Utah State University

DigitalCommons@USU

Reports

Utah Water Research Laboratory

January 1971

A Computerized Method of Precipitation Data Quality Control

Ronald H. Campbell

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management

Commons

Recommended Citation

Campbell, Ronald H., "A Computerized Method of Precipitation Data Quality Control" (1971). Reports. Paper 579.

https://digitalcommons.usu.edu/water_rep/579

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

A COMPUTERIZED METHOD OF PRECIPITATION DATA QUALITY CONTROL

By

Ronald H. Campbell

Technical Report

Contract No. 14-06-D-6820 Office of Atmospheric Resources Bureau of Reclamation U.S. Department of the Interior

Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah

July 1971 PRWG 108-1

			*
	·		
			-
			•
			3
			i

ABSTRACT

A computerized data quality check and data edit program has been developed to aid in the processing of telemetered precipitation data. The logic considerations and program development are discussed and results are displayed. This effort has resulted in successful editing of large amounts of precipitation data gathered by automated remote data acquisition techniques. The application of this processing routine has resulted in reducing data editing costs to about three percent of that required to do the work manually.

LIST OF TABLES

Relative frequency distribution of hourly precipitation values for Silver

Page

Table

	Lake-Brighton 1957-66 November through April
	LIST OF FIGURES
	LIST OF FIGURES
Figure	Page
1	Types of questionable data points
2	Overshoot correction procedure
3	Sample output of a data set with data quality parameters
4	Final (solid curve) and original (dashed curve) data from Tony Grove Ranger Station gages 602 and 603
5	Final (solid curve) and original (dashed curve) data for Gold Hill gage 1001 and Cinnamon Creek gage 1203
6	Data sets for Franklin Basin gage 1603 and Hell Canyon gage 1701
7	Final (solid curve) and original (dashed curve) data sets for Dry Bread Pond gage 5004 and Porcupine gage 12501

A COMPUTERIZED METHOD OF PRECIPITATION

DATA QUALITY CONTROL

Introduction

The experimental design of the Wasatch Weather Modification Project provides for the evaluation of cloud seeding activities through the comparison of precipitation amounts for seeded and unseeded periods. The present experimental design requires simultaneous half-hourly precipitation data from gages in and near the primary target area for each 8-hour experimental period. These data requirements for meteorological evaluation of the experiment have led to the development of new acquisition and processing techniques of precipitation data.

The requirements for evaluating cloud seeding experiments utilizing precipitation data brought about the construction of the Utah State University telemetering precipitation gage network (Israelsen and Griffin, 1969; Chadwick, 1968, 1969). The readout system for the network can provide as many as three readings per hour for each of 46 stations. Readouts are sequential, and errors are found in the data. Thus, a need arose to develop an objective method for interpolation of simultaneous data points from quality checked data.

The data quality problem results from a combination of several factors concerning the type of gage used, the nature of the transducer, and problems peculiar to radio telemetry, i.e. wind forces on the gage transmitted to the transducer, vibratory motions of the gage caused by the wind, snow and ice sticking or riming developing temporarily on the sides of the collection cans, radio interference, friction between the cans and guides.

With as many as 75,000 data points per year being read out from the network, the computerization of the entire precipitation data processing procedure was highly desirable. Half-hourly precipitation data were obtained in two steps. The first step was the relatively simple conversion of the electronic readout period to cumulative precipitation in the storage gage. The inches water equivalent is obtained through individual calibration curves which are determined each season for each station's transducer.

The second, and more complicated step, was the data quality check, editing, and data interpolation. Before a satisfactory data quality control program was developed, much editing was done by hand. Manual editing served to categorize anomalous data points and provided the basis

for development of subsequent objective criteria by which data could be evaluated. These criteria and the computer program logic are discussed as follows.

Categorization of Questionable Data Points

Data points are examined for one station at a time and in sets of at least eight precipitation values. Typical data sets consist of from 40 to 200 points.

Data points considered questionable are categorized into three groups using the criteria outlined as follows. Figure 1 is a graphical display of these types.

- (1) Precipitation values may be so unreasonable that they are obviously unacceptable. These points are called "outliers" and seem to occur randomly. They occur above and below the cumulative precipitation curve. Radio interference or other electronic problems appear to be the most likely causes for these outliers.
- (2) Precipitation values may exhibit relatively small departures from the apparent cumulative precipitation curve. These departures also seem to occur randomly and are referred to as "noise" points. The most suspected sources of this type error are wind and friction. The wind may cause a bouncing or vibration of the can and friction may cause a sticking of the can guide. These noise points are usually within .03 inch of a five-point moving average of the cumulative precipitation curve.
- (3) Several precipitation values in succession may indicate a negative trend in precipitation. These trends cannot be rationalized to be the result of evaporative losses or leaking cans. One explanation is that ice or snow stick temporarily on the outside of the gage. Since this is a weighing gage system, both this accumulation and subsequent melting or sublimation are reflected in the measurements. Temperatures observed during periods in which these negative trends occur support this concept. The data points describing such a trend are termed "overshoot" and seem to occur under a limited set of meteorological conditions.

Figure 1. Types of questionable data points. (Dashed line indicates questionable points.)

A Reasonable Cumulative Precipitation Curve

Objective criteria by which data points can be judged were developed from the standpoint of a reasonable cumulative precipitation curve. All data points making up the curve must indicate zero or a positive amount of precipitation. The value of $\Delta P/\Delta\,t$, change of precipitation with respect to time, must also have an upper bound. This bound is a function of the geographical location, elevation, and nature of the precipitation process. A value of $\Delta\,P/\Delta\,t>|0.5$ inch per hour is fairly uncommon for this region in the wintertime as indicated by the relative frequency of cold season hourly precipitation amounts (Table 1) at the Silver Lake-Brighton station. This is a fairly high-yield high-altitude station near the experimental area.

These results indicate that .5 inch per hour can be set as a general upper bound on $\Delta\,P/\Delta t$ for the data editing scheme. However, precipitation data points indicating rates greater than .5 inch per hour are accepted as valid if the curve continues a monotonic, non-decreasing trend. The main purpose in defining a maximum $\Delta P/\Delta t$ value is to insure that the first point of a data set is valid. Δt values generally range from 20 to 40 minutes for the data being considered.

Table 1. Relative frequency distribution of hourly precipitation values for Silver Lake-Brighton 1957-66
November through April.

Class (Inches)	Number of Occurrences
.0105	4271
.0610	578
.1115	153
.1620	44
.2125	8
.2630	6
above .30	0

The Data Quality Criteria

The preceding considerations are the basis for the complete set of data quality control criteria. These in combination with factors peculiar to equipment and data processing methods, provide enough information to successfully edit telemetered precipitation data.

An attempt was made to keep input data requirements of the computer program to a minimum and still obtain good results. A review of the manually edited data showed that satisfactory results could be obtained without using the supplementary data originally employed. This supplementary data included concurrent facsimile charts, temperature observations, upper air sounding data, and precipitation data from adjacent gages.

The first consideration in data quality control for the system is to check the time parameters for obvious keypunch errors or Automatic Readout Console errors. The number of data point errors in this category is very small, on the order of 0.1 percent. This check is accomplished by requiring that all data points lie within specified time bounds and that only one data point per station be accepted for a given time.

The next criterion is set up to discard outlying data points, those mentioned in category (1) above. The most useful test for outliers is the requirement that a data point be not more than .03 inch below the average of the preceding four data points and not more than .03 inch above the average of the following four data points. This is the requirement that, neglecting noise, a cumulative precipitation value has to lie on a monotonic, non-decreasing curve. Good results were obtained when only points yielding an absolute precipitation rate greater than .2 inch per hour were subjected to the test. Data points failing the test are deleted from the data set.

The effect of testing only points associated with $\Delta P/\Delta t > 0.2$ inch per hour was to leave in the negative trends mentioned previously in category (3).

Overshoot seems to occur under a rather limited set of meteorological conditions. Most of the time the amount of overshoot is less than .1 inch and was identified on about 10 percent of the total data read out from the network during the 1970-71 season. The criteria used to define overshoot is that each of three successive data points be at least .03 inch less than each of the two data points at the beginning of the negative trend.

After identifying the overshoot, the problem is to ascertain its beginning and ending times. It seemed reasonable to place the end of the overshoot at the point where the curve begins once again a monotonic, nondecreasing trend. The identification of the beginning of overshoot is more difficult. The only certain thing is that it occurred when the gage indicated a precipitation event. For the present, the beginning of overshoot is arbitrarily placed two data points prior to the point where the cumulative curve exceeds the precipitation value at the end of the overshoot. The peak value of the overshoot is adjusted downward to the precipitation value corresponding to the end of the overshoot and no precipitation is assumed during the time interval between the peak overshoot value and the end of the overshoot. The precipitation curve from the time of the start of the overshoot to the time of the peak overshoot value is adjusted to keep within the monotonic, non-decreasing curve criteria, and yet maintain as much of its original shape as possible. An example is shown in Figure 2.

Whereas these corrective procedures for overshoot are quite intuitive, the results match favorably those done by hand with supporting meteorological data. It is questionable whether more effort is justified in deriving a better editing procedure. A new type gage is presently

Time

Figure 2. Overshoot correction procedure.

being tested which could eliminate the overshoot problem.

The cumulative precipitation curve, having been subjected to the above treatments, is now ready to be checked for noise points. The requirement for the first data point of the set is that it be less than the average of the next four data points. The remainder of the data points are required to be greater than or equal to the preceding data point, but less than the average of the following four data points. This average is taken so that the effect of a noise point in the four will be negligible. If a point is outside this given range, but within .03 inch of the limits, it is corrected the least amount possible to bring it within the limits and retained. Otherwise, it is discarded.

On a few occasions the average of the four testing points is less than both the point being tested and the preceding test point. In this case data are processed as follows.

Let P_i be the i^{th} precipitation value. This is the point being tested. Let P_{i-1} be the point which has just been tested and now is used to test P_i . Let P_j , j = i+1, i+4 be the remainder of the test points and let A = 1/4 $\overset{i+4}{\Sigma}$ P_j .

The test for a noise point described above was the requirement that $P_{i-1} \leq P_i \leq A$. The problem arises

when $P_{i-1} > A$. If this happens, the most often occurring value of P_j , j=i, i+4 is assigned to A and the test is completed. If no value occurs more than once, the mid-point of the smallest region in which two or more of the P_i , j=i, i+4 lie is assigned to A.

These procedures have been programmed on a computer with various small additions and special provisions for handling the first few and last few data points of each set. Following the data editing procedures of the program, a tabulation for data quality control is accomplished by machine which includes the following: number of data points input, the number of outliers rejected, the number of noise points rejected, the number of noise points adjusted, the number of overshoot points adjusted, the number of data points left untouched, the total number of data points accepted, the total number of data points rejected and the percent of total input accepted. Figure 3 is an example of the original and final data sets. The computer program then interpolates half-hourly precipitation values for the entire time period covered by the data set—usually one or two days of data.

Results

All of the telemetered precipitation data for the 1969-70 and 1970-71 experimental seasons have been quality checked and edited by this program. The results agree well with manual editing.

	UNED	ITED DAT	Δ		EDITED DAT	- Δ
POINT	NIA	PCPTN	CHANGE	DAY	PCPTN	CHANGE
1	46.303	28.64	0.0	46.30	3 28.64	0.0
2	46.318	28.64	0.0	46.31	8 28.54	0.0
.3	46.336	28.64	0.0	46.33	6 28.64	0.0
Z,	46.350	28.64	0.0	46.35	9 28.64	0.0
5	46.380	28.64	0.0	46.38	0 29.54	C • O
6	46.400	28.64	0.0	46.40	0 23.64	0.0
7	46.420	28.64	0.0	46.42	0 28.64	(.0
8	46.440	28.64	0.0	46.44	0 23.64	0.0
9	46.461	28.64	0.0	46.46	1 28.64	0.0
10	46.483	28.64	0.0	46.48	3 28.54	C • O
11	46.504	28.64	0.0	46.50	4 28.64	0.0
12	46.524	28.66	0.02	46.52	4 28.66	0.02
13	46.545	28.71	0.05	46.54	5 28.71	0.05
14	46.565	28.71	0.0	46.56	5 23.71	0.0
15	46.597	28.71	0.0	46.5ª	7 28.71	$C \cdot C$
16	46.606	28.71	0.0	46.60	6 28.71	C.O
17	46.672	28.74	0.03	46.67	2 28.74	0.03
18	46.687	28.75	0.01	46.68	7 28.75	0.01
19	46.709	28.75	0.0	46.70	9 23.75	0.0
20	46.729	28.75	0.0	46.72	9 28.75	0.0
21	46.748	28.75	0.0	46.74	8 23.75	$\mathbf{c} \cdot \mathbf{o}$
22	46.769	28.75	0.0	45.76	9 28.75	$r_{\bullet 0}$
23	46.790	28.75	0.0	46.79		C•0
24	45.822	28.81	0.06	46.82	28.81	0.06
25	46.861	28.84	0.03	45.86	28.84	C.03

HALF HOURLY PRECIPITATION DATA FOR STATION 16406

ACCOUNTING DATA FOR STATION 16406

- 25 POINTS ENTERED
- O POINTS ADJUSTED FOR OVERSHUOT
- O POINTS ADJUSTED FOR NOISE
- O DUTLIERS REJECTED
- O NOISE POINTS REJECTED
- 25 ORIGINAL DATA POINTS LEFT UNTOUCHED
- 25 POINTS ACCEPTED
- O POINTS REJECTED
- 100 PERCENT OF TOTAL POINTS INPUT WERE ACCEPTED

Figure 3. Sample output of a data set with data quality parameters.

The cost of manually editing data for a single experimental period was about \$200. This compares to a computer cost of about \$6. Thus, the initiation of computer editing of precipitation data has resulted in over a thirtyfold savings in the cost of this particular data processing.

The computer program is set up to edit a period of data which includes one or more experimental periods. It

then outputs half-hourly data in individual sets for each experimental period. This process is completed one station at a time. A few data sets from the telemetry network are discussed and graphed for the experimental period of February 15, 1971, 0930 to 1730 MST.

Figure 4 shows data and graphs from Tony Grove Ranger Station gages 602 and 603. Both cases show noise points which were adjusted by the computer program.

STATIO	N 602						OITATS	N 603					
	UNED	ITED DAT		EDI	TED DAT	•		LINED	ITED DAT	٨	EDI	TED DAT	Δ
POINT			CHANGE	DAY		CHANGE	POINT	DAY	PCPTN		DAY		CHANGE
1	46.320	21.37	0.0	46.320	21.37	0.0	1	46.305	22.25	0.0	46.305	22.25	0.0
2	46.340	21.37	0.0	46.340	21.37	0.0	2	46.319	22.27	0.02	46.319	22.27	0.02
3	46.364	21.30	0.02	46.364	21.39	0.02	3	46.340	22.26	-0.01	46.340	22.27	C.O
4	46.384	21.40	0.01	46.384	21.40	0.01	4 -	46.363	22.29	0.03	46.363	22.29	6.02
5	46.403	21.41	0.01	46.403	21.41	0.01	5	46.384	22.30	0.01	46.384	22.30	C.01
6	46.424	21.41	0.0	46.424	21.41	0.0	6	46.402	22.32	0.02	46.402	22.32	0.02
7	46.443	21.48	0.07	46.443	21.48	0.07	7	46.424	22.32	0.0	46.424	22.32	6.0
8	46.463	21.49	0.01	46.463	21.49	0.01	8	46.443	22.38	0.06	46.443	22.38	0.06
9	40.486	21.51	0.02	46.486	21.51	C • 02	٥	46.463	22.41	0.03	46.463	22.41	0.03
10	46.507	21.57	0.06	46.507	21.57	0.06	10	46.486	22.43	0.02	46.486	22.43	0.02
11	46.547	21.70	0.13	46.547 46.569	21.70	C.13	11	46.507	22.50	0.07	46.507 46.526	22.50 22.56	C.07
12	66.569	21.71	0.01	46.590	21.71	0.01 0.03	12	46.526 46.547	22.56 22.62	0.06 0.06	46.547	22.62	6.06
13 14	46.590 46.609	21.74	0.03	46.609	21.76	0.03	13 14	46.560	22.63	0.00	46.569	22.62	0.0
15	46.674	21.75	-0.01	46.674	21.76	0.02	15	46.590	22.62	-0.01	46.590	22.62	0.0
16	40.689	21.76	0.0	46.689	21.76	0.00	16	46.609	22.63	0.01	46.609	22.62	0.0
17	46.712	21.75	-0.01	46.712	21.76	0.0	17	46.674	22.63	0.0	45.674	22.62	0.0
18	46.731	21.76	0.01	46.731	21.76	0.0	18	46.680	22.63	0.0	46.689	22.62	C•0
10	46.750	21.75	0.0	46.750	21.76	0.0	10	46.712	22.6?	-0.01	46.712	22.62	(.0
20	45.772	21.79	0.03	46.772	21.79	C.03	20	46.731	22.61	-0.01	46.731	22.62	0.0
21	46.793	21.79	0.0	46.793	21.79	0.0	21	46.750	22.60	-0.01	46.750	22.62	0.0
22	46.826	21.79	0.0	46.826	21.79	C.O	22	46.772	22.68	0.08	46.772	22.68	L.06
23	46.866	21.82	0.03	46.866	21.82	C • 03	23	46.793	22.72	0.04	46.793	22.72	0.04
							24	46.826	22.73	0.01	46.826	22.73	(.01
				**************************************	*****	********	25	46.866	22.77	0.04	46.866	22.77	C.04
23 0 21 23 0	POINTS P POINTS A POINTS A CUTLIERS NOISE PO ORIGINAL POINTS A POINTS R	NTFRED DJUSTED DJUSTED REJECTE INTS REJ DATA PO CCEPTED SJECTED	FCTED INTS LFFT	ноот			HALF H ACCOUN 25 0 7 1 0 1 25 1	OURLY PRI TING DAT: POINTS APPOINTS APP	FCIPITAT A FOR ST NTERED DJUSTED DJUSTED REJECTE INTS REJ DATA PU CCEPTED EJECTED	TON DATA FO ATTON 603 FOR OVERSHO FOR NOISE O FOTEO INTS LEFT U	ent		
. 8	7						. 8	7					
(inches)	1						Pies)	-					
ν. υ	-						PRECIPII ATION (inches	-{					
PRECIPITATION	1						A TIO	1				ه م	
Ħ					هر		È				,	."	
ā,				} 2 26000 66	90-0		Ξ.,)	P	
5 -4	7			8 26060 6			5 .4	7			c8c886ca ø		
E E				g Ø			ж Ж				/		
Ξ .3				ſ			Ξ 3	4			9		
Ħ	ì			/			冠				d		
I.A TIV				1			LATIVE				[
₩ .2	1			٦			Ļ .2	7		. 4	b		
				_ _b						مر ا			
ž .1	_		Ø4	8 -			ž .1			ሃ			
1			/				I	1		ക്ക			
•			~~eee				-			9900			

Figure 4. Final (solid curve) and original (dashed curve) data from Tony Grove Ranger Station gages 602 and 603. The curve adjustment here is typical of that required for noise points. (The day listed is the day of the year and precipitation is listed in inches.)

Questionable points are indicated by a dashed line on the graphs.

TIME (hours)

10 12 14 16 18 20 22

Data for Gold Hill gage 1001 and Cinnamon Creek gage 1203 are graphed and displayed in Figure 5. These curves appear to contain overshoot as determined from a qualitative definition of the term. However, the quantitative criteria for overshoot is not met. That is, each of three successive data points must be at least .03 inch less than each of two data points at the beginning of the negative trend. The data for Cinnamon Creek gage 1203 would have met the overshoot criteria except that the highest point of the set was rejected as an outlier.

Figure 6 shows data for Franklin Basin gage 1603 and Hell Canyon gage 1701. These data sets were quality checked by the machine and required no adjustment.

Note that one outlier was rejected for the Franklin Basin gage. This was a duplicate time point which occurred at day 46.402.

10 12 14

TIME (hours)

18 20

The overshoot correction is shown in Figure 7 for Dry Bread Pond gage 5004 and Porcupine gage 12501. The first appearance of overshoot on the graph for Dry Bread Pond was not overshoot as defined quantitatively. The second appearance of overshoot on this graph and on the one following was identified as overshoot and treated as such.

The overshoot occurring on Porcupine gage 12501 is typical of snow and ice accumulation and subsequent melting off. The overshoot occurrence on Dry Bread Pond gage is more difficult to explain.

Figure 5. Final (solid curve) and original (dashed curve) data for Gold Hill gage 1001 and Cinnamon Creek gage 1203. These curves appear to contain overshoot regions as explained qualitatively, however, they do not meet the exact criteria. Even though these curves were not subjected to the noise point routine, reasonable adjustments were still made.

The data processing steps shown and discussed are typical of those taken on most of the data from the telemetry network. The actual handling of questionable data points for the cases of outliers and noise points is in accord with theory. However, the problem of where to place the beginning time of overshoot in a data set is still open to question.

Conclusion

The development of this data quality control

program is a considerable achievement in automated precipitation data processing. Its development has reduced the cost of acquisition of reliable precipitation data to 3 percent of the original cost, and makes it possible to have the final edited precipitation data within a few days of the operational event, instead of the few weeks required by the manual editing. With the completion of a planned paper tape punch output, this time will be further reduced to a few hours. The research capability of the Wasatch Weather Modification Project has also been enhanced through the development and use of this program.

	LINED	ITED DAT	4	£nı	ITED DAT	. Δ		LIMED	ITED DAT	٨	£0	ITED DAT	Δ
POINT	PAY		CHANGE	DAY		CHANGE	POINT		PCPTN	CHANGE	DAY		CH#NGE
1	46.304	25.20	0.0	46.304	25.29	0.0	1	46.320	30.91	2.0	46.320	30.91	0.0
ż	46.318	25.29	0.0	46.318	25.29	0.0	ž	46.340	30.93	0.02	46.340	30.93	0.02
ā	46.330	25.20	0.0	46.339	25.29	0.0	3	46.364	30.93	0.0	46.364	30.93	C.O
4	40.361	25.29	0.0	46.361	25.29	0.0	- 4	46.384	30.93	0.0	46.384	30.93	0.0
5	46.392	25.29	0.0	46.382	25.29	0.0	5	46.403	30.96	0.03	46.403	30.96	0.03
6	40.402	25.29	0.0	46.402	25.29	0.0	6	46.404	30.97	0.01	46.404	30.97	0.01
7	46.492	25.20	0.0	46.422	25.29	0.0	7	46.424	30.98	0.01	46.424	30.98	0.01
В	46.422	25.29	0.0	46.441	25.30	0.01	8	46.443	30.98	0.0	46.443	30.98	C.0
٥	46.441	25.30	0.01	46.463	25.30	C.O	9	46.464	30.90	0.01	46.464	30.99	0.01
10	46.463	25.30	0.0	46.485	25.30	0.0	10	46.486	30.90	0.0	46.486	30.99	0.0
11	46.485	25.30	0.0	46.506	25.30	6.0	11	46.508	31.00	0.01	46.508	31.00	0.01
12	46.506	25.30	0.0	46.525	25.30	0.0	12	46.526	31.07	0.07	46.526	31.07	0.07
13	46.525	25.30	0.0	46.547	25.30	(.0	13	46.547	31.07	0.0	46.547	31.07	6.0
14	46.547	25.30	0.0	46.567	25.30	0.0	14	46.569	31.00	0.02	45.569	31.09	(·•02
15	46.567	25.30	0.0	46.589	25.33	C.03	15	46.590	31.09	0.0	45.590	31.09	C.O
16	46.580	25.33	0.03	46.608	25.33	0.0	16	46.609	31.10	0.01	46.609	31.10	C.O1
17	45.608	25.33	0.0	46.673	25.33	(·•0	17	46.674	31.10	0.0	46.674	31.10	0.0
18	46.673	25.33	0.0	46.688	25.33	0.0	18	46.699	31.10	0.0	45.689	31.10	0.9
10	46.649	25.33	0.0	46.711	25.33	0.0	19	46.712	31.10	0.0	46.712	31.10	C•0
20	46.711	25.33	0.0	46.730	25.33	C•0	20	46.732	31.10	0.0	46.732	31.10	0.0
21	46.730	25.33	0.0	46.750	25.33	C • O	21	44.751	31.10	0.0	46.751	31.10	0.0
2.2	46.750	25.33	0.0	46.771	25.33	0.0	22	46.772	31.11	0.01	46.772	31.11	(.01
23	46.771	25.33	0.0	46.791	25.33	0.0	23	46.79?	31.11	n.c	46.793	31.11	0.0
24	40.791	25.33	0.0	46.824	25.33	0.0	24	46.827	31.11	0.0	46.827	31.11	0.0
25	46.824	25.33	0.0	46.864	25.33	0.0	25	46.967	31.11	0.0	46.967	31.11	0.0
26	44.864	25.33	0.0								*****		
HALF HE ACCOUNT 26 F C F C F 25 F 25 F 1 F	PURLY PRING DATPOINTS A POINTS A POINTS A POINTS POINTS POINTS POINTS APOINTS APOINTS POINTS POINTS POINTS POINTS POINTS POINTS P	ECIPITAT A FOR ST. NTERED DJUSTED DJUSTED REJECTEI INTS REJI DATA PO CCEPTED EJECTED	ION DATA FOR ATION 1603 FOR OVERSHOO FOR NOISE D ECTED INTS LEFT UN		*****	**********	ACCOUN 25 0 0 0 25 25	TING DAT POINTS E POINTS A POINTS A CUTLISES NOISE PO OPIGINAL POINTS A POINTS R	A FOR ST NTERED DJUSTED PEJECTE INTS REJ DATA PU CCEPTED FJECTED	ATION 1701 FOR DVERSHOOT FOR NOISE C ECTED INTS LEFT UNT			

STATION 1603

STATION 1701

Figure 6. Data sets for Franklin Basin gage 1603 and Hell Canyon gage 1701. No corrections were made on data points in these sets. However, one time outlier at day 46.402 was found and discarded from the data set of station 1603.

STATION 5004 START, MID, AND FND POINT 16 20 23 OVERSHOOT ADJUSTED DATA FOLLOW POINT TIME NEW VALUE OLD VALUE 16 46.670 27.86 27.86 18 40.700 27.97 27.90 19 46.726 27.87 27.92 20 46.746 27.87 27.92 21 46.767 27.87 27.87 22 46.767 27.87 27.87 23 46.816 27.87 27.87 POINT DATA POINT DAY PEPIN CHANGE 1 46.315 27.46 0.0 46.315 27.46 G.0	START, MID, AND END POINT 11 17 20 DVERSHOOT ADJUSTED DATA FOLLOM POINT TIME NEW VALUE 11 46.536 16.95 16.95 12 46.556 17.19 17.19 13 46.578 17.23 17.33 14 *46.578 17.23 17.35 15 46.618 17.23 17.35 16 46.666 17.23 17.35 16 46.666 17.23 17.34 17 46.690 17.23 17.34 18 46.701 17.23 17.30 19 46.721 17.23 17.30 19 46.731 17.23 17.30 19 46.731 17.23 17.30 10 46.731 17.23 17.30
2 46,334 27.46 0.0 46.334 27.46 0.0 3 46,377 77.46 0.0 46.357 27.46 0.0 4 46,377 77.46 0.0 46.357 27.46 0.0 5 46,377 77.46 0.00 46.377 27.47 0.01 5 46,377 27.49 0.02 46.397 27.49 0.02 6 46,418 27.49 0.00 44,418 27.49 0.02 7 44.438 27.53 0.04 46.438 27.53 0.04 8 46,457 27.62 0.09 46.458 27.62 0.09 9 46,40 27.77 0.10 46.460 27.77 0.10 10 41,40 27.40 0.00 46.501 27.80 0.08 11 45,52 27.80 0.00 46.501 27.80 0.08 11 45,52 27.80 0.07 46.552 27.86 0.02 12 44,542 27.80 0.07 46.552 27.86 0.04 13 46,50 27.71 0.00 46.604 27.86 0.00 14 44.59\$ 27.80 -0.05 46.604 27.86 0.00 15 46.00 27.80 -0.05 46.604 27.86 0.00 16 46.670 27.80 0.07 46.552 27.80 0.07 17 45.45 27.80 0.07 46.85 27.86 0.00 18 46.07 27.87 0.02 46.70 27.86 0.00 19 46.70 27.87 0.02 46.70 27.87 0.01 19 46.70 27.87 0.00 46.70 27.87 0.01 20 46.70 27.87 0.00 46.72 27.87 0.01 21 46.76 27.97 0.00 46.76 27.87 0.01 22 46.76 27.97 0.00 46.76 27.87 0.01 23 46.81 27.87 0.01 46.85 27.88 0.02 24 46.76 27.87 0.01 46.85 27.87 0.0 21 46.76 27.97 0.00 46.76 27.87 0.0 22 46.76 27.97 0.00 46.76 27.87 0.0 23 46.81 27.87 0.01 46.81 27.87 0.0 24 46.76 27.88 0.01	POINT DAY PPPTN CHANGE 1 46.306 16.91 0.0 46.306 16.90 C.0 2 46.328 16.90 -0.01 46.328 16.90 C.0 3 46.328 16.90 -0.01 46.328 16.90 C.0 3 46.337 16.90 0.0 46.373 16.90 0.0 6 46.373 16.90 0.0 46.373 16.90 0.0 6 46.373 16.90 0.0 46.373 16.90 0.0 7 46.392 16.90 0.0 46.392 16.90 0.0 8 46.472 16.91 0.0 46.431 16.91 C.0 8 46.472 16.91 0.0 46.452 16.91 0.0 9 46.496 16.91 0.0 46.472 16.91 0.0 10 40.516 16.92 0.01 46.516 16.92 0.01 11 46.536 16.95 0.03 46.516 16.95 0.03 12 46.578 17.33 0.14 46.556 17.19 0.24 13 46.578 17.35 0.00 46.599 17.23 0.0 14 46.599 17.35 0.00 46.599 17.23 0.0 15 46.618 17.35 0.00 46.518 17.23 0.0 16 46.666 17.34 -0.01 46.666 17.23 0.0 17 46.668 17.34 0.0 46.688 17.23 0.0 18 46.700 17.30 -0.04 46.721 17.23 0.0 19 46.700 17.30 -0.04 46.721 17.23 0.0 20 46.721 17.30 0.0 46.721 17.23 0.0 21 46.729 17.23 -0.00 46.721 17.23 0.0 22 46.731 17.33 0.0 46.721 17.23 0.0 24 46.701 17.30 0.0 46.721 17.23 0.0 24 46.701 17.30 0.0 46.721 17.23 0.0 24 46.729 17.23 0.0 46.780 17.23 0.0 24 46.739 17.23 -0.07 46.781 17.23 0.0 24 46.739 17.23 0.0 46.780 17.23 0.0
. 1	17 CRIGINAL DATA POINTS LEFT UNTOUCHED 25 POINTS REJECTED 1 PAINTS REJECTED 96 PERCENT OF TOTAL POINTS INPUT WERE ACCEPTED .8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

Figure 7. Final (solid curve) and original (dashed curve) data sets for Dry Bread Pond gage 5004 and Porcupine gage 12501. Overshoot was detected and treated in these data sets.

TIME (hours)

 TIME (hours)

References

- Chadwick, Duane G., July 1968: USU Remote Total Precipitation Telemetry Station. PRWG30-6, Utah Water Research Laboratory, Utah State University, Logan, Utah.
- Chadwick, Duane G., 1969: Telemetry System Modifications and 1968-69 Operation. PRWG30-8, Utah Water Research Laboratory, Utah State University, Logan, Utah.
- Israelsen, C. Earl and Don L. Griffin, 1969: USU Telemetering Precipitation Gage Network. Technical Report PRWG30-7, Utah Water Research Laboratory, Utah State University, Logan, Utah.

APPENDIX A

The Computer Program

In this appendix, the computer program is described in separate parts related to the specific types of data quality checks and data editing procedures. Reference is made to the variable list in Appendix B and the computer program listing in the latter part of this appendix. The computer program is referred to by line number of the listing.

Lines 5-6

The starting day and ending day of the data set are read in. The variable KEROR is normally read in as a zero. If any other number is read in for KEROR, the program prints out intermediate data sets during the edit process. This is mainly for program debugging. The number of sets of operational event precipitation data to be output is the fourth input variable.

Lines 7-8

Starting and ending times for individual operational seeding events and their identification are read in.

Line 9

This is a data statement to define the last day of each month of the year in terms of day of year. It must be changed when data for a leap year is being edited.

Lines 10-12

The read, write, and punch channels for the computer are defined.

Lines 13-30

A data set for one station is read in from cards. There are seven cumulative precipitation values per card in the format explained in Appendix C. After each card is read, a test is made for change in station number. This change indicates the end of the data set for one station and a transfer is made to the processing portion of the program. A short routine is included here to make a reverse search on the last seven values read in for a station. Its purpose is to find the last data point of the set since the number of data points in a set is usually not an even multiple of seven.

Lines 31-42

The station identification is printed out and a check is made here to insure that more than seven data points are available for the editing procedure. The original set of data points is then transferred to another array to be kept for later printing and manual comparison with the edited data set.

Lines 43-77

A time check is made on the data points by first making sure that all values are stored in chronological order. If more than one point exists for a given time, the first of the two values is deleted. This is based on the assumption that a keypunch error was made and corrected on the second of the two cards. The deletion of the bad data point is accomplished by decreasing the total number of points in the set by one and setting the i th storage location to the value of the (i+1)th point of the set. This is done from the bad point on to the end of the data set. A check is then made for negative cumulate precipitation values and data points lying outside of the data set region timewise.

Lines 78-99

This routine finds a reasonable starting data point for the set, i.e., reduces the possibility that an outlier be selected as the initial point. This is done in the following manner. Let b_1 and b_2 denote precipitation rates in inches/hour between points one and two and points two and three respectively. The first data point is regarded as valid if $b_1 < -.5$ and $b_2 > +.5$, or $-.5 < b_1 < .5$ with no restrictions on b_2 , or $b_1 > .5$ and $b_2 < -.5$. The additional requirement that the absolute value of the difference in cumulative precipitation between points one and two be less than one inch must also be met. Justification of this criteria is somewhat lengthy and is not included in this report. If the first data point is rejected, the procedure is repeated until a suitable starting point is found.

Lines 100-137

Outlying data points are discarded here by the procedure outlined in the data quality criteria section of this report.

Lines 138-236

This section of the program checks the data set for overshoot, and if detected, corrects it as outlined previously in the Data Quality Criteria section.

Precipitation rates are calculated point by point for each pair of points in the data set and counting variables are initialized. If the debugging variable, KEROR, is other than zero, the data set and rates are printed out before the overshoot check starts. Lines 152 and 167 check for overshoot as described previously. Lines 168-176 find the end of the overshoot, and lines 177-191 correct the overshoot as explained in the previous section of this report. The adjusted and the original precipitation values are printed out for future reference.

Lines 237-326

Noise points are checked for in this section of the program. The checking and editing procedures are programmed as described in the Data Quality Criteria section of this report.

Lines 327-346

The edited and unedited data sets are printed. This allows for subsequent examination of both data sets simultaneously. An example of this printout is shown in Figure 3.

Lines 347-374

When the variable, KEROR, is set to a value other than zero, this section punches the edited curve in the same format as the input data. This allows the graphing of the two curves on a hybrid computer enabling evaluation of the editing procedure.

Lines 375-404

A printout of the data quality parameters is done at this stage. Figure 3 shows an example.

Lines 405-515

Interpolation, printing, and punching of half-hourly precipitation values is handled by this portion of the program. The day and month are defined in terms of the day of the year associated with the first data point of the set. An incremental parameter A is defined as 1/48. A time of day parameter ST is defined in decimal equivalence of integral numbers of half hours for the times at which the individual interpolated precipitation values are calculated. The proper interval for interpolation is determined from the parameter ST and the half-hourly precipitation value is computed. The time parameter is incremented by 1/48 of a day and the process is repeated for the time interval of the entire data set. The data are output on cards with one card for each 12 hours of data making two cards output per day. A card image is shown in Appendix C. Each card lists the station number, the year, month, and day of the data, 24 half-hourly values, maximum interpolation interval, a start time and end time for the data of each individual card, the operational event identification, and a number indicating whether a card is for a.m. or p.m.

Lines 516-522

If at one of the check points in the program, an indication is given that too much data has been discarded, the program branches to this point and prints out the input data set with a message to the user.

Lines 523-529

This routine transfers the first data points of the next set into the first seven locations of the data set array. Control is then transferred back to line 15 where the process is carried out on the next data set. A blank card is placed at the end of the data which causes zero to be read in as the station number. When this condition is sensed, the stop command in line 529 is executed.

```
WASATCH WEATHER MODIFICATION PROJECT PRECIPITATION DATA QUALITY CONTROL
              PROGRAM DEVELOPED AND WRITTEN BY
              RONALD H. CAMPBELL
              RESEARCH ASSISTANT
              DEVELOPED THROUGH FUNDING BY THE BUREAU OF RECLAMATION
              OFFICE OF ATMOSPHERIC WATER RESOURCES
           DIMENSION DATA ARRAYS
                 DIMENSION STS(25), ETS(25), OE(25)
0001
0002
                 DIMENSION T(500),P(500),TC(500),PC(500)
0003
                 DIMENSION FMT(15), NUM(13), S(500), KT(7), KP(7), KS(7)
0004
                 INTEGER PR(8CC), PT(800)
           C READ IN DAY TIME LIMITS AND DAYS OF MONTH FOR OUTPUT
                 READ (5,841) SCAY, ECAY, KEROR, NOSET
0005
0006
             841 FORMAT (2F6.3, I1, I3)
0007
                 READ (5,2842) (OE(I),STS(I),ETS(I),I=1,NOSET)
            2842 FORMAT [4(A4,2X,2F6.3,2X)]
8000
           C THE FOLLOWING DATA CARD MUST BE CHANGED FOR LEAP YEAR
             THE NUMBERS ARE THE DAY OF THE END OF EACH MONTH OF THE YEAR WITH A ZERO
              AS THE FIRST VALUE
0009
                 DATA NUM/0,31,59,90,120,151,181,212,243,273,304,334,365/
0010
                 NR = 5
0011
                 NW=6
0012
                 NPUN=7
           C READ IN DATA TO BE EDITED
0013
                 READ (NR,1)
                              KSTN, KYR, (T(I), P(I), I=1,7)
0014
                FORMAT (15,12,3x,7(F6.3,F4.2))
              19 DO 20 I=1,71
0015
0016
                 J = I * 7 + 1
0017
                 K=J+6
                              LSTN, KYR, (T(L), P(L), L=J, K)
0018
                 READ (NR.1)
                 IF (LSTN.NE.KSTN) GC TO 21
0019
0020
                 L YR=KYR
0021
              20 CONTINUE
              21 NP=J-1
0022
0023
                 NPP=NP
                 DO 5 I=1,7
0024
                 J=NP-I+1
0025
0026
                 IF (T(J).LT..CO1) GC TO 5
                 NP = NP - I + I
0027
0028
                 GO TO 6
               5 CONTINUE
0029
0030
               6 CONTINUE
           C WRITE OUT STATICN NUMBER
                 WRITE (NW,666) KSTN
0031
             666 FORMAT (1H1,7HSTATION,16)
0032
                 NPI=NP
0033
0034
                 IF (NP.GT.7) GC TO 261
           C CHECK FOR SUFFICIENT NUMBER OF DATA POINTS FOR EDITING
0035
                 WRITE (NW, 262) (T(I), P(I), I=1, NP)
0036
             262 FORMAT(19H INSUFFICIENT CATA ,4(F9.3,F6.2))
0037
                 GO TO 127
0038
             261 CONTINUE
             TRANSFER ORIGINAL DATA FOR PRINCUT LATER
0039
                 DO 25 I=1,NP
0040
                 TC(1)=T(1)
0041
              25 PC(I)=P(I)
0042
                 NLCR=0
              ************
             TIME CHECK
0043
             400 I = 1
0044
                 J = 0
0045
             401 I=I+1
0046
             431 CONTINUE
0047
                IF (T(I)-T(I-1)) 402,403,404
0048
             402 K=I-1
```

```
0049
              406 J=1
0050
                  \Delta = T(I)
0051
                  T(I)=T(I-1)
                  T(I-1)=A
0052
0053
                  A=P(I)
0054
                  P(I)=P(I-1)
0055
                  P(I-1)=A
0056
                  GO TO 404
              403 NP=NP-1
0057
0058
                  DO 407 K=I,NP
0059
                  T(K)=T(K+1)
0060
              407 P(K)=P(K+1)
0061
                  NLCR=NLOR+1
0062
                  IF (I.LE.NP) GO TO 431
              404 IF (I.LT.NP) GO TO 4C1
0063
0064
                  IF (J.GT.0) GG TG 4C0
            C CHECK FOR NEGATIVE CUMULATIVE PRECIPITATION VALUES AND OUTLYING TIME POINTS
0065
              461 I=C
0066
              462 I=I+1
0067
              463 IF (P(I).LT.O.) GO TO 465
                  IF (T(I).LT.SDAY) GC TO 465
0068
0069
                  IF (T(I).GT.EDAY) GD TO 465
0070
                  GO TO 466
              465 NP=NP-1
0071
0072
                  DO 471 J=I,NP
0073
                  P(J)=P(J+1)
0074
              471 T(J)=T(J+1)
0075
                  NLOR=NLOR+1
                  IF (I.LE.NP) GC TO 463
0076
              466 IF (I.LT.NP) GG TO 462
0077
            C FIND STARTING PCINT FOR GOOD DATA
                  IF (NP.LT.7) GO TO 126
0078
0079
                  I = 1
0080
               83 I=I+1
                  B1=(P(I)-P(I-1))/((T(I)-T(I-1))*24.)
0081
0082
                  B2=(P(I+1)-P(I))/((T(I+1)-T(I))*24.)
0083
                  IF (81+.5) 8C,8C,82
0084
               80 IF (B2-.5) 83,89,89
0085
               82 IF (B1-.5) 89,84,84
0086
               84 IF (B2+.5) 89,83,83
0087
               89 CONTINUE
0088
                  A=P(I)-P(I-1)
0089
                  A=ABS(A)
0090
                  IF (A.GT.1.) GO TO 83
              810 IF (I.EQ.2) GC TO 30
0091
0092
                  J = I - 1
0093
                  DO 27 I=J, NP
0094
                  K = I - J + I
0095
                  T(K)=T(I)
0096
               27 P(K)=P(I)
0097
                  NP=NP-J+1
0098
                  NLCR=NLOR+J-1
0099
               30 CONTINUE
           C************************
            C CHECK FOR DUTLYING DATA POINTS
0100
              410 I=1
0101
             411 I=I+1
0102
              428 B=P(I)-P(I-1)
0103
                  C = ABS(B)/((T(I)-T(I-1))*24.)
0104
                  IF (C.LT..2) GO TO 443
0105
                  IF (I.EQ.NP) GO TO 420
0106
                  C=P(I+1)-P(I)
0107
                 D=B+C
0108
                  D=ABS(D)
0109
                  IF (D.LT..02) GG TO 420
           C CHECK FOR ABOVE AVERAGE OF FOLLOWING POINTS
0110
                  ST=0.
0111
                 NB = I + 5
                  JJ = I + I
0112
                  IF (NB.GT.NP) NB=NP
0113
```

```
0114
                   IF (JJ.GT.NB) JJ=NB
                   DO 150 J=JJ,NB
0115
0116
              150 ST=ST+P(J)
                   A=NB-JJ+1
0117
0118
                   ST=ST/A+.03
0119
                   IF (P(I).GT.ST) GO TO 42C
            C CHECK TO SEE THAT P(I) IS GREATER THAN AVERAGE OF PRECEEDING POINTS
0120
                   ST=0.
                   JJ = I - 5
0121
                   NB = I - 1
0122
                   IF (JJ.LT.1) JJ=1
0123
0124
                   DO 413 J=JJ, NB
0125
              413 ST=ST+P(J)
0126
                   A=NB-JJ+1
0127
                   ST=ST/A-.03
                   IF (P(I).LT.ST) GO TG 42C
0128
                   GO TO 443
0129
              420 NP=NP-1
0130
                   IF (NP.LT.8) GO TO 126
0131
                   DO 425 J=I,NP
0132
                   T(J)=T(J+1)
0133
              425 P(J)=P(J+1)
0134
                   NLCR=NLCR+1
0135
0136
                   IF(I.LE.NP) GC TO 428
              443 IF (I.LT.NP) GO TO 411
0137
                                    ****************
               *****
              OVERSHOOT ROUTINE
                   NV=NP-4
0138
                   PR(1)=P(1)*10C*+1
0139
0140
                   DO 201 I=2,NP
                   PR(I)=P(I)*10C.+.1
0141
               201 S(I-1)=(P(I)-P(I-1))/((T(I)-T(I-1))*24.)
0142
                   NCNT=0
0143
                   NQ=0
0144
0145
                   J = 1
                   NO = 0
0146
0147
                   NPS=NP-1
0148
                   NAOS=0
                   IF (KEROR.EQ.C) GO TO 814
0149
                   WRITE (6,230) (I,T(I),P(I),S(I),I=1,NP)
0150
              230 FORMAT (1X, 18, F10.3, 2F6.2)
0151
0152
              814 I=1
              202 I = I + 1
0153
                   IF (NO.EQ.1) GO TO 225
0154
                   IF (NQ.GE.1) GO TO 223
0155
0156
                   IF (S(I)) 204,2C5,2C5
              223 NS=I-NQ
0157
                   IF (P(I+1)-P(NS)) 204,205,205
0158
0159
               204 NCNT=NCNT+1
                   NQ = NQ + 1
0160
                   IF (NCNT-3) 2C3,206,206
0161
            C OVERSHOOT IS INDICATED
              RECHECK OVERSHOOT IDENTIFICATION
0162
              206 L=I-2
0163
                   LL=L-1
0164
                   A=P(LL)-.02
                   DO 224 LA=L,I
0165
0166
                   IF(A.LE.P(LA+1)) GO TG 265
              224 CONTINUE
0167
0168
                   IK=0
                   NO = 1
0169
0170
                   I = I - 1
               225 IF (S(I)+.01) 207,208,208
0171
               265 I=I-2
0172
                   GO TO 205
0173
               208 CONTINUE
0174
0175
                   IK=IK+1
            IF (IK-3) 211,209,209
C END OF OVERSHOOT IS IDENTIFIED
0176
            C L IS POINT OF MAX PCPTN
            C K IS LAST POINT OF OVERSHOOT
```

```
209 K=I-2
0177
               IDENTIFY START TO ADJUST TIME
              210 CONTINUE
0178
0179
                  NN=L-J+1
                   JA=J+1
0180
                  DO 213 MM=JA, NN
0181
                   M=NN-MM+1
0182
                   IF (P(M).GT.P(K)) GC TO 213
0183
0184
                  GO TO 214
0185
              213 CONTINUE
              214 CONTINUE
0186
0187
                   KM=M-1
0188
                   IF (KM.LT.1) KM=1
                   IF (KM.EQ.1) GC TO 215
0189
0190
                   A=T(KM+1)-T(KM)
                   IF (A.GT..08) KM=KM+1
0191
0192
              215 CONTINUE
                   WRITE (NW,980) KM, L, K
0193
              980 FORMAT (26H START, MID, AND END PCINT, 315)
0194
0195
              981 CONTINUE
            C KM IS THE POINT PRECEEDING THE START OF THE OVERSHOCT
0196
                   C=P(L)
0197
                   WRITE (6,593)
              593 FORMAT (32H OVERSHOOT ADJUSTED DATA FOLLOW )
0198
                   WRITE (6,595)
0199
                                                              ULD VALUE!
                                          TIME
                                                 NEW VALUE
0200
              595 FORMAT (1X, 36HPOINT
                   KKB=L-1
0201
              816 DO 222 M=KM,KKB
0202
                   B=P(KM)+(C-P(KM))*(T(M)-T(KM))/(T(L)-T(KM))
0203
0204
                   B = P(M) - B
0205
                   A=P(M)
                   P(M) = P(KM) + (P(L) - P(KM)) + (T(M) - T(KM)) / (T(L) - T(KM))
0206
                   P(M)=P(M)+B
0207
                   IF \{P(M).GT.P(K)\}\ P(M)=P(K)
0208
                   WRITE (6,594) M,T(M),P(M),A
0209
              594 FURMAT (1X,14,F8.3,3X,F9.2,3X,F9.2)
0210
              222 CONTINUE
0211
0212
                   DO 221 M=L,K
                   A=P(M)
0213
                   P(M)=P(K)
0214
0215
                   WRITE (6,594) M,T(M),P(M),A
              221 CONTINUE
0216
0217
                   NACS=NAOS+1
              205 NCNT=0
0218
0219
                   NQ=0
                   NO=0
0220
0221
                   GC TO 203
              207 IK=0
0222
              211 IF (I.LT.NPS) GO TO 203
0223
0224
                   K = I
              GO TO 210
203 [F ([.LT.NPS) GO TO 202
0225
0226
                   IF (NAOS.EQ.O) GO TO 227
0227
0228
                   NAOS=0
0229
                   DO 226 I=1,NP
                   A=PR(I)
0230
0231
                   A=P(I)-A*.01
                   A=ABS(A)
0232
                   IF (A.GT..OG5) NAOS=NAOS+1
0233
0234
              226 CONTINUE
0235
              227 CONTINUE
                   NNPR=NP
0236
            C*********************************
            C NOISE POINT CHECKING ROUTINE
0237
                28 I=1
                   DO 29 J=1.NP
0238
                   PR\{J\}=P\{J\}*100.+.1
0239
                29 CONTINUE
0240
0241
                   M = 0
                   NNP=NP-1
0242
0243
                38 I=I+1
                31 CONTINUE
0244
```

```
0245
                   A=0
0246
                   K=[+1
0247
                   L=I+4-M
0248
                   DO 480 J=K,L
0249
               480 A=A+P(J)
0250
                   B=L-K+1
0251
                   A=A/B+.0001
                   IF (P(I-1).GT.A) GO TC 719
0252
0253
                23 IF (P(I).LT.P(I-1)) GC TC 18
                   IF (P(I).GT.A) GO TC 22
0254
0255
                   GO TO 40
0256
                18 IF ((P(I)+.03).LT.P(I-1)) GC TO 35
0257
                   P(I)=P(I-1)
0258
                   GO TO 40
                22 IF ((P(I)-.03).GT.A) GO TO 35
0259
                   P(I) = A
0260
                   GO TO 40
0261
0262
               719 J=I+4
                   IF (J.GT.NP) J=NP
0263
0264
                   IF ((J-I).LE.2) GO TO 726
0265
                   A=.005
0266
               722 K=C
                   DO 720 MM=1,J
0267
                   L=0
0268
0269
                   DO 721 N=I,J
                   B=P(MM)-P(N)
0270
0271
                   B=ABS(B)
0272
                   IF (B.GT.A) GO TO 721
0273
                   L = L + 1
               721 CONTINUE
0274
                   IF (L.LE.K) GO TO 720
0275
0276
                   K=L
0277
                   NAS=MM
0278
               720 CONTINUE
                   IF (K.GT.1) GC TO 723
0279
0280
                   A=A+.01
                   GO TO 722
0281
               723 IF (P(I-1).LE.P(NAS)) GO TO 724
0282
0283
                   K = I - 1
               725 P(K)=P(NAS)
0284
0285
                   K=K-1
                   IF (K.LT.1) GC TO 724
0286
                   IF (P(K).GT.P(NAS)) GC TC 725
0287
               724 A=P(NAS)
0288
0289
                   GO TO 23
0290
               726 IF ((P(I-1)-P(I+1)).GT..O3) GU TO 35
0291
                   P(I+1)=P(I-1)
0292
                   A=P(I+1)
                   GO TO 23
0293
0294
                35 NP=NP-1
0295
                   NV = NV - 1
                   IF (NP.LT.7) GO TO 126
0296
                   DO 36 K=I.NP
0297
                   T(K)=T(K+1)
0298
0299
                   PR(K)=PR(K+1)
0300
                36 P(K)=P(K+1)
0301
                   NNP=NP-1
                    IF (I.LE.NV) GO TO 31
0302
                   M = M + 1
0303
                    IF (I.LE.NNP) GO TO 31
0304
                   I = I - 1
0305
0306
                   GO TO 71
                40 CONTINUE
0307
                    IF (I.LT.NV) GO TO 38
0308
0309
                IF (I.LT.NNP) GO TO 38
71 B=(P(I+1)-P(I))/((T(I+1)-T(I))*24.)
0310
0311
                    IF (B.LT..5) GO TO 74
0312
0313
                   GO TO 73
                74 IF (B.GE.O.) GO TO 75
0314
                   IF ((P(I)-P(I+1)).GT.03) GO TO 73
0315
0316
                   P(I+1)=P(I)
```

t.			
• •			
:			
,			

APPENDIX B

Description of Program Symbols

	Arrays	JJ,NB	Indexes for the outlier routine		
Symbol	Description	JJJ,KKK,MN	Parameters used in the half-hourly		
ETS	End time of operational event		interpolations		
KP,KS,KT	Output parameters to be punched for plotting	KEROR	Data set debug parameter		
	•	KK,KDAY	Month and day of output data		
NUM	Day of year which ends each month	KSTAR,KSTART	Beginning time of interpolated data		
OE	Operational event identification	KSTN	Station identification		
P	Cumulative precipitation	KSTO,KSTOP			
PC	Cumulative precipitation		End times of interpolated data		
PR	Cumulative half-hourly precipitation	KYR	Year		
		LSTN	Station identification		
PT	Non-cumulative half-hourly precipitation	LYR	Year		
S	Change of precipitation with time	MM	Control parameter in noise point routine		
STS	Beginning time of operational event	NAOS	Number of points adjusted for over-		
T	Time of data point		shoot		
TC	Time of data point	NAN	Number of points adjusted for noise		
	Single Variables	NCNT,NQ,NO,N	Control parameters for overshoot routine		
A,B,C,D,ST	Storage parameters for sorting and miscellaneous computation	PS,IK,NN,JA,M	Control parameters for overshoot routine		
AA,MB	Largest time interval of interpolation	KM,KKB,LL,LA	Control parameters for overshoot		
B1,B2	$\DeltaP/\Delta t$ for points one through three		routine		
BBB	Beginning time for interpolated data set	NLOR	Number of outliers		
D / DD		NNPR	Number of noise points rejected		
DA,DB	Difference between successive cumulative precipitation values	NODP	Number of data points left untouched		
EDAY	Ending day and time of data set	NOSET	Number of operational events in data		
I,J,K,L,M	Control parameters	110001	set		

Operational Event Information

Column Description 1-4 Operational event number 5-6 Blank 7-12 Beginning time of operational event in thou-

sandths of days of the year

13-18 Ending time of operational event in thousandths of days of the year

19-20 Blank

This pattern continues for each operational event data subset contained in the main data set. The program provides for up to 25 such data subsets making a possibility of 9 cards for this information. The example has two data subsets.

12A 125432126000 13A 126000126750

Precipita	tion	Data	Card
I I CCIDICA		Dutu	Cuiu

Column Description

1-5 Station number

17-20 Cumulative precipitation in hundredths of inches

21-26 Same as 11-16 for the next data point

27-30 Same as 17-20 for the next data point

6-7 Year

8-10 Blank

11-16 Time of precipitation point in thousandths of days of the year

This pattern continues for the remainder of the data set. If the number of points in the data set is not an even multiple of 7, the remaining fields on the last card are left blank.

Card Output

Column	Description	63	Maximum length of interpolation period		
1-5	Station number	64-65	Blank		
		66-69	Beginning time of data		
6-7	Year	70-73	Ending time of data		
8-9	Month	74	Blank		
10-11	Day				
12-59	Half-hourly precipitation (2 columns per half	15-18	Operational event ID		
	our)	79	Blank		
60-62	Blank	80	First or second half of day		