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We investigate the onset of convection for chemical-wave propagation in the Belousov-Zhabotinsky
reaction based on the two-variable Oregonator model coupled with the fluid dynamic equations. For
chemical waves in a vertical slab, two-dimensional convection occurs only for slab widths greater than a
critical threshold width. The convective threshold is different for ascending and descending waves. Con-
vectionless waves are flat and propagate with constant speed. Above the onset of convection, the wave
velocity increases and the flat wave deforms due to two counterrotating steady rolls. For a horizontal
slab, convection is always present and the wave velocity increases with increasing slab width. Our re-

sults are compared with experiments.

PACS number(s): 47.20.Bp, 47.70.Fw, 82.20.Mj

I. INTRODUCTION

In the past two decades, chemical oscillations and pat-
tern formation in nonequilibrium chemical systems have
been interesting and fruitful research areas [1]. Many
phenomena, such as reaction-front propagation, target
patterns, spiral waves, and periodic wave trains, can be
described by reaction-diffusion mechanisms. Neverthe-
less, as most experiments are performed in aqueous solu-
tions, convection can play a role in these processes since
different chemical compositions induce density gradients
[2]. Experiments by McManus et al. and Masere et al.
[3] in the iodate-arsenous acid system have shown that
upward propagating fronts are curved and their velocities
are enhanced for large tube diameters ( = 1.1 mm), while
for small tube diameters ( <0.94 mm) and downward
propagating waves, the front is flat and propagates with
constant speed independent of the tube diameter [2,3].
For tube diameters up to 1.6 mm, they observed nonax-
isymmetric curved wave fronts. If the diameter exceeded
2.3 mm, a completely axisymmetric wave front was ob-
served. For the strongly exothermic iron (II)-nitric acid
system, Epstein and co-workers [4] observed that the
speed of the front was sensitive to the width of the tube
and to the orientation with respect to gravity. Ascending
fronts propagate faster than pure reaction-diffusion fronts
and descending fronts propagate with velocities up to 80
times the velocity of pure reaction-diffusion fronts. Na-
gypal, Bazsa, and Epstein [5] have shown that the front
speed in the chlorite-thiosulfate reaction depends on the
direction of propagation with respect to the gravitational
field. A series of delicate experiments in petri dishes by
Miike and co-workers [6] has established that convective
rolls are associated with chemical waves in the Belousov-
Zhabotinsky (BZ) reaction. They also observed oscillato-
ry hydrodynamic flow and periodic deformation of wave
fronts induced by spiral wave propagation [6]. A recent
experiment by Menzinger et al. [7] in a vertical tube has
further demonstrated the onset of convection and the oc-
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currence of turbulence induced by upward chemical wave
propagation. In actual experiments, many external fac-
tors may affect the onset of convection, such as surface
tension, surface evaporative cooling, or even inhomo-
geneities in the reagents. Nevertheless, the experiments
by Miike and co-workers [6] strongly indicate that-hydro-
dynamic flow can exist in the absence of these external
effects, being induced exclusively by chemical waves in
the BZ reaction. In this paper, we consider the convec-
tive flows resulting from chemical wave propagation in
the BZ reaction.

Chemical waves may induce a density gradient within
the wave profile either by changes in chemical composi-
tion or by changes in temperature owing to reaction ex-
othermicity [2]. According to the estimate of Pojman
and Epstein [2], the BZ reaction is not highly exothermic;
its small increase in temperature across the front is only
about 0.1°C. In fact, since the typical thermal
diffusivities (=~1073 cm?/s) are about 100 times greater
than typical molecular diffusivities (=~10> cm?/s), any
thermal gradient can be rapidly smoothed out by thermal
diffusion, leaving the density gradient practically the
same as the purely compositional density gradient at the
higher temperature of the reacted fluid. Previous calcula-
tions on the iodate-arsenous acid reaction have justified
this argument [8]. Therefore, in this paper, we consider
only the density gradient induced by changes in chemical
composition. Even though a complete description of the
experiments in cylinders and petri dishes requires the use
of three-dimensional geometry, we will confine our atten-
tion to the simpler two-dimensional slab geometry. The
problem in the cylinder is much more complicated be-
cause of its three-dimensional nature and the singularity
at the origin in cylindrical coordinates. Our previous cal-
culations for the iodate-arsenous acid reaction in a two-
dimensional slab [9] predicted a critical width for the on-
set of convection that agrees with experiments in a
cylinder. The experimental measurements in petri dishes
using two-dimensional spectrophotometery [6] show that
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the lateral flow velocity induced by a target pattern is
negligible compared with the strong flow velocity in the
direction of the chemical-wave propagation, further sug-
gesting that the slab geometry is a good approximation.

Based on this simplified model, we investigate the onset
of convection induced by chemical-wave propagation in
the BZ reaction for both vertical and horizontal slabs.
For vertical slabs, we find critical slab widths for both as-
cending and descending waves. If the slab width is
greater than the critical width, the wave curves and the
chemical-wave velocity increases due to two counter-
rotating rolls. For the horizontal slab, convection is al-
ways present and the wave velocity increases monotoni-
cally with the slab width. Two different wave front
shapes represent two possible density profiles in the BZ
reaction. The present work is, as far as we know, the first
nonlinear theoretical treatment for convective wave prop-
agation in the BZ reaction. Our results are compared
with experiments.

II. EQUATIONS OF MOTION

To describe the reaction-diffusion waves in the BZ re-
action, we use the two-variable Oregonator model cou-
pled with diffusion. This model provides a good descrip-
tion of oscillations, bistability, expanding target patterns,
and spiral waves in the BZ reaction [1,10,11]:

du 2 1 2 u—gq

- = _ —_ _ , 1
ot DV u+8 u—u fvu p (1)
W _ o2 _

Y DV v+u—v . (2)

Here, u and v respectively represent the dimensionless
concentrations [HBrO,] and [Ce*"], and f, g, €, and D
are constants related to the chemical kinetics and initial
chemical concentrations [10,11]. For a typical recipe
used to investigate waves in excitable BZ reagent, we
have a scaling with a spatial unit of 0.018 cm and a time
unit of 21 sec [11] using the “Lo” kinetic values ca-
taloged by Keener and Tyson [10]. Under this scaling,
those constants are f =3, £€=0.01, ¢=2X 1074, and
D =1 [11]. Here we have used the dimensional molecu-
lar diffusivity D, =1.5X107° cm?/sec. This scaling was
first introduced by Jahnke, Skaggs and Winfree [11] to
simulate the vortex dynamics of spiral waves, which
makes the diffusivity equal to 1 instead of €. Equations
(1) and (2)_have a stable steady state (u,,v,) with
uy=v,=[V(g+f—17+4g(1+f)—(g +f —1)]/2. For
our choice of parameters and dimensionless units,
u, =3.9984X 1074, It has been shown that this system is
excitable if £ > 1+V"2. This means that a strong enough
localized perturbation around the steady state will even-
tually develop into a propagating pulse as shown in Fig.
1. Inside the pulse, u first deviates from the steady state
quickly (fast variable), which triggers the initial increase
of v (slow variable). After u reaches its maximum value
(~=~0.856), it gradually recovers to the steady state. It
should be pointed out that both u and v have extended
recovery tails, even though u’s tail is indistinguishable
from the ¥ =0 line since it is so close to the steady state.
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FIG. 1. Pulse profiles of traveling wave solutions to Egs. (1)
and (2). The pulse travels with a constant speed of C =17.41 in
dimensionless unit (8.95 mm/min). The arrows indicate the lo-
cations of the front and the tail. The solid and dashed lines
represent the variables u and v, respectively.

For later reference, we define the position at which u goes
above u,,, /2=0.428 as the front position and the posi-
tion at which u goes below 0.428 as the tail position, as
indicated by arrows in Fig. 1. This pulse propagates with
constant dimensionless speed of 17.41, or 8.95 mm/min
in conventional units.

To account for the convection of chemical species, we
have to couple the hydrodynamic equations of motion
with the above reaction-diffusion equations, which leads
to the following set of equations:

NV o vwyv=L"P0y Lypiyviy, @)
ot Po Po

V-V=0, 4)
O vVu=DVu+L |u—ur— =L 5)
ot € u+q |’

dv _ 2

E+V~VU—DV v+tu—v . (6)

Here, V is the fluid velocity, P is the reduced pressure
and is related to the conventional pressure by
P=p—pyg.x+g,z), g=(g,,8,) is the acceleration of
gravity, v is the kinematic viscosity, and D is the molecu-
lar diffusivity. By writing equations in this form, all hy-
drodynamic variables are expressed in terms of the scal-
ing of Egs. (1) and (2). That is, g =980 cmsec ™ 2X(21
sec)?/(0.018 cm)=2.4X107, ¥=9.2X107® cm’sec”!
X(21 sec)/(0.018 cm)*=5.96X10%. To complete our
equations, we need another relation between density and
chemical concentration. For most known reactions, the
density variation due to the change in chemical composi-
tion is quite small, being typically of order 10™*. We can
therefore assume a linear dependence of density on the
chemical concentrations
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p=poll1—B,(u—u,)—B,(v—v,)] . (7)

Here, p, is the density of the bulk fluid, and B8, and B,
are the coefficients of linear expansion due to the compo-
sitional change of u and v. Pojman and Epstein [2] sug-
gest that the density change may occur mostly during the
catalyst oxidation process, so the density should mainly
depend on v. But the long tail of v requires a very large
mesh size to simulate single-pulse propagation. Conse-
quently, a much longer computer time is required for
each iteration. Furthermore, since the Oregonator is a
simplified model of the BZ reaction, it may not precisely
account for the chemical dependence of the fluid vari-
ables. Since there exist no definitive experimental results
about the relative importance of 8, and ,, we here as-
sume that the density only depends on u for this first cal-
culation [12]. This simplification will still show the
effects of a pulselike density profile. As u’s profile is
much more confined than v’s profile, we can use smaller
spatial domain and reduce our computational time. In
this case, Eq. (7) simplifies to

p=pol1—Bu—u,)] . (8)

If B3>0 in Eq. (8), the reacting region is less dense than
the remaining fluid. Existing experimental data indicate
that the sign of 8 depends on the catalysts used in the BZ
reaction [13]. In a vertical-tube experiment for Mn?™-
catalyzed BZ reaction, Menzinger et al.[7] observed the
onset of convection and acceleration of chemical waves
for upward propagation; while for downward propaga-
tion, they observed steady propagation without convec-
tion, thus concluding that the reacting region is lighter
than the steady fluid (8> 0) [7]. In contrast, an estimate
made for Ce?"- and Fe?"-catalyzed BZ reaction by Poj-
man and Epstein [2] indicates that the reacting fluid
should be heavier than the remaining fluid (8<0). We
will first study the case where the reacting fluid is lighter
(B> 0), and later the opposite case (53 <0).

The magnitude of 3 can be obtained from experimental
measurements of the isothermal fractional density
difference 6=(p,—p)/p, for bulk oscillating fluid using
B=08/(upy —u,). Here u,,, —u,~0.856. The only ex-
perimental measurement [7] for 8 in the Mn2" -catalyzed
BZ reaction gives the extremely small value 8~10"".
Another estimate [2] based on the molar volume change
in the Fe?'-catalyzed BZ reaction gives §=2X107°.
For other chemical waves, namely the iodate-arsenous
acid reaction and the iron-nitric acid reaction,
8=0.87X10"* and 5.5X107% respectively [3,4,8].
Thus, estimates of B vary widely for different reactions
and different catalysts used. In the present calculation,
we take 8=2.0X 1073, Compared to the above data, this
value is somewhat large. We choose this value because
the two variable Oregonator is a simplified model of the
BZ reaction, so an exact value for 8 will not lift the un-
certainty introduced by the reaction-diffusion model.
The choice of a somewhat large 3 makes our calculations
computationally more efficient and are expected to give
the correct qualitative behavior.  With these
simplifications, our results should be considered as quali-
tative ones for this very first convective model of a pulse-

like chemical wave.
We can eliminate the reduced pressure and satisfy con-
tinuity identically by defining the stream function 1 as

y,=3  y -9 ©)
oz ox
and the vorticity o as
0=V . (10)
Combining with Eq. (8), we can rewrite the equations as
o o) L g, du_ g O 92, (11)

* 9z

ot Ax,z) Z dx

Ou _0Whu) | g2, 41 ,(12)

2 ¥4
u—u fvu+q

ot d(x,z) €
Qv _ W) 4 o2y 4y —yp (13)
at Jd(x,z)

where we have used the Jacobi operator

of1,f2) _8f1 8fy 8f, 8f,
d(x,z) dx Oz dx Oz

Equations (10), (11), (12), and (13) completely define our
problem. The boundary conditions are no-slip boundary
conditions for the fluid velocity and no-flow boundary
conditions for the chemical concentrations at the slab
walls. We also require zero fluid velocity far ahead and
far behind the pulse, where there is no density gradient.
For the chemical concentrations, we use the fixed steady
state far ahead of the pulse and the equal slope boundary
conditions far behind the pulse to allow for the slow
recovery of u and v.

(14)

III. NUMERICAL METHOD

The system of Egs. (10), (11), (12), and (13) was solved
numerically. Our previous computations on the iodate-
arsenous acid system indicate that relaxation of a finite-
difference form of Eq. (10) takes many iterations for each
time step [9]. Instead we use a simpler and equally valid
finite-term expansion for the stream function [14]. For
the two-dimensional slab, the stream function can be ex-
panded in a series of complete orthonormal eigenfunc-
tions of the operator d*/dx*,

d4

dx*
satisfying T,, =dT,, /dx =0 at x ==x1. These functions
are divided into two classes: C,,(x) for even functions
and S,,(x) for odd functions. The functions and their ei-

genvalues A, are tabulated by Chandrasekar [15]. Ac-
cordingly the stream function becomes

T,=At T, , (15)

PY(x,z,t)= § A,z,t)T,,(x/d), (16)

m=1

where d is the wall separation. Truncating the series will
provide a good approximation for flows near the onset of
convection. This expansion converges quite rapidly for
the linear stability analysis of chemical waves in the



1122

iodate-arsenous acid reaction [14]. In this way, the two-
dimensional stream function is effectively reduced to a
one-dimensional problem, thus greatly simplifying the
work. Details of this method are given in Ref. [9]. For
our problem, we have used a one-term truncation with
C,(x) as well as a four-term truncation including C,(x),
C,(x), S;(x), and S,(x). The one-term truncation is val-
id only when the system is very close to the onset of con-
vection. The coefficients 4,,(z,¢) become larger and the
complexity of the convective flow increases as the system
is taken further above the onset of convection. A four-
term truncation provides a good check on the validity of
the one-term truncation as well as the convergence of our
expansion. In a typical calculation in a vertical slab with
d =0.4 mm, maximum absolute values of 4, (z,t) are
Ac‘ =0.379, 4,.,=0.010, As1 =0.022, and As2=0.001.

It is clear in this case that the convective flow mainly
contains the contributions of C,;(x) and that the contri-
butions of S(x), C,(x), and S,(x) are much smaller.

We test our numerical results in two ways. First, we
study an eight-term truncation including C,(x) to C,(x)
and S(x) to S4(x) to verify that the terms ignored in the
four-term truncation are negligible. Second, we use the
subroutine GENBUN from the FISHPAK package for solv-
ing elliptic partial differential equations [16]. Both tests
yield chemical speeds that differ from the four-term trun-
cation by less than 0.3%. One advantage of our algo-
rithm is that it runs three times faster than the GENBUN
subroutine.

It is known that the Oregonator model has stiff kinetics
because of the smallness of €. The explicit Euler method
for this system requires a very small time step. Switching
to an implicit method allows a time step about 20 times
larger. However, the large value of v in Eq. (11) prevents
us from using this larger time step when coupled with
convection. Consequently, we simply use an explicit
Euler method. We define z as the direction of wave prop-
agation and x as the direction perpendicular to z. The
chemical concentrations and fluid velocities fall off ap-
proximately exponentially well ahead of the front
(z— ) and well behind the tail (z— — o). To deter-
mine acceptable cutoffs ahead of the front and behind the
tail to facilitate numerical computations on a finite
domain, we fix the mesh-point separations Ax =0.2 and
Az=0.1, but vary the number of mesh points in the z
direction. For a vertical slab with d =0.5 mm, we find
that the mesh sizes 400X 15, 300X 15, and 200X 15 give
the same results. We therefore use the 200X 15 mesh.
To test the validity of using 15 mesh points in the x direc-
tion for the same d, we increase the mesh size to 200X 30,
while using Ax=0.1. We find that this procedure
changes the chemical wave speed by less than 0.4%. For
a given spatial interval, a smaller time step produces a
more accurate computational result. We decrease the
time step until a further decrease of Az gives a difference
in chemical speed less than 0.3%. In summary, our simu-
lations are for a 200X 15 mesh with Az=0.1, Ax=0.2,
and At =2X107% We also change the mesh size in the x
direction to get slabs of different widths.

We run simulations for fronts propagating in slabs of
different widths. The initial conditions consist of no fluid
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flow anywhere. The initial chemical-concentration
profiles are set to the convectionless reaction-diffusion
pulse plus some small random perturbations in the vicini-
ty of the front. The initial perturbation dies out if the
system is below the onset of convection. The fluid veloci-
ty gradually increases if the system is above the onset of
convection and eventually reaches a steady value. The
convective flow travels with the chemical wave as it prop-
agates along the slab. Since we are using a finite-size
mesh, the wave will eventually reach the end of the mesh.
We can use a larger mesh to allow for longer evolution or
solve the system in a comoving frame. But after some
test runs, we instead decide to shift the whole system
back whenever the pulse is close to the end. The way we
determine at what point we should shift the pulse back is
to allow the wave to propagate as close to the end as pos-
sible, while maintaining that there is no observable
difference after shifting. This method has been compared
to the two other methods and is computationally more
efficient.

IV. RESULTS

A. Ascending waves in a vertical slab

We investigate the onset of convection for both vertical
and horizontal slabs with a lighter reacting fluid
(B>0). For ascending waves in a vertical slab with the
slab width less than or equal to 0.35 mm, chemical waves
propagate upward with the constant speed C =17.41 and
without any front deformation. In this case, any initial
perturbation eventually decays to zero. If the slab width
is greater than or equal to 0.37 mm, the initial perturba-
tion gradually evolves into two counterrotating rolls
propagating with the chemical wave in the vicinity of the
front and the tail, respectively [Fig. 2(b)]. Figure 3
shows the convective fluid velocity field and the shape of
the chemical-wave front and the tail. The underlying
fluid flow raises the wave front on one side of the slab and
lowers it on the opposite side. The wave form and the ve-
locity field are not purely antisymmetric, because the
solution includes contributions from the even functions
C(x),C,(x) as well as the odd functions S;(x),S,(x).
Above the onset of convection, the chemical-wave veloci-
ty increases almost linearly with the slab width (Fig. 4).

To understand the form of the wave front and the
direction of the rolls, we refer to the eikonal relation for
curved chemical-wave propagation C =C,— Dk, where C
is the normal velocity of a curved chemical wave, C, is
the wave velocity of a flat front, D is the molecular
diffusivity, and « is the curvature of the front. This rela-
tion, an asymptotic form of the reaction-diffusion equa-
tions for wave propagations, has been successfully ap-
plied to spiral waves in the BZ reaction [10] as well as to
convective chemical waves in the iodate-arsenous acid
systems [8,14]. In our case (Fig. 3), the eikonal relation
tends to flatten the front by increasing the velocity on the
left side (k<0) and reducing the velocity on the right
side (k> 0). Without convection, the curved front would
not be stable and would eventually evolve into a flat
front. Fluid motion balances the effect of the eikonal re-
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FIG. 2. Schematic representation of the density profile in-
duced by a chemical wave propagation in the BZ reaction. For
upward propagation (a) the front is unstable, while for down-
ward propagation the tail is unstable. Above the onset of con-
vection (b), two counterrotating rolls are formed near the front
and the tail. The front curves and the chemical wave velocity
increases.
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FIG. 3. An ascending wave in a vertical slab with d =0.50
mm. The chemical wave is propagating upward with the speed
of C =18.27 (9.40 mm/min). The largest fluid velocities in the
upper roll and in the lower roll are 1.03 and 0.69 mm/min, re-
spectively. The velocity field and waveform are not exactly an-
tiaxisymmetric. The two curves represent the shapes of the
front and the tail, respectively.
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FIG. 4. Chemical wave velocity as a function of slab width
for a vertical slab. For slab widths smaller than 0.35 mm, the
chemical waves propagate upward with the same velocity as the
reaction-diffusion pulse. For slab widths greater than 0.37 mm,
the convection is on and the chemical waves travel with speed
greater than the reaction-diffusion waves.

lation and allows the curved front to propagate steadily.
This explains the physical mechanism for the formation
of the first roll near the front. To explain the second roll
near the tail, we note that the density gradient near the
tail is gravitationally stable and there should be no fluid
flow near the tail [Fig. 2(a)]. But the front and the tail
are parts of an integral pulse solution of the reaction-
diffusion equations, so if the front curves, the tail must
correspondingly curve. The curved tail produces a gra-
dient in the horizontal direction, which always leads to
convection. The direction of motion of the tail roll op-
poses the imposed tail curvature. Hence we may say that
the formation of the first roll and the deformation of the
front are caused by the unstable density gradient near the
front, while the less vigorous fluid motion near the tail re-
sults from the curved tail enforced by the curved front.
The upper roll drives the passive lower roll. The fact that
the upper roll is stronger and more extended while the
lower roll is weaker and narrower supports our argu-
ment. We also observe that the front has a higher curva-
ture than the tail, which is consistent with our reasoning.

Above the onset of convection, we observe an almost
linear increase of the chemical-wave velocity as indicated
by Fig. 4. We can explain this behavior qualitatively.
For the reaction-diffusion equations, it has been shown
that molecular diffusion is the main factor limiting the
speed of the chemical waves besides kinetics parameters
and initial concentrations [1]. In fact, it can be proven
[1,10] that the velocity of convectionless pulse is propor-
tional to the square root of the molecular diffusivity
v <V D. The macroscopic fluid motion helps the mixing
of the chemical reagents by bringing the unreacted fluid
down and the reacted fluid up near the front of the chem-
ical waves, thereby increasing the speed of the chemical
waves by effectively enhancing the macroscopic mass
transport of chemical reagents [4]. So far, the only exper-
iment report on BZ waves in vertical tubes did not mea-
sure the dependence of the wave velocity on the tube di-
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ameter [7], making it impossible to compare with our re-
sults. Their large tube size (4.3 mm) renders their sys-
tems far above the onset of convection and may account
for their observation of turbulence instead of steady con-
vective propagation [7].

It may be worthwhile to mention an interesting
phenomenon observed in our simulations near the critical
width. As we increase the slab width through the critical
width, the time required for decay of transients in the
fluid velocity field increases rapidly as we approach the
critical width. After passing the critical point, this time
decreases with increasing slab width (Fig. 5). This is
what is known as critical slowing down [17], a clear indi-
cation of the existence of a critical point. In fact, for one
data point (d =0.36 mm), we even observe slight initial
growth and then, later, decay to zero after a long time.
This is due to the sensitivity of a system to perturbations
when the system is close to a critical point [17].

B. Descending waves in a vertical slab

For downward propagation with >0, the instability
occurs at the tail instead of at the front. This is quite
different from the situation of the iodate-arsenous acid
system, where the front geometry makes the downward
propagation always stable and convectionless [8,9]. Be-
cause the density gradient near the tail is lower than near
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N
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FIG. 5. Relaxation time from initial perturbation to steady
wave propagation as a function of slab width. Below the critical
width, the relaxation time increases rapidly as we are approach-
ing the critical point. Above the critical width, the relaxation
time drops rapidly as the system is taken further above the on-
set.
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the front, we expect that the descending waves should
have a critical width larger than for the ascending waves.
A similar calculation yields a critical width d,=0.93
mm, considerably larger than the critical width for as-
cending waves (d,=0.35 mm). For descending waves
above the onset of convection, we observe only one con-
vective roll near the tail instead of two counterrotating
rolls (Fig. 6). The tail is strongly deformed to a sinelike
form while the front is only slightly curved. Consequent-
ly, even though the convective flow near the tail is very
strong, with the largest fluid velocity of 5.50 mm/min be-
ing comparable to the chemical-wave speed, it travels
only slightly faster (C=17.46; 8.98 mm/min) than a pure
reaction-diffusion wave (Cy;=17.41). This means that
the front of the pulse in the BZ reaction determines the
chemical-wave speed. No matter how the tail curves or
how strong the flow behind the front is, if the front is not
greatly deformed, the pulse will still travel with the
reaction-diffusion speed. In this case, we cannot deter-
mine the presence of convection by observing the change
in the chemical-wave speed. This is similar to the case of
the iron-nitric acid reaction, where although convection
is observed visually, the convection front travels only
slightly faster than the reaction-diffusion front [4]. Even
if we increase the slab width to place the system further
above the onset of convection, we still observe a single
convective roll. But if we tilt the slab slightly (see below),
we observe two counter-rotating rolls similar to those in
the ascending waves. These results show that the critical
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FIG. 6. Fluid velocity field for a descending wave in a verti-
cal slab with d =1.0 mm. There is only one convective role
with the largest fluid velocity 5.50 mm/min. The tail is strongly
curved, but the front is only slightly deformed. The wave trav-
els downward with a speed slightly faster (C =17.46) than the
reaction-diffusion wave (C,=17.41).
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point for the onset of convection is dependent on the den-
sity gradients as well as the absolute density change. The
ascending and descending waves have the same absolute
density change but quite different density gradient, lead-
ing to different critical widths.

C. Horizontal and tilted slabs

For a horizontal slab, convection always exists because
of the existence of the horizontal density gradient [18].
For a small slab width of 0.06 mm, we still observe a
steady nonzero velocity field, even though the effect of
convection on the chemical-wave speed is negligible.
Similar to upward propagation, we observe two counter-
rotating rolls traveling with the chemical waves [Fig.
7(a)]. The chemical-wave speed increases monotonically
with the slab width as shown in Fig. 8. The sharp
difference between Figs. 4 and 8 also confirms that there
is a critical width for the vertical slab but no critical
width for the horizontal slab.

We also carry out a systematic calculation for tilted
slabs for three different slab widths: d,=0.32 mm (below
the onset of convection), d, =0.47 mm (above the onset),
d;=0.54 mm (well above the onset). For any tilted slab,
convection is always present. The chemical wave attains
a maximum speed at an angle that depends on the width
(Fig. 9). We find these angles to be 18.6° 27.3°, and 30.3°
for d,, d,, and d; using a least-squares fit. Here we
define 6=0° for waves in a horizontal slab and 8=90° for
ascending waves in a vertical slab. This effect has been
observed experimentally by Nagypal, Bazsa, and Epstein
[5] for fronts in the chlorite-thiosulfate reaction and has
also been reported in the numerical simulations in the
iodate-arsenous acid reaction [9]. A qualitative explana-
tion has been proposed [5]. Since the tilted tube provides
a wider cross section for a horizontal plane, convection

Z (mm)

FIG. 7. (a) Fluid velocity field for a horizontal slab with
d =0.50 mm and 8> 0. (b) Fluid velocity field for a horizontal
slab with d =0.50 mm and 8<0. The chemical wave is travel-
ing to the right at the speed of 10.55 mm/min and the largest
fluid velocities in the two rolls are 2.60 and 1.98 mm/min.
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FIG. 8. Chemical wave velocity as a function of the slab
width for a horizontal slab. Convection is always present and
the chemical waves always travel with speed greater than
reaction-diffusion waves.

appears as it does in wider tubes. However, the tilted
walls inhibit motion in the vertical direction, effectively
slowing the front speed. The competition between these
effects provides an angle for maximum speed away from
the vertical and horizontal directions.

D. Heavier reacting fluid (8 <0)

Up to now, our discussion has been restricted to 3> 0.
If B<0 in Eq. (8), the reacting fluid will be heavier than
the remaining fluid and the tail will be unstable instead of
the front for ascending waves. In fact, the system
behavior of Egs. (10)—(13) is only dependent on the prod-
uct of g and B. Reversing the sign of 8 is equivalent to
changing the direction of gravity. In other words, for
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FIG. 9. Chemical wave velocity as a function of the angle for
three different slab widths d, =0.37 mm (@), d,=0.47 mm (O),
and d;=0.54 mm ({). The chemical wave velocities attain the
maximum values at 6=18.56°, 27.30°, and 30.30° for d,,d,, and
d;.
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B <0, the results for ascending (descending) waves will be
the same as the results for descending (ascending) waves
with 8> 0.

We can apply the same argument to the horizontal
slab. The mirror image of Fig. 7(a) is Fig. 7(b) but with
the gravity directing upward. As reversing the sign of
both B and g simultaneously will not change the system
behavior, the system with 8 <0 should, and does, have a
solution as in Fig. 7(b). If B>0, we observe the wave
form as in Fig. 7(a). If 8<0, we obtain the wave form as
in Fig. 7(b). The stability requirement precludes the oc-
currence of the other wave form. We can see that the
heavier fluid moves down and the lighter goes up in both
cases. Therefore, two cases with different signs of B will
have the same dependence of the chemical-wave velocity
on slab width as well as the same fluid velocity field. The
only difference is the wave shape and the direction of the
velocity field. Based on this fact, we can determine the
sign of 8, which gives the chemical-composition depen-
dence of the density, just by observing the shape of wave
fronts for the BZ reaction in a petri dish.

Our above results are consistent with the experiments
in petri dishes by Miike and co-workers [6] in which they
measured the flow velocity distribution by two-
dimensional spectrophotometry and observed the shape
of the wave fronts. In their experiments for the Fe?*-
and Ce**-catalyzed BZ reaction, Miike and co-workers
[6] observe the shape of the wave front to be as in Fig.
7(b) instead of as in Fig. 7(a). In fact, they draw a graph
almost identical to Fig. 7(b) in their papers [6]. Accord-
ing to our results, this implies that the reacting fluid is
heavier than the remaining fluid (8<0) in these experi-
ments. The estimates by Pojman and Epstein [2] for the
Fe?'- and Ce3"-catalyzed BZ reaction based on the mo-
lar volume change also give the same result (8<0). In
their experiments in the petri dish with a liquid layer
thickness 0.85 mm, the chemical wave velocity is about
7.8 mm/min, and the largest fluid velocities of the first
roll and the second roll are 7.5 mm/min and 3.0
mm/min, respectively. In our calculation, the wave ve-
locity for d =0.50 mm is 10.55 mm/min and the largest
velocities of the two rolls are 2.60 mm/min and 1.98
mm/min. Considering the uncertainty in parameter
values and widely varying 3, a quantitative comparison is
insignificant. Nevertheless, it shows the existence of two
rolls with the flow velocity comparable to the velocity of
the chemical waves. This result also confirms their asser-
tion that this kind of hydrodynamic flow can be produced
exclusively by chemical waves. It also shows that the
behavior of the BZ reaction is catalyst dependent [13].
Our results can be further verified by doing the experi-
ment in a petri dish for the Mn?"-catalyzed BZ reaction.
We predict that the wave front as in Fig. 7(a) should be
observed instead of that in Fig. 7(b).

A detailed numerical comparison shows some disagree-
ments between the experiments and our results. The spa-
tial scale of the convective flows in the experiments is
much more extended than in our results. Experimentally,
the scale of convective flows is about 1 cm, while it is
only about 2 mm in our results. The difference of the
largest fluid velocities between the two rolls in the experi-
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ments is also larger than in our results. We think these
disagreements originate from our assumption in Eq. (8).
Better numerical agreement with the experimental results
may follow by considering the dependence of density on
v.

V. CONCLUSION

The presence of a curved front with traveling convec-
tive rolls distinguishes this problem from the classical
Rayleigh-Taylor problem. In that problem, two immisci-
ble fluids are placed one on top of the other with surface
tension providing the stabilizing mechanism. In our case,
the reaction-diffusion mechanism provides a propagating
pulse of different density placed between two fluids of the
same density. For small tubes, the no-slip boundary con-
dition and the eikonal equation suppress convection. In
tubes of larger diameters, the interaction between the sta-
bilizing (reaction-diffusion) and destabilizing (buoyancy)
mechanisms leads to the traveling convective rolls. This
is not possible in the Rayleigh-Taylor problem because
the two fluids are immiscible. This type of convection is
also different from Rayleigh-Bénard convection because
the convective rolls travel with constant speed and be-
cause the instability is driven by a nonlinear pulse profile
and not by a linear temperature gradient.

The pulse structure in the BZ reaction also separates
the problem from previous calculations of the front struc-
ture in the iodate-arsenous acid system. The most strik-
ing difference is that here we have two counterrotating
rolls traveling with the chemical waves, while for the
front structure in the iodate-arsenous acid system, there
is only one convective roll. For the iodate-arsenous acid
system, the descending waves are always stable; while for
the pulse structure in the BZ reaction, both ascending
and descending waves are unstable (either at the front or
at the tail) if the slab width is greater than certain critical
widths.

By coupling hydrodynamics with the standard
reaction-diffusion equations, we predict an increase of
chemical-wave speed as well as a deformation of the front
in the BZ reaction. The increase in speed is due to two
counterrotating rolls traveling with the deformed waves.
The shape of the front can be explained by the balance
between the eikonal relation and the convective flows.
For horizontal slabs, we can determine the effect of
change in chemical composition on the density by the
shape of the front. Two different shapes represent two
different density profiles. Our model also shows the ex-
istence of an angle for maximum front speed in tilted
slabs. Our results agree qualitatively with the existing ex-
periments. We also suggest some simple experiments to
test our results. This work shows that convective
enhancements are important when comparing reaction-
diffusion models with experiments.

Better agreement with the experiments could be
achieved by studying the cylindrical geometry. This
problem requires treatment in three spatial dimensions,
which is considerably more difficult. Currently, we are
developing a more accurate code to account for more
complicated flows. We intend to consider the depen-
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dence of density on v. Many problems remain open for
the convective chemical-wave propagation in the BZ re-
action. Among these are convective flows induced by tar-
get patterns and spiral waves, the effect of surface eva-
porative cooling and surface tension, and the occurrence
of oscillatory flows.
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