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Linear stability analysis predicts that the onset of convection for an ascending autocatalytic 
reaction front in a vertical cylinder corresponds to a nonaxisymmetric mode. This 
mode consists of a single convective roll confined to the region near the reaction front, with 
fluid rising in half of the cylinder and falling in the other half. Experiments show a 
flat front below the onset of convection and an axisymmetric front well above the onset of 
convection. New experiments are called for to closely examine the onset of convection 
in order to test this prediction. 

I. INTRODUCTION 

Hydrodynamic stability theory is needed to under- 
stand recent experimental observations of convection near 
autocatalytic reaction fronts. These experiments”’ on as- 
cending iodate-arsenous acid reaction fronts3-5 in vertical 
capillary tubes show that steady axisymmetric convection 
can exist in the frame of the moving front. This convection 
is driven by the buoyancy of the lighter reacted fluid below 
the ascending front; descending fronts involve no convec- 
tion. The goal of this paper is to present the results of a 
complete linear hydrodynamic stability analysis including 
both axisymmetric and nonaxisymmetric modes. As will be 
seen, this analysis predicts a transition to nonaxisymmetric 
convection that should be observable in experiments. 

The bulk of the previous work on autocatalytic systems 
emphasizes reaction-diffusion mechanisms6 for front prop- 
agation rather than hydrodynamic stability. In these sys- 
tems, a reaction front, or “chemical wave,” is limited in 
propagation speed by the slow molecular diffusion of a 
catalyst into the unreacted fluid mixture. Since the “auto- 
catalytic” reaction produces its own catalyst, the reaction 
front can propagate indefinitely. Reaction-diffusion mech- 
anisms account for spiral waves,7 chemical chaos,8 and 
Turing patterns’ in autocatalytic reactions such as the 
Belousov-Zhabotinski reaction, but cannot account for 
convection. Such convection is driven by density gradients 
produced by thermal and chemical gradients in the vicinity 
of the reaction front. In fluid problems such as the 
Rayleigh-BCnard problem of a fluid heated from below, 
such buoyancy-driven convection can take the form of 
traveling waves, lo oscillatory instabilities, period doubling, 
mode locking, and convective chaos.” Involving both hy- 
drodynamic and reaction-diffusion effects, convection in 
autocatalytic systems is a potentially rich and fruitful area 
of investigation. 

A crucial step toward understanding convection in au- 
tocatalytic systems is to understand the onset of convec- 
tion. Previous work by Pojman and Epstein4 made use of 
calculations by Taylor12 and Wooding13 for onset of free 

convection to estimate the critical parameters for the onset 
of convection in autocatalytic systems. Free convection is 
driven by a vertical concentration gradient and an associ- 
ated density gradient both of which are uniform over the 
entire length of a long vertical cylinder; free convection 
does not involve a reaction front. The corresponding flow 
is in the vertical direction only and occurs over the entire 
length of the cylinder, with upflow in one half of the cyl- 
inder and downflow in the opposing half. In contrast, au- 
tocatalytic systems involve density gradients only in the 
vicinity of a propagating chemical reaction front, which 
lead to more complicated two- and three-dimensional flows 
restricted to the neighborhood of the front. Thus, in auto- 
catalytic systems, the density changes with time as the 
front propagates, which is not true for free convection. 

A theory of convection near autocatalytic reaction 
fronts14 treats the thin chemical reaction front as a moving 
surface that consumes unreacted fluid of mass density p,, to 
produce reacted fluid of lower density p,., thereby relegat- 
ing all chemical reactions to the surface and precluding a 
molecular diffusion equation. The theory is relevant to re- 
actions such as the iodat+arsenous acid reaction, which 
allows only a single front passage through the fluid. The 
corresponding dimensionless driving parameter appropri- 
ate for a long vertical cylinder and for uniform pr and pu 
(Ref. 15), 

S= 6ga3/vDC, (1) 

involves a fractional density difference S= (pu--p,)/p, the 
acceleration of gravity g, the cylinder radius a, the kine- 
matic viscosity v, and the molecular diffusivity DC of the 
catalyst. The small chemical concentrations typical of ex- 
periments imply small a=: 10m4 and negligible differences 
in v and DC between the reacted and unreacted fluids. The 
driving parameter S measures the strength of buoyancy, 
which tends to destabilize a flat front in favor of convec- 
tion, relative to curvature effects, which tend to flatten the 
front. In the linear stability theory, convection occurs 
above a critical value SC, where curvature effects and buoy- 
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ancy exactly balance each other and the system is margin- 
ally stable. Although the experimental observations of axi- 
symmetric convection well above the onset of convection 
prompted a calculation of S,=370.2 for onset of axisym- 
metric convection,i5 a complete stability analysis also re- 
quires nonaxisymmetric modes. The purpose of this paper 
is to perform such a stability analysis, which yields 
S,= 87.9 for a nonaxisymmetric mode consisting of a single 
convective roll confined to the vicinity of the reaction 
front. The theory therefore predicts this lowest mode near 
the onset of convection; experiments intended to precisely 
locate the onset of convection could readily test this pre- 
diction. Calculated values of S, are universal, being inde- 
pendent of the cylinder radius and any fluid parameters, 
and therefore apply generally to experiments. 

Despite the typically exothermic reaction, the density 
can be considered as piecewise uniform in two important 
limits.14 Infinite thermal diffusivity renders the tempera- 
ture uniform everywhere with 6=& >O measuring the 
fractional density difference between the fluids due to their 
different chemical compositions. Zero thermal diffusivity 
precludes heat flow and renders the temperature piecewise 
uniform, so that the corresponding fractional density dif- 
ference 6 =So > 6, also includes the density difference due 
to thermal expansion. In both limits, a thermal diffusion 
equation is unnecessary. These limits provide approximate 
bounds on results for finite thermal diffusivity. Previous 
argumentsI indicate that the thermal diffusivity can be 
considered as large when the thermal length scale is large 
compared with the convective length scale; the ratio of 
these length scales is about 5 in the experiments. Recent 
calculations for finite thermal diffusivity in a laterally un- 
bounded systemI support these arguments. ’ 

II. MATHEMATICAL FORMULATION 

The fluid velocity v(x,t) and the reaction front height 
z=h(x,y,t) evolve according to the dynamical equations14 

av 
at+ (v*V)v= -pZVP+V%, 

vv=o, (2b) 
2. (2$vIz=h) =uo+$K, 

where length, time, pressure, and density are measured in 
units of a, a2/v, ?pr/a2, and p=gp,/ga3, and where we 
have neglected the small density difference between the 
reacted and unreacted fluids by setting p =p,./j? everywhere 
except in the large gravity term [the first term on the right 
side of Eq. (2a>], consistent with the Qberbeck-Boussinesq 
approximation.i7 The first two equations express force bal- 
ance and mass continuity. The third relates the normal 
component of the front velocity relative to the fluid (the 
left side) to the volume of unreacted fluid consumed per 
unit front surface area per unit time (the right side) in- 
volving a dimensionless consumption rate u. for a flat in- 
terface and a correction proportional to the front curvature 
K, measured as positive when the center of curvature is in 
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the unreacted fluid. This curvature correction tends to 
lower peaks ano to raise valleys in the front surface, thus, 
tending to flatten the front. Again, neglecting the density 
difference, the matching and’ boundary conditions include 
continuous fluid velocity v and continuous stress njT,y at 
the front as well as vanishing velocity at the no-slip impen- 
etrable side walls. Here, the nj are the Cartesian compo- 
nents of the normal vector ii pointing into the unreacted 
fluid and Tii= PS,- 6’ui/axj- duj/axi is the dimensionless 
stress tensor. 

To study the onset of convection, it is convenient to 
introduce a reduced pressure p =P+pz and to allow small 
perturbations about an ascending convectionless flat front 
described in the comoving frame by v(O) = - v$, /z(O) =0, 
p -1 -z and K(O) =O. Linearizing in the perturbations 
yields 

a (1) 37 -uo~v~1)~~vp(‘)+v2v(‘1 (z#O), (34 
(3b) 

where $I)= -V/z(‘) and K(~) =V2h”‘. Continuous fluid 
velocity v, tangential stress e,,np,T,, and normal stress 
ninjT0 at the front and the continuity equation require 

[v(‘)]f=O f (3d) 

a 
1 1 -vu) +=o, az - 
[p(l)] f = (DJv)Sh”’ 

(3e) 

(W 
to first order in the perturbations. Here, k71+ 
= lWql,=+, - 41z=-d is the difference between the val- 

ue& F a quantity q above and below the front, which is 
located at z=O for terms already first order in the pertur- 
bations. 

We can now specialize to cylindrical coordinates x 
= (r#,z> relevant to the experiments. At the onset of con- 
vection where S=S,, the perturbations neither grow nor 
decay with time so that d/at=Q Accordingly, we can use 
general velocity perturbations 

vi’)= [u,(r)cos m&uk(r)sin mf3,wk(r)cos mf3]ek” (4) 

with integer m to rewrite Eqs. (3a) and (3b) as 

k V2uk-2m 9-9 

k[rV2uk--2m(uk/r) -vk/r] +mV2wk=0, 

i $ (rud +m T+kwk=O, 

with 
2 

V2=i$r-$->-+k2. 
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(54 

(5b) 

(5c) 

(6) 
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Equations (5a) and (5b) were obtained from the vector 
relation (3a) by eliminating the pressure. The second term 
in Eq. (3a) was neglected because it leads to corrections in 
S, of relative order 1O-5 (Ref. 7). For fixed m, Eqs. (5) 
are a system of eigenvalue equations for k. Separation of 
variables’* is not applicable because of the rigid boundary 
conditions, hence we use the Frobenius method to solve the 
equations. We assume a power series for each variable: 

m 
uk=4 C a,?, 

n=O 
(74 

vk=#’ i b,t”, 
n=O 

Ub) 

and 
m 

Wk’rc 2 c,r”. 
n=O 

(7c) 

To obtain values of a, 6, and c we substitute the leading 
term of each series (4ao, rbbo and r’co, respectively) into 
Eqs. (5); this leads to a linear system of equations on a,, 
b,, and cc. Requiring that the determinant vanishes yields 
c=m, a= b=m- 1, and a,= - bo. The only free parame- 
ters are co, bo, and the coefficient of the second-order term 
b,. Later, these parameters will help us to fix the boundary 
conditions at the wall. The other second-order coefficients 
are given by 

a2= - (kco+mb2)/(m+2) 

and 
(84 

c2 = - [ k ( k2m b. + 2k2b0 + km2co + 4kmco + 4m2b2 

+4mb2) l/[4m(m2+3m+2)l, (8b) 
and the remaining terms follow from the recursion rela- 
tions: 

b2,,= - [k(km2a2n_2~km2b2,_2+2kmna2,_2$-4kmnb2n-2-2kmb2,_2$-4kn2b2~~2-4knb~~~2-4m2nc~~~2 

+4m2c2n~~-4mn2c2,~2+8mnc2n~2-4mc2,~2)]/[16n(m2n-m2+2mn2-3mn+m+n3-2n2+n)], (94 

a2n= - (k2ma2,_2+k2mb2n_2+2k2nb2n_2-2k2b2n_2+4m2nb2n-4m2b2~+ 12mn2b2,- 16mnb2,+4mb2,+8n3b2, 

-16n2b2,+8nb2,)/[4m(mn-m+n*--2n+l)], ’ (9b) 
and 

c2,= - [k(2k2mnb2n-2+k2ma2,-2-k2mb2,-2~2k2n2b2,_2-2k2nb2n_2+2km2nc2n-2-2km2c2n-2+2kmn2c2~-2 

-4kmnc2,~2+2kmc2,~2+8m2n2b2,-8m2nb2,+ 16mn3b2,-24mn2b2,+8mnb2,+8n4b2,- 16n3b2, 

+8n2b2,)]/[8mn(m2n-m2+2mn2-3mn+m+n3-2n2+n)] (9c) 

for the coefficients of even order. The odd-order coefficients 
vanish. It is found that including the first 20 nonzero terms 
in the sums in Eqs. (7) gives excellent convergence. 

We find the eigenvalue k from the boundary conditions 
uk=vk~wk=O in the following way: Since the equations 
are linear, the eigenfunction is a superposition of three 
basic solutions obtained from the following three choices 
for the free parameters: 

(ii)=(i),(:) and (i)- (10) 

The velocity vector at Y= 1 is a linear combination of the 
basic solutions at Y= 1. The vanishing velocity vector at the 
walls requires that the determinant associated with the lin- 
ear system at Y= 1 vanishes. This results in an equation for 
k that can be solved using standard numerical techniques. 
The eigenfunctions are obtained once the eigenvalue for the 
system at Y= 1 is known. In practice, this method is useful 
to find eigenvalues k of small magnitude. For larger mag- 
nitudes of k, the coefficients in the sums in Eqs. (7) are 
comparable in magnitude but alternate in sign, creating 
cancellation problems for r--t 1. Accordingly, for large k, 
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I 

the series method is used only up to r=O.l, beyond which 
Eqs. (5) are integrated directly. Direct numerical integra- 
tion cannot be applied at r=O since the equations are sin- 
gular at that point. Values of k thus obtained for axisym- 
metric (m=O) modes agree with our previous 
axisymmetric results obtained using a Gale&in method.15 

To determine S,, we use the lowest N eigenvalues k 
with negative real parts to construct a general solution 
v(l) = 2?= ,Aivi,) for z > 0 as a linear combination of the 
vi’?, and construct a similar solution for z < 0 using eigen- 
values k with positive real parts. Substituting these series 
into the matching conditions 
[i!13w(‘Vdz3]~ =scwC1) 1 r=O 

(W, &I, and 
[ from Eqs. (3a)-(3c) and 

(3f)] leads to a homogeneous linear algebraic system for 
the coefficients. For fixed m, the critical values S, for which 
the determinant vanishes are designated as Sml, Sm2, 
S m3,... , in ascending order. The number of significant fig- 
ures in the values of S, quoted below for N= 90 is based on 
the convergence for increasing N. 

III. RESULTS AND DISCUSSION 

Calculated values of S, and corresponding mode dia- 
grams are shown in Fig. 1. The lowest value Sr,=87.9 
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m=O 

m=l 

m=2 

m=3 

So, -370.2 

S,, = 87.9 

S3, = 665.5 

0 0 
So2 = 1835.0 

CD 
S, 2 = 884.2 

cl3 
S,, = 1668.9 

@  
s32 = 2755.9 

FIG. 1. Calculated critical driving parameters S,=S,,,, and correspond- 
ing mode diagrams for onset of convection near ascending fronts in a 
vertical cylinder. Solid traces represent nodal surfaces separating regions 
of rising and falling flow, with the outer circle representing the cylinder 
itself. The lowest critical value St, corresponds to a nonaxisymmetric 
mode that dominates at the onset of convection. 

L , 
corresponds to a nonaxisymmetric #mode consisting of a 
single convective roll confined to the vicinity of the reac- 
tion front, with regions of rising and falling fluid separated 
by a vertical nodal plane through the cylinder axis (the y-z 
plane). A plot of the corresponding perturbation velocities 
v(l) as seen in a vertical plane perpendicular to the nodal 
plane (the x-z,plane, Fig. 2) shows an ,exponential decay in 
the veIocity magnitude with vertical distance frorh the 
front, indicating that fluid motion is localized essentially to 
a vertical distance equal to the cylinder diameter, and that 
the fluid is undisturbed well above and well below the 
front. This predicted nonaxisymmetric mode for onset of 
convection is reminiscent of onset modes for Ray- 
leigh-Taylor” and Rayleigh-B6nard2’ convection in long 
vertical cylinders. 

It is instructive to compare the theory with experi- 
ments on iodate-arsenous acid mixtures. In these experi- 
ments, flat descending fronts (with the lighter reacted fluid 
above the front) are stable and absent of convection for all 
tube radii a studied. Flat ascending fronts propagate at the 
same speed as descending fronts for a=0.47 m m  (Fig. 3), 
whereas for a=0.89 and 1.20 mm, ascending fronts prop- 
agate at significantly higher speeds and are concave down, 
axisymmetric, and stationary in the frame moving with the 
front, indicating the presence of well-developed steady axi- 
symmetric convection in the comoving frame. Evidently, 
an experimental transition to convection occurs between 
ak0.47 and 0.89 mm. The theory predicts a corresponding 
critical radius a, for onset of convection through the rela- 
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I ,,,,,...__........,......... 
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,,,...,,.,..____.___.......... 

I 
-a 0 a 

C  C  

horizontal (x) axis 

FIG. 2. Velocity field for the predicted lowest nonaxisymmetric mode 
(Sir = 87.9) at the onset of convection in a cross section through the axis 
of a vertical cylinder that is perpendicular to the nodal plane. The as- 
cending reaction front (represented by the solid trace) consumes unre- 
acted fluid above the front to produce lighter reacted fluid below the front. 

tion S,=Ggaf/vD, [from Eq. (I)]. The calculated value 
S,&SII = 87.9 and the measured values15 Si =0.90X 10m4, 
so= 1.87x 10-4, g=980 cm/sec2, v=9.2~ 10B3 cm2/sec, 
and Bc=2.0 x low5 cm2/sec yield the predicted values 
a,=0.45 and 0.57 m m  (closed arrowheads in Fig. 3) for 
onset of nonaxisymmetric convection for zero (6 =a,) and 
infinite (6 = 6,) thermal diffusivity, respectively. We also 

E 0 3.0 --------~-----------------x------------~-- 
t I 1 

*:25 1.25 
inside radius (mm) 

FIG. 3. Experimental ascending ( 0) and descending ( X ) front propa- 
gation speeds as a function of tube radius a for an iodate-arsenous ,acid 
reaction.2 The ,ascending speed deviates from the descending speed 
c,=2.95+0.04~ IO-* mm/set (dashed line) at and above a=0.89 m m  
where axisymmetric convection is first observed. The closed arrowheads 
give the predicted critical radii a, for onset of nonaxisymmetric convec- 
tion with critical driving parameter S,, = 87.9 for zero and infinite ther- 
mal diffusivity. The open arrowheads give the predicted critical radii for 
axisymmetric convection with Se, = 370.2. 
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note the corresponding predicted critical radii a,=0.72 
and 0.92 mm (Ref. 15, open arrowheads in Fig. 3) for 
onset of axisymmetric convection with S,, = 370.2, involv- 
ing upward flow near the center of the cylinder and down- 
ward tlow near the sides. The theoretical thresholds for 
both nonaxisymmetric and axisymmetric convection are 
consistent with the experimental threshold radius between 
0;47 and 0.89 mm. 

The theory predicts nonaxisymmetric convection near 
the onset of convection, whereas experiments to date ob- 
serve only well-developed axisymmetric convection. 
Clearly, experimental observations intended to precisely 
locate the onset of convection would be .very useful. These 
could be made either by using the cylinder radius as a 
control parameter as in the previous experiments, or by 
using the density difference 6 as a control parameter by 
varying the reactant concentrations. Calculations for finite 
thermal diffusivity are not expected to change the symme- 
try of the lowest unstable mode. 

Interesting nonlinear aspects of convection in autocat- 
alytic systems awaiting further investigation include con- 
vective. enhancements of the front propagation speed; in- 
stabilities of the finite-amplitude flow, and the transition to 
chaos. These investigations may also help to resolve the 
experimental issues discussed above. 
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