286 289 292 300 308 317 4930 4830 4850 S010 5070 Si50 5180 5270
340 346 360 362 388 430 473 5550 8660 5720 5830 5820 6030 6120 6370
481 518 547 364 566 582 595 B460 6460 6480 6740 8B770 6820 7380 7830
9060 8260
STATION COUNTRY RIJER L OCATION
1700 CANADA S. SASKATCHEWAN MEDICINE HAT
230 357 378 391 524 572 575 581 STATION COUNTRY RIVER LOCATION
649 543 683 668 722 725 731 733 AB3B MALI NIGER DIRE
871 B4 827 899 91z 940 840 952 - .
E 480 583 g74 983 951 g41 1330 1947 1865 2001 2061 2061 2120 2138 2145
1040 1070 1090 1090 1090 1130 1290 2157 2189 2205 2217 2223 2223 2262 2288
1580 1550 1830 169G 1830 1840 1880 2279 2300 2308 2314 2314 2321 2335 2358
COHO 2090 217 2200 2400 2550 27i0 3060 2984 2384 2382 2405 2405 2411 2418 2431
3716 4080 2440 2447 2535 2957 25685 2595 2625 2632

2640 2647 2655 2677 2677

COUNTRY RIVER LOCATION
CANADA 5. SASKATCHEWAN  SASKATOON

s3t 583 583 595 832 793 816
855 855  ©5! 901 928 98¢ 99
1070 1070 1080 1116 1120 1140 1150 STATION COUNTRY RIVER LOCATION
11g0 1180 1210 1250 1280 1270 1280 AB72 HALI NIGER . KOULIKORD
1376 1420 1420 1420 1420 1530 1560
i570 1630 1780 1780 1820 1850 1970

;2330 2420 2490 26830 2700 3080 3140
3140 3370 3940

3846 4010 4290 4467 4830 4920 4820 48980
4950 5000 5140 5186 5240 5285 5375 5378
5437 5505 5580 5610 5624 5670 S780 5790
5910 6002 6170. 6172 6210 .6220 6220 6280
6380 6380 8420 G440 6440 B4BO 6540 6550
COUNTRY RIVER LOCATION G640 €740 6840 6300 6940 6946 880 6360
CANADA N. SASKATCHEWAN PRINCE ALBERT 5980 2020 7228 7247 7400 7456 7580 7610
7740 7798 8740 8300 8500 8700

588 320 523 583 685 756
765 770 780 796 754 873
952 g54 981 1610 1016 1030
1120 1130 1140 1180 1183 1200

23 1283 1270 1280 1340 1350 1510 STATION COUNTRY RIVER LLOCATION
40 1570 1570 1570 1B20 1820 1640 AEBS USA PENOBSCOT  WEST ENFIELD,ME.
LG50 1800 1380 2096 2180 2480 2780 . - .
2930 2970 5300 821 903 a7 828 857 1000 1040 1120
1130 1150 117§ 1180 1220 1250 1270 133%
1360 1380 1420 1436 1440 1460 1520 1520
STATION COUNTRY RIVER LOCATION 1540 1800 1800 1710 1720 1720 1756 1760
1970 1982 2010 2050 2150 2240 2329 2328
;42 148 150 154 158 158 161 16t 2862 3200 3540 4330
iat 16& 164 1686 187 172 172 173
173 174 179 183 183 185 182 194
135 185 201 202 204 205 213 213
2 D ] 2 2 2 ol
Sen  oed D0 D0 B 0 e IR STATION  COUNTRY RIVER LOCATION
CGEO FINLAND KYMIJOKI PERNOD
138 159 183 233 258 2683 270 290
COUNTRY RIVER LOCATION 308 312 312 320 338 342 342 343
CANADA WINNIPEG SLAVE FALLS 347 357 337 366 367 383 385 3688
391 393 406 412 415 416 418 435
668 BE8 901 986 1000 1020 1030 436 445 454 458 463 487 471 471
; 1380 1060 1090 1100 1140 1200 1250 472 474 494 507 507 508 512 517
1286 1270 1250 137¢ 1380 1420 1450 1460 520 527 527 535 537 540 542 546
310 1380 17206 1720 1750 1790 1920 1870 547 552 557 598 563 574 578 584
is5a0 2040 2180 260 23850 2410 2450 2780 584 814 818 644 858
2800
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STATION COUNTRY RIVER LOCATION
cGet FINLAND VUOKST IMATRA
333 34 403 448 481 461.. 476 . 478
491 497 508 S0B 534 534 540 548
561 582 590 599 603 603 604  6OS
607 613 616 624 B30 636 639 842
642 B42 651 651 B51 656 B58 659
659 684 666 668 673 677 677 677
Ge0 BB4 686 686 686 686 BB9  BSL
702 703 703 703 703 703 706 710
712 712 718 721 721 727 727 127
730 730 735 739 742 744 734 744
744 747 756 759 760 780 786 766
789 773 775 788 789 792 792 793
794 794 785 7939 803 806 BiB 829
836 839 840 846 B84 BBO 882 887
911 914 917 928 836 1089 1109 1137
1146 1170
STATION COUNTRY RIVER LOCATION
BF42 POLAND ODER GOZDOWICE
707 726 733 799 B28 830 _ 850 . 860
B66E 885 906 915. 920 947 §70_.. 875
978 1070 1080 1110 1140 1160 1160 1170
1200 1210 1210 1240 1240 1300 1300 1320
1320 1350 1380 1370 1400 1400 1430 1470
1556 1590 1620 1660 1690 1700 1710 1710
1740 1740 1800 1810 1830 1860 1930 2070
2140 2180 2280 2380 2420 2450 2480 2650
2980 3340 3720
STATION COUNTRY RIVER LOCATION
oF28 SNEDEN VANERNGOTA  VANESBORG
353 355 399 405 407 419 419 421
450 454 455 462 487 473 475 477
481 481 487 487 482 492 494 494
500 S00 S04 S04 508 510 512 51§
516 518 §27 S29 535 835 537 539
539 544 551 551 551 52 %53 557
sS4 564 SE8 588 570 574 578 580
sez 582 584 584 585 888 588 580
592 582 592 %83 597 588 601 601
803 607 808 610 615 619 621 623
625 628 B30 632 B34 B34 636 636
637 640 642 642 644 B44 B4 . BAB
648 B48 B4B 652 BS54 658 880 662
669 67t €7t B71. B72 673 873 675
677 677 677 6B1 681 693 B93 B34
702 706 708 708 742 246 M8 122
726 726 728 731 731 735 737 739
743 743 745 751 759 781 768 768
772 772 774 T 74 774 780 782 784
794 798 817 617 6829 836 926 928
938 1033
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STATION COUNTRY RIVER LOCATION
DFo8 USSR NEVA NOVOSARATOVKA
2000 2300 2500 2600 2650 2700 2700 2700
2700 2700 2700 2800 2800 2800 2800 2B0O
2800 2800 2900 2900 2900 2800 2930 3000
3000 3000 3000 3000 3000 3000 3000 3040
3100 3100 3100 3100 3100 3100 3100 3100
3100 3100 3100 3200 3200 3200 3200 3200
3200 3200 3200 3240 3300 3300 3300 3300
3300 3300 3300 3320 3400 3400 3400 3400
3400 3400 3400 3400 3400 3400 3400 3440
3500 3500 3500 3500 3500 3500 3500 3600
3800 3600 3600 3800 3800 3700 3700 3700
3800 3800 3800 3800 3800 3900 3800 3800
4000 4000 4000 4000 4000 4000 4000 4100
4100 4200 4300 43500 4300 4600
STATION COUNTRY. - RIVER LOCATION
JE9855 CANADA ASSINIBOINE BRANDON
22 23 37 as 47 49 70 n
74 75 77 81 a5 88 20 g0
94 99 99 103 105 112 116 116
120 133 134 134 135 143 146 151
154 157 159 159 165 1685 166 174
184 187 199 202 210 212 214 217
222 229 241 243 258 238 303 314
360 360 422 430 450 484 541 803
651
STATION COUNTRY RIVER LOCATION
JE791 CANADA RED EMERSON
121 136 141 153 163 179 190 208
213 223 225 227 312 326 348 362
379 3a8 394 411 413 433 445 478
496 496 510 535 935, 544 568 381
589 663 683 685 723 733 736 753
736 787 780 804 827 833 835 864
940 943 954 1120 1310 1310 1470 1550
1880 2670 .
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