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Rayleigh—Bénard convection in a laterally unbounded classical fluid layer with low Prandtl
number Z (ratio of kinematic viscosity to thermal diffusivity) is reexamined. An amplitude
expansion with only a few normal modes yields lateral oscillations of the convective rolls, which
are therefore only weakly nonlinear. For free boundary conditions, additional modes (absent for
rigid boundaries) lead to long wavelength (“hydrodynamic”) oscillations, with explicit nonlinear
distortions in the velocity and temperature fields. For oscillations with rigid boundaries, the finite
critical wavenumbers are approximately independent of & for small £, and the calculated
Rayleigh number, frequency, and wavenumber at onset agree well with observations in air.
Discrepancies with experiments in dilute superfiuid *He~*He systems with small aspect ratios
(ratio of horizontal to vertical dimensions) suggest that lateral boundaries or two-fluid effects play

an important role in these systems.

I. INTRODUCTION

Recent studies ™ of the onset of convection in dilute
superfluid *He-*He mixtures show similarity to one-compo-
nent classical fluids. At low temperatures, the essentially
constant “He chemical potential effectively eliminates the
3He concentration as an independent degree of freedom; in
practice, deviations from the classical one-component fluid
equations are small. Further experiments*® in the nonlinear
regime have emphasized the onset of oscillations. The pres-
ent work seeks a corresponding theoretical description. As
the two-fluid effects are small at onset of convection, we
continue to use the classical single-fluid equations in the
Oberbeck-Boussinesq approximation. This paper treats the
onset of oscillations in a laterally infinite layer of fluid
bounded by two horizontal planes. Two symmetrical sets of
boundary conditions are used; free boundary conditions,
which allow motion tangential to the bounding planes, and
rigid boundary conditions, which do not. Attention is re-
stricted to the oscillatory instability and small Prandtl
numbers (ratio of kinematic viscosity to thermal diffusivity)
relevant to dilute superfluid mixtures. A subsequent paper
studies the effect of insulating sidewalls.

Our treatment of the onset of oscillations in a laterally
unbounded slab extends previous theoretical work: For free
boundary conditions, Busse® used a long-wavelength expan-
sion to infer a proportionality between frequency and ampli-
tude and then calculated the onset amplitude numerically.
Clever and Busse’ applied Galerkin’s method to study both
oscillating and stationary instabilities for rigid boundary
conditions and small Prandtl numbers, obtaining good
agreement with experiments.

Our formulation (Sec. II) relies on the vertical velocity,
the vertical vorticity, and the temperature, which are con-
venient physical variables. It holds for any combination of
rigid or free boundary conditions. A second-order expansion
in the convective amplitude yields steady rolls, and super-
posed small perturbations then give the oscillations. In a
Fourier expansion, the number of relevant normal modes is
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smaller than previously expected.® The onset of oscillations
occurs at nonzero wavelengths for rigid boundaries, in con-
trast to the long-wavelength (hydrodynamic) onset for free
boundaries created by additional available modes. Since sec-
ond-order terms in the amplitude expansion suffice to de-
scribe the basic physical properties, the oscillations are only
mildly nonlinear.

Specializing to free boundary conditions (Sec. ITI), we
provide a compact derivation of Busse’s exact oscillation fre-
quency. Our analytical calculation of the amplitude for onset
of oscillations uses a six-mode truncation, which agrees with
numerical work by Busse and ourselves to 2%. Our explicit
velocity and temperature fields predict streamline distor-
tions during oscillations that may be observable.

A different approach is used in studying the more com-
plicated rigid boundary conditions (Sec. IV), since we intend
subsequently to consider bounded geometries, where the ex-
act eigenfunctions are not known. Thus, we abandon the
known eigenfunctions® for an unbounded slab in favor of a
truncated normal-mode expansion. This procedure requires
only two terms for 1%-2% accuracy in the amplitude at
onset of oscillations, compared with approximations includ-
ing larger numbers of terms. Where the amplitude is small,
our results compare well with the fully nonlinear Galerkin
analysis by Clever and Busse.” Furthermore, the critical
wavenumber for onset of oscillations k, turns out to be inde-
pendent of the Prandtl number Z for small Z. It is not
known if this relation holds for laterally bounded geome-
tries, where the sidewalls restrict £, to a denumerable set.

Good agreement is found with large-aspect-ratio ex-
periments on air (% = 0.71). Comparison with measure-
ments on dilute superfluid *He-*He mixtures in near unit
aspect-ratio cells suggests that lateral boundaries or two-
fluid effects may be important (Sec. V).

Il. GENERAL FORMULATION
In the Oberbeck—Boussinesq approximation, the classi-
cal one-component fluid equations are
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(V2—0,)v+20 —VP=(v-Vv, (1)
(V2— 23,00+ RB3-v= Pv-V0, 2)
V.v=0. (3)

These equations govern the deviations of velocity v, tem-
perature 8, and pressure P from the static conduction profile.
Length, time, v, 8, and P are measured in units of d, d /v, v/
d,v*/gad?, andp,v*/d *. Hered, v, py, @, and g are the depth,
kinematic viscosity, mass density, coeflicient of thermal ex-
pansion, and the gravitational acceleration. The Rayleigh
number # = gad *AT /kv characterizes the applied tem-
perature gradient, where « is the thermal diffusivity, and AT
is the (positive) temperature difference between lower and
upper boundaries measured in conventional units. The re-
sulting vertical density gradient drives the gravitational in-
stability leading to convection. The only needed fluid prop-
erty is the Prandtl number Z = v/x.

We introduce two distinct conditions at the horizontal
bounding planes which are readily expressed in terms
of the vertical velocity w=2Z+v and vertical vorticity ¢

= (VX v) * 2. Common to both choices are the conditions

w=6=0, (4)
which confine the fluid between fixed isothermal planes.
Free boundary conditions,

w = ¢ =0, {5)
allow motion tangential to the boundaries, whereas rigid
boundary conditions,

ow=¢=0, (6)

evidently satisfy
V¥V 420 —-VP=(V-V)V, (7)
VO + RW =PV V0O, (8)
V.-V=0. (9)

The preferred mode of convection in layers with rigid boun-
daries'® is straight parallel rolls which break the transla-
tional symmetry of the static fluid layer. We take the direc-
tion of broken symmetry to be the x axis and introduce a
Fourier series in the x coordinate:

+ o0
Y Vi, 0=

l= — o

+
Y o).

I= —

V= (10)

The nonzero components of V, are related by continuity [see
Eq. (9)):

U, = (i/lg)dW,, {11)
which, coupled with the boundary condition (4), eliminates

the horizontally uniform vertical velocity mode (W, = 0).
We choose the origin such that the column vector

W,
vi=(g =¥

is real and even in /, which ensures the reality of the velocity
and temperature fields [Eq. (10)]. Equations (7) and (8) can be
written wholly in terms of the vertical velocity and tempera-
ture modes:

(12)

do not. Here, d = 4, is the partial derivative in the vertical L¥ =1, (13)
direction. where ¥, is the eigenvector for mode /,
A. Steady rolis _ (¢ = FPI? —1 14
L -1 (1°¢* — 3/ R (14
We begin by studying the steady rolls, denoted by the 9
uppercase letters V = (U, V, W). From Egs. (1)—(3), the rolls is a linear differential operator, and
)
I e ((11')'14_2(33W1'W1_1' —~dw; 3"W1_1')+(l')_'(l—*21’)3W1'W1_1r) (15)
S PR —10W, O, — W, 86,_,.]

characterizes the nonlinearity. With the inner product (¥, |¥,,) defined as the vertical average of ¥ [(2)¥,, (z), the operator L,

is self-adjoint,
(YL, ¥,,) = (L, Y |¥,0), (16)

for either set of boundary conditions.
To solve Eq. (13), we expand in powers of the roll ampli-
tude e:

¥, =¥V 4 PP 4.,

(17)
R =R+ RV + R + ...
To first (lowest) order,
LYy =0, (18)

where L {”is formed from L, by replacing & by the eigenval-
ue %, The basic roll pattern of wavenumber g has/ = + 1;

LOW =0, (19)
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where ¥, = ¢ Vby Eq. (12),and ¥V = 0for! # + 1. To
second order,

L(IO)W(IZ)z _L(II)W1II)+I(12|,

where

(20)

Lp=(° 0 ).
i 0 — 9?(1)(1 2q2 . 32)/(5?(0))2

Equation (15) shows that /¥ must vanish unless / = 0, 4 2.
For ! = 1, the condition that the right-hand side of Eq. (20)
be orthogonal to ¥{" then implies #" = 0, leaving the
simpler equation

LOyP=1p 21)
for = 0, 4 2. Thus, at second order, two modes are driven
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by the roll nonlinearity; the horizontally uniform (/ = 0)
mode,

s0p =27 [Whey - wiev)), (22)
and the second horizontal harmonic (/ = 2),

LOYP =19, (23a)
where

Jo_ (TP EWY]
2 ?W[@(ll)’ W(ll)]/g?(())
is the = 2 inhomogeneity and %" is the Wronskian. By Eq.
(17), the only nonzero modes through second order in € are
V., =P, ¥, =¥{, and ¥,, =¥, The sec-

ond-order Rayleigh number
RO VW) = B\ W | # [ W, FW])
+ 2O e, wi)
+27%[ @V |w) — (@ W]
(24)
follows from the orthogonality of the third-order inhomoge-
neity to the first-order solution. The resulting second-order

amplitude expansion, valid for general boundary conditions
on the functions W{z) and @ (z), is

(23b)

R =R+ ER, (25a)
U(x,z) = — 2eq " sin gx W)z
— €%q~ ' sin 2gx IW Pz), (25b)

W (x,z) = 2¢ cos gx W (z) + 2€ cos 29x W'P(z), (25¢)
O (x,2) = 2¢ cos gx O Vz)

+ €[OP(z) + 2 cos 2gx O P(2)]. (25d)

This expansion should hold when the second term of Eq.
(25a) is small compared to the first,

ERD /RO — (R ~ 9?(0))/_9?(0)<1, (26)

which turns out to be satisfied at onset of oscillations (Secs.
Il and I'V)for g S ¢, (the critical roll wavenumber at onset of
convection) and Z «1. Since the roll amplitude takes the
form

_ @_%(0}@) 172
6"( RN P q) ) 27

for # > A, and is zero below, the “order parameter” for
onset of convection has critical exponent 1/2. Because ¢ in-
creases smoothly from zero, the bifurcation to convection is
“normal,” in contrast with divergent € for an “inverted”
bifurcation.'!

Equation (25) illustrates an important difference
between rigid and free boundary conditions in the small
Prandtl-number limit. For free boundary conditions, all sec-
ond-order modes ¥ will be seen (Sec. III) to vanish as
Z— 0, so that the onset of oscillations then coincides with
the onset of convection. Thus, steady convection is impossi-
ble for a fluid layer of zero Prandtl number with free boun-
daries. For rigid boundaries, ¥ remains nonzero as
Z~ 0, leaving #? finite in this limit. Hence, in contrast
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with free boundaries, rigid boundaries allow steady convec-
tion in fluids of zero Prandtl number.

B. Perturbations

To study the stability of steady rolls, we add small,
time-dependent perturbations:

v(r,t) — V(x,2z) + v'(r,t), (28a)
O(rt)— O(x,2z)+0'(r,t), (28b)
P(rt)— P(x,z)+ P'(r,t). (28¢)

Linearizing Eqgs. (1)43) in the primed perturbations gives a
homogeneous system with coefficients periodic in the x di-
rection:

(V2= 3,V +20' —VP' = (v - V)V(x,2) + [V(x,2) - V]V,

(29)
(V2= 23,00 + RzV = PV VO (x,2) + PV(x,2) - VE',
(30)
Vey =0, (31)

The primed variables must have exponential y and ¢t depen-
dences, and the x dependence must be a plane wave multi-
plied by a periodic function (Floquet’s theorem'?). Conse-
quently, expansions of the primed variables take the form

0 '(r,t) = exp(ik, x)explik,y)explot ) f explilgx)0,(z),
ST (32)

with similar expansions for v’ and {’. Continuity and the
definition of vertical vorticity may be used to write Egs. (29)
and (30) as

+

(E; +oF )}, = 1'—2 Hy iy + 106y,
1=1,2,.., 00, (33a)
(G + 05, = f Vit + K 80 10)s
1=0,1,..0. (33b)
Here
(wl(z)) 34
w1 = 34

and §,(z) are the desired perturbation modes,

£ - (G?/a, -1 ) F e (G,/a, 0 )
1= -1 Gl/g?(o) 4 1= 0 9/@(0) ’
G’ = al - 32, (35)

and a, = (lg + k,)* + k2. The coupling elements on the
right-hand side of Eq. (33) are known differential operators.

Experimentally,’® oscillations are periodic lateral dis-
turbances that propagate along the roll axes (y direction).
Accordingly, we henceforth take k, =0 and k =k,. With
this choice, the operators [Eqgs. {35)] are even under I— — .
The parity of the disturbances is found by allowing a period-
ic phase shift x—sx + 8x( y,¢) in the steady rolls. For the tem-
perature, for example,

+ o
O— Y 'TOz) + ighx(y,t)

I= —
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+ o
x > 1e"@,(z) + ..., (36)
l= — »

where the second term is the time-dependent temperature
perturbation 8 ’(r,? ) by Eq. (28b). Since the roll mode @, (z) has
even parity by choice [Eq. (12)], its corresponding perturba-
tion mode 6,(z) [(proportional to /@,(z) ] must have odd par-
ity. The other parities are found similarly, giving ¥ _,(z)
= —¥lz)and ¢ _,(2) = £,(2).

Equations (33) linearly couple an infinite number of per-
turbation modes. The couplings involve factors of order €
and higher due to the roll mode dependence of the coupling
operators. To obtain a workable system, we retain only those
horizontal couplings that involve terms of order €, which
requires some care for free boundary conditions with vanish-
ing k. This procedure isolates the most important perturba-
tion modes at small roll amplitudes. Since the principal com-
ponent of the steady rolls is / = 1, we expect this component
also to dominate the perturbations. To order €7, the sums in
Eqgs. (33) are restricted to/’ = 0, + 1, + 2. Accordingly, Eq.
(33a) with / =1 gives

(EP + aF )y,
= CHE syt HY_ i+ EHE, — HE I,
+521(12,)—2§3+€I —1§2+62(1(2' (2) 2061

+ €I} o (37)

where the superscripts make explicit the order in €. The third
term on the right-hand side of Eq. (37) is an important sec-
ond-order self-coupling. The first order couplings to ¥, {5,
and £, lead us to consider the additional equations [from Eq.

(331,

(ES + oF O eH o (382)
(G + 0')§2~€J“’1 ¥y, (38b)
(GIO) + g’) 0z2€.’0 1 1( + ZeK{},’_ 1 1), (380)

which produce couplings back to #,. For rigid boundary
conditions, 15, {5, and £, occur only in higher-order contri-
butions, and the corresponding form of Eq. (37) becomes

(E + oF Oy el Yty + TV 6+ 1 Go)
+€(H T — HY ) (39)
For rigid boundaries, the perturbation modes ¢,, ¥,, §o, and
£, will suffice to describe oscillations of the nonlinear (order
&) rolls (Sec. IV). In contrast, for free boundaries (Sec. III), a
consistent expansion to order € requires the additional
mode ¢, in Eq. (38¢) because of the uniform vorticity satisfy-

ing Eq. {5).

lil. FREE BOUNDARY CONDITIONS

Free boundary conditions at z = 0, 1 may be satisfied by
a Fourier series in the z coordinate. For the steady rolls, we
take

+

ve)=i 3

me= — o

ey, L, (40)

with &, _,, = — ¥,,, real. Note that / and m refer to x and
z, respectively. The Fourier series (40) reduces the first-order
problem (19) to a linear, homogeneous, algebraic system for
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each first-order roll amplitude ¥, . The lowest eigenvalue,
A =(g* + 7 g7, (41)
occurs for m = 1. Minimizing %#'%(q) gives the well-known

critical roll wavenumber ¢? = 7°/2 and Rayleigh number
P = 277%/4 for onset of convection. The eigenvector is
q

%((qz + 72)2)’ [ =|m|=1, (42)

and is zero otherwise. For free boundary conditions, W (",
W', and @' are all proportional (to sin 7z), so that the
! =2 inhomogeneity 7? in Eq. {23b) vanishes identically.
Hence, by Eq. (22), only

O, .= +(Z/16rg’)g’ + 7 (43)
enters to second order in the amplitude, and the second-
order Rayleigh number follows from Eq. (24),

RP = P?[(¢* + 7 /8¢°]. (44)

In summary, the steady two-dimensional rolls for free boun-
daries® are given by

2

(83
‘I/Im_’_

Uix,z) = — (me/q)sin gx cos 71z , (45a)
W (x,z) = € cos gx sin 772 , {45b)
2 2
O (x,z) = f(ﬂ_tf)_ coS gx sin 7z
2(..2 2
_ 7@+ sin 27z, (45¢)
8mq?

2 3 2 2 2

7 =4 :2"2) +Z ez(gqf . (45d)

with the quadratic terms proportional to powers of Z.

The boundary conditions on the perturbations #,(z) and
£,(z) may be satisfied by Fourier series analogous to Eq. (40)
with expansion coefficients ¢,,,(5;,,) odd (even) under
m—s — m. Equation (33) yields a homogeneous algebraic sys-
tem whose vanishing determinant of coefficients fixes the
complex growth rate o as a function of €, k, ¢, and & . At the
critical roll amplitude for onset of oscillations €y(k,g, 7 ), the
real part of the growth rate Re o passes from negative to
positive, heralding the onset of oscillations. The correspond-
ing Im o gives the onset frequency wolk,g, 7).

The onset amplitude and frequency have been obtained
numerically for various truncations. Case I, the simplest,
retains the fundamental mode ¢, ; and the / = 0 vorticities
oo and &, ,, where cases II and III add the £, (/= 1) and
&,.0(l = 2) vorticities, respectively. Cases II and III include
all € contributions; case III includes a single additional €*
contribution (£, o). Figure 1 shows the resulting onset ampli-
tude at g = ¢, and & = 0. The critical amplitude €. (g, Z)
[the minimum of &4k,g, #) with respect to k] occurs at
k = 0, hence oscillations are hydrodynamic for free bound-
ary conditions. Evidently, € contributions describe the hy-
drodynamic nature of oscillations; {5, adds only quantita-
tive information. To illustrate the accuracy of case III, we
compare its critical amplitude €,(g.,0) = 5.516 with that of
larger sets of modes ¢, ,,,,&;,, defined by |/|[,|m|<N. Setting
N = 2adds ¢, , and ¢, , to case III, and does not change the
critical amplitude. The irrelevance of {,, and ¢, , as k — 0
can also be shown analytically. For ¥ =3 and 4, €.(g.,0)
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20 T

P:0
7 = 2.221

0 1
[0} | 2

) 1

FIG. 1. Dependence of amplitude &, on wavenumber k for onset of oscilla-
tions with free boundary conditions at the critical roll wavenumber
g. = 2.221 and zero Prandtl number. Cases I, II, and III are successively
better approximations.

=5.421 and 5.430, indicating rapid convergence for in-
creasing values of N. Similar convergence is found for the
onset amplitude €,(k,q,0) over the range 0 < k<2. Since case
III agrees with improved estimates to within 2% over
0<k<2, we conclude that case III embraces the essential
features of the oscillations. The critical amplitude A,
= €,(q.,0)/¢> = 1.215 given in Ref. 6 has recently been com-
puted.’* The corrected value is 4; = 1.114, or €.(q.,0)
= 5.497, in good agreement with our results.

It is instructive to study the case III modes ¥, ;, o0,
$o25 61,1, and §, , near critical conditions. Since the velocity
must be finite and o must vanish as k — 0, power series in
the oscillation wavenumber & take the forms ¥,,, = ¥},

+ U0+ G =i+ &+, and o =01 0
+ ... . A perturbation expansion (similar to the amplitude
expansion of Sec. II) yields the Busse oscillation frequency

o= tir/2k/gle= tiw (46)
in first order, and the growth rate

0.[2]
k2

21 + 2\

e B+ PN -] 4 EB =2 — (1 + P)’]

32(¢g* + 7
(1 + P)
4q* + 7 + 7€ /8¢7)
in second order. Busse obtains a result similar to (47) using
an expansion to order €%, whereas we retain € explicitly in
the denominator. Since this contribution (from &, ;) is of rel-
ative order 0.5, his expansion converged slowly and was re-
placed by a numerical computation involving many normal
modes. The offending vertically uniform ¢{, , mode is absent
for rigid boundary conditions, so that an amplitude expan-
sion is more relevant in that case. Equation (47) is rich in
information. For small ¢, the first term on the right-hand

(47)
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FIG. 2. Prandtl number dependence of the critical amplitude for onset of
oscillations €, at the critical roll wave vector g, = 2.221 for free boundary
conditions.

side dominates, and o'?! is negative, indicating stability of
convective rolls. Setting o'*! =0 yields a quadratic in the
square of the critical amplitude €, (g, Z), which readily pro-
duces an explicit, analytical expression for €. (g, 7). As ex-
pected, the value €, (g..,0) = 5.516 confirms the case III value
obtained numerically. Furthermore, the relation describes
the dependence on Prandtl number (Fig. 2): € increases with
Z until 7, = 3.9, where the slope of the critical amplitude
becomes infinite, while the function itself remains finite.
Above Z , the critical amplitude €(g., ) is imaginary.
Hence, 7, is an upper Prandtl number limit for the onset of
oscillations with free boundary conditions in this approxi-
mate description. Since € #?/#® « 22 for free boundary
conditions, our small amplitude results for the critical Ray-
leigh number for onset of oscillations #, = #° 4 & A?
areexactas Z —»0. At Z ~l and g =g, €RP/HFO~1
can no longer be considered small, so that Z 2 1 in Fig. 2 is
outside the strict region of validity of the theory.

By the considerations of Sec. II, the / = 1 vorticity £, ,
should not have been important. In fact, for free boundary
conditions it enters in order € because of the allowed verti-
cally constant {,, mode. Acting on this mode and for small
k, the operator G + o is proportional to € [see Eq. (46)]
which couples £(z) to £,(z) in zeroth order by Eq. (38c). In
turn, §,(z) couples to §,(z) in first order which gives an overall
contribution of order € to the determinant at long wave-
lengths. Rigid boundary conditions eliminate the £, , mode,
$0 §,; may be neglected regardless of the value of k.

We can now construct the total velocity and tempera-
ture fields to order k 2 using the case III modes. Guided by
experiments,'> we construct running rather than standing
waves at onset (Re o = 0) by adding the real part of Eqgs. (32)

with 0 = — iw, and € = ¢, to the steady roll pattern [Eqgs.
(45)]:
u(r,t)= — mg~ '€, sin{g[x + 6x{ y,t)]} cos 7z
2 4 12 — Pl /8
—8,6x(y,t)+k2(q2+ﬂ1 /8¢
¢’ + 7 + 16 /8¢
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€
16¢°
v(r,t) = 2 sin gx cos 7z 3,6x( ,t)

7k €5 [sin gx cos 7z + (me,/8¢%)sin 2gx]

cos Zﬂz)éx( i), (48a)

24" + 7 + T /847
X ox{ y,t), (48b)
w(r,t) = €, cos{glx + (1 + k*/g})6x(y,t)]}sinmz,  (48c)
O(rt)=(g" + Vg *[wlr}t) — P& (87) ' sin 27z],
(484)

where
Sx(y,t) = 6x,, sin(ky — wyt).

Equations (48) give the deviations of velocity v = (,v,w) and
the temperature € from the static conduction state describ-
ing infinitesimal amplitude (6x,, <1) oscillations to order & 2
using the case I1I truncation. It is remarkable that this four-
dimensional (r,z ) flow can be constructed analytically. Based
on the accuracy of the critical amplitude €,, Eqs. (48) are
expected to hold to approximately 2%. Setting the oscilla-
tion amplitude &x,, to zero recovers straight parallel rolls
[Eq. (45)], as expected. Figure 3(a) shows the form of the roll

/ t=0 (a)
/ / / A
A A 7/ /
A / / :
/
|
/ // / /, /}
/
Sxm—srf—, /) ¥/ / // /)
/S /) 2n/
y A m *, /
r / / 4 ¢/ / / A
/ P /4 / / /
,/ // / // / //
J -+
. — W Bx
LORNORNORY
(o] ! x
0 r 34 3w
# 7 #
z t:-l., y:O (b)
P 2wg

(o]

L

o}
8xm

FIG. 3. Oscillation pattern for free boundary conditions at ¢ = 0 (a) and
t = /2w, (b). Transverse oscillations propagate along k = k (roll axis)
with amplitude 8x,,, wavelength 277/k, and frequency ,, where the oscilla-
tion wavelength has been compressed for clarity. The arrows indicate the
circulation pattern in the y = O cross section, which has uniform transverse
velocity wyx,, at t =0 and is approximately stationary at t = 7/2w,. Roll
boundaries at t = /2w, are ill-defined due to small {« k %) distortions,
which are not shown.
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distortions at 1 = 0. Owing to the second term of Eq. (48a),
the y = 0 cross section of fluid has instantaneous uniform
velocity wy0x,, inthe + x direction. The remaining terms of
Eqgs. (48a)—(48c) give the basic circulation pattern (indicated
by arrows) with nodes (@) at the center of the rolls. Roll
boundaries are indicated by vertical segments at y = 0. In a
time ¢ = 7/2w,, the wave propagates a distance 7/2k in the
+ y direction, and the y = 0 cross section is at maximum
displacement [Fig. 3(b)], for which the k ? terms of Egs. (48a)—
(48c) shift the nodes in the ( + x, + z) directions and make
roll boundaries ill-defined because of nonuniform
{ o sin 27z) lateral motions. Hence, linear stability analysis
of oscillations predicts that each roll cross section (at fixed y)
oscillates roughly harmonically in the x direction. The tem-
perature [Eq. (48d)] is enhanced at updrafts (roll boundaries
with w > 0), as expected. For rigid boundary conditions, the
motion at z = 0, 1 is disallowed, but is otherwise similar.

IV. RIGID BOUNDARY CONDITIONS

To satisfy rigid boundary conditions for an infinite slab,
we expand the horizontal roll modes ¥ '(z) and ¥ ?)(z) of
Sec. II in a complete set of basis functions. Although pre-
vious calculations™'® have used the exact roll modes, our
procedure also applies to laterally bounded geometries
where the exact eigenfunctions are not known.

To solve the first-order problem [Eq. (19)], we write
components of ¥ as a series:

Wiz = 3 W.C,),

m=1

(49)

oMz = 3 0 x,.02),

m=1
where C,, (z) and y,,{z) are even orthonormal solutions of
#*C,.(2) =47.Cnla),
(50)
Sk mld) = — ar¥ml2),
subject to the rigid boundary conditions C,, =dC,,
=¥, =0atz= + 1/2. Here, W, = 1 defines our nor-
malization, y,,(z) = V2 cos(2m — 1}nz, and the eigenvalues
A,, are tabulated by Chandrasekhar.® Substitution into Eq.

{19) readily yields a homogeneous algebraic system with ma-
trix elements that may be calculated analytically:

> {llg* +4%)a7 %8, +2CIC L)W,
m=1

—(Clx.)PN. 1 =0, I=12,.,,

(51)

$ (= @ICIFL, + (@ + 2RO, 0, ) =0,

m=1
l=1,2,.,0.

Here C} = JC,, and (4 |B ) is the vertical average of the pro-
duct 4B, as before. Approximating the roll modes by one
term in the series (49) predicts the critical Rayleigh number
A9 = 1728 and wavenumber g, = 3.097. A two-term ap-
proximation yields the improved values Z = 1709 and ¢,
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= 3.114, which agree well with the values #* = 1708 and
g. = 3.117 obtained using the exact eigenfunctions.’

Since the second-order inhomogeneity [Eq. {23b}] is odd
at about z = 0, we write the components of ¥ ¥ as

Wi= 5 WS,

2,m
m=1

(52)

0

09 = 3 094,60
m=1

where S,, and ¢, are the odd counterparts of C,, and y,,,,
respectively. Substitution into Eq. (23a) yields an inhomo-
geneous algebraic system in the coefficients W, and @9,
and the second-order Rayleigh number #?(¢,7) follows
from Eq. (24) by numerical integration. For reference, our
one-, two-, and three-term approximations give #%(q,,
0.025) = 1.900, 1.438, and 1.467, which compare well with
the corresponding value 1.479 using the exact eigenfunc-
tions.'°

Onset of oscillations can now be studied to order €2 by
using the horizontal modes #,, ¥, £,, and £, (Sec. II). Substi-
tuting appropriate expansions into the coupled system of
Eqgs. (38) and (39), multiplying by appropriate basis functions
and integrating yields a homogeneous algebraic system in
the unknown expansion coefficients. The resulting onset am-
plitude at the critical roll wavenumber g, == 3.114 is plotted
in Fig. 4 for Z = 0.12, which pertains to recent experi-
ments* in dilute superfluid *He—*He mixtures. In contrast
with free boundary conditions (Fig. 1), the onset amplitude
€, attains a minimum at finite oscillation wavenumber k.
Retaining three terms in the roll and perturbation expan-
sions alters €, from its two-term approximation by only 1%,
so that the two-term approximation is adequate for most
purposes. For a specified roll amplitude € > €., possible os-
cillation wavenumbers lie in a band defined by the neutral
stability curve €. (See example for € = 15, Fig. 4.)Fore 2 16

|

|

i P=ol2
: g =314
|

[}

}

1

1
4

a

FIG. 4. Dependence of amplitude €, on wavenumber & for onset of oscilla-
tions with rigid boundary conditions at the critical roll wavenumber
¢. = 3.114 and Prandtl number Z = 0.12. The critical amplitude €. is the
minimum of €,. Curves a, b, and c denote one-, two-, and three-term expan-
sions.
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FIG. 5. Dependence of critical oscillation wavenumber k. (a), amplitude €,
{b), and frequency o, (c) on roll wavenumber g for rigid boundaries and
Prandtl numbers # = 0.025 and 0.12.

{72 % 2500), the allowed band extends to k = 0; hence linear
stability allows long wavelength oscillations for rigid bound-
ary conditions at small Prandtl number. In the two-term
approximation, Fig. 5 shows the dependences of the critical
wavenumber k., amplitude €., and frequency w, for
# =0.12 and 0.025 on the roll wavenumber. (Here
# =0.025 pertains to mercury.) The onset amplitudes and
critical wavenumbers are new. Clever and Busse’ calculate
frequencies for choices of the oscillation wavenumber, but
no critical wavenumbers &, are found in the literature.”
The onset amplitude cannot be deduced from Clever and
Busse without knowledge of %#®. The critical amplitude
vanishes at some value of g <2; only ¢ values relevant to
oscillations at 7 = 0.025, 0.12 are retained in Fig. 5(b). The
critical frequency measured in Hertz is given by vw, (g, )/
27d 2.

The critical Rayleigh number for onset of oscillations
R.=RY+ &R and the Rayleigh number for onset of
convection # are plotted in Fig. 6. For # > %, infinitesi-
mal amplitude oscillations grow with time, so for fixed #,
oscillations are restricted to a band of roll wavenumbers
bounded by the intersections of % (7 ,g) with #. The shift
in the minimum of %, indicates that smaller g values are
relevant as & increases. The dashed trace for & = 0.025 of
Clever and Busse’ is included in Fig. 6 for comparison. They
obtain full Galerkin solutions to the problem, where we have
worked only to order €*. Evidently, the two methods agree
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FIG. 6. Dependence of Rayleigh number for onset of oscillations . and
convection % on roll wavenumbser g for rigid boundary conditions and
Prandt] numbers & = 0.025 and 0.12. For # < #©, the static conduction
state is stable. Below %, steady rolls are stable against oscillations. #'” is
the minimum of #‘®. The dashed trace for Z = 0.025 was obtained by
Clever and Busse (Ref. 7).

very well on the location and value of the minimum, and
differ only for g% 3.2, where €2%/#©~0.14 (ratio of
terms in % ., assumed small} becomes appreciable [see Fig.
5(b)]. As for free boundaries, € #?/ %' rises to order unity
as & approaches unity (at ¢ = g, ), so that the small € expan-
sion is limited to & S 1. The effect of increased € on the
frequency is more pronounced; at Z = 0.12, for example,
the ratio of their critical frequency o,/ % to ours rises from
approximately 1.6 at g =2.2 to approximately 2.2 at
q = 3.114, indicating agreement between the two methods
for small ¢ (small ). Clever and Busse report frequencies for
¢>2.2 only, but an extrapolation to ¢ = 1.9 at Z =0.71
(pertinent for air, see Sec. V) gives approximately unity for
the frequency ratio.

An unexpected result of our calculation (see Fig. 5) is
the approximate independence of the critical oscillation
wavenumber on the Prandtl number for small Prandtl
numbers (Z <0.12); it holds while the small-¢ assumption is
good (g S 3.5). Accordingly, the location of the minimum of
the onset amplitude €,(k,q, &) with respect to k (Fig. 4) de-
pends only on the roll wavenumber, whereas the value at the
minimum depends on Z. This property is shared trivially
with free boundary conditions in a laterally unbounded slab,
where k, = 0. The prediction is directly verifiable experi-
mentally; oscillations first appear at the critical wavenum-
ber. It remains to see if &, is independent of Z for bounded
geometries, where k_ is restricted to a discrete set by the
shape of the sidewalls.

The small-amplitude procedure used above describes
previous results and leads to new results as well, and hence
can be applied with guarded confidence to bounded geome-
tries.

V. DISCUSSION

Willis and Deardorff'> observed oscillations in a square
cell of aspect ratio I” = 15.7 (ratio of half the largest horizon-
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tal dimension to the depth) filled with air (% = 0.71) and a
small amount of smoke for visualization. Using a typical roll
wavenumber ¢ = 1.9 from their top-view photograph, Fig.
3(a), we find the critical conditions %, = 5900, w, = 29,
and k. = 2.38. (Computations with other values of ¢ at
# = 0.71 were not made.) Although the perturbation ex-
pansion is not strictly valid (€2#?/%#'” ~ 1.5), these com-
pare favorably with the measurements %, = 5800 and
o, = 27. The oscillation wavenumber k was measured only
for fully developed rolls. At # = 9000, the value k = 2.2
[their Fig. 3(a)] easily falls within the allowed band of oscilla-
tion wavenumbers 1.2 X k £4.0, and is even close to our criti-
cal value k, = 2.38. Clearly, theory and experiment agree
well for this large-aspect-ratio classical system.

Experiments by Maeno, Haucke, and Wheatley in di-
lute superfluid *He—*He mixtures near 7= 1 K study the
frequency and Rayleigh number at onset of oscillations in a
cylindrical cell* of aspect ratio (radius to depth ratio)
I' = 1.2 and a rectangular cell’® of aspect ratio I" = 1.0. They
measure an increase in Rayleigh number with Prandtl num-
ber, consistent with Fig. 6. Other similarities with a classical
one-component fluid are discussed in Ref. 5. However, for
either geometry, measured critical Rayleigh numbers %,
=~ 10 000 and frequencies w, ~250 for onset of oscillations
exceed typical values 7%, =~2000 and w, = 30 for a laterally
unbounded classical fluid layer. These differences motivate
the inclusion of sidewalls and two-fluid effects in the theory,
for which an amplitude expansion may be insufficient. This
problem is currently under investigation.
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